Lecturecise 18 Bounded Model Checking. Reachability Graphs. Interpolation

2013

Concrete program semantics and verification

States per program point are given by $(c_1, \ldots, c_n) \in C^n$ for some concrete lattice (C, \subseteq) , where $C = 2^S$.

For each program there is a monotonic ω -continuous function $F: \mathbb{C}^n \to \mathbb{C}^n$ such that

$$\bar{c}_* = \bigcup_{n\geq 0} F^n(\emptyset,\ldots,\emptyset)$$

is the set of reachable states for each program point.

(Safety) verification can be stated as saying that the semantics remains within the set of good states G, that is $c_* \subseteq G$, or

$$\left(\bigcup_{n\geq 0}F^n(\emptyset,\ldots,\emptyset)\right)\subseteq G$$

which is equivalent to

$$\forall n. F^n(\emptyset,\ldots,\emptyset) \subseteq G$$

Unfolding for Counterexamples: Bounded Model Checking

$$\forall n. \ F^n(\emptyset,\ldots,\emptyset) \subseteq G$$

The above condition is false iff there exists k and $\bar{c} \in C^n$ such that

$$\bar{c} \in F^k(\emptyset, \ldots, \emptyset) \land \bar{c} \notin G$$

For a fixed k this can often be expressed as a quantifier-free formula. Example: replace a loop ([c]s) * [!c] with finite unrolding $([c]s)^k [!c]$ Example: n = 1, $S = \mathbb{Z}^2$, $C = 2^S$, and $F : C \to C$ describes the program: x=0;while(*)x=x+y

$$F(B) = \{(x, y) \mid x = 0\} \cup \{(x + y, y) \mid (x, y) \in B\}$$

We have $F(\emptyset) = \{(x, y) \mid x = 0\} = \{(0, y) \mid y \in \mathbb{Z}\}$

$$F^{2}(\emptyset) = \{(0, y) \mid y \in \mathbb{Z}\} \cup \{(y, y) \mid y \in \mathbb{Z}\}$$
$$F^{3}(\emptyset) = \{(x, y) \mid x = 0 \lor x = y \lor x = 2 * y\}$$

Formula for Bounded Model Checking

Let $P_B(x, y)$ be a formula in Presburger arithmetic such that $B = \{(x, y) | P_B(x, y)\}$ then the formula

$$x = 0 \lor (\exists x_0, y_0.x = x_0 + y_0 \land y = y_0 \land P_B(x_0, y_0))$$

describes F(B). Suppose the set $F^k(B)$ can be described by a PA formula P_k . If G is given by a formula P_G then the program can reach error in k steps iff

$$P_k \wedge \neg P_G$$

is satisfiable.

Suppose P_G is $x \leq y$. For k = 3 we obtain

$$(x = 0 \lor x = y \lor x = 2 * y) \land \neg(x \le y)$$

By checking satisfiability of the formula we obtain counterexample values x = -1, y = -2.

Bounded Model Checking Algorithm

```
B = \emptyset
while (*) {
    checksat(!(B \subseteq G)) match
    case Assignment(v) => return Counterexample(v)
    case Unsat =>
        B' = F(B)
        if (B' \subseteq B) return Valid
        else B = B'
}
```

Good properties

- subsumes testing up to given depth for all possible initial states
- for a buggy program k, can be small, Leon and other tools can find many bugs fast
- ► a semi-decision procedure for finding all possible errors:

Bounded Model Checking is Bounded

Bad properties

- can prove correctness only if $F^{n+1}(\emptyset) = F^n(\emptyset)$
- errors after initializations of long arrays require unfolding for large n. This program requires unfolding past all loop iterations, even if the property does not depend on the loop:

```
 \begin{split} & i = 0 \\ & z = 0 \\ & \text{while } (i < 1000) \ \{ \\ & a(i) = 0 \\ \\ & \} \\ & y = 1/z \end{split}
```

For large k formula F^k becomes large, so deep bugs are hard to find

Transition Relation and CFG

(V, E, L) where $L : E \to Formula$ and variables are Vars Formula $T(\bar{x}, v, \bar{x}', v')$ describing one step of execution:

• from CFG node v and values of variables \bar{x}

► to CFG node
$$v'$$
 and values of variables \bar{x}'
 $T(\bar{x}, v, \bar{x}', v') \equiv (L(v, v'))(\bar{x}, \bar{x}')$
 $\equiv \bigvee_{(w,w')\in E} (v = w \land v' = w' \land L(w, w')(\bar{x}, \bar{x}'))$

If $I(\bar{x}, v)$ is a formula describing states reachable in some number of steps, then states reachable in one more step are given by this formula

$$\exists \bar{x}, v. (I(\bar{x}, v) \land T(\bar{x}, v, \bar{x}', v'))$$

whose free variables are \bar{x}', v' .

Execution fragment $\bar{x}_i, v_i, \bar{x}_{i+1}, v_{i+1}, \dots, \bar{x}_{i+k}, v_{i+k}$ is given by formula $P_{i,k}$:

$$\bigwedge_{j=0}^{k-1} T(\bar{x}_{i+j}, v_{i+j}, \bar{x}_{i+j+1}, v_{i+j+1})$$

Bounded Model Checking for Transition Relation

We have derived formula $P_{i,k}$ describing paths by iterating transition relation T

- To check whether
 - starting from the program entry point v_{entry} with initial variables satisfying Init(x
 ₀)
 - the program can reach in k steps control flow graph point v_{error} with values of variables satisfying Error(x̄)

we check the satisfiability of the formula

 $(v_0 = v_{error} \land \mathit{Init}(\bar{x}_0)) \land P_{0,k} \land (v_k = v_{error} \land \mathit{Error}(\bar{x}_k))$

Unfolding for Proving Correctness: k-Induction

Goal:
$$\forall n. F^n(\emptyset, \dots, \emptyset) \subseteq G$$
 (1)

Suppose that, for some $k \ge 1$

$$F^k(G) \subseteq G$$
 (2)

By induction on p,

 $F^{pk}(G) \subseteq G$

Suppose also

$$\forall q < k. \ F^q(\bar{\emptyset}) \subseteq G \tag{3}$$

By monotonicity of F^{pk} then for every $p \ge 0$ and q < k

$$F^{pk+q}(\overline{\emptyset}) = F^{pk}(F^q(\overline{\emptyset})) \subseteq F^{pk}(G) \subseteq G$$

Every non-negative integer can be decomposed as pk + q, so (1) holds. Algorithm: check (2) and (3) for increasing k

k-induction Algorithm

Prove or find counterexample for:

```
\forall n. F^n(\emptyset,\ldots,\emptyset) \subseteq G
```

```
\begin{array}{l} Fk = F \\ \textbf{while (*) } \\ \textbf{checksat}(!(Fk(G) \subseteq G)) \textbf{ match} \\ \textbf{case Unsat => return Valid} \\ \textbf{case Assignment(v0) =>} \\ \textbf{checksat}(!(Fk(\emptyset) \subseteq G)) \textbf{ match} \\ \textbf{case Assignment(v) => return Counterexample(v)} \\ \textbf{case Unsat =>} Fk = Fk \circ F' // unfold one more} \\ \end{array}
```

F'(c) can be F(c) or $F(c) \cap G$

Saving work: preserve the state of solver in both checksats across different k Lucky test:

if $(!(Ifp(F)(initState(v0)) \subseteq G))$ return Counterexample(v0)

Divergence in k-Induction

```
Fk = F
while (*) {
    checksat(!(Fk(G) \subseteq G)) match
    case Unsat => return Valid
    case Assignment(v0) =>
        checksat(!(Fk(\emptyset) \subseteq G)) match
        case Assignment(v) => return Counterexample(v)
        case Unsat => Fk = Fk \circ F' // unfold one more
}
```

Subsumes bounded model checking, so finds all counterexamples Often cannot find proofs when $Ifp(F) \subseteq G$. Then G may be too weak to be inductive, $(F')^n(G)$ may remain too weak:

$$F^n(\overline{\emptyset}) \subseteq lfp(F) \subseteq (F')^n(G)$$

Need weakening of $F^n(\emptyset)$ or strengthening of $(F')^n(G)$

Taking Approximate Postcondition

Suppose we did not find counterexample yet and we have sequence

$$c_0 \subseteq c_1 \subseteq \ldots c_k \subseteq G$$

where $c_i = F^i(\bar{\emptyset})$, so

$$F(c_i)=c_{i+1}$$

Instead of simply increasing k, we try to obtain larger values by finding another solution a_0 of constraints

$$c_0 \subseteq a_0, \ F^{k-1}(a_0) \subseteq G$$

so we obtain a sequence

$$\mathsf{a}_0\subseteq\mathsf{F}(\mathsf{a}_0)\subseteq\ldots\subseteq\mathsf{F}^{k-1}(\mathsf{a}_0)\subseteq\mathsf{G}$$

- if $F(F^{k-1}(a_0)) \subseteq F^{k-1}(a_0)$, then $F^{k-1}(a_0)$ is inductive invariant
- if F(F^{k-1}(a₀)) ⊆ G, repeat the process: find a new initial element a₁ by solving a₀ ⊆ a₁, F^{k-1}(a₁) ⊆ G
- if not F(F^{k-1}(a₀)) ⊆ G, then we "overshot" the specification G. We then increase k and restart.

Solving Inclusion Constraints

The previous procedure also finds all counterexamples of length up to k, and uses specification in a different way than k-induction. Key question: how to obtain interesting solutions of inequality constraints Solution: interpolation

Abstract Reachability Tree

Consider a control-flow graph (V, E, L) where $L : E \to Formula$ describes the statement on CFG edges using variables \bar{x} and \bar{x}' .

Given a set of predicates \mathcal{P} , the complete abstract reachability graph (cARG) (V_A , E_A) for (V, E, L) and \mathcal{P} is given by

V_A = V × 2^P. Thus, each ARG node (v, a) ∈ V_A has a CFG node v ∈ V and a set of predicates a ⊂ P

•
$$((v, a), (v', a') \in E_A$$
 iff

•
$$\mathbf{a}' = \{ P \in \mathcal{P} \mid \forall x, \bar{x}. \ ((\bigwedge a) \land L(v, v') \to P) \}$$

Total number of nodes in cARG can be as much as $|V| \times 2^{|\mathcal{P}|}$ In practice:

- we construct subgraphs of cARG, exploring additional edges using some exploration strategy
- we do not use all predicates at all program points, but discover predicates on the fly, using a set of predicates specific to each cARG node

For example, given predicates $\{x \ge 0, x > 0, x = 0\}$ the successors of the node (v_0, \emptyset) under a statement $L(v_0, v_1) \equiv (x' = 1)$ is $(v_1, \{x > 0\})$.

Splitting in ARG

The above exploration strategy does not discover all disjunctions of invariants.

Given an edge $(v, v') \in E$ and an ARG node (v, a) we can achieve more precise representation of the command L(v, v') by introducing not one but a set of abstract edges such that

$$(\bigwedge a) \land L(v, v') \rightarrow \bigvee_{((v,a), (v', a')) \in E_A} a'$$

For example, given predicates $\{x < 0, x > 0, x = 0\}$ and edge x = x + 1, if we do not use splitting the successors of the node (v_0, \emptyset) under a statement $L(v_0, v_1) \equiv x' = x + 1$ is (v_1, \emptyset) because no single predicate is guaranteed to hold. On the other hand, if we are allowed to use multiple edges, we can introduce instead three edges into E_A :

$$\begin{array}{l} ((v_0, \emptyset), (v_1, \{x < 0\})) \\ ((v_0, \emptyset), (v_1, \{x > 0\})) \\ ((v_0, \emptyset), (v_1, \{x = 0\})) \end{array}$$

Predicate Sequence that Eliminates False Path

ARG construction only checks feasibility of one step at a time Therefore, ARG is finite, but also some paths can be infeasible Consider sequence of nodes

$$v_0, v_1, \ldots, v_k$$

The condition that this path is feasible is

$$\bigwedge_{i=0}^{k-1} L(v_i, v_{i+1})[\bar{x} := \bar{x}_i, \bar{x}' := \bar{x}_i']$$

If the path is not feasible it means that the above formula is unsatisfiable. Then there is a Hoare triple proof for it:

$$\{I_0\} L(v_0, v_1) \{I_1\} L(v_1, v_2) \{I_2\} \dots \{I_{k-1}\} L(v_{k-1}, v_k) \{I_k\}$$

where $I_0 \equiv true$ and $I_k \equiv false$. How to find such predicates I_1, \ldots, I_n ?

Interpolation Sequence

 $\{I_0\} L(v_0, v_1) \{I_1\} L(v_1, v_2) \{I_2\} \dots \{I_{k-1}\} L(v_{k-1}, v_k) \{I_k\}$

where $I_0 \equiv true$ and $I_k \equiv false$. Finding predicates I_j :

- define I_j as the strongest postcondition of I₀ with respect to the composition of statements L(v₀, v₁), ..., L(v₀, v_j).
- ▶ define *I_j* as the weakest precondition of false with respect to the composition of statements *L*(*v_j*, *v_{j+1}*),...,*L*(*v_{k-1}*, *k*).
- in general, use the notion of interpolating sequence

Sequence of Length Two: Binary Interpolation

Fix some class of formulas \mathcal{F} (e.g. quantifier-free formulas) Binary interpolation for $A, B \in \mathcal{F}$ is formula $I \in \mathcal{F}$ such that, for all free variables

- ► $A \rightarrow I$
- $I \rightarrow B$

► *I* has only variables that are common for both *A* and *B* Claim: if we can find binary interpolants, we can find interpolating sequences.

Claim: if logic has quantifier elimination, then we can find binary interpolants.