Lecturecise 8
 Recursion and Fixpoints
 Algebraic Data Types Introduction

2013

Recall: Least fixpoint of a recursive function

Assumptions:

- C - a collection (set) of sets (e.g. sets of pairs, i.e. relations)
- $E: C \rightarrow C$ that is ω-continuous: for $r_{0} \subseteq r_{1} \subseteq r_{2} \ldots$,

$$
E\left(\bigcup_{i} r_{i}\right)=\bigcup_{i} E\left(r_{i}\right)
$$

THEOREM: $s=\bigcup_{i} E^{i}(\emptyset)$ is such that

1. $E(s)=s \quad-s$ is a fixpoint of E
2. if r is such that $E(r) \subseteq r$, then $s \subseteq r$

- s is the smallest

We call s the least fixpoint of E and write $s=\operatorname{Ifp}(E)$
The least fixpoint is always unique: if s_{1} and s_{2} are least fixpoints, then $s_{1} \subseteq s_{2}$ and $s_{2} \subseteq s_{1}$, so $s_{1}=s_{2}$

Example 1: Prove that recursive function meets spec

Prove that if s is the relation denoting the recursive function below, then

$$
\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \in s \rightarrow y^{\prime} \geq y
$$

$$
\begin{aligned}
& \operatorname{def} f= \\
& \text { if }(x>0)\{ \\
& x=x-1 \\
& f \\
& y=y+2
\end{aligned}
$$

$$
\begin{aligned}
& E\left(r_{f}\right)=\left(\Delta_{S(x>0)} \circ(\right. \\
& \rho(x=x-1) \circ \\
& r_{f} \circ \\
&\rho(y=y+2)) \\
&) \cup \Delta_{S(x \leq 0)}
\end{aligned}
$$

Example 1: Prove that recursive function meets spec

$$
\begin{gathered}
E\left(r_{f}\right)=\left(\Delta_{S(x>0)} \circ\left(\rho(x=x-1) \circ r_{f} \circ \rho(y=y+2)\right)\right) \cup \Delta_{S(x \leq 0)} \\
\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \in s \rightarrow y^{\prime} \geq y
\end{gathered}
$$

Example 1: Prove that recursive function meets spec

$$
\begin{gathered}
E\left(r_{f}\right)=\left(\Delta_{S(x>0)} \circ\left(\rho(x=x-1) \circ r_{f} \circ \rho(y=y+2)\right)\right) \cup \Delta_{S(x \leq 0)} \\
\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \in s \rightarrow y^{\prime} \geq y
\end{gathered}
$$

Since it holds

$$
E(r) \subseteq r \rightarrow \operatorname{Ifp}(E) \subseteq r
$$

we only need to show that for $r=\left\{\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \mid y^{\prime} \geq y\right\}$ it holds that $E(r) \subseteq r$.

Example 1: Prove that recursive function meets spec

$$
\begin{gathered}
E\left(r_{f}\right)=\left(\Delta_{S(x>0)} \circ\left(\rho(x=x-1) \circ r_{f} \circ \rho(y=y+2)\right)\right) \cup \Delta_{S(x \leq 0)} \\
\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \in s \rightarrow y^{\prime} \geq y
\end{gathered}
$$

Since it holds

$$
E(r) \subseteq r \rightarrow \operatorname{Ifp}(E) \subseteq r
$$

we only need to show that for $r=\left\{\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \mid y^{\prime} \geq y\right\}$ it holds that $E(r) \subseteq r$.

$$
\begin{aligned}
E(r)= & \left\{\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \mid \exists x_{1}, x_{2}, y_{1}, y_{2} \cdot x>0 \wedge x_{1}=x-1 \wedge y_{1}=y \wedge\right. \\
& \left.x_{1}=x_{2} \wedge y_{2}>y_{1} \wedge x^{\prime}=x_{2} \wedge y^{\prime}=y_{2}+2\right\} \cup \Delta_{S(x>0)}
\end{aligned}
$$

Example 1: Prove that recursive function meets spec

$$
\begin{gathered}
E\left(r_{f}\right)=\left(\Delta_{S(x>0)} \circ\left(\rho(x=x-1) \circ r_{f} \circ \rho(y=y+2)\right)\right) \cup \Delta_{S(x \leq 0)} \\
\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \in s \rightarrow y^{\prime} \geq y
\end{gathered}
$$

Since it holds

$$
E(r) \subseteq r \rightarrow \operatorname{Ifp}(E) \subseteq r
$$

we only need to show that for $r=\left\{\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \mid y^{\prime} \geq y\right\}$ it holds that $E(r) \subseteq r$.

$$
\begin{aligned}
E(r)= & \left\{\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \mid \exists x_{1}, x_{2}, y_{1}, y_{2} \cdot x>0 \wedge x_{1}=x-1 \wedge y_{1}=y \wedge\right. \\
& \left.x_{1}=x_{2} \wedge y_{2}>y_{1} \wedge x^{\prime}=x_{2} \wedge y^{\prime}=y_{2}+2\right\} \cup \Delta_{S(x>0)} \\
\subseteq & r
\end{aligned}
$$

Example 2: Computing the least fixpoint is harder

Compute the least fixpoint of the recursive function: $\operatorname{def} \mathrm{f}=$

$$
\begin{aligned}
& \text { if }(x>0)\{ \\
& x=x-1 \\
& f \\
& y=y+2
\end{aligned}
$$

$$
\begin{aligned}
& E\left(r_{f}\right)=\left(\Delta_{S(x>0)} \circ(\right. \\
& \rho(x=x-1) \circ \\
& r_{f} \circ \\
&\rho(y=y+2)) \\
&) \cup \Delta_{S(x \leq 0)}
\end{aligned}
$$

Computing the elements the sequence

$$
\begin{aligned}
& E\left(r_{f}\right)=\left(\Delta_{S(x>0)} \circ\left(\rho(x=x-1) \circ r_{f} \circ \rho(y=y+2)\right)\right) \cup \Delta_{S(x \leq 0)} \\
& r_{k}=E^{k}(\emptyset)
\end{aligned}
$$

Computing the elements the sequence

$$
\begin{aligned}
& E\left(r_{f}\right)=\left(\Delta_{S(x>0)} \circ\left(\rho(x=x-1) \circ r_{f} \circ \rho(y=y+2)\right)\right) \cup \Delta_{S(x \leq 0)} \\
& r_{k}=E^{k}(\emptyset) \\
& \text { Plan: }
\end{aligned}
$$

1. Find a mathematical formula describing the relations r_{k}, containing $x, x^{\prime}, y, y^{\prime}, k$.
2. Find a mathematical formula for $\bigcup_{k \geq 0} r_{k}$

- $r_{1}=E(\emptyset)=$

Computing the elements the sequence

$$
\begin{aligned}
& E\left(r_{f}\right)=\left(\Delta_{S(x>0)} \circ\left(\rho(x=x-1) \circ r_{f} \circ \rho(y=y+2)\right)\right) \cup \Delta_{S(x \leq 0)} \\
& r_{k}=E^{k}(\emptyset) \\
& \text { Plan: }
\end{aligned}
$$

1. Find a mathematical formula describing the relations r_{k}, containing $x, x^{\prime}, y, y^{\prime}, k$.
2. Find a mathematical formula for $\bigcup_{k \geq 0} r_{k}$

- $r_{1}=E(\emptyset)=$

$$
\Delta_{S(x \leq 0)}=\left\{\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \mid x \leq 0 \wedge x^{\prime}=x \wedge y^{\prime}=y\right\}
$$

Computing the elements the sequence

$$
\begin{aligned}
& E\left(r_{f}\right)=\left(\Delta_{S(x>0)} \circ\left(\rho(x=x-1) \circ r_{f} \circ \rho(y=y+2)\right)\right) \cup \Delta_{S(x \leq 0)} \\
& r_{k}=E^{k}(\emptyset)
\end{aligned}
$$

Plan:

1. Find a mathematical formula describing the relations r_{k}, containing $x, x^{\prime}, y, y^{\prime}, k$.
2. Find a mathematical formula for $\bigcup_{k \geq 0} r_{k}$

- $r_{1}=E(\emptyset)=$

$$
\Delta_{S(x \leq 0)}=\left\{\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \mid x \leq 0 \wedge x^{\prime}=x \wedge y^{\prime}=y\right\}
$$

- $r_{2}=E\left(\Delta_{S(x \leq 0)}\right)=$
$\left(\Delta_{S(x>0)} \circ\left(\rho(x=x-1) \circ \Delta_{S(x \leq 0)} \circ \rho(y=y+2)\right)\right) \cup \Delta_{S(x \leq 0)}=$

Computing the elements the sequence

$$
\begin{aligned}
& E\left(r_{f}\right)=\left(\Delta_{S(x>0)} \circ\left(\rho(x=x-1) \circ r_{f} \circ \rho(y=y+2)\right)\right) \cup \Delta_{S(x \leq 0)} \\
& r_{k}=E^{k}(\emptyset)
\end{aligned}
$$

Plan:

1. Find a mathematical formula describing the relations r_{k}, containing $x, x^{\prime}, y, y^{\prime}, k$.
2. Find a mathematical formula for $\bigcup_{k \geq 0} r_{k}$

- $r_{1}=E(\emptyset)=$

$$
\Delta_{S(x \leq 0)}=\left\{\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \mid x \leq 0 \wedge x^{\prime}=x \wedge y^{\prime}=y\right\}
$$

- $r_{2}=E\left(\Delta_{S(x \leq 0)}\right)=$

$$
\begin{aligned}
& \left(\Delta_{S(x>0)} \circ\left(\rho(x=x-1) \circ \Delta_{S(x \leq 0)} \circ \rho(y=y+2)\right)\right) \cup \Delta_{S(x \leq 0)}= \\
& \left\{\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \mid \quad\left(x>0 \wedge x^{\prime}=x-1 \wedge x-1 \leq 0 \wedge y^{\prime}=y+2\right)\right. \\
& \left.\quad \vee\left(x \leq 0 \wedge x^{\prime}=x \wedge y^{\prime}=y\right)\right\}
\end{aligned}
$$

Computing the elements the sequence

$$
\begin{gathered}
E\left(r_{f}\right)=\left(\Delta_{S(x>0)} \circ\left(\rho(x=x-1) \circ r_{f} \circ \rho(y=y+2)\right)\right) \cup \Delta_{S(x \leq 0)} \\
r_{2}=\left\{\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \mid\left(x>0 \wedge x^{\prime}=x-1 \wedge x-1 \leq 0 \wedge y^{\prime}=y+2\right)\right. \\
\left.\vee\left(x \leq 0 \wedge x^{\prime}=x \wedge y^{\prime}=y\right)\right\}
\end{gathered}
$$

$$
\begin{gathered}
r_{3}=\left(\Delta_{S(x>0)} \circ\left(\rho(x=x-1) \circ r_{2} \circ \rho(y=y+2)\right)\right) \cup \Delta_{S(x \leq 0)} \\
=\left\{\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \mid\left(x=2 \wedge x^{\prime}=x-2 \wedge y^{\prime}=y+4\right)\right. \\
\\
\vee\left(x=1 \wedge x^{\prime}=x-1 \wedge y^{\prime}=y+2\right) \\
\\
\left.\vee\left(x \leq 0 \wedge x^{\prime}=x \wedge y^{\prime}=y\right)\right\}
\end{gathered}
$$

Proof by induction

$$
r_{k}=\left\{\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \mid \bigvee_{i=0}^{k-1} F_{i}\right\}
$$

$F_{0}: \quad x \leq 0 \wedge x^{\prime}=x \wedge y^{\prime}=y$, for $i>0$:

$$
F_{i} \equiv x=i \wedge x^{\prime}=0 \wedge y^{\prime}=y+2 i
$$

$E\left(r_{f}\right)=\left(\Delta_{S(x>0)} \circ\left(\rho(x=x-1) \circ r_{f} \circ \rho(y=y+2)\right)\right) \cup \Delta_{S(x \leq 0)}$
$k=1$: We computed

$$
r_{1}=E(\emptyset)=\Delta_{S(x \leq 0)}=\left\{\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \mid F_{0}\right\}
$$

Induction step:

$$
E\left(r_{k}\right)=E\left(\left\{\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \mid \bigvee_{i=0}^{k-1} F_{i}\right\}\right)
$$

Proof by induction

$$
r_{k}=\left\{\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \mid \bigvee_{i=0}^{k-1} F_{i}\right\}
$$

$F_{0}: \quad x \leq 0 \wedge x^{\prime}=x \wedge y^{\prime}=y$, for $i>0:$

$$
F_{i} \equiv x=i \wedge x^{\prime}=0 \wedge y^{\prime}=y+2 i
$$

$E\left(r_{f}\right)=\left(\Delta_{S(x>0)} \circ\left(\rho(x=x-1) \circ r_{f} \circ \rho(y=y+2)\right)\right) \cup \Delta_{S(x \leq 0)}$
$k=1$: We computed

$$
r_{1}=E(\emptyset)=\Delta_{S(x \leq 0)}=\left\{\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \mid F_{0}\right\}
$$

Induction step:

$$
\begin{aligned}
E\left(r_{k}\right) & =E\left(\left\{\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \mid \bigvee_{i=0}^{k-1} F_{i}\right\}\right) \\
& =\bigcup_{i=1}^{k-1} E\left(\left\{\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \mid F_{i}\right\}\right.
\end{aligned}
$$

Proof by induction

$$
r_{k}=\left\{\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \mid \bigvee_{i=0}^{k-1} F_{i}\right\}
$$

$F_{0}: \quad x \leq 0 \wedge x^{\prime}=x \wedge y^{\prime}=y$, for $i>0$:

$$
F_{i} \equiv x=i \wedge x^{\prime}=0 \wedge y^{\prime}=y+2 i
$$

$E\left(r_{f}\right)=\left(\Delta_{S(x>0)} \circ\left(\rho(x=x-1) \circ r_{f} \circ \rho(y=y+2)\right)\right) \cup \Delta_{S(x \leq 0)}$
$k=1$: We computed

$$
r_{1}=E(\emptyset)=\Delta_{S(x \leq 0)}=\left\{\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \mid F_{0}\right\}
$$

Induction step:

$$
\begin{aligned}
E\left(r_{k}\right) & =E\left(\left\{\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \mid \bigvee_{i=0}^{k-1} F_{i}\right\}\right) \\
& =\bigcup_{i=1}^{k-1} E\left(\left\{\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \mid F_{i}\right\}\right. \\
& =\left\{\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \mid \bigvee_{i=1}^{k-1}\left(F_{0} \vee F_{i+1}\right)\right\}
\end{aligned}
$$

Proof by induction

$$
r_{k}=\left\{\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \mid \bigvee_{i=0}^{k-1} F_{i}\right\}
$$

$F_{0}: \quad x \leq 0 \wedge x^{\prime}=x \wedge y^{\prime}=y$, for $i>0$:

$$
F_{i} \equiv x=i \wedge x^{\prime}=0 \wedge y^{\prime}=y+2 i
$$

$E\left(r_{f}\right)=\left(\Delta_{S(x>0)} \circ\left(\rho(x=x-1) \circ r_{f} \circ \rho(y=y+2)\right)\right) \cup \Delta_{S(x \leq 0)}$
$k=1$: We computed

$$
r_{1}=E(\emptyset)=\Delta_{S(x \leq 0)}=\left\{\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \mid F_{0}\right\}
$$

Induction step:

$$
\begin{aligned}
E\left(r_{k}\right) & =E\left(\left\{\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \mid \bigvee_{i=0}^{k-1} F_{i}\right\}\right) \\
& =\bigcup_{i=1}^{k-1} E\left(\left\{\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \mid F_{i}\right\}\right. \\
& =\left\{\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \mid \bigvee_{i=1}^{k-1}\left(F_{0} \vee F_{i+1}\right)\right\} \\
& =\left\{\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \mid \bigvee_{i=0}^{k} F_{i}\right\}=r_{k+1}
\end{aligned}
$$

Constructing least fixpoint as union of sequence

$F_{0}: \quad x \leq 0 \wedge x^{\prime}=x \wedge y^{\prime}=y$, for $i>0:$

$$
F_{i} \equiv x=i \wedge x^{\prime}=0 \wedge y^{\prime}=y+2 i
$$

By fixpoint theorem

$$
\begin{aligned}
s & =\bigcup_{k=1}^{\infty} r_{k}=\bigcup_{i=1}^{\infty}\left\{\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \mid \bigvee_{i=0}^{k-1} F_{i}\right\} \\
& =
\end{aligned}
$$

Constructing least fixpoint as union of sequence

$F_{0}: \quad x \leq 0 \wedge x^{\prime}=x \wedge y^{\prime}=y$, for $i>0:$

$$
F_{i} \equiv x=i \wedge x^{\prime}=0 \wedge y^{\prime}=y+2 i
$$

By fixpoint theorem

$$
\begin{aligned}
s & =\bigcup_{k=1}^{\infty} r_{k}=\bigcup_{i=1}^{\infty}\left\{\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \mid \bigvee_{i=0}^{k-1} F_{i}\right\} \\
& =\bigcup_{k=1}^{\infty}\left\{\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \mid F_{i}\right\} \\
& =
\end{aligned}
$$

Constructing least fixpoint as union of sequence

$F_{0}: \quad x \leq 0 \wedge x^{\prime}=x \wedge y^{\prime}=y$, for $i>0:$

$$
F_{i} \equiv x=i \wedge x^{\prime}=0 \wedge y^{\prime}=y+2 i
$$

By fixpoint theorem

$$
\begin{aligned}
s & =\bigcup_{k=1}^{\infty} r_{k}=\bigcup_{i=1}^{\infty}\left\{\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \mid \bigvee_{i=0}^{k-1} F_{i}\right\} \\
& =\bigcup_{k=1}^{\infty}\left\{\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \mid F_{i}\right\} \\
& =\left\{\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \mid F_{0} \vee \exists k \cdot k>0 \wedge F_{k}\right\}
\end{aligned}
$$

Constructing least fixpoint as union of sequence

$F_{0}: \quad x \leq 0 \wedge x^{\prime}=x \wedge y^{\prime}=y$, for $i>0:$

$$
F_{i} \equiv x=i \wedge x^{\prime}=0 \wedge y^{\prime}=y+2 i
$$

By fixpoint theorem

$$
\begin{aligned}
s & =\bigcup_{k=1}^{\infty} r_{k}=\bigcup_{i=1}^{\infty}\left\{\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \mid \bigvee_{i=0}^{k-1} F_{i}\right\} \\
& =\bigcup_{k=1}^{\infty}\left\{\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \mid F_{i}\right\} \\
& =\left\{\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \mid F_{0} \vee \exists k \cdot k>0 \wedge F_{k}\right\}
\end{aligned}
$$

$\exists k .0<k \wedge F_{k} \equiv \exists k .0<k \wedge x=k \wedge x^{\prime}=0 \wedge y^{\prime}=y+2 k$

Constructing least fixpoint as union of sequence

$F_{0}: x \leq 0 \wedge x^{\prime}=x \wedge y^{\prime}=y$, for $i>0:$

$$
F_{i} \equiv x=i \wedge x^{\prime}=0 \wedge y^{\prime}=y+2 i
$$

By fixpoint theorem

$$
\begin{aligned}
s & =\bigcup_{k=1}^{\infty} r_{k}=\bigcup_{i=1}^{\infty}\left\{\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \mid \bigvee_{i=0}^{k-1} F_{i}\right\} \\
& =\bigcup_{k=1}^{\infty}\left\{\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \mid F_{i}\right\} \\
& =\left\{\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \mid F_{0} \vee \exists k \cdot k>0 \wedge F_{k}\right\}
\end{aligned}
$$

$\exists k .0<k \wedge F_{k} \equiv \exists k .0<k \wedge x=k \wedge x^{\prime}=0 \wedge y^{\prime}=y+2 k$ $0<x \wedge x^{\prime}=0 \wedge y^{\prime}=y+2 x$

Constructing least fixpoint as union of sequence

$F_{0}: \quad x \leq 0 \wedge x^{\prime}=x \wedge y^{\prime}=y$, for $i>0:$

$$
F_{i} \equiv x=i \wedge x^{\prime}=0 \wedge y^{\prime}=y+2 i
$$

By fixpoint theorem

$$
\begin{aligned}
s & =\bigcup_{k=1}^{\infty} r_{k}=\bigcup_{i=1}^{\infty}\left\{\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \mid \bigvee_{i=0}^{k-1} F_{i}\right\} \\
& =\bigcup_{k=1}^{\infty}\left\{\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \mid F_{i}\right\} \\
& =\left\{\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \mid F_{0} \vee \exists k . k>0 \wedge F_{k}\right\}
\end{aligned}
$$

$\exists k .0<k \wedge F_{k} \equiv \exists k .0<k \wedge x=k \wedge x^{\prime}=0 \wedge y^{\prime}=y+2 k$

$$
0<x \wedge x^{\prime}=0 \wedge y^{\prime}=y+2 x
$$

$$
\begin{aligned}
s=\left\{\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \mid\right. & \left(x \leq 0 \wedge x^{\prime}=x \wedge y^{\prime}=0\right) \\
& \left.\vee\left(0<x \wedge x^{\prime}=0 \wedge y^{\prime}=y+2 x\right)\right\}
\end{aligned}
$$

Alternative Acceptable Method

$$
E\left(r_{f}\right)=\Delta_{S(x>0)} \circ \rho(x=x-1) \circ r_{f} \circ \rho(y=y+2) \cup \Delta_{S(x \leq 0)}
$$

1. Guess a fixpoint, in this case:

$$
\begin{aligned}
s^{\prime}=\left\{\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \mid\right. & \left(x \leq 0 \wedge x^{\prime}=x \wedge y^{\prime}=0\right) \\
& \left.\vee\left(0<x \wedge x^{\prime}=0 \wedge y^{\prime}=y+2 x\right)\right\}
\end{aligned}
$$

2. Verify $E\left(s^{\prime}\right) \subseteq s^{\prime}$
3. Show that, for every initial state (x, y), if $\left(x^{\prime}, y^{\prime}\right)$ is such that $\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \in s$, then there is an n (e.g. number of execution steps) such that $\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \in E^{n}(\emptyset)$.
Note that, if $s=\operatorname{Ifp}(E)$ then 2. implies $s \subseteq s^{\prime}$ and 3. implies

$$
s^{\prime} \subseteq \bigcup_{n \geq 0} E^{n}(\emptyset)=s
$$

Together, they imply $s=s^{\prime}$, so the guessed s^{\prime} is the least fixpoint.

Observation

It is much simpler to check that a procedure satisfies a specification

$$
F(r) \subseteq r
$$

Than to find the least s such that

$$
F(s)=s
$$

Replacing Calls with Specs

```
def \(f=\) if \((x>0)\{\)
    \(x=x-1\)
    f
    \(y=y+2\)
\}
ensuring \((!(0<\operatorname{old}(x)) \|(x==0 \& \& y==\operatorname{old}(y)+2 * \operatorname{old}(x)))\)
def \(\mathrm{fNoRec}=\) if \((x>0)\) \{
        \(x=x-1\)
    \(\{\boldsymbol{\operatorname { v a r }} \mathrm{x} 0=\mathrm{x}, \mathrm{y} 0=\mathrm{y}\)
        havoc( \(\mathrm{x}, \mathrm{y}\) )
        assume \((!(0<x 0) \|(x==0 \& \& y==y 0+2 * x 0))\)
        \}
        \(y=y+2\)
    \}
ensuring \((!(0<\operatorname{old}(x)) \|(x==0 \& \& y==\operatorname{old}(y)+2 * \operatorname{old}(x)))\)
If f NoRec satisfies postcondition \(r\), so does f
```


Replacing Calls with Specs

```
def \(f=\) if \((x>0)\{\)
    \(x=x-1\)
    f
    \(y=y+2\)
\}
ensuring \((!(0<\operatorname{old}(x)) \|(x==0 \& \& y==\operatorname{old}(y)+2 * \operatorname{old}(x)))\)
def \(\mathrm{fNoRec}=\) if \((x>0)\) \{
        \(\mathrm{x}=\mathrm{x}-1\)
    \(\{\boldsymbol{\operatorname { v a r }} \mathrm{x} 0=\mathrm{x}, \mathrm{y} 0=\mathrm{y}\)
        havoc ( \(\mathrm{x}, \mathrm{y}\) )
        assume \((1(0<x 0) \|(x==0 \& \& y==y 0+2 * x 0))\)
        \}
        \(y=y+2\)
    \}
ensuring \((!(0<\operatorname{old}(x)) \|(x==0 \& \& y==\operatorname{old}(y)+2 * \operatorname{old}(x)))\)
If f NoRec satisfies postcondition \(r\), so does f
Reason: if fNoRec verifies, then \(E(r) \subseteq r\), so \(\operatorname{Ifp}(E) \subseteq r\)
```


Least Fixpoint Reasoning Rules

1.

$$
E(\operatorname{lfp}(E))=E
$$

2.

$$
\frac{E(r) \subseteq r}{\operatorname{lfp}(E) \subseteq r}
$$

Example 3: Multiple Fixpoints

Previous example tested if $x>0$. Now we test $x!=0$.

$$
\begin{aligned}
& \text { def } g= \\
& \text { if }(x!=0)\{ \\
& x=x-1 \\
& g \\
& y=y+2
\end{aligned}
$$

$$
\begin{aligned}
E^{\prime}\left(r_{g}\right)= & \left(\Delta_{S(x \neq 0)} \circ(\right. \\
& \rho(x=x-1) \circ \\
& r_{g} \circ \\
& \rho(y=y+2)) \\
&) \cup \Delta_{S(x=0)}
\end{aligned}
$$

Example 3: Multiple Fixpoints

Previous example tested if $x>0$. Now we test $x!=0$.

$$
\begin{array}{cc}
\text { def } \mathrm{g}= \\
\text { if }(\mathrm{x}!=0)\{ & E^{\prime}\left(r_{g}\right)= \\
\mathrm{x}=\mathrm{x}-1 & \left(\Delta_{S(x \neq 0)} \circ(\right. \\
\mathrm{g} & \rho(x=x-1) \circ \\
\mathrm{y}=\mathrm{y}+2 & r_{g} \circ \\
\} & \rho(y=y+2)) \\
&) \cup \Delta_{S(x=0)}
\end{array}
$$

What does g do when called in state where $x<0$?

Example 3: Multiple Fixpoints

Previous example tested if $x>0$. Now we test $x!=0$.

$$
\begin{array}{cc}
\text { def } \mathrm{g}= \\
\text { if }(\mathrm{x}!=0)\{ & E^{\prime}\left(r_{g}\right)= \\
\mathrm{x}=\mathrm{x}-1 & \left(\Delta_{S(x \neq 0)} \circ(\right. \\
\mathrm{g} & \rho(x=x-1) \circ \\
\mathrm{y}=\mathrm{y}+2 & r_{g} \circ \\
\} & \rho(y=y+2)) \\
&) \cup \Delta_{S(x=0)}
\end{array}
$$

What does g do when called in state where $x<0$?
TASK: Find two different fixpoint relations: s_{1} and s_{2} where $s_{1} \neq s_{2}, E^{\prime}\left(s_{1}\right)=s_{1}$, and $E^{\prime}\left(s_{2}\right)=s_{2}$.

Finding two Fixpoints

$$
\begin{aligned}
& \text { def } g= \\
& \text { if }(x!=0)\{ \\
& \quad x=x-1 \\
& g \\
& y=y+2
\end{aligned}
$$

$$
\begin{aligned}
& E^{\prime}\left(r_{g}\right)=\left(\Delta_{S(x \neq 0)} \circ(\right. \\
& \rho(x=x-1) \circ \\
& r_{g} \circ \\
&\rho(y=y+2)) \\
&) \cup \Delta_{S(x=0)}
\end{aligned}
$$

Finding two Fixpoints

$$
\begin{aligned}
& \text { def } \mathrm{g}= \\
& \text { if }(x!=0)\{ \\
& x=x-1 \\
& \begin{aligned}
E^{\prime}\left(r_{g}\right)= & \left(\Delta_{S(x \neq 0)} \circ(\right. \\
& \rho(x=x-1) \circ \\
& r_{g} \circ \\
& \rho(y=y+2)) \\
&) \cup \Delta_{S(x=0)}
\end{aligned} \\
& \begin{aligned}
E^{\prime}\left(r_{g}\right)= & \left(\Delta_{S(x \neq 0)} \circ(\right. \\
& \rho(x=x-1) \circ \\
& r_{g} \circ \\
& \rho(y=y+2)) \\
&) \cup \Delta_{S(x=0)}
\end{aligned} \\
& \text { g } \\
& y=y+2 \\
& \text { \} } \\
& s_{1}=\left\{\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \mid\left(x=0 \wedge x^{\prime}=0 \wedge y^{\prime}=y\right)\right. \\
& \left.\vee\left(0<x \wedge x^{\prime}=0 \wedge y^{\prime}=y+2 x\right)\right\} \\
& s_{2}=s_{1} \cup\left\{\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \mid x<0\right\}
\end{aligned}
$$

Finding two Fixpoints

$$
\begin{aligned}
& \text { def } \mathrm{g}= \\
& \text { if }(x!=0)\{ \\
& x=x-1 \\
& E^{\prime}\left(r_{g}\right)=\left(\Delta_{S(x \neq 0)} \circ(\right. \\
& \rho(x=x-1) \circ \\
& \text { g } \\
& y=y+2 \\
& \text { \} } \\
& r_{g} \circ \\
& \rho(y=y+2)) \\
& \text {) } \cup \Delta_{S(x=0)} \\
& s_{1}=\left\{\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \mid\left(x=0 \wedge x^{\prime}=0 \wedge y^{\prime}=y\right)\right. \\
& \left.\vee\left(0<x \wedge x^{\prime}=0 \wedge y^{\prime}=y+2 x\right)\right\} \\
& s_{2}=s_{1} \cup\left\{\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \mid x<0\right\}
\end{aligned}
$$

Multiple fixpoints differ in pairs of states $\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)$ for which execution from (x, y) does not terminate.

Finding two Fixpoints

$$
\begin{array}{cc}
\begin{array}{c}
\text { def } \mathrm{g}= \\
\text { if }(x!=0) \\
\mathrm{x}=\mathrm{x}-1
\end{array} & E^{\prime}\left(r_{g}\right)= \\
\mathrm{g} & \left(\Delta_{S(x \neq 0)} \circ(\right. \\
\mathrm{y}=\mathrm{y}+2 & \rho(x=x-1) \circ \\
\} & r_{g} \circ \\
& \rho(y=y+2)) \\
s_{1}=\left\{\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)\right. & \left(x=0 \wedge x^{\prime}=0 \wedge y^{\prime}=y\right) \\
& \left.\vee\left(0<x \wedge x^{\prime}=0 \wedge y^{\prime}=y+2 x\right)\right\} \\
s_{2}=s_{1} \cup\left\{\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \mid x<0\right\}
\end{array}
$$

Multiple fixpoints differ in pairs of states $\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)$ for which execution from (x, y) does not terminate.
Least fixpoint $\left(s_{1}\right)$ contains no states for which execution from (x, y) does not terminate.

Finding two Fixpoints

$$
\begin{aligned}
& \text { def } \mathrm{g}= \\
& \text { if }(x!=0)\{ \\
& x=x-1 \\
& \begin{aligned}
E^{\prime}\left(r_{g}\right)= & \left(\Delta_{S(x \neq 0)} \circ(\right. \\
& \rho(x=x-1) \circ \\
& r_{g} \circ \\
& \rho(y=y+2)) \\
& \cup \Delta_{S(x=0)}
\end{aligned} \\
& \begin{aligned}
E^{\prime}\left(r_{g}\right)= & \left(\Delta_{S(x \neq 0)} \circ(\right. \\
& \rho(x=x-1) \circ \\
& r_{g} \circ \\
& \rho(y=y+2)) \\
& \cup \Delta_{S(x=0)}
\end{aligned} \\
& \text { g } \\
& y=y+2 \\
& \text { \} } \\
& s_{1}=\left\{\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \mid\left(x=0 \wedge x^{\prime}=0 \wedge y^{\prime}=y\right)\right. \\
& \left.\vee\left(0<x \wedge x^{\prime}=0 \wedge y^{\prime}=y+2 x\right)\right\} \\
& s_{2}=s_{1} \cup\left\{\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \mid x<0\right\}
\end{aligned}
$$

Multiple fixpoints differ in pairs of states $\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)$ for which execution from (x, y) does not terminate.
Least fixpoint $\left(s_{1}\right)$ contains no states for which execution from (x, y) does not terminate.
Can we put any junk for non-terminating states and it will be fixpoint?

Fixpoints

Suppose we assign y to 2 .

$$
\begin{aligned}
& E^{\prime \prime}\left(r_{g}\right)=\left(\Delta_{S(x \neq 0)} \circ(\right. \\
& \rho(x=x-1) \circ \\
& r_{g} \circ \\
&\rho(y=2)) \\
&) \cup \Delta_{S(x=0)}
\end{aligned}
$$

Is s_{3} a fixpoint of $E^{\prime \prime}$:

$$
\begin{aligned}
s_{3}=\left\{\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \mid\right. & (x<0) \\
& \vee\left(x=0 \wedge x^{\prime}=0 \wedge y^{\prime}=y\right) \\
& \left.\vee\left(0<x \wedge x^{\prime}=0 \wedge y^{\prime}=2\right)\right\}
\end{aligned}
$$

Fixpoints

Suppose we assign y to 2 .

$$
\begin{aligned}
E^{\prime \prime}\left(r_{g}\right)= & \left(\Delta_{S(x \neq 0)} \circ(\right. \\
& \rho(x=x-1) \circ \\
& r_{g} \circ \\
& \rho(y=2)) \\
& \cup \Delta_{S(x=0)}
\end{aligned}
$$

Is s_{3} a fixpoint of $E^{\prime \prime}$:

$$
\begin{aligned}
s_{3}=\left\{\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \mid\right. & (x<0) \\
& \vee\left(x=0 \wedge x^{\prime}=0 \wedge y^{\prime}=y\right) \\
& \left.\vee\left(0<x \wedge x^{\prime}=0 \wedge y^{\prime}=2\right)\right\}
\end{aligned}
$$

Does $((-1,0),(-1,0)) \in s_{3}$ hold?

Fixpoints

Suppose we assign y to 2 .

$$
\begin{aligned}
E^{\prime \prime}\left(r_{g}\right)= & \left(\Delta_{S(x \neq 0)} \circ(\right. \\
& \rho(x=x-1) \circ \\
& r_{g} \circ \\
& \rho(y=2)) \\
&) \cup \Delta_{S(x=0)}
\end{aligned}
$$

Is s_{3} a fixpoint of $E^{\prime \prime}$:

$$
\begin{aligned}
s_{3}=\left\{\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \mid\right. & (x<0) \\
& \vee\left(x=0 \wedge x^{\prime}=0 \wedge y^{\prime}=y\right) \\
& \left.\vee\left(0<x \wedge x^{\prime}=0 \wedge y^{\prime}=2\right)\right\}
\end{aligned}
$$

Does $((-1,0),(-1,0)) \in s_{3}$ hold?
Does $((-1,0),(-1,0)) \in E^{\prime \prime}\left(s_{3}\right)$ hold?

Fixpoints

Suppose we assign y to 2 .

$$
\begin{aligned}
& E^{\prime \prime}\left(r_{g}\right)=\left(\Delta_{S(x \neq 0)} \circ(\right. \\
& \rho(x=x-1) \circ \\
& r_{g} \circ \\
&\rho(y=2)) \\
&) \cup \Delta_{S(x=0)}
\end{aligned}
$$

Is s_{3} a fixpoint of $E^{\prime \prime}$:

$$
\begin{aligned}
s_{3}=\left\{\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \mid\right. & (x<0) \\
& \vee\left(x=0 \wedge x^{\prime}=0 \wedge y^{\prime}=y\right) \\
& \left.\vee\left(0<x \wedge x^{\prime}=0 \wedge y^{\prime}=2\right)\right\}
\end{aligned}
$$

Does $((-1,0),(-1,0)) \in s_{3}$ hold?
Does $((-1,0),(-1,0)) \in E^{\prime \prime}\left(s_{3}\right)$ hold?
Find a non-least fixpoint of $E^{\prime \prime}$

More on Inductively Defined Sets

Induction Principle $=$ Set is the Least Fixpoint

Set of natural numbers N is defined like this:

- $0 \in N$
- if $x \in N$ then $x+1 \in N$

Following this definition, define function F from sets to sets:

$$
F(S)=\{0\} \cup\{x+1 \mid x \in S\}
$$

Then the definition above says $F(N) \subseteq N$.

Induction Principle $=$ Set is the Least Fixpoint

Set of natural numbers N is defined like this:

- $0 \in N$
- if $x \in N$ then $x+1 \in N$

Following this definition, define function F from sets to sets:

$$
F(S)=\{0\} \cup\{x+1 \mid x \in S\}
$$

Then the definition above says $F(N) \subseteq N$.
What definition really means is

1. $F(N) \subseteq N$
2. for any set P such that $F(P) \subseteq P$, we have $N \subseteq P$

This of set P as a property that we wish to show holds for all natural numbers. The fact that N is the least set means it suffices to show

$$
\{0\} \cup\{x+1 \mid x \in P\} \subseteq P
$$

that is, $0 \in P$ and $x+1 \in P$ for every $x \in P$. From there $N \subseteq P$

Least Fixpoints as Definition Mechanism

$$
F(S)=\{0\} \cup\{x+1 \mid x \in S\}
$$

Then $F(\emptyset)=\{0\}$. Generally, $F^{k}(\emptyset)=\{0,1, \ldots, k\}$
Least fixpoint is union over all $F^{k}(\emptyset)$, set of natural numbers.

$$
G(S)=\{1\} \cup\{x+2 \mid x \in S\}
$$

What is $G^{k}(S)=$

Least Fixpoints as Definition Mechanism

$$
F(S)=\{0\} \cup\{x+1 \mid x \in S\}
$$

Then $F(\emptyset)=\{0\}$. Generally, $F^{k}(\emptyset)=\{0,1, \ldots, k\}$
Least fixpoint is union over all $F^{k}(\emptyset)$, set of natural numbers.

$$
G(S)=\{1\} \cup\{x+2 \mid x \in S\}
$$

What is $G^{k}(S)=\{1,3, \ldots, 2 k+1\}$
What is least fixpoint of G ?

Least Fixpoints as Definition Mechanism

$$
F(S)=\{0\} \cup\{x+1 \mid x \in S\}
$$

Then $F(\emptyset)=\{0\}$. Generally, $F^{k}(\emptyset)=\{0,1, \ldots, k\}$
Least fixpoint is union over all $F^{k}(\emptyset)$, set of natural numbers.

$$
G(S)=\{1\} \cup\{x+2 \mid x \in S\}
$$

What is $G^{k}(S)=\{1,3, \ldots, 2 k+1\}$
What is least fixpoint of G ? Set of positive odd numbers
$A=\{1,3,5,7, \ldots\}$

Least Fixpoints as Definition Mechanism

$$
F(S)=\{0\} \cup\{x+1 \mid x \in S\}
$$

Then $F(\emptyset)=\{0\}$. Generally, $F^{k}(\emptyset)=\{0,1, \ldots, k\}$
Least fixpoint is union over all $F^{k}(\emptyset)$, set of natural numbers.

$$
G(S)=\{1\} \cup\{x+2 \mid x \in S\}
$$

What is $G^{k}(S)=\{1,3, \ldots, 2 k+1\}$
What is least fixpoint of G ? Set of positive odd numbers $A=\{1,3,5,7, \ldots\}$

Every well-behaved function F gives a recursive definition and the corresponding recursion principle.

- a theorem guarantees that the object being defined exists (it is the least fixpoint s of F)
- being the least implies we can establish approximation r of s by showing approximation satisfies $F(r) \subseteq r$
Proofs by induction $=$ age-old approximation effort.

Non-standard Models

$$
F(S)=\{0\} \cup\{e+1 \mid e \in S\}
$$

If our domain allows real numbers then also $F(\mathbb{R})=\mathbb{R}$.
So, the set of real numbers is also a fixpoint of S, but not the least one.

Another example of non-least model: take the set of all polynomials $a x+b$ where a, b are integers and where x is a formal variable. Constants are just $0 \cdot x+c$

- $\left(a_{1} x+b_{1}\right)+\left(a_{2} x+b_{2}\right)=\left(\left(a_{1}+a_{2}\right) x+\left(b_{1}+b_{2}\right)\right)$
- $\left(a_{1} x+b_{1}\right)<\left(a_{2} x+b_{2}\right)$ iff $a_{1}<a_{2} \vee\left(a_{1}=a_{2} \wedge b_{1}<b_{2}\right)$

Multiplication by constant is repeated addition, divisibility similar Does this set and operations satisfy properties of Presburger arithmetic? If yes, we call the result a non-standard model of Presburger arithmetic. Satisfies same formulas.

Algebraic Data Types

Example: Shallow Tree Flip

case object Leaf extends Tree
case class Node(t1:Tree, x :Biglnt, t 2 :Tree) extends Tree def flip(t :Tree): Tree $=\mathrm{t}$ match $\{$
case Leaf $=>$ Leaf
case $\operatorname{Node(st1,x1,st2)=>\operatorname {Node}(st2,x1,st1)~}$
\}
def test(t :Tree):Boolean $=\{\operatorname{flip}($ flip $(\mathrm{t}))==\mathrm{t}\}$
Negated verification condition

$$
t 1=\text { flipBody }(t) \wedge t 2=\text { flipBody }[t:=t 1] \wedge t 2 \neq t
$$

We would like to prove it is not satisfiable.
Is there a decision procedure to do this?

Inductive Definition of Binary Trees of Integers

case object Leaf extends Tree
case class Node(t1:Tree, x :BigInt, $\mathrm{t} 2:$ Tree) extends Tree
\mathbb{Z} - integers
Trees $=\operatorname{Ifp}(F)$ where

$$
F(S)=\{\operatorname{Leaf}\} \cup\left\{\operatorname{Node}\left(t_{1}, x, t_{2}\right) \mid t_{1} \in S, x \in \mathbb{Z}, t_{2} \in S\right\}
$$

If we know neither fixpoints nor Scala, we may try to say stuff like:
Trees are constructed using the following rules:

1. Leaf is a tree.
2. if t_{1} is a tree, x is an integer, and t_{2} is a tree, then $\operatorname{Node}\left(t_{1}, x, t_{2}\right)$ is a tree.
"Nothing else is a tree."
"Tree is generated using only the rules above."

Algebraic Data Types, also known as Term Algebras

case object Leaf extends Tree
case object Flower extends Tree
case object Spike extends Tree
case class Node(t1:Tree,t2:Tree) extends Tree
case class Succ(t3:Tree) extends Tree
case class Oak(t4:Tree,t5:Tree,t6:Tree) extends Tree
case class Pine($\mathrm{t} 7:$ Tree, $\mathrm{t} 8:$ Tree) extends Tree
Oak(Oak(Leaf,Leaf,Flower),Node(Succ(Leaf),Leaf),Pine(Spike,Spike)) : Tree

$$
\{\text { Leaf }\} \subseteq \text { Tree }
$$

$$
\ldots
$$

$$
\{\text { Node }(t 1, t 2) \mid t 1 \in \text { Tree, } t 2 \in \text { Tree }\} \subseteq \text { Tree }
$$

$$
\{\operatorname{Succ}(t 3) \mid t 3 \in \text { Tree }\} \subseteq \text { Tree }
$$

Collect LHSs, we obtain F s.t. above is same as $F($ Tree $) \subseteq$ Tree Constructors: Leaf, Flower, Spike, Node, Succ, Oak, Pine Selectors: t1,t2,...,t8

Term Algebras

Σ - (finite) set of constructors, $f \in \Sigma$ has arity $\operatorname{ar}(f) \geq 0$
If $\operatorname{ar}(f)=0$ then f is constant, $\operatorname{ar}(f)=1$: unary function, $\operatorname{ar}(f)=2$: binary
Set of (ground) terms (trees) Terms is least set S such that

$$
\left\{f\left(t_{1}, \ldots, t_{n}\right) \mid n=\operatorname{ar}(f), t_{1}, \ldots, t_{n} \in S\right\} \subseteq S
$$

Example: Let $\Sigma=\{f, c\}$ with $\operatorname{ar}(f)=1, \operatorname{ar}(c)=0$.

$$
\operatorname{Terms}_{\Sigma}=\{c, f(c), f(f(c)), \ldots\}
$$

Comparison to integers

	integers	terms
domain	\mathbb{Z}	Terms
constants	$0,1, \ldots$	$\{f \mid \operatorname{ar}(f)=0\}$
operations	,+-	$\{f \mid \operatorname{ar}(f)>0\}$
relations	$=,<, \mid$	$=$

Example: if we apply f to term $f(c)$ we obtain bigger term $f(f(c))$

Properties of Term Algebras

$$
\begin{gathered}
f\left(t_{1}, \ldots, t_{n}\right) \neq g\left(s_{1}, \ldots, s_{m}\right), \quad \text { if } f \neq g \\
f\left(t_{1}, \ldots, t_{n}\right)=f\left(s_{1}, \ldots, s_{n}\right), \quad \text { iff } \bigwedge_{i=1}^{n} t_{i}=s_{i}
\end{gathered}
$$

Clearly if t_{1} is contained as a term inside t_{2}, then they are distinct. Therefore, it cannot be the case that e.g. $f(f(f(x)))=x$

Term Algebra Constraints

Equations in Presburger arithmetic are equalities that contain constants, operations, and uknowns like

$$
3 x+2 y=7
$$

Here we also have equations that contain constants and operations, like

$$
\operatorname{Node}(x, y)=\operatorname{Node}(y, x)
$$

Observe that the above constraint is equivalent to $x=y$
We can solve constraints in term algebra using unification

Unification Algorithm

A set of equations is in solved form if it is of the form $\left\{x_{1} \doteq t_{1}, \ldots, x_{n} \doteq t_{n}\right\}$ where variables x_{i} do not appear in terms t_{j}, that is $\left\{x_{1}, \ldots, x_{n}\right\} \cap\left(F V\left(t_{1}\right) \cup \ldots F V\left(t_{n}\right)\right)=\emptyset$
We obtain a solved form in finite time using the algorithm that applies the following rules in any order as long as no clash is reported and as long as the equations are not in solved form.

- Orient: Select $t \doteq x$ where t is not x , and replace it with $x \doteq t$.
- Delete: Select $x \doteq x$, remove it.
- Eliminate: Given $x \doteq t$ where x does not occur in t, substitute x with t in all remaining equations.
- Occurs Check: Given $x \doteq t$ where x occurs in t, report clash.
- Decomposition: Given $f\left(t_{1}, \ldots, t_{n}\right) \doteq f\left(s_{1}, \ldots, s_{n}\right)$, replace it with $t_{1} \doteq s_{1}, \ldots, t_{n} \doteq s_{n}$.
- Clash: Given $f\left(t_{1}, \ldots, t_{n}\right) \doteq g\left(s_{1}, \ldots, s_{m}\right)$ for f not g, report clash

Run Unification Algorithm

$$
\begin{aligned}
& \Sigma=\{h, f, a, b\} \text { with arities } 2,2,0,0 \\
& \qquad \begin{array}{c}
h(x, f(x, y))=h(f(a, v), f(f(u, b), f(u, u))) \\
h(x, f(x, x))=h(f(a, v), f(f(u, b), f(u, u))) \\
h(x, f(x, y))=h(f(u, v), v)
\end{array}
\end{aligned}
$$

Example from Verification

$\Sigma=\{$ Leaf, Node $\}, \operatorname{ar}($ Leaf $)=0, \operatorname{ar}($ Node $)=2$
Consider 'flip' of a tree invoked twice $z_{1} \leadsto z_{2} \leadsto z_{3}$
Show that the following implication holds for all variables
$z_{1}, z_{2}, z_{3}, x_{1}, y_{1}, x_{2}, y_{2}$ whose values range over Terms ${ }_{\Sigma}$
$\left(\left(\left(z_{1}=\right.\right.\right.$ Leaf $\wedge z_{2}=$ Leaf $\left.) \vee\left(z_{1}=\operatorname{Node}\left(x_{1}, y_{1}\right) \wedge z_{2}=\operatorname{Node}\left(y_{1}, x_{1}\right)\right)\right)$
$\wedge\left(\left(z_{3}=\right.\right.$ Leaf $\wedge z_{3}=$ Leaf $\left.\left.) \vee\left(z_{2}=\operatorname{Node}\left(x_{2}, y_{2}\right) \wedge z_{3}=\operatorname{Node}\left(y_{2}, x_{3}\right)\right)\right)\right)$
$\rightarrow z_{3}=z_{1}$

Unification Algorithm: Consequences

Solved form describes all solutions

How to handle disequalities?

How to handle disjunctions?
Can we also support quantifiers?

