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Loop-Free Programs as Relations

command c R(c) ρ(c)

(x = t) x ′ = t ∧
∧

v∈V \{x} v
′ = v

c1 ; c2 ∃z̄ . R(c1)[x̄ ′ := z̄ ] ∧ R(c2)[x̄ := z̄ ] ρ(c1) ◦ ρ(c2)
if(∗) c1 else c2 R(c1) ∨ R(c2) ρ(c1) ∪ ρ(c2)

assume(F) F ∧
∧

v∈V v ′ = v ∆S(F )

ρ(vi = t) = {((v1, . . . , vi , . . . , vn), (v1, . . . , v
′
i , . . . , vn) | v ′i = t}

S(F ) = {v̄ | F}, ∆A = {(~v , ~v) | ~v ∈ A} (diagonal relation on A)
∆ (without subscript) is identity on entire set of states (no-op)
We always have: ρ(c) = {(v̄ , v̄ ′) | R(c)}
Shorthands:

if(∗) c1 else c2 c1 c2
assume(F ) [F ]

Examples:

if (F ) c1 else c2 ≡ [F ]; c1 [¬F ]; c2
if (F ) c ≡ [F ]; c [¬F ]



Loop-Free Programs

c - a loop-free program whose assignments, havocs, and assumes
are c1, . . . , cn

The relation ρ(c) is of the form E (ρ(c1), . . . , ρ(cn)); it composes
meanings of c1, . . . , cn using union (∪) and composition (◦)

(if (x > 0)
x = x − 1

else
x = 0

);
(if (y > 0)

y = y − 1
else

y = x + 1
)

([x > 0]; x = x − 1

([¬(x>0)]; x = 0)
);
([y > 0]; y = y − 1

[¬(y>0)]; y = x+1
)

(
∆S(x>0) ◦ ρ(x = x − 1)
∪

∆S(¬(x>0)) ◦ ρ(x = 0))
◦(
∆S(y>0) ◦ ρ(y = y − 1)
∪

∆S(¬(y>0)) ◦ ρ(y = x + 1))
Note: ◦ binds stronger than ∪, so r ◦ s ∪ t = (r ◦ s) ∪ t



Normal Form for Loop-Free Programs

Composition distributes through union:

(r1 ∪ r2) ◦ (s1 ∪ s2) = r1 ◦ s1 ∪ r1 ◦ s2 ∪ r2 ◦ s1 ∪ r2 ◦ s2

Example corresponding to two if-else statements one after another:(
∆1 ◦ r1
∪

∆2 ◦ r2)
◦(
∆3 ◦ r3
∪

∆4 ◦ r4)
≡

∆1 ◦ r1 ◦∆3 ◦ r3 ∪
∆1 ◦ r1 ◦∆4 ◦ r4 ∪
∆2 ◦ r2 ◦∆3 ◦ r3 ∪
∆2 ◦ r2 ◦∆4 ◦ r4

Each such composition of basic statements is called basic path.
Loop-free code describes finitely many (exponentially many) paths.



Expressions using ∪ and ◦

For a program with k integer variables, S = Zk

Consider relations that are subsets of S × S (i.e. S2)
The set of all such relations is

C = {r | r ⊆ S2}

Let E (r) be given by an expression built from relation r and some
additional relations b1, . . . , bn, using ∪ and ◦.
Example: E (r) = (b1 ◦ r) ∪ b2
E (r) is function C → C , maps relations to relations

Theorem
E is monotonic function on C:

r1 ⊆ r2 → E (r1) ⊆ E (r2)



Expressions using ∪ and ◦

Prove of disprove.
E distributes over unions, that is, if ri , i ∈ I is family of relations,

E (
⋃
i∈I

ri ) =
⋃
i∈I

E (ri )



Expressions using ∪ and ◦

Does distributivity

E (
⋃
i∈I

ri ) =
⋃
i∈I

E (ri )

hold, for each of these cases

1. If E (r) is given by an expression containing r at most once?

2. If E (r) contains r any number of times, but I is a finite or
countably infinite increasing sequence of relations
r1 ⊆ r2 ⊆ . . .

3. If E (r) contains r any number of times, but ri , i ∈ I is a
directed family of relations: for each i , j there exists k such
that ri ∪ rj ⊆ rk .



Loops



Loops: Example

Consider the set of variables V = {x , y} and this program L:

while (x > 0) {
x = x − y
}

When the loop terminates, what is the relation ρ(L) between state
(x , y) before loop started executing and the final state (x ′, y ′)?

Let k be the number of times loop executes.

I k = 0: x ≤ 0 ∧ x ′ = x ∧ y ′ = y

I k = 1: x > 0 ∧ x ′ = x − y ∧ y ′ = y ∧ x ′ ≤ 0

I k > 0: x > 0 ∧ x ′ = x − ky ∧ x ′ ≤ 0 ∧ y ′ = y

Solution:

(x ≤ 0 ∧ x ′ = x ∧ y ′ = y) ∨
(∃k . k > 0 ∧ x > 0 ∧ x ′ = x − ky ∧ x ′ ≤ 0 ∧ y ′ = y)
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Heuristically Eliminating a Quantifier from non-PA formula

∃k . k > 0 ∧ x > 0 ∧ x ′ = x − ky ∧ x ′ ≤ 0 ∧ y ′ = y

This implies y > 0.

∃k. y > 0 ∧ k > 0 ∧ x > 0 ∧ ky = x − x ′ ∧ x ′ ≤ 0 ∧ y ′ = y

∃k . y > 0∧k > 0∧x > 0∧y |(x−x ′)∧k = (x−x ′)/y∧x ′ ≤ 0∧y ′ = y

y > 0 ∧ (x − x ′)/y > 0 ∧ x > 0 ∧ y |(x − x ′) ∧ x ′ ≤ 0 ∧ y ′ = y

y > 0 ∧ x − x ′ > 0 ∧ x > 0 ∧ y |(x − x ′) ∧ x ′ ≤ 0 ∧ y ′ = y



Heuristically Eliminating a Quantifier from non-PA formula

∃k . k > 0 ∧ x > 0 ∧ x ′ = x − ky ∧ x ′ ≤ 0 ∧ y ′ = y

This implies y > 0.

∃k. y > 0 ∧ k > 0 ∧ x > 0 ∧ ky = x − x ′ ∧ x ′ ≤ 0 ∧ y ′ = y

∃k . y > 0∧k > 0∧x > 0∧y |(x−x ′)∧k = (x−x ′)/y∧x ′ ≤ 0∧y ′ = y

y > 0 ∧ (x − x ′)/y > 0 ∧ x > 0 ∧ y |(x − x ′) ∧ x ′ ≤ 0 ∧ y ′ = y

y > 0 ∧ x − x ′ > 0 ∧ x > 0 ∧ y |(x − x ′) ∧ x ′ ≤ 0 ∧ y ′ = y



Heuristically Eliminating a Quantifier from non-PA formula

∃k . k > 0 ∧ x > 0 ∧ x ′ = x − ky ∧ x ′ ≤ 0 ∧ y ′ = y

This implies y > 0.

∃k. y > 0 ∧ k > 0 ∧ x > 0 ∧ ky = x − x ′ ∧ x ′ ≤ 0 ∧ y ′ = y

∃k . y > 0∧k > 0∧x > 0∧y |(x−x ′)∧k = (x−x ′)/y∧x ′ ≤ 0∧y ′ = y

y > 0 ∧ (x − x ′)/y > 0 ∧ x > 0 ∧ y |(x − x ′) ∧ x ′ ≤ 0 ∧ y ′ = y

y > 0 ∧ x − x ′ > 0 ∧ x > 0 ∧ y |(x − x ′) ∧ x ′ ≤ 0 ∧ y ′ = y



Heuristically Eliminating a Quantifier from non-PA formula

∃k . k > 0 ∧ x > 0 ∧ x ′ = x − ky ∧ x ′ ≤ 0 ∧ y ′ = y

This implies y > 0.

∃k. y > 0 ∧ k > 0 ∧ x > 0 ∧ ky = x − x ′ ∧ x ′ ≤ 0 ∧ y ′ = y

∃k . y > 0∧k > 0∧x > 0∧y |(x−x ′)∧k = (x−x ′)/y∧x ′ ≤ 0∧y ′ = y

y > 0 ∧ (x − x ′)/y > 0 ∧ x > 0 ∧ y |(x − x ′) ∧ x ′ ≤ 0 ∧ y ′ = y

y > 0 ∧ x − x ′ > 0 ∧ x > 0 ∧ y |(x − x ′) ∧ x ′ ≤ 0 ∧ y ′ = y



Heuristically Eliminating a Quantifier from non-PA formula

∃k . k > 0 ∧ x > 0 ∧ x ′ = x − ky ∧ x ′ ≤ 0 ∧ y ′ = y

This implies y > 0.

∃k. y > 0 ∧ k > 0 ∧ x > 0 ∧ ky = x − x ′ ∧ x ′ ≤ 0 ∧ y ′ = y

∃k . y > 0∧k > 0∧x > 0∧y |(x−x ′)∧k = (x−x ′)/y∧x ′ ≤ 0∧y ′ = y

y > 0 ∧ (x − x ′)/y > 0 ∧ x > 0 ∧ y |(x − x ′) ∧ x ′ ≤ 0 ∧ y ′ = y

y > 0 ∧ x − x ′ > 0 ∧ x > 0 ∧ y |(x − x ′) ∧ x ′ ≤ 0 ∧ y ′ = y



Integer Programs with Loops

Even if loop body is in Presburger arithmetic, the semantics of a
loop need not be.

Integer programs with loops are Turing complete and can compute
all computable functions.

Even if we cannot find Presburger arithmetic formula, we may be
able to find

I a formula in a richer logic

I a property of the meaning of the loop
(e.g. formula for the superset)

To help with these tasks, we give mathematical semantics of loops
Useful concept for this is transitive closure: r∗ =

⋃
n≥0 r

n

( We may or may not have a general formula for rn or r∗ )



Towards meaning of loops: unfolding

Loops can describe an infinite number of basic paths
(for a larger input, program takes a longer path)
Consider loop

L ≡ while(F )c

We would like to have

L ≡ if (F ) (c ; L)
≡ if (F ) (c ; if (F ) (c ; L))

For rL = ρ(L), rc = ρ(c), ∆f = ∆S(F ), ∆nf = ∆S(¬F ) we have

rL = (∆f ◦ rc ◦ rL) ∪∆nf

= (∆f ◦ rc ◦ ((∆f ◦ rc ◦ rL) ∪∆nf )) ∪∆nf

= ∆nf ∪
(∆f ◦ rc) ◦∆nf ∪
(∆f ◦ rc)2 ◦ rL



Unfolding Loops

rL = ∆nf ∪
(∆f ◦ rc) ◦∆nf ∪
(∆f ◦ rc)2 ◦∆nf ∪
(∆f ◦ rc)3 ◦ rL

We prove by induction that for every n ≥ 0,

(∆f ◦ rc)n ◦∆nf ⊆ rL

So, (∆f ◦ rc)∗ ◦∆nf ⊆ rL.
We define rL to be:

rL = (∆f ◦ rc)∗ ◦∆nf

THEREFORE:

ρ(while(F )c) = (∆S(F ) ◦ ρ(c))∗ ◦∆S(¬F )



Using Loop Semantics in Example

ρ of L:

while (x > 0) {
x = x − y
}

is:

(∆S(x>0) ◦ ρ(x = x − y))∗ ◦∆S(¬(x>0))

Compute each relation:

∆S(x>0) = {((x , y), (x , y)) | x > 0}
∆S(¬(x>0)) = {((x , y), (x , y)) | x ≤ 0}

ρ(x = x − y) = {((x , y), (x − y , y)) | x , y ∈ Z}
∆S(x>0) ◦ ρ(x = x − y) =

(∆S(x>0) ◦ ρ(x = x − y))k =
(∆S(x>0) ◦ ρ(x = x − y))∗ =

ρ(L) =
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Semantics of a Program with Loop

Compute and simplify relation for this program:

x = 0
while (y > 0) {

x = x + y
y = y − 1
}

ρ(x = 0)◦
(∆S(y>0) ◦ ρ(x = x + y ; y = y − 1))∗◦
∆S(y≤0)



Approximate Semantics of Loops
Instead of computing exact semantics, it can be sufficient to
compute approximate semantics.
Observation: r1 ⊆ r2 → r∗1 ⊆ r∗2
Suppose we only wish to show that the semantics satisfies y ′ ≤ y

x = 0
while (y > 0) {

x = x + y
y = y − 1
}

ρ(x = 0)◦
(∆S(y>0) ◦ ρ(x = x + y ; y = y − 1))∗◦
∆S(y≤0)



Recursion



Example of Recursion

For simplicity assume no parameters
(we can simulate them using global variables)

def f =
if (x > 0) {

if (x % 2 == 0) {
x = x / 2;
f;
y = y ∗ 2
} else {

x = x − 1;
y = y + x;
f
}
}

E (rf ) =
∆S(x>0) ◦

(
(∆x%2=0◦
ρ(x = x/2)◦
rf ◦
ρ(y = y ∗ 2))
∪

(∆x%26=0◦
ρ(x = x − 1)◦
ρ(y = y + x)◦
rf ))
∪∆S(x≤0)

Assume recursive function call denotes some relation rf
Need to find relation rf such that rf = E (rf )



Simpler Example of Recursion

def f =
if (x > 0) {

x = x − 1
f
y = y + 2
}

E (rf ) = (∆S(x>0) ◦
(

ρ(x = x − 1)◦
rf ◦
ρ(y = y + 2)))
∪∆S(x≤0)

What is E (∅)?
What is E (E (∅))?
E k(∅)?
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Sequence of Bounded Recursions

Consider the sequence of relations r0 = ∅, rk = E k(∅).
What is the relationship between rk and rk+1?

Define
s =

⋃
k≥0

rk

Then

E (s) = E (
⋃
k≥0

rk)
?
=
⋃
k≥0

E (rk) =
⋃
k≥0

rk+1 =
⋃
k≥1

rk = ∅ ∪
⋃
k≥1

rk = s

If E (s) = s we say s is a fixed point (fixpoint) of function E
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Exercise with Fixpoints of Real Functions

1. Find all fixpoints of function f : R→ R defined as

f (x) = x2 − x − 3

2. Compute the fixpoint that is smaller than all other fixpoints
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Union of Finite Unfoldings is Least Fixpoint

C - a collection (set) of sets (e.g. sets of pairs, i.e. relations)
E : C → C such that for r0 ⊆ r1 ⊆ r2 . . .
we have

E (
⋃
i

ri ) =
⋃
i

E (ri )

Then s =
⋃

i E
i (∅) is such that

1. E (s) = s (we have shown this)

2. if r is such that E (r) ⊆ r (special case: if E (r) = r), then
s ⊆ r

Prove this theorem.



Least Fixpoint

s =
⋃
i

E i (∅)

Suppose E (r) ⊆ r .
Showing s ⊆ r ⋃

i

E i (∅) ⊆ r



Consequence of s being smallest

def f =
if (x > 0) {

x = x − 1
f
y = y + 2
}

E (rf ) = (∆S(x>0) ◦
(

ρ(x = x − 1)◦
rf ◦
ρ(y = y + 2)))
∪∆S(x≤0)

What does it mean that E (r) ⊆ r ?

Plugging r instead of the recursive call results in something that
conforms to r

Justifies modular reasoning for recursive functions

To prove that recursive procedure with body E satisfies
specification r , show

I E (r) ⊆ r

I then because procedure meaning s is least, s ⊆ r
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Proving that recursive function meets specification

Prove that if s is the relation denoting the recursive function
below, then

((x , y), (x ′, y ′)) ∈ s → y ′ ≥ y

def f =
if (x > 0) {

x = x − 1
f
y = y + 2
}

E (rf ) = (∆S(x>0) ◦
(

ρ(x = x − 1)◦
rf ◦
ρ(y = y + 2)))
∪∆S(x≤0)



Multiple Procedures

Two mutually recursive procedures r1 = E1(r1), r2 = E2(r2)

Extend the approach to work on pairs of relations:

(r1, r2) = (E1(r1),E2(r2))

Define Ē (r1, r2) = (E1(r1),E2(r2)), let r̄ = (r1, r2)

Ē (r̄) v r̄

where (r1, r2) v (r ′1, r
′
2) iff r1 ⊆ r ′1 and r2 ⊆ r ′2

Even though pairs of relations are not sets, we can analogously
define set-like operations on them. Most theorems still hold.

Generalizing: the entire theory works when we have certain
ordering relation

This leads us to consider LATTICES


