
Lecturecise 8
Recursion and Fixpoints

Algebraic Data Types Introduction

2013

Recall: Least fixpoint of a recursive function

Assumptions:

I C - a collection (set) of sets (e.g. sets of pairs, i.e. relations)

I E : C → C that is ω-continuous: for r0 ⊆ r1 ⊆ r2 . . .,

E (
⋃
i

ri) =
⋃
i

E (ri)

THEOREM: s =
⋃

i E i (∅) is such that

1. E (s) = s — s is a fixpoint of E

2. if r is such that E (r) ⊆ r , then s ⊆ r
— s is the smallest

We call s the least fixpoint of E and write s = lfp(E)
The least fixpoint is always unique: if s1 and s2 are least fixpoints,
then s1 ⊆ s2 and s2 ⊆ s1, so s1 = s2

Example 1: Prove that recursive function meets spec

Prove that if s is the relation denoting the recursive function
below, then

((x , y), (x ′, y ′)) ∈ s → y ′ ≥ y

def f =
if (x > 0) {

x = x − 1
f
y = y + 2
}

E (rf) = (∆S(x>0) ◦
(

ρ(x = x − 1)◦
rf ◦
ρ(y = y + 2)))
∪∆S(x≤0)

Example 1: Prove that recursive function meets spec

E (rf) = (∆S(x>0) ◦
(
ρ(x = x − 1) ◦ rf ◦ ρ(y = y + 2))

)
∪∆S(x≤0)

((x , y), (x ′, y ′)) ∈ s → y ′ ≥ y

Since it holds
E (r) ⊆ r → lfp(E) ⊆ r

we only need to show that for r = {((x , y), (x ′, y ′))|y ′ ≥ y} it
holds that E (r) ⊆ r .

E (r) = {((x , y), (x ′, y ′))|∃x1, x2, y1, y2.x > 0 ∧ x1 = x − 1 ∧ y1 = y∧
x1 = x2 ∧ y2 > y1 ∧ x ′ = x2 ∧ y ′ = y2 + 2} ∪∆S(x>0)

⊆ r

Example 1: Prove that recursive function meets spec

E (rf) = (∆S(x>0) ◦
(
ρ(x = x − 1) ◦ rf ◦ ρ(y = y + 2))

)
∪∆S(x≤0)

((x , y), (x ′, y ′)) ∈ s → y ′ ≥ y

Since it holds
E (r) ⊆ r → lfp(E) ⊆ r

we only need to show that for r = {((x , y), (x ′, y ′))|y ′ ≥ y} it
holds that E (r) ⊆ r .

E (r) = {((x , y), (x ′, y ′))|∃x1, x2, y1, y2.x > 0 ∧ x1 = x − 1 ∧ y1 = y∧
x1 = x2 ∧ y2 > y1 ∧ x ′ = x2 ∧ y ′ = y2 + 2} ∪∆S(x>0)

⊆ r

Example 1: Prove that recursive function meets spec

E (rf) = (∆S(x>0) ◦
(
ρ(x = x − 1) ◦ rf ◦ ρ(y = y + 2))

)
∪∆S(x≤0)

((x , y), (x ′, y ′)) ∈ s → y ′ ≥ y

Since it holds
E (r) ⊆ r → lfp(E) ⊆ r

we only need to show that for r = {((x , y), (x ′, y ′))|y ′ ≥ y} it
holds that E (r) ⊆ r .

E (r) = {((x , y), (x ′, y ′))|∃x1, x2, y1, y2.x > 0 ∧ x1 = x − 1 ∧ y1 = y∧
x1 = x2 ∧ y2 > y1 ∧ x ′ = x2 ∧ y ′ = y2 + 2} ∪∆S(x>0)

⊆ r

Example 1: Prove that recursive function meets spec

E (rf) = (∆S(x>0) ◦
(
ρ(x = x − 1) ◦ rf ◦ ρ(y = y + 2))

)
∪∆S(x≤0)

((x , y), (x ′, y ′)) ∈ s → y ′ ≥ y

Since it holds
E (r) ⊆ r → lfp(E) ⊆ r

we only need to show that for r = {((x , y), (x ′, y ′))|y ′ ≥ y} it
holds that E (r) ⊆ r .

E (r) = {((x , y), (x ′, y ′))|∃x1, x2, y1, y2.x > 0 ∧ x1 = x − 1 ∧ y1 = y∧
x1 = x2 ∧ y2 > y1 ∧ x ′ = x2 ∧ y ′ = y2 + 2} ∪∆S(x>0)

⊆ r

Example 2: Computing the least fixpoint is harder

Compute the least fixpoint of the recursive function:

def f =
if (x > 0) {

x = x − 1
f
y = y + 2
}

E (rf) = (∆S(x>0) ◦
(

ρ(x = x − 1)◦
rf ◦
ρ(y = y + 2)))
∪∆S(x≤0)

Computing the elements the sequence

E (rf) = (∆S(x>0) ◦
(
ρ(x = x − 1) ◦ rf ◦ ρ(y = y + 2))

)
∪∆S(x≤0)

rk = E k(∅)

Plan:

1. Find a mathematical formula describing the relations rk ,
containing x , x ′, y , y ′, k.

2. Find a mathematical formula for
⋃

k≥0 rk

I r1 = E (∅) =
∆S(x≤0) = {((x , y), (x ′, y ′)) | x ≤ 0 ∧ x ′ = x ∧ y ′ = y}

I r2 = E (∆S(x≤0)) =
(∆S(x>0)◦

(
ρ(x = x−1)◦∆S(x≤0)◦ρ(y = y +2))

)
∪∆S(x≤0) =

{((x , y), (x ′, y ′))| (x > 0 ∧ x ′ = x − 1 ∧ x − 1 ≤ 0 ∧ y ′ = y + 2)
∨(x ≤ 0 ∧ x ′ = x ∧ y ′ = y)}

Computing the elements the sequence

E (rf) = (∆S(x>0) ◦
(
ρ(x = x − 1) ◦ rf ◦ ρ(y = y + 2))

)
∪∆S(x≤0)

rk = E k(∅)
Plan:

1. Find a mathematical formula describing the relations rk ,
containing x , x ′, y , y ′, k.

2. Find a mathematical formula for
⋃

k≥0 rk

I r1 = E (∅) =

∆S(x≤0) = {((x , y), (x ′, y ′)) | x ≤ 0 ∧ x ′ = x ∧ y ′ = y}
I r2 = E (∆S(x≤0)) =

(∆S(x>0)◦
(
ρ(x = x−1)◦∆S(x≤0)◦ρ(y = y +2))

)
∪∆S(x≤0) =

{((x , y), (x ′, y ′))| (x > 0 ∧ x ′ = x − 1 ∧ x − 1 ≤ 0 ∧ y ′ = y + 2)
∨(x ≤ 0 ∧ x ′ = x ∧ y ′ = y)}

Computing the elements the sequence

E (rf) = (∆S(x>0) ◦
(
ρ(x = x − 1) ◦ rf ◦ ρ(y = y + 2))

)
∪∆S(x≤0)

rk = E k(∅)
Plan:

1. Find a mathematical formula describing the relations rk ,
containing x , x ′, y , y ′, k.

2. Find a mathematical formula for
⋃

k≥0 rk

I r1 = E (∅) =
∆S(x≤0) = {((x , y), (x ′, y ′)) | x ≤ 0 ∧ x ′ = x ∧ y ′ = y}

I r2 = E (∆S(x≤0)) =
(∆S(x>0)◦

(
ρ(x = x−1)◦∆S(x≤0)◦ρ(y = y +2))

)
∪∆S(x≤0) =

{((x , y), (x ′, y ′))| (x > 0 ∧ x ′ = x − 1 ∧ x − 1 ≤ 0 ∧ y ′ = y + 2)
∨(x ≤ 0 ∧ x ′ = x ∧ y ′ = y)}

Computing the elements the sequence

E (rf) = (∆S(x>0) ◦
(
ρ(x = x − 1) ◦ rf ◦ ρ(y = y + 2))

)
∪∆S(x≤0)

rk = E k(∅)
Plan:

1. Find a mathematical formula describing the relations rk ,
containing x , x ′, y , y ′, k.

2. Find a mathematical formula for
⋃

k≥0 rk

I r1 = E (∅) =
∆S(x≤0) = {((x , y), (x ′, y ′)) | x ≤ 0 ∧ x ′ = x ∧ y ′ = y}

I r2 = E (∆S(x≤0)) =
(∆S(x>0)◦

(
ρ(x = x−1)◦∆S(x≤0)◦ρ(y = y +2))

)
∪∆S(x≤0) =

{((x , y), (x ′, y ′))| (x > 0 ∧ x ′ = x − 1 ∧ x − 1 ≤ 0 ∧ y ′ = y + 2)
∨(x ≤ 0 ∧ x ′ = x ∧ y ′ = y)}

Computing the elements the sequence

E (rf) = (∆S(x>0) ◦
(
ρ(x = x − 1) ◦ rf ◦ ρ(y = y + 2))

)
∪∆S(x≤0)

rk = E k(∅)
Plan:

1. Find a mathematical formula describing the relations rk ,
containing x , x ′, y , y ′, k.

2. Find a mathematical formula for
⋃

k≥0 rk

I r1 = E (∅) =
∆S(x≤0) = {((x , y), (x ′, y ′)) | x ≤ 0 ∧ x ′ = x ∧ y ′ = y}

I r2 = E (∆S(x≤0)) =
(∆S(x>0)◦

(
ρ(x = x−1)◦∆S(x≤0)◦ρ(y = y +2))

)
∪∆S(x≤0) =

{((x , y), (x ′, y ′))| (x > 0 ∧ x ′ = x − 1 ∧ x − 1 ≤ 0 ∧ y ′ = y + 2)
∨(x ≤ 0 ∧ x ′ = x ∧ y ′ = y)}

Computing the elements the sequence

E (rf) = (∆S(x>0) ◦
(
ρ(x = x − 1) ◦ rf ◦ ρ(y = y + 2))

)
∪∆S(x≤0)

r2 = {((x , y), (x ′, y ′))|(x > 0 ∧ x ′ = x − 1 ∧ x − 1 ≤ 0 ∧ y ′ = y + 2)
∨(x ≤ 0 ∧ x ′ = x ∧ y ′ = y)}

r3 = (∆S(x>0) ◦
(
ρ(x = x − 1) ◦ r2 ◦ ρ(y = y + 2))

)
∪∆S(x≤0)

= {((x , y), (x ′, y ′))|(x = 2 ∧ x ′ = x − 2 ∧ y ′ = y + 4)
∨(x = 1 ∧ x ′ = x − 1 ∧ y ′ = y + 2)
∨(x ≤ 0 ∧ x ′ = x ∧ y ′ = y)}

Proof by induction

rk =

{
((x , y), (x ′, y ′))

∣∣ k−1∨
i=0

Fi

}
F0 : x ≤ 0 ∧ x ′ = x ∧ y ′ = y , for i > 0:

Fi ≡ x = i ∧ x ′ = 0 ∧ y ′ = y + 2i

E (rf) = (∆S(x>0) ◦
(
ρ(x = x − 1) ◦ rf ◦ ρ(y = y + 2))

)
∪∆S(x≤0)

k = 1: We computed
r1 = E (∅) = ∆S(x≤0) = {((x , y), (x ′, y ′)) | F0}
Induction step:

E (rk) = E

({
((x , y), (x ′, y ′))

∣∣∨k−1
i=0 Fi

})

=
⋃k−1

i=1 E ({((x , y), (x ′, y ′)) | Fi}
= {((x , y), (x ′, y ′)) |

∨k−1
i=1 (F0 ∨ Fi+1)}

= {((x , y), (x ′, y ′)) |
∨k

i=0 Fi} = rk+1

Proof by induction

rk =

{
((x , y), (x ′, y ′))

∣∣ k−1∨
i=0

Fi

}
F0 : x ≤ 0 ∧ x ′ = x ∧ y ′ = y , for i > 0:

Fi ≡ x = i ∧ x ′ = 0 ∧ y ′ = y + 2i

E (rf) = (∆S(x>0) ◦
(
ρ(x = x − 1) ◦ rf ◦ ρ(y = y + 2))

)
∪∆S(x≤0)

k = 1: We computed
r1 = E (∅) = ∆S(x≤0) = {((x , y), (x ′, y ′)) | F0}
Induction step:

E (rk) = E

({
((x , y), (x ′, y ′))

∣∣∨k−1
i=0 Fi

})
=
⋃k−1

i=1 E ({((x , y), (x ′, y ′)) | Fi}

= {((x , y), (x ′, y ′)) |
∨k−1

i=1 (F0 ∨ Fi+1)}
= {((x , y), (x ′, y ′)) |

∨k
i=0 Fi} = rk+1

Proof by induction

rk =

{
((x , y), (x ′, y ′))

∣∣ k−1∨
i=0

Fi

}
F0 : x ≤ 0 ∧ x ′ = x ∧ y ′ = y , for i > 0:

Fi ≡ x = i ∧ x ′ = 0 ∧ y ′ = y + 2i

E (rf) = (∆S(x>0) ◦
(
ρ(x = x − 1) ◦ rf ◦ ρ(y = y + 2))

)
∪∆S(x≤0)

k = 1: We computed
r1 = E (∅) = ∆S(x≤0) = {((x , y), (x ′, y ′)) | F0}
Induction step:

E (rk) = E

({
((x , y), (x ′, y ′))

∣∣∨k−1
i=0 Fi

})
=
⋃k−1

i=1 E ({((x , y), (x ′, y ′)) | Fi}
= {((x , y), (x ′, y ′)) |

∨k−1
i=1 (F0 ∨ Fi+1)}

= {((x , y), (x ′, y ′)) |
∨k

i=0 Fi} = rk+1

Proof by induction

rk =

{
((x , y), (x ′, y ′))

∣∣ k−1∨
i=0

Fi

}
F0 : x ≤ 0 ∧ x ′ = x ∧ y ′ = y , for i > 0:

Fi ≡ x = i ∧ x ′ = 0 ∧ y ′ = y + 2i

E (rf) = (∆S(x>0) ◦
(
ρ(x = x − 1) ◦ rf ◦ ρ(y = y + 2))

)
∪∆S(x≤0)

k = 1: We computed
r1 = E (∅) = ∆S(x≤0) = {((x , y), (x ′, y ′)) | F0}
Induction step:

E (rk) = E

({
((x , y), (x ′, y ′))

∣∣∨k−1
i=0 Fi

})
=
⋃k−1

i=1 E ({((x , y), (x ′, y ′)) | Fi}
= {((x , y), (x ′, y ′)) |

∨k−1
i=1 (F0 ∨ Fi+1)}

= {((x , y), (x ′, y ′)) |
∨k

i=0 Fi} = rk+1

Constructing least fixpoint as union of sequence

F0 : x ≤ 0 ∧ x ′ = x ∧ y ′ = y , for i > 0:

Fi ≡ x = i ∧ x ′ = 0 ∧ y ′ = y + 2i

By fixpoint theorem

s =
⋃∞

k=1 rk =
⋃∞

i=1

{
((x , y), (x ′, y ′))

∣∣∨k−1
i=0 Fi

}
=

⋃∞
k=1

{
((x , y), (x ′, y ′))

∣∣Fi

}
=
{

((x , y), (x ′, y ′))
∣∣F0 ∨ ∃k . k > 0 ∧ Fk

}
∃k . 0 < k ∧ Fk ≡ ∃k . 0 < k ∧ x = k ∧ x ′ = 0 ∧ y ′ = y + 2k

0 < x ∧ x ′ = 0 ∧ y ′ = y + 2x

s =
{

((x , y), (x ′, y ′))
∣∣ (x ≤ 0 ∧ x ′ = x ∧ y ′ = 0)
∨(0 < x ∧ x ′ = 0 ∧ y ′ = y + 2x)

}

Constructing least fixpoint as union of sequence

F0 : x ≤ 0 ∧ x ′ = x ∧ y ′ = y , for i > 0:

Fi ≡ x = i ∧ x ′ = 0 ∧ y ′ = y + 2i

By fixpoint theorem

s =
⋃∞

k=1 rk =
⋃∞

i=1

{
((x , y), (x ′, y ′))

∣∣∨k−1
i=0 Fi

}
=
⋃∞

k=1

{
((x , y), (x ′, y ′))

∣∣Fi

}
=

{
((x , y), (x ′, y ′))

∣∣F0 ∨ ∃k . k > 0 ∧ Fk

}
∃k . 0 < k ∧ Fk ≡ ∃k . 0 < k ∧ x = k ∧ x ′ = 0 ∧ y ′ = y + 2k

0 < x ∧ x ′ = 0 ∧ y ′ = y + 2x

s =
{

((x , y), (x ′, y ′))
∣∣ (x ≤ 0 ∧ x ′ = x ∧ y ′ = 0)
∨(0 < x ∧ x ′ = 0 ∧ y ′ = y + 2x)

}

Constructing least fixpoint as union of sequence

F0 : x ≤ 0 ∧ x ′ = x ∧ y ′ = y , for i > 0:

Fi ≡ x = i ∧ x ′ = 0 ∧ y ′ = y + 2i

By fixpoint theorem

s =
⋃∞

k=1 rk =
⋃∞

i=1

{
((x , y), (x ′, y ′))

∣∣∨k−1
i=0 Fi

}
=
⋃∞

k=1

{
((x , y), (x ′, y ′))

∣∣Fi

}
=
{

((x , y), (x ′, y ′))
∣∣F0 ∨ ∃k . k > 0 ∧ Fk

}

∃k . 0 < k ∧ Fk ≡ ∃k . 0 < k ∧ x = k ∧ x ′ = 0 ∧ y ′ = y + 2k
0 < x ∧ x ′ = 0 ∧ y ′ = y + 2x

s =
{

((x , y), (x ′, y ′))
∣∣ (x ≤ 0 ∧ x ′ = x ∧ y ′ = 0)
∨(0 < x ∧ x ′ = 0 ∧ y ′ = y + 2x)

}

Constructing least fixpoint as union of sequence

F0 : x ≤ 0 ∧ x ′ = x ∧ y ′ = y , for i > 0:

Fi ≡ x = i ∧ x ′ = 0 ∧ y ′ = y + 2i

By fixpoint theorem

s =
⋃∞

k=1 rk =
⋃∞

i=1

{
((x , y), (x ′, y ′))

∣∣∨k−1
i=0 Fi

}
=
⋃∞

k=1

{
((x , y), (x ′, y ′))

∣∣Fi

}
=
{

((x , y), (x ′, y ′))
∣∣F0 ∨ ∃k . k > 0 ∧ Fk

}
∃k . 0 < k ∧ Fk ≡ ∃k . 0 < k ∧ x = k ∧ x ′ = 0 ∧ y ′ = y + 2k

0 < x ∧ x ′ = 0 ∧ y ′ = y + 2x

s =
{

((x , y), (x ′, y ′))
∣∣ (x ≤ 0 ∧ x ′ = x ∧ y ′ = 0)
∨(0 < x ∧ x ′ = 0 ∧ y ′ = y + 2x)

}

Constructing least fixpoint as union of sequence

F0 : x ≤ 0 ∧ x ′ = x ∧ y ′ = y , for i > 0:

Fi ≡ x = i ∧ x ′ = 0 ∧ y ′ = y + 2i

By fixpoint theorem

s =
⋃∞

k=1 rk =
⋃∞

i=1

{
((x , y), (x ′, y ′))

∣∣∨k−1
i=0 Fi

}
=
⋃∞

k=1

{
((x , y), (x ′, y ′))

∣∣Fi

}
=
{

((x , y), (x ′, y ′))
∣∣F0 ∨ ∃k . k > 0 ∧ Fk

}
∃k . 0 < k ∧ Fk ≡ ∃k . 0 < k ∧ x = k ∧ x ′ = 0 ∧ y ′ = y + 2k

0 < x ∧ x ′ = 0 ∧ y ′ = y + 2x

s =
{

((x , y), (x ′, y ′))
∣∣ (x ≤ 0 ∧ x ′ = x ∧ y ′ = 0)
∨(0 < x ∧ x ′ = 0 ∧ y ′ = y + 2x)

}

Constructing least fixpoint as union of sequence

F0 : x ≤ 0 ∧ x ′ = x ∧ y ′ = y , for i > 0:

Fi ≡ x = i ∧ x ′ = 0 ∧ y ′ = y + 2i

By fixpoint theorem

s =
⋃∞

k=1 rk =
⋃∞

i=1

{
((x , y), (x ′, y ′))

∣∣∨k−1
i=0 Fi

}
=
⋃∞

k=1

{
((x , y), (x ′, y ′))

∣∣Fi

}
=
{

((x , y), (x ′, y ′))
∣∣F0 ∨ ∃k . k > 0 ∧ Fk

}
∃k . 0 < k ∧ Fk ≡ ∃k . 0 < k ∧ x = k ∧ x ′ = 0 ∧ y ′ = y + 2k

0 < x ∧ x ′ = 0 ∧ y ′ = y + 2x

s =
{

((x , y), (x ′, y ′))
∣∣ (x ≤ 0 ∧ x ′ = x ∧ y ′ = 0)
∨(0 < x ∧ x ′ = 0 ∧ y ′ = y + 2x)

}

Alternative Acceptable Method

E (rf) = ∆S(x>0) ◦ ρ(x = x − 1) ◦ rf ◦ ρ(y = y + 2) ∪ ∆S(x≤0)

1. Guess a fixpoint, in this case:

s ′ =
{

((x , y), (x ′, y ′))
∣∣ (x ≤ 0 ∧ x ′ = x ∧ y ′ = 0)
∨(0 < x ∧ x ′ = 0 ∧ y ′ = y + 2x)

}
2. Verify E (s ′) ⊆ s ′

3. Show that, for every initial state (x , y), if (x ′, y ′) is such that
((x , y), (x ′, y ′)) ∈ s, then there is an n (e.g. number of
execution steps) such that ((x , y), (x ′, y ′)) ∈ En(∅).

Note that, if s = lfp(E) then 2. implies s ⊆ s ′ and 3. implies

s ′ ⊆
⋃
n≥0

En(∅) = s

Together, they imply s = s ′, so the guessed s ′ is the least fixpoint.

Observation

It is much simpler to check that a
procedure satisfies a specification

F (r) ⊆ r

Than to find the least s such that

F (s) = s

Replacing Calls with Specs

def f = if (x > 0) {
x = x − 1
f
y = y + 2

}
ensuring (!(0 < old(x)) || (x == 0 && y == old(y) + 2∗old(x)))

def fNoRec = if (x > 0) {
x = x − 1
{ var x0 = x, y0 = y

havoc(x,y)
assume(!(0 < x0) || (x == 0 && y == y0 + 2∗x0))
}
y = y + 2
}

ensuring (!(0 < old(x)) || (x == 0 && y == old(y) + 2∗old(x)))

If fNoRec satisfies postcondition r , so does f

Reason: if fNoRec verifies, then E (r) ⊆ r , so lfp(E) ⊆ r

Replacing Calls with Specs

def f = if (x > 0) {
x = x − 1
f
y = y + 2

}
ensuring (!(0 < old(x)) || (x == 0 && y == old(y) + 2∗old(x)))

def fNoRec = if (x > 0) {
x = x − 1
{ var x0 = x, y0 = y

havoc(x,y)
assume(!(0 < x0) || (x == 0 && y == y0 + 2∗x0))
}
y = y + 2
}

ensuring (!(0 < old(x)) || (x == 0 && y == old(y) + 2∗old(x)))

If fNoRec satisfies postcondition r , so does f
Reason: if fNoRec verifies, then E (r) ⊆ r , so lfp(E) ⊆ r

Least Fixpoint Reasoning Rules

1.
E (lfp(E)) = E

2.
E (r) ⊆ r

lfp(E) ⊆ r

Example 3: Multiple Fixpoints

Previous example tested if x > 0. Now we test x! = 0.

def g =
if (x != 0) {

x = x − 1
g
y = y + 2
}

E ′(rg) = (∆S(x 6=0) ◦
(

ρ(x = x − 1)◦
rg◦
ρ(y = y + 2)))
∪∆S(x=0)

What does g do when called in state where x < 0 ?

TASK: Find two different fixpoint relations: s1 and s2 where
s1 6= s2, E ′(s1) = s1, and E ′(s2) = s2.

Example 3: Multiple Fixpoints

Previous example tested if x > 0. Now we test x! = 0.

def g =
if (x != 0) {

x = x − 1
g
y = y + 2
}

E ′(rg) = (∆S(x 6=0) ◦
(

ρ(x = x − 1)◦
rg◦
ρ(y = y + 2)))
∪∆S(x=0)

What does g do when called in state where x < 0 ?

TASK: Find two different fixpoint relations: s1 and s2 where
s1 6= s2, E ′(s1) = s1, and E ′(s2) = s2.

Example 3: Multiple Fixpoints

Previous example tested if x > 0. Now we test x! = 0.

def g =
if (x != 0) {

x = x − 1
g
y = y + 2
}

E ′(rg) = (∆S(x 6=0) ◦
(

ρ(x = x − 1)◦
rg◦
ρ(y = y + 2)))
∪∆S(x=0)

What does g do when called in state where x < 0 ?

TASK: Find two different fixpoint relations: s1 and s2 where
s1 6= s2, E ′(s1) = s1, and E ′(s2) = s2.

Finding two Fixpoints

def g =
if (x != 0) {

x = x − 1
g
y = y + 2
}

E ′(rg) = (∆S(x 6=0) ◦
(

ρ(x = x − 1)◦
rg◦
ρ(y = y + 2)))
∪∆S(x=0)

s1 =
{

((x , y), (x ′, y ′))
∣∣ (x = 0 ∧ x ′ = 0 ∧ y ′ = y)
∨(0 < x ∧ x ′ = 0 ∧ y ′ = y + 2x)

}
s2 = s1 ∪

{
((x , y), (x ′, y ′))

∣∣x < 0
}

Multiple fixpoints differ in pairs of states ((x , y), (x ′, y ′)) for
which execution from (x , y) does not terminate.
Least fixpoint (s1) contains no states for which execution from
(x , y) does not terminate.
Can we put any junk for non-terminating states and it will be
fixpoint?

Finding two Fixpoints

def g =
if (x != 0) {

x = x − 1
g
y = y + 2
}

E ′(rg) = (∆S(x 6=0) ◦
(

ρ(x = x − 1)◦
rg◦
ρ(y = y + 2)))
∪∆S(x=0)

s1 =
{

((x , y), (x ′, y ′))
∣∣ (x = 0 ∧ x ′ = 0 ∧ y ′ = y)
∨(0 < x ∧ x ′ = 0 ∧ y ′ = y + 2x)

}
s2 = s1 ∪

{
((x , y), (x ′, y ′))

∣∣x < 0
}

Multiple fixpoints differ in pairs of states ((x , y), (x ′, y ′)) for
which execution from (x , y) does not terminate.
Least fixpoint (s1) contains no states for which execution from
(x , y) does not terminate.
Can we put any junk for non-terminating states and it will be
fixpoint?

Finding two Fixpoints

def g =
if (x != 0) {

x = x − 1
g
y = y + 2
}

E ′(rg) = (∆S(x 6=0) ◦
(

ρ(x = x − 1)◦
rg◦
ρ(y = y + 2)))
∪∆S(x=0)

s1 =
{

((x , y), (x ′, y ′))
∣∣ (x = 0 ∧ x ′ = 0 ∧ y ′ = y)
∨(0 < x ∧ x ′ = 0 ∧ y ′ = y + 2x)

}
s2 = s1 ∪

{
((x , y), (x ′, y ′))

∣∣x < 0
}

Multiple fixpoints differ in pairs of states ((x , y), (x ′, y ′)) for
which execution from (x , y) does not terminate.

Least fixpoint (s1) contains no states for which execution from
(x , y) does not terminate.
Can we put any junk for non-terminating states and it will be
fixpoint?

Finding two Fixpoints

def g =
if (x != 0) {

x = x − 1
g
y = y + 2
}

E ′(rg) = (∆S(x 6=0) ◦
(

ρ(x = x − 1)◦
rg◦
ρ(y = y + 2)))
∪∆S(x=0)

s1 =
{

((x , y), (x ′, y ′))
∣∣ (x = 0 ∧ x ′ = 0 ∧ y ′ = y)
∨(0 < x ∧ x ′ = 0 ∧ y ′ = y + 2x)

}
s2 = s1 ∪

{
((x , y), (x ′, y ′))

∣∣x < 0
}

Multiple fixpoints differ in pairs of states ((x , y), (x ′, y ′)) for
which execution from (x , y) does not terminate.
Least fixpoint (s1) contains no states for which execution from
(x , y) does not terminate.

Can we put any junk for non-terminating states and it will be
fixpoint?

Finding two Fixpoints

def g =
if (x != 0) {

x = x − 1
g
y = y + 2
}

E ′(rg) = (∆S(x 6=0) ◦
(

ρ(x = x − 1)◦
rg◦
ρ(y = y + 2)))
∪∆S(x=0)

s1 =
{

((x , y), (x ′, y ′))
∣∣ (x = 0 ∧ x ′ = 0 ∧ y ′ = y)
∨(0 < x ∧ x ′ = 0 ∧ y ′ = y + 2x)

}
s2 = s1 ∪

{
((x , y), (x ′, y ′))

∣∣x < 0
}

Multiple fixpoints differ in pairs of states ((x , y), (x ′, y ′)) for
which execution from (x , y) does not terminate.
Least fixpoint (s1) contains no states for which execution from
(x , y) does not terminate.
Can we put any junk for non-terminating states and it will be
fixpoint?

Fixpoints

Suppose we assign y to 2.

E ′′(rg) = (∆S(x 6=0) ◦
(

ρ(x = x − 1)◦
rg◦
ρ(y = 2)))
∪∆S(x=0)

Is s3 a fixpoint of E ′′:

s3 =
{

((x , y), (x ′, y ′))
∣∣ (x < 0)
∨(x = 0 ∧ x ′ = 0 ∧ y ′ = y)
∨(0 < x ∧ x ′ = 0 ∧ y ′ = 2)

}

Does ((−1, 0), (−1, 0)) ∈ s3 hold?
Does ((−1, 0), (−1, 0)) ∈ E ′′(s3) hold?
Find a non-least fixpoint of E ′′

Fixpoints

Suppose we assign y to 2.

E ′′(rg) = (∆S(x 6=0) ◦
(

ρ(x = x − 1)◦
rg◦
ρ(y = 2)))
∪∆S(x=0)

Is s3 a fixpoint of E ′′:

s3 =
{

((x , y), (x ′, y ′))
∣∣ (x < 0)
∨(x = 0 ∧ x ′ = 0 ∧ y ′ = y)
∨(0 < x ∧ x ′ = 0 ∧ y ′ = 2)

}
Does ((−1, 0), (−1, 0)) ∈ s3 hold?

Does ((−1, 0), (−1, 0)) ∈ E ′′(s3) hold?
Find a non-least fixpoint of E ′′

Fixpoints

Suppose we assign y to 2.

E ′′(rg) = (∆S(x 6=0) ◦
(

ρ(x = x − 1)◦
rg◦
ρ(y = 2)))
∪∆S(x=0)

Is s3 a fixpoint of E ′′:

s3 =
{

((x , y), (x ′, y ′))
∣∣ (x < 0)
∨(x = 0 ∧ x ′ = 0 ∧ y ′ = y)
∨(0 < x ∧ x ′ = 0 ∧ y ′ = 2)

}
Does ((−1, 0), (−1, 0)) ∈ s3 hold?
Does ((−1, 0), (−1, 0)) ∈ E ′′(s3) hold?

Find a non-least fixpoint of E ′′

Fixpoints

Suppose we assign y to 2.

E ′′(rg) = (∆S(x 6=0) ◦
(

ρ(x = x − 1)◦
rg◦
ρ(y = 2)))
∪∆S(x=0)

Is s3 a fixpoint of E ′′:

s3 =
{

((x , y), (x ′, y ′))
∣∣ (x < 0)
∨(x = 0 ∧ x ′ = 0 ∧ y ′ = y)
∨(0 < x ∧ x ′ = 0 ∧ y ′ = 2)

}
Does ((−1, 0), (−1, 0)) ∈ s3 hold?
Does ((−1, 0), (−1, 0)) ∈ E ′′(s3) hold?
Find a non-least fixpoint of E ′′

More on Inductively Defined Sets

Induction Principle = Set is the Least Fixpoint

Set of natural numbers N is defined like this:

I 0 ∈ N

I if x ∈ N then x + 1 ∈ N

Following this definition, define function F from sets to sets:

F (S) = {0} ∪ {x + 1 | x ∈ S}

Then the definition above says F (N) ⊆ N.

What definition really means is

1. F (N) ⊆ N

2. for any set P such that F (P) ⊆ P, we have N ⊆ P

This of set P as a property that we wish to show holds for all
natural numbers. The fact that N is the least set means it suffices
to show

{0} ∪ {x + 1 | x ∈ P} ⊆ P

that is, 0 ∈ P and x + 1 ∈ P for every x ∈ P. From there N ⊆ P

Induction Principle = Set is the Least Fixpoint

Set of natural numbers N is defined like this:

I 0 ∈ N

I if x ∈ N then x + 1 ∈ N

Following this definition, define function F from sets to sets:

F (S) = {0} ∪ {x + 1 | x ∈ S}

Then the definition above says F (N) ⊆ N.
What definition really means is

1. F (N) ⊆ N

2. for any set P such that F (P) ⊆ P, we have N ⊆ P

This of set P as a property that we wish to show holds for all
natural numbers. The fact that N is the least set means it suffices
to show

{0} ∪ {x + 1 | x ∈ P} ⊆ P

that is, 0 ∈ P and x + 1 ∈ P for every x ∈ P. From there N ⊆ P

Least Fixpoints as Definition Mechanism

F (S) = {0} ∪ {x + 1 | x ∈ S}
Then F (∅) = {0}. Generally, F k(∅) = {0, 1, . . . , k}
Least fixpoint is union over all F k(∅), set of natural numbers.

G (S) = {1} ∪ {x + 2 | x ∈ S}
What is G k(S) =

{1, 3, . . . , 2k + 1}
What is least fixpoint of G ? Set of positive odd numbers
A = {1, 3, 5, 7, . . .}

Every well-behaved function F gives a recursive definition and the
corresponding recursion principle.

I a theorem guarantees that the object being defined exists (it
is the least fixpoint s of F)

I being the least implies we can establish approximation r of s
by showing approximation satisfies F (r) ⊆ r

Proofs by induction = age-old approximation effort.

Least Fixpoints as Definition Mechanism

F (S) = {0} ∪ {x + 1 | x ∈ S}
Then F (∅) = {0}. Generally, F k(∅) = {0, 1, . . . , k}
Least fixpoint is union over all F k(∅), set of natural numbers.

G (S) = {1} ∪ {x + 2 | x ∈ S}
What is G k(S) = {1, 3, . . . , 2k + 1}
What is least fixpoint of G ?

Set of positive odd numbers
A = {1, 3, 5, 7, . . .}

Every well-behaved function F gives a recursive definition and the
corresponding recursion principle.

I a theorem guarantees that the object being defined exists (it
is the least fixpoint s of F)

I being the least implies we can establish approximation r of s
by showing approximation satisfies F (r) ⊆ r

Proofs by induction = age-old approximation effort.

Least Fixpoints as Definition Mechanism

F (S) = {0} ∪ {x + 1 | x ∈ S}
Then F (∅) = {0}. Generally, F k(∅) = {0, 1, . . . , k}
Least fixpoint is union over all F k(∅), set of natural numbers.

G (S) = {1} ∪ {x + 2 | x ∈ S}
What is G k(S) = {1, 3, . . . , 2k + 1}
What is least fixpoint of G ? Set of positive odd numbers
A = {1, 3, 5, 7, . . .}

Every well-behaved function F gives a recursive definition and the
corresponding recursion principle.

I a theorem guarantees that the object being defined exists (it
is the least fixpoint s of F)

I being the least implies we can establish approximation r of s
by showing approximation satisfies F (r) ⊆ r

Proofs by induction = age-old approximation effort.

Least Fixpoints as Definition Mechanism

F (S) = {0} ∪ {x + 1 | x ∈ S}
Then F (∅) = {0}. Generally, F k(∅) = {0, 1, . . . , k}
Least fixpoint is union over all F k(∅), set of natural numbers.

G (S) = {1} ∪ {x + 2 | x ∈ S}
What is G k(S) = {1, 3, . . . , 2k + 1}
What is least fixpoint of G ? Set of positive odd numbers
A = {1, 3, 5, 7, . . .}

Every well-behaved function F gives a recursive definition and the
corresponding recursion principle.

I a theorem guarantees that the object being defined exists (it
is the least fixpoint s of F)

I being the least implies we can establish approximation r of s
by showing approximation satisfies F (r) ⊆ r

Proofs by induction = age-old approximation effort.

Non-standard Models

F (S) = {0} ∪ {e + 1 | e ∈ S}

If our domain allows real numbers then also F (R) = R.
So, the set of real numbers is also a fixpoint of S , but not the least
one.

Another example of non-least model: take the set of all
polynomials ax + b where a, b are integers and where
x is a formal variable. Constants are just 0 · x + c

I (a1x + b1) + (a2x + b2) = ((a1 + a2)x + (b1 + b2))

I (a1x + b1) < (a2x + b2) iff a1 < a2 ∨ (a1 = a2 ∧ b1 < b2)

Multiplication by constant is repeated addition, divisibility similar
Does this set and operations satisfy properties of Presburger
arithmetic? If yes, we call the result a non-standard model of
Presburger arithmetic. Satisfies same formulas.

Algebraic Data Types

Example: Shallow Tree Flip

case object Leaf extends Tree
case class Node(t1:Tree, x:BigInt, t2:Tree) extends Tree
def flip(t:Tree):Tree = t match {

case Leaf => Leaf
case Node(st1,x1,st2) => Node(st2,x1,st1)
}
def test(t:Tree):Boolean = { flip(flip(t)) == t }

Negated verification condition

t1 = flipBody(t) ∧ t2 = flipBody [t := t1] ∧ t2 6= t

We would like to prove it is not satisfiable.
Is there a decision procedure to do this?

Inductive Definition of Binary Trees of Integers

case object Leaf extends Tree
case class Node(t1:Tree, x:BigInt, t2:Tree) extends Tree

Z - integers
Trees = lfp(F) where

F (S) = {Leaf } ∪ {Node(t1, x , t2) | t1 ∈ S , x ∈ Z, t2 ∈ S}

If we know neither fixpoints nor Scala, we may try to say stuff like:
Trees are constructed using the following rules:

1. Leaf is a tree.

2. if t1 is a tree, x is an integer, and t2 is a tree, then
Node(t1, x , t2) is a tree.

“Nothing else is a tree.”
“Tree is generated using only the rules above.”

Algebraic Data Types, also known as Term Algebras

case object Leaf extends Tree
case object Flower extends Tree
case object Spike extends Tree
case class Node(t1:Tree,t2:Tree) extends Tree
case class Succ(t3:Tree) extends Tree
case class Oak(t4:Tree,t5:Tree,t6:Tree) extends Tree
case class Pine(t7:Tree,t8:Tree) extends Tree
Oak(Oak(Leaf,Leaf,Flower),Node(Succ(Leaf),Leaf),Pine(Spike,Spike)) : Tree

{Leaf } ⊆ Tree
. . .
{Node(t1, t2) | t1 ∈ Tree, t2 ∈ Tree} ⊆ Tree
{Succ(t3) | t3 ∈ Tree} ⊆ Tree
. . .

Collect LHSs, we obtain F s.t. above is same as F (Tree) ⊆ Tree
Constructors: Leaf, Flower, Spike, Node, Succ, Oak, Pine
Selectors: t1,t2,...,t8

Term Algebras
Σ - (finite) set of constructors, f ∈ Σ has arity ar(f) ≥ 0
If ar(f) = 0 then f is constant, ar(f) = 1: unary function,
ar(f) = 2: binary
Set of (ground) terms (trees) TermsΣ is least set S such that

{f (t1, . . . , tn) | n = ar(f), t1, . . . , tn ∈ S} ⊆ S

Example: Let Σ = {f , c} with ar(f) = 1, ar(c) = 0.

TermsΣ = {c, f (c), f (f (c)), . . .}

Comparison to integers

integers terms

domain Z Terms

constants 0, 1, . . . {f | ar(f) = 0}
operations +,− {f | ar(f) > 0}
relations =, <, | =

Example: if we apply f to term f (c) we obtain bigger term f (f (c))

Properties of Term Algebras

f (t1, . . . , tn) 6= g(s1, . . . , sm), if f 6= g

f (t1, . . . , tn) = f (s1, . . . , sn), iff
n∧

i=1

ti = si

Clearly if t1 is contained as a term inside t2, then they are distinct.
Therefore, it cannot be the case that e.g. f (f (f (x))) = x

Term Algebra Constraints

Equations in Presburger arithmetic are equalities that contain
constants, operations, and uknowns like

3x + 2y = 7

Here we also have equations that contain constants and
operations, like

Node(x , y) = Node(y , x)

Observe that the above constraint is equivalent to x = y

We can solve constraints in term algebra using unification

Unification Algorithm
A set of equations is in solved form if it is of the form
{x1

.
= t1, . . . , xn

.
= tn} where variables xi do not appear in terms

tj , that is {x1, . . . , xn} ∩ (FV (t1) ∪ . . .FV (tn)) = ∅
We obtain a solved form in finite time using the algorithm that
applies the following rules in any order as long as no clash is
reported and as long as the equations are not in solved form.

I Orient: Select t
.

= x where t is not x, and replace it with
x
.

= t.

I Delete: Select x
.

= x , remove it.

I Eliminate: Given x
.

= t where x does not occur in t,
substitute x with t in all remaining equations.

I Occurs Check: Given x
.

= t where x occurs in t, report clash.

I Decomposition: Given f (t1, . . . , tn)
.

= f (s1, . . . , sn), replace
it with t1

.
= s1, . . . , tn

.
= sn.

I Clash: Given f (t1, . . . , tn)
.

= g(s1, . . . , sm) for f not g , report
clash

Run Unification Algorithm

Σ = {h, f , a, b} with arities 2, 2, 0, 0

h(x , f (x , y)) = h(f (a, v), f (f (u, b), f (u, u)))

h(x , f (x , x)) = h(f (a, v), f (f (u, b), f (u, u)))

h(x , f (x , y)) = h(f (u, v), v)

Example from Verification

Σ = {Leaf ,Node}, ar(Leaf) = 0, ar(Node) = 2
Consider ’flip’ of a tree invoked twice z1 ; z2 ; z3

Show that the following implication holds for all variables
z1, z2, z3, x1, y1, x2, y2 whose values range over TermsΣ

(((z1 = Leaf ∧ z2 = Leaf) ∨ (z1 = Node(x1, y1) ∧ z2 = Node(y1, x1)))
∧((z3 = Leaf ∧ z3 = Leaf) ∨ (z2 = Node(x2, y2) ∧ z3 = Node(y2, x3))))
→ z3 = z1

Unification Algorithm: Consequences

Solved form describes all solutions

How to handle disequalities?

How to handle disjunctions?

Can we also support quantifiers?

