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Abstract Interpretation Big Picture



Galois Connection
Galois connection (named after Évariste Galois) is defined by two
monotonic functions α : C → A and γ : A→ C between partial orders
(C ,⊆) and (A,v) such that

∀c ∈ C .∀a ∈ A. c ⊆ γ(a) ⇐⇒ α(c) v a (∗)

Intuitively, each side means that c is over-approximated by a.
“γ travels to the other side to become α and changes the ordering”

γ(a)

c

a

α(c)

γ (concretization)

α (abstraction)

⊆ v
C (concrete) A (abstract)

⊆ could be any partial order, though for us it will typically be actual subset



Example of Galois Connection

γ(a)

c

a

α(c)

γ (concretization)

α (abstraction)

⊆ v

C (concrete) A (abstract)

c ⊆ γ(a) ⇐⇒ α(c) v a

(C ,⊆), C = 2Z - set of sets of integers (A,v), A - set of intervals

A = {⊥} ∪ {[p, q] | p ∈ {−∞} ∪ Z, q ∈ Z ∪ {∞}, p ≤ q}
γ([p, q]) = {x ∈ Z | p ≤ x ≤ q}, γ(⊥) = ∅
a1 v a2

def⇐⇒ γ(a1) ⊆ γ(a2)
α(c) = [inf(c), sup(c)], if c 6= ∅ α(∅) = ⊥

Lemma:

1. v defined above is a partial order

2. α, γ are monotonic

3. (α, γ) is a Galois connection



Galois Connection for Intervals

γ([p, q]) = {x ∈ Z | p ≤ x ≤ q}, γ(⊥) = ∅
α(c) = [inf(c), sup(c)], if c 6= ∅ α(∅) = ⊥

Goal: show c ⊆ γ(a) ⇐⇒ α(c) v a
Consider the case where c ∈ C is non-empty set and a = [p, q], p ≤ q

c ⊆ γ(a)
⇐⇒ c ⊆ γ([p, q])
⇐⇒ ∀x ∈ c .p ≤ x ∧ x ≤ q
⇐⇒ (∀x ∈ c.p ≤ x) ∧ (∀x ∈ c .x ≤ q)
⇐⇒ p ≤ inf(c) ∧ q ≤ sup(c)
⇐⇒ γ([inf(c), sup(c)]) ⊆ γ([p, q])
⇐⇒ [inf(c), sup(c)] v [p, q]
⇐⇒ α(c) v a
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This Galois Connection Connects Larger and Smaller Set

γ(a)

c

a

α(c)

γ (concretization)
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⊆ v

C (concrete) A (abstract)

c ⊆ γ(a) ⇐⇒ α(c) v a

α is not injective, e.g.

α({0, 2}) = [0, 2] = α({0, 1, 2})
α and γ are not inverses of each other.
A is smaller than C according to set theory:

A ∼ Z2 ∼ Z ≺ 2Z ∼ C

There is no bijection between A and C , but there is Galois connection
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Galois Connection: Equivalent Formulation

A Galois connection is defined by two monotonic functions α : C → A and
γ : A→ C between partial orders ≤ on C and v on A, such that

∀c , a. c ⊆ γ(a) ⇐⇒ α(c) v a (∗)

Show that the condition (∗) is equivalent to the conjunction of these two
conditions:

∀c ∈ C . c ⊆ γ(α(c))
∀a ∈ A. α(γ(a)) v a

Lemma: In every Galois connection (α, γ) the following holds:

I ∀c ∈ C . α(γ(α(c))) = α(c)

I ∀a ∈ A. γ(α(γ(a))) = γ(a)



Galois Insertion

Lemma: If f , g are functions and f ◦ g (defined by (f ◦ g)(x) = f (g(x)) is
identity function, then f is surjective and g is injective.
Lemma: Let α and γ satisfy the condition of a Galois connection. Show
that the following three conditions are equivalent:

1. α(γ(a)) = a, for all a ∈ A

2. α is a surjective function

3. γ is an injective function

If these conditions hold, we say (α, γ) is a Galois insertion of (A,v) into
(C ,⊆).

Galois insertion gives an isomorphism between (A,v) and its image under
γ. Thus, Galois insertion is a renaming of a substructure of (C ,⊆),
together with an abstraction operator α that replaces any element of C
with an element of this substructure (its approximation). E.g. replaces a
set with an enclosing interval.



Dual Notion to Galois Insertion?
State the condition for c = γ(α(c)) to hold for all c . When C is the set of
sets of concrete states and A is a domain of static analysis, is it more
reasonable to expect that c = γ(α(c)) or α(γ(a)) = a to hold?



Least Upper Bounds and Monotonic Functions

Lemma: Let (A,v,t) and (C ,⊆,∪) be semi-lattices (so t is lub with
respect to v and ∪ with respect to ⊆). Show that, if γ : A→ C is a
monotonic function then

γ(a1) ∪ γ(a2) ⊆ γ(a1 t a2)

i.e., t over-approximates union.

Lemma: Suppose that α : C → A is monotonic. Which one of the
following necessarily holds:

I α(c1 ∪ c2) v α(c1) t α(c2)

I α(c1) t α(c2) v α(c1 ∪ c2)



Constructing Least Upper Bounds

Lemma: Let (α, γ) be a Galois insertion of a partial order (A,v) into a
semi-lattice (C ,⊆,∪). Define operation ∗ on A by

a1 ∗ a2 = α(γ(a1) ∪ γ(a2))

Then for every a1, a2 ∈ A the value a1 ∗ a2 the least upper bound on a1 and
a2, and thus (A,v,t) is also a semi-lattice.



Approximating Fixpoint
Let C = 2Z. Consider F : C → C

F (c) = {0} ∪ {x + 2 | x ∈ c}

Let (A,v) be the set of integer intervals. Define F# : A→ A

F#(a) = [0, 0] t G (a)

where G (⊥) = ⊥ and G ([p, q]) = [p + 2, q + 2]. Thus

F#(a) =

{
[0, 0], if a = ⊥

[min(p + 2, 0),max(q + 2, 0)], if a = [p, q]

F# satisfies the following crucial soundness property:

F (γ(a)) ⊆ γ(F#(a))

We have lfp(F#) =
⊔

k≥0[0, 2k] = [0,∞], so F#([0,∞]) v [0,∞], and

F (γ([0,∞])) ⊆ γ(F#([0,∞])) ⊆ γ([0,∞])

Found desired c = γ([0,∞]) by searching in A.
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Sound Approximation Functions

Consider (C ,⊆), (A,v), F : C → C and F# : A→ A. The key soundness
property that we would like is

F (γ(a)) ⊆ γ(F#(a))

Suppose we have α as well such that (α, γ) is Galois connection. Then we
can define

F#(a) = α(F (γ(a)))

This implies
α(F (γ(a))) v F#(a)

so by Galois connection condition this is equivalent to F (γ(a)) ⊆ γ(F#(a)).



Galois Connection on Products

Notation: if f1 : A1 → B1 and f2 : A2 → B2 then
(f1 × f2) : A1 × A2 → B1 × B2 is given pointwise:
(f1 × f2)(x1, x2) = (f1(x1), f2(x2)).

Let (α1, γ1) be a Galois connection between (A1,v1) and (C1,⊆1). Let
(α2, γ2) be a Galois connection between (A2,v2) and (C2,⊆2). Then
(α1 × α2, γ1 × γ2) is a Galois connection between product partial orders
(A1,v1)× (A2,v2) and (C1,⊆1)× (C2,⊆2).



Example Program

// v0
x := 0;
// v1
while (x < 10) {
// v2
x := x + 3;
}
// v3

v0

v1 v3

v2

x = 0

[x ≥ 10]

[x ≤ 9]x = x + 3



Concrete Domain: Sets of States

Because there is only one variable:

I state is an element of Z (value of x)

I sets of states are sets of integers, C = 2Z (concrete domain)

I for each command K , strongest postcondition function
sp(·,K ) : C → C

Strongest Postondition
Compute sp on example statements:

sp(P, x := 0) = {0}

sp(P, x := x + 3) = {x + 3 | x ∈ P}

sp(P, assume(x < 10)) = {x | x ∈ P ∧ x < 10}

sp(P, assume(¬(x < 10)) = {x | x ∈ P ∧ x ≥ 10}



Sets of States at Each Program Point
Collecting semantics computes with sets of states at each program point

g : {v0, v1, v2, v3} → C

We sometimes write gi as a shorthand for g(vi ), for i ∈ {0, 1, 2, 3}.
In the initial state the value of variable is arbitrary: I = Z

post Function for the Collecting Semantics
From here we can derive F that maps g to new value of g :

v0 g0

v1
g1

v3 g3

v2 g2

x = 0

[x ≥ 10]

[x ≤ 9]x = x + 3

F (g0, g1, g2, g3) =
(Z,
sp(g0, x := 0) ∪ sp(g2, x := x + 3),
sp(g1, assume(x ≤ 9)),
sp(g1, assume(x ≥ 10)))



Sets of States at Each Program Point
The fixpoint condition F (g) = g becomes a system of inequations

g0 = Z
g1 = sp(g0, x := 0) ∪ sp(g2, x := x + 3)
g2 = sp(g1, assume(x ≤ 0))
g3 = sp(g1, assume(x ≥ 10)))

whereas the postfix point (see Tarski’s fixpoint theorem) becomes

v0 g0

v1
g1

v3 g3

v2 g2

x = 0

[x ≥ 10]

[x ≤ 9]x = x + 3

Z ⊆ g0
sp(g0, x := 0) ∪ sp(g2, x := x + 3) ⊆ g1
sp(g1, assume(x ≤ 9)) ⊆ g2
sp(g1, assume(x ≥ 10)) ⊆ g3



Computing Fixpoint
To find the fixpoint, we compute the sequence F n(∅, ∅, ∅, ∅) for n ≥ 0:

(∅, ∅, ∅, ∅)
(Z, ∅, ∅, ∅)
(Z, {0}, ∅, ∅)
(Z, {0}, {0}, ∅)
(Z, {0, 3}, {0}, ∅)
(Z, {0, 3}, {0, 3}, ∅)
(Z, {0, 3, 6}, {0, 3}, ∅)
(Z, {0, 3, 6}, {0, 3, 6}, ∅)
(Z, {0, 3, 6, 9}, {0, 3, 6, 9}, ∅)
(Z, {0, 3, 6, 9, 12}, {0, 3, 6, 9}, ∅)
(Z, {0, 3, 6, 9, 12}, {0, 3, 6, 9}, {12})
(Z, {0, 3, 6, 9, 12}, {0, 3, 6, 9}, {12})

Thus, all subsequent values remain the same and
(Z, {0, 3, 6, 9, 12}, {0, 3, 6, 9}, {12}) is the fixpoint of collecting semantics
equations. In general we may need infinitely many iterations to converge.



Now formulate analogous constraints in abstract domain



Abstract Postcondition of Statements: Core of Analysis

We had: sp(·, c) : C → C
Now we have: sp#(·, c) : A→ A
For correctness, we need that for each a ∈ A and each command r :

sp(γ(a), r) ⊆ γ(sp#(a, r))

We would like sp# to be as small as possible so that this condition holds.
By property of Galois Connection, the condition sp(γ(a), r) ⊆ γ(sp#(a, r)) is
equivalent to

α(sp(γ(a), r)) v sp#(a, r)

Because we want sp# to be as small as possible (to obtain correct result), we let
equality hold:

sp#(a, r) = α(sp(γ(a), r))

Because we know α, γ, sp, we can compute the value of sp#(a, r) by simplifying
certain expressions involving sets of states.



Example
For p ≤ q we have:

sp#([p, q], x := x + 3) = α(sp(γ([p, q]), x := x + 3))
= α(sp({x | p ≤ x ∧ x ≤ q}, x := x + 3))
= α({x + 3 | p ≤ x ∧ x ≤ q})
= α({y | p + 3 ≤ y ∧ y ≤ q + 3})
= [p + 3, q + 3]

For K an integer constant and a 6= ⊥, we have

sp#(a, x := K ) = [K ,K ]

Note that for every command given by relation r , we have

sp#(⊥, r) = α(sp(γ(⊥), r))
= α(sp(∅, r))
= α(∅)
= ⊥



Variable Range Analysis for Example Program

The general form of abstract interpretation of the collecting semantics is
analogous to collecting semantics, but replaces operations on sets with
operations on the lattice:

F# : (V → A)→ (V → A)

F (g#)(v ′) = g#
init(v

′) t
⊔

(v ,v ′)∈E

sp#(g#(v), r(v , v ′))

Here g#
init(v

′) will be ⊥ except at the entry into our control-flow graph,
where it approximates the set of initial states at the entry point.



Abstract Semantic Function for the Program
In Collecting Semantics for Example Program we had

v0 g0

v1
g1

v3 g3

v2 g2

x = 0

[x ≥ 10]

[x ≤ 9]x = x + 3

F (g0, g1, g2, g3) =
(Z,
sp(g0, x := 0) ∪ sp(g2, x := x + 3),
sp(g1, assume(x ≤ 9)),
sp(g1, assume(x ≥ 10)))

Here we have:

F#(g#
0 , g

#
1 , g

#
2 , g

#
3 ) =

(>,
sp#(g#

0 , x := 0) t sp#(g#
2 , x := x + 3),

sp#(g#
1 , assume(x ≤ 9)),

sp#(g#
1 , assume(x ≥ 10)))



Solving Abstract Function

Doing the analysis means computing (F#)n(⊥,⊥,⊥,⊥) for n ≥ 0:

(⊥,⊥,⊥,⊥)
(>,⊥,⊥,⊥)
(>, [0, 0],⊥,⊥)
(>, [0, 0], [0, 0],⊥)
(>, [0, 3], [0, 0],⊥)
(>, [0, 3], [0, 3],⊥)
(>, [0, 6], [0, 3],⊥)
(>, [0, 6], [0, 6],⊥)
(>, [0, 9], [0, 6],⊥)
(>, [0, 9], [0, 9],⊥)
(>, [0, 12], [0, 9],⊥)
(>, [0, 12], [0, 9], [10, 12])
(>, [0, 12], [0, 9], [10, 12])

Note the approximation (especially in the last step) compared to the collecting
semantics we have computed before for our example program.



Abstract Interpretation

Given control-flow graph: (V ,E , r) where

I V = {v1, . . . , vn} is set of program points

I E ⊆ V × V are control-flow graph edges

I r : E → 2S×S , so each r(v , v ′) ⊆ S × S is relation describing the
meaning of command between v and v ′

Key steps:

I design abstract domain A that represents sets of program states

I define γ : A→ C giving meaning to elements of A

I define lattice ordering v on A such that a1 v a2 → γ(a1) ⊆ γ(a2)

I define sp# : A× 2S×S → A that maps an abstract element and a CFG
statement to new abstract element, such that
sp(γ(a), r) ⊆ γ(sp#(a, r))
For example, by defining function α so that (α, γ) becomes a Galois
Connection and defining sp#(a) = α(sp(γ(a), r)).



Running Abstract Interpretation

I Extend sp# to work on control-flow graphs, by defining
F# : (V → A)→ (V → A) as follows (below, g# : V → A)

F#(g#)(v ′) = Init(v ′) t
⊔

(v ,v ′)∈E

sp#(g#(v), r(v , v ′))

I Compute g#
∗ = lfp(F#) (this is easier than computing semantics

because lattice An is simpler than Cn):

g#
∗ =

⊔
n≥0

(F#)n(⊥#)

where ⊥#(v) = ⊥A for all v ∈ V .

The resulting fixpoint describes an inductive program invariant.



Termination and Efficiency of Abstract Interpretation

Definition: A chain of length n is a sequence s0, s1, . . . , sn such that

s0 < s1 < s2 < . . . < sn

where x < y means, as usual, x v y ∧ x 6= y

Definition: A partial order has a finite height n if it has a chain of length
n and every chain is of length at most n.

A finite lattice is of finite height.



Example

The constant propagation lattice Z ∪ {⊥,>} is an infinite lattice of
height 2. One example chain of length 2 is

⊥ < 42 < >

Here the γ function is given by

I γ(k) = . . . when k ∈ Z
I γ(>) = . . .

I γ(⊥) = . . .

The ordering is given by a1 ⊆ a2 iff γ(a1) ⊆ γ(a2)



Example

If a state of a (one-variable) program is given by an integer, then a concrete
lattice element is a set of integers. This lattice has infinite height. There is
a chain

{0} ⊂ {0, 1} ⊂ {0, 1, 2} ⊂ . . . ⊂ {0, 1, 2, . . . , n}

for every n.



Convergence in Lattices of Finite Height

Consider a finite-height lattice (L,v) of height n and function

F : L→ L

What is the maximum length of sequence ⊥,F (⊥),F 2(⊥), . . . ?
Give an effectively computable expression for lfp(F ).



Computing the Height when Combining Lattices

Let H(L,≤) denote the height of the lattice (L,≤).
Product
Given lattices (L1,v1) and (L2,v2), consider product lattice with set
L1 × L2 and potwise order

(x1, x2) v (x ′1, x
′
2)

iff . . .
What is the height of the product lattice?
Exponent
Given lattice (L,v) and set V , consider the lattice (LV ,v′) defined by

g <′ h

iff ∀v ∈ V .g(v) v h(v).
What is the height of the exponent lattice?

Answer: height of L times the cardinality of V .



Computing the Height when Combining Lattices

Let H(L,≤) denote the height of the lattice (L,≤).
Product
Given lattices (L1,v1) and (L2,v2), consider product lattice with set
L1 × L2 and potwise order

(x1, x2) v (x ′1, x
′
2)

iff . . .
What is the height of the product lattice?
Exponent
Given lattice (L,v) and set V , consider the lattice (LV ,v′) defined by

g <′ h

iff ∀v ∈ V .g(v) v h(v).
What is the height of the exponent lattice?
Answer: height of L times the cardinality of V .



Widening and Narrowing in Variable Range Analysis

Interval analysis domain, for each program point, maps each program
variable to an interval.
Analysis domain has elements g# : V → I where I denotes the set of such
intervals.

Height of lattice for unbounded integers: infinite.

Height of lattice of one interval for 64-bit integers: around 264

Moreover, if we have q variables in program and p program points, height
of lattice for the analysis domain is pq times larger.

How to guarantee (reasonably fast) termination?



Widening technique

If the iteration does not seem to be converging, take a ”jump” and make
the interval much wider (larger).
Finite set of jump points J (e.g. set of all integer constants in the program)
In fixpoint computation, compose Hi with function

w([a, b]) = [max{x ∈ J | x ≤ a},min{x ∈ J | b ≤ x}]

We require the condition:
x vW (x)

for all x .
The condition holds for the example above.



Approaches

I always apply widening (we will assume this)

I iterate a few times with Hi only (without using w), if we are not at a
fixpoint at this program point, then widen.

I this is not monotonic: if you start at fixpoint, it converges, if start
below, can jump over fixpoint!

Standard iteration: ⊥, . . . , (F#)n(⊥), . . .
Widening: ⊥, . . . , ((W ◦ F#)n(⊥), . . .



Example where widening works nicely

Consider program:

x = 0;
while (x < 1000) {

x = x + 1;
}

Interval analysis without widening will need around 1000 iterations to
converge to interval [1000, 1000] for x at the end of the program.
This may be too slow.

Let us derive the set J by taking all constants that appear in the program,
as well as −∞ and +∞:

J = {−∞, 0, 1, 1000,+∞}

After a few iterations, widening maps interval [0, 2] into [0, 1000]. This
gives [0, 999] for x at loop entry and again [1000, 1000] for x at the end of
the program, but in many fewer iterations.



Example showing problems with widening

Consider program:

x = 0;
y = 1;
while (x < 1000) {

x = x + 1;
y = 2∗x;
y = y + 1;
print(y);
}

Interval analysis without widening will need around 1000 iterations to
converge to

x 7→ [1000, 1000]; y 7→ [1, 2001]

This may be too slow.
Now apply widening with the same J as before. When within loop we
obtain x 7→ [0, 1000], applying widening function to the interval [0, 2000] for
y results in [0,+∞). We obtain y 7→ [1,+∞) at the end of the program:

x 7→ [1000, 1000]; y 7→ [1,+∞)



Narrowing

Observation
Consider a monotonic function, such as f (x) = 0.5x + 1 on the set of real
numbers.
If we consider a sequence x0, f (x0), . . . , this sequence is

I monotonically increasing iff x0 < x1 (e.g. for x0 = 0)

I monotonically decreasing iff x1 < x0 (e.g. for x0 = 3)

Informally, the sequence continues of the direction in which it starts in the
first step.

This is because x0 < x1 implies by monotonicity of f that x1 < x2 etc.,
whereas x1 < x0 implies x2 < x1.

The Idea
Let W : A→ A such that x vW (x).
After finding fixpoint of (W ◦ F )#, apply F# to improve precision.



Widen and Narrow

Lemma: Let F# and W be monotonic functions on a partial order v such
that x vW (x) for all x . Define the following:

I x∗ = tn≥0(F#)n(⊥)

I y∗ = tn≥0(W ◦ F#)n(⊥)

I z∗ = un≥0(F#)n(y∗)

where we also assume that the two t and one u exist. Then

I x∗ is the least fixpoint of F# and z∗, is the least fixpoint of W ◦ F#

(by Tarski’s Fixpoint Theorem), and

I x∗ v z∗ v y∗.



Proof

By induction, for each n we have

(F#)n(⊥) v (W ◦ F#)n(⊥)

Thus by Comparing Fixpoints of Sequences, we have x∗ v y∗.
Next, we have that

x∗ = F#(x∗) v F#(y∗) v (W ◦ F#)(y∗) v y∗

Thus, F#(y∗) v y∗. From there by induction and monotonicity of F# we obtain

(F#)n+1(y∗) v (F#)n(y∗)

i.e. the sequence (F#)n(y∗) is decreasing. Therefore, y∗ is its upper bound and
therefore z∗ v y∗.
On the other hand, we have by monotonicity of F#, the fact that x∗ is fixpoint,
and x∗ v y∗ that:

x∗ = (F#)n(x∗) v (F#)n(y∗)

Thus, x∗ is the lower bound on (F#)n(y∗), so x∗ v z∗.



Note

Even if z∗ does not exist, we can simply compute (F#)n(y∗) for any chosen
value of n, it is still a sound over-approximation, because it approximates
x∗, which approximates the concrete value:

x∗ v zn

so
s∗ ⊆ γ(x∗) ⊆ γ(zn)

Being able to stop at any point gives us an anytime algorithm.



Example showing how narrowing may improve result after
widening

In the above example for the program, the results obtained using widening

are:

x = 0;
y = 1;
// x −> [0,0], y −> [1,1]
// (merge point)
// x −> [0,1000], y −> [1,+infty)
while (x < 1000) {

// x −> [0,999], y −> [1,+infty)
x = x + 1;
// x −> [0,1000], y −> [1,+infty)
y = 2∗x;
// x −> [0,1000], y −> [0,+infty)
y = y + 1;
// x −> [0,1000], y −> [1,+infty)
print(y);
}
// x −> [1000,1000], y −> [1,+infty)



Example cont.
Let us now apply one ordinary iteration, without widening. We obtain:

x = 0;
y = 1;
// x −> [0,0], y −> [1,1]
// (merge point)
// x −> [0,1000], y −> [1,2001]
while (x < 1000) {

// x −> [0,999], y −> [1,+infty)
x = x + 1;
// x −> [0,1000], y −> [1,+infty)
y = 2∗x;
// x −> [0,1000], y −> [0,2000]
y = y + 1;
// x −> [0,1000], y −> [1,2001]
print(y);
}
// x −> [1000,1000], y −> [1,2001]

Thus, we obtained a good first approximation by a few iterations with
widening and then improved it with a single iteration without widening.



Exercises

Exercise 1:
Consider an analysis that has two integer variables, for which we track
intervals, and one boolean variable, whose value we track exactly.
Give the type of F# for such program.

Exercise 2:
Consider the program that manipulates two integer variables x , y .
Consider any assignment x = e, where e is a linear combination of integer
variables, for example,

x = 2 ∗ x − 5 ∗ y

Consider an interval analysis that maps each variable to its value.
Describe an algorithm that will, given a syntax tree of x = e and intervals
for x (denoted [ax , bx ]) and y (denoted [ay , by ]) find the new interval [a, b]
for x after the assignment statement.



Exercise 3

a)
For a program whose state is one integer variable and whose abstraction is
an interval, derive general transfer functions sp#(a, c) for the following
statements c, where K is an arbitrary compile-time constant known in the
program:

I x = K

I x = x + K

I assume(x ≤ K )

I assume(x ≥ K )

b)
Consider a program with two integer variables, x,y. Consider analysis that
stores one interval for each variable.

I Define the domain of lattice elements a that are computed for each
program point.

I Give the definition for statement sp#(a, y = x + y + K )



Exercise 3
c)
Draw the control-flow graph for the
following program.

Run abstract interpretation that
maintains an interval for x at each
program point, until you reach a
fixpoint.

What are the fixpoint values at pro-
gram points v4 and v5?

// v0
x := 0;
// v1
while (x < 10) {

// v2
x := x + 3;
}
// v3
if (x >= 0) {

if (x <= 15) {
a[x]=7; // index in range
} else {

// v4
error;
}
} else {

// v5
error;
}


