Synthesis, Analysis, and Verification

(SAV)
Lecture 01

http://lara.epfl.ch/w/sav

Lectures:
Viktor Kuncak
Exercises and Labs:
Eva Darulova

Etienne Kneuss -(I)f\-

ECO_LE POLYTECHNIQUE
FEDERALE DE LAUSANNE

SAV in One Slide

We study how to build software

analysis, verification, and synthesis
tools that automatically
answer guestions about software systems.

We cover theory and tool building through
lectures, exercises, and labs.

The grading is based on:

* fixed programming project, done in stages: 30%

 midterm (in the second half of the semester): 40%

e personalized project, with writing code (or new
proofs), presentation and report: 30%

Suggestion

e Attend all 3 weekly slots
* Always bring a laptop
e Ask questions

Analysis and Verification

auxiliary information
(hints, proof steps)

Questions of Interest

Example questions in analysis and verification
(with sample links to tools or papers):

 Will the program crash?

* Does it compute the correct result?

* Does it leak private information?

* How long does it take to run?

* How much power does it consume?

* Will it turn off automated cruise control?

Activities and Expertise Needed

Modeling: establish precise mathematical meaning for:
software, environment, and questions of interest

— discrete mathematics, mathematical logic, algebra
Formalization: formalize this meaning using appropriate
representation of programming languages and
specification languages

— program analysis, compilers, theory of formal languages,

formal methods
Designing algorithms: derive algorithms that manipulate such
formal objects - key technical step

— algorithms, dataflow analysis, abstract interpretation, decision
procedures, constraint solving (e.g. SAT), theorem proving

Experimental evaluation: implement these algorithms and
apply them to software systems

— developing and using tools and infrastructures,
learning lessons to improve and repeat previous steps

Comparison to other Sciences

Specific to SAV is the nature of software as the subject of study, which has
several consequences:

software is an engineering artifact: to an extent we can choose our reality
through programming language design and software methodology

software has complex discrete, non-linear structure: millions of lines of
code, gigabytes of bits of state, one condition in if statement can radically
change future execution path (non-continuous behavior)

high standards of correctness: interest in details and exceptional behavior
(bugs), not just in general trends of software behavior

high standards along with large the size of software make manual analysis
infeasible in most cases, and requires automation

automation requires not just mathematical modeling, where we use
everyday mathematical techniques, but also formal modeling, which
requires us to specify the representation of systems and properties, making
techniques from mathematical logic and model theory relevant

automation means implementing algorithms for processing representation
of software (e.g. source code) and representation of properties (e.g.
formulas expressing desired properties), the study of these algorithms leads
to questions of decidability, computational complexity, and heuristics that
work in practice.

Boeing could not assemble and integrate the fly-by-wire system until it
solved problems with the databus and the flight management software.
Solving these problems took more than a year longer than Boeing
anticipated. In April, 1995, the FAA certified the 777 as safe.

Total development cost: $ 3 billion
Software integration and validation cost: one third of total

PE—

Air Transport

August 2005

As a Malaysia Airlines jetliner cruised
from Perth, Australia, to Kuala Lumpur,
Malaysia, one evening last August, it
suddenly took on a mind of its own and
zoomed 3,000 feet upward. The captain
disconnected the autopilot and pointed
the Boeing 777's nose down to avoid
stalling, but was jerked into a steep dive.
He throttled back sharply on both
engines, trying to slow the plane.
Instead, the jet raced into another climb. The crew eventually regained control
and manually flew their 177 passengers safely back to Australia.

Jerardo Uominguezizri airinerpiciuras nel

Investigators quickly discovered the reason for the plane's roller-coaster ride
38,000 feet above the Indian Ocean. A defective software program had provided
incorrect data about the aircraft's speed and acceleration, confusing flight
computers.

003/45/ 7

August 14, 2003

A programming error has been identified as the cause of the Northeast power
blackout. “The*failure occurred when multiple computer systems trying to access
- the same mﬁ)lmatl(jn at once got the equivalent of busy signals.

-
- Fh
- -~ <

-

[Assomated I?ressl-y 2T

& >

. S Taved L % -
> N et Ou g A b
RESTEROTL) il s £ Fb,)
3 . £ 1 it
S R D a7
o

Price tag: $ 6-10 billion
Jl [.\ w‘

Essential Infrastructure Northeast Blackout

IFIN2712
September 14, 2004

Without warning, at about 5 p.m. PDT, air traffic controllers lost contact with about
400 airplanes they were tracking over the southwestern US. A backup system that was
supposed to take over in such an event crashed within a minute after it was turned on.
KLH1033 ‘ ' A o
0 B732 PH-BXF =
UPS6344] 1 ||P§:f_154:§'; EHAH<EGLL

M AUFP URS6727

-

edagprie 1 -
ﬁﬁ%ﬁzﬁ%ﬁﬁ Ry IRRNE745

r:‘u_"l Hr 10N _‘J_Eﬁ_'_ I o EIHE on703 wﬁ

HSASD v | E=RESR 0w
HE:?EI::::I-I -:_'_Fh“l:: s k. s -. _-: : :: o e
HHT":EI"E._ 1 || '-I_IJET'L:_ -F |—1 | . .- bt _”JHH-
B757 NEG1TZ'™ N Er—

CORGY “ NO-REG

."\-\.I

|huHLln T esases S\
M- FEL'-; T rﬁun. s "“EJHL'_:;;:;;{

170/ N642UH

HAL 1 4?’ @ ® 699
HL-REL . NO-RE& (= FHSL (LIS

HLA%-PHHL JHA310 ;f’ ST
UaLgss, "REp “NO=REG

= ey 5

Air Transport

French Guyana, June 4, 1996
t=0sec

t =40 sec
S800 million software failure

Space Missions

Y
December 4, 2006,

_—
,

A kil
The NHTSA said Daf@legChrysler 1s recalling *%’ éfports utility
vehicles because of a pfoblel_z_!l with the software 3_',. hgithe fuel pump and
power train control. The defect could cause the enging to stall unexpectedly.

118
[Washington Post] 4‘"

' "“

L -

" '-.h’.
)
-4 W)

T
Car Industry

Production Cost of Automobiles

Software

Electronics 22%

20%0 2010 MIT Tech Revi
Car Industry [MIT Tech Review]

Radio Therapy

Between June 1985 and January 1987, a computer-controlled radiation ther-
apy machine, called the Therac-25, massively overdosed six people. These
accidents have been described as the worst in the 35-year history of medical
accelerators [6].

Nancy Leveson
Safeware: System Safety and Computers
Addison-Wesley, 1995

Life-Critical Medical Devices

December 2004

/’ \ enario, the
: ! ; :
clock timer a1 r, h thtee possible

ventricle

Journal of Pacing and Clinical Electrophysiolog

Life-Critical Medical Devices

Zune 30 leapyear problem

* December 31, 2008

e “After doing some poking around in the source code for the Zune’s clock driver
(available free from the Freescale website), | found the root cause of the now-
infamous Zune 30 leapyear issue that struck everyone on New Year’s Eve. The
Zune’s real-time clock stores the time in terms of days and seconds since January
1st, 1980. When the Zune’s clock is accessed, the driver turns the number of days
into years/months/days and the number of seconds into hours/minutes/seconds.
Likewise, when the clock is set, the driver does the opposite.

 The Zune frontend first accesses the clock toward the end of the boot sequence.
Doing this triggers the code that reads the clock and converts it to a date and
time..”

e “.The function keeps subtracting either 365 or 366 until it gets down to less than a
year’s worth of days, which it then turns into the month and day of month. Thing
is, in the case of the last day of a leap year, it keeps going until it hits 366. Thanks
to the if (days > 366), it stops subtracting anything if the loop happens to be on a
leap year. But 366 is too large to break out of the main loop, meaning that the
Zune keeps looping forever and doesn’t do anything else.”

http://www.zuneboards.com/forums/zune-news/38143-cause-zune-30-leapyear-
problem-isolated.html

More Information

http://mtc.epfl.ch/~tah/Lectures/EPFL-

Inaugural-Dec06.pdf

http://www.cse.lehigh.edu/~

otan/bug/software

bug.html

Success Stories

ASTREE Analyzer

“In Nov. 2003, ASTREE was able to prove
completely automatically the absence of any
RTE in the primary flight control software of the
Airbus A340 fly-by-wire system, a program of
132,000 lines of C analyzed in 1h20 on a 2.8 GHz
32-bit PC using 300 Mb of memory (and 50mn
on a 64-bit AMD Athlon™ 64 using 580 Mb of
memory).”

* http://www.astree.ens.fr/

Absint

e 7 April 2005. Absint contributes to
guaranteeing the safety of the A380, the
world's largest passenger aircraft. The
Analyzer is able to verify the proper response
time of the control software of all components
by computing the worst-case execution time
(WCET) of all tasks in the flight control
software. This analysis is performed on the
ground as a critical part of the safety
certification of the aircraft.

Interactive Theorem Provers

* A Mechanically Checked Proof of IEEE
Compliance of a Register-Transfer-Level
Specification of the AMD K7 Floating Point
Multiplication, Division and Square Root
Instructions, doine using ACL2 Prover

 Formal certification of a compiler back-end,

or: programming a compiler with a proof
assistant. by Xavier Leroy

Coverity Prevent

 SAN FRANCISCO - January 8, 2008 - Coverity®,
Inc., the leader in improving software quality and
security, today announced that as a result of its
contract with US Department of Homeland
Security (DHS), potential security and quality
defects in 11 popular open source software
projects were identified and fixed. The 11
projects are Amanda, NTP, OpenPAM, OpenVPN,
Overdose, Perl, PHP, Postfix, Python, Samba,
and TCL.

Microsoft's Static Driver Verifier

Static Driver Verifier (SDV) is a thorough, compile-time,
static verification tool designed for kernel-mode drivers.

SDV is included in the Windows Driver Kit (WDK)
SDV systematically analyzes the source code of Windows
drivers that are written in the C language.

SDV finds serious errors that are unlikely to be
encountered even in thorough testing.

SDV uses a set of interface rules and a model of the
operating system to determine whether the driver
interacts properly with the Windows operating system.

How to prove programs correct

Proving Program Correctness

def f(x : Int, y : Int) : Int
{
if (y ==10)
0
} else {
if (y % 2 ==0){
val z=1f(x,y/ 2);
2%z
} else {
x+f(x,y-1)
}
}
}

* What does f' compute?
 How can we prove it?

Proving Program Correctness

def f(x : Int, y : Int) : Int
{ require(y >=0)
if (y ==10)
0
} else {
if (y % 2 ==0){
val z=1f(x,y/ 2);
2%z
} else {
x+f(x,y-1)
}
}

} ensuring (result => result == x * y)

By translating Java code into math, we obtain the following mathematical definition of f:

0, ify=0
flz,y) = 4 2f(x,[4]), ify >0, and y= 2k for some k
r+ flr,y—1), ity >0 and y= 2k+4 1 for some £k

%,
By induction on If we then prove f(l“, y:] = I -1.
* Base case. lel] = 0. Then flfl“, y::l =0=1x-0

» Inductive hypothesis. Assume that the claim holds for all values less than .
o Goal: show that it holds for If where I} = 1]

o cCasel: Yy = 2k. Note & < 7. By definition and L.H.
Y Y

flz,y) = flx,2k) = 2f(x,k) = 2(xk) = 2(2k) = 2y

. o case2: Yy = 2k + 1. Note y — 1 < . By definition and I.H.

flr,y)= flr,2k+ 1) =24+ flr,2k) =4+ (2kE) =2(2k4+ 1) =y

This completes the proof.

An imperative version

def fi(x : Int, y : Int) : Int

{
valr:Int=0
vali:Int=0
while (i < vy) {
i=i+1
r=r+x
}
.
}

* What does ‘fi’ compute?
 How can we prove it?

An imperative version

def fi(x : Int, y : Int) : Int
{ require (y >=0)
valr:Int=0
valk:Int=0
while invariant (r = x * k && k <=x)
(k <y){
k=k+1
r=r+x
}

,
} ensuring (res => res==x *y)

Preconditions, Postconditions,
Invariants

void p()
/*: requires Pre
ensures Post */

{
s1;
while /*: invariant J */ (e) {
S2;
}
s3;
}

Loop Invariant
J is a loop invariant if the following three conditions hold:

* J holds initially: in all states satisfying Pre, when
execution reaches loop entry, J holds

* Jis preserved: if we assume J and loop condition (e),
we can prove that J will hold again after executing s2

e Jis strong enough: if we assume J and the negation of
loop condition e, we can prove that Post holds after s3

Explanation: because J holds initially, and it is preserved,
by induction from holds initially and preserved follows
that J will hold in every loop iteration. The strong enough
condition ensures that when loop terminates, the rest of
the program will satisfy the desired postcondition.

Membership in Binary Search Tree
sealed abstract class BST { - theory Of data types

def contains(key: Int): Boolean = (this : BST) match {
case Node(left: BST,value: Int,) if key < value => left.contains(key)
case Node(_,value: Int, right: BST) if key > value => right.contains(key)
case Node(_,value: Int,) if key == value => true
case e : Empty => false

}
}

case class Empty extends BST
case class Node(val left: BST, val value: Int, val right: BST) extends BST

Leon verifier:

http://lara.epfl.ch/leon/
- see new version this Friday

How can we automate verification?

Important algorithmic questions:

— verification condition generation: compute formulas
expressing program correctness

* Hoare logic, weakest precondition, strongest postcondition

— theorem proving: prove verification conditions
* proof search, counterexample search
* decision procedures

— loop invariant inference
* predicate abstraction
e abstract interpretation and data-flow analysis
* pointer analysis, typestate

— reasoning about numerical computation

— pre-condition and post-condition inference

— ranking error reports and warnings

— finding error causes from counterexample traces

Recommended Reading

* Recent Research Highlights from the
Communications of the ACM

— A Few Billion Lines of Code Later: Using Static
Analysis to Find Bugs in the Real World

A Great Video

Talk by Professor J Strother Moore

http://slideshot.epfl.ch/play/suri moore

Synthesis

auxiliary information
(structure of expected
program)

An example

def secondsToTime(totalSeconds: Int) : (Int, Int, Int) =
/choose((h: Int, m: Int, s: Int) = (
h * 3600+ m * 60 + s == totalSeconds
& & h=>0

&& m=>0& & m<60
_ &&s20&&s<60)) .

3787 seconds —— 1 hour, 3 mins. and 7 secs.

def secondsToTime(totalSeconds: Int) : (Int, Int, Int) =
val t1 = totalSeconds div 3600
val t2 = totalSeconds + ((-3600) * t1)

val t3 = min(t2 div 60, 59) <
val t4 = totalSeconds + ((-3600) * t1) + (-60 * t3)
(t1, t3, t4)

Synthesis for sets

def splitBalanced[T](s: Set[T]) : (Set[T], Set[T]) =
/choose((a: Set[T], b: Set[T]) = (
a union b == s && a intersect b == empty
&& a.size —b.size<1
&& b.size —a.size<1

D Y,
def splitBalanced[T](s: Set[T]) : (Set[T], Set[T]) =
val k = ((s.size + 1)/2).floor

valtl =k
val t2 = s.size — k S

val s1 = take(t1, s)
val s2 = take(t2, s minus s1)
(s1, s2)

[choose((x,y)=>5*x+7*y==a&&xsy)}

Use extended Euclid’s algorithm to find particular X =33

solutionto 5x + 7y =a: y =-2a
(5,7 are mutually prime, else we get divisibility pre.)

Express general solution of equations X=-7z + 3a

for x, y using a new variable z: y=>5z-2a

Rewrite inequations x <y in terms of z: 5a<12z

—> z > ceil(5a/12)
Obtain synthesized program:
val z = ceil(5*a/12) z = ceil(5*31/12) =13
val x =-7*z + 3*a For a=31: X=-7*13+3%31=2
valy=5%z +-2%*3 y=5*13-2%31=3

[choose((x,y)=>5*X+7*V==a&&X5V&(XZO)/}

Express general solution of equations X=-7z+3a
for x, y using a new variable z: y=5z-2a
Rewrite inequations x <y in terms of z: z 2 ceil(5a/12)
Rewrite x > 0: z < floor(3a/7)
Precondition on a: ceil(5a/12) < floor(3a/7)

(exact precondition)
Obtain synthesized program:

assert(ceil(5*a/12) < floor(3*a/7))
val z = ceil(5*a/12) With more inequalities
val x = -7*7 + 3*3 we may generate a for loop

valy =5*z +-2*3

Other Forms of Synthesis

Synthesis within IDEs
Compiling declarative constructs

Automata-Theoretic Synthesis
— reactive synthesis
— regular synthesis over unbounded domains

Synthesis of Synchronization Constructs
Quantitative Synthesis

Synthesis from examples

— Sumit Gulwani: Automating String Processing in
Spreadsheets using Input-Output Examples
(video available in the ACM Digital Library)

Presburger Arithmetic

Motivation

res = 0

1 = X

while invariant res + 2*1i == 2*x
(1 > 0) {
i=1i-1
res = res + 2

}

assert (res == 2*x)

Verification condition showing loop inv. preserved
res + 2*i=2"x A i,=1-1 A res,=res+2 -
res, + 2%, = 2*X

Proving integer linear arithmetic
formulas

Verification condition showing loop inv. preserved
(res+2i=2x A i,=i-1 A res,=res+2) -
res,+21i,=2xX
Need to show it is true for all variables
Show: negation is never true (unsatisfiable)
res+2i=2x A i,=i-1 A res,=res+2 A
res, +21,#2X
In this case, it is simple. Substitute variables:
(res+2)+ 2(i-1)#res + 21
00 group coefficients to obtain “false”

A More Difficult Example

3 x,Y,K,p.
(X<Yy+2Ay<x+1TAX=3KA
(y =6pt1Vy=6p-1))
Is this statement true?

General question:
Is a formula of Presburger arithmetic satisfiable?

F:=A| F,AF, | F,VF, | =F | 3k.F | Vk.F
A:=T,=T, | T,<T,

Presburger Arithmetic

F:=A| F,AF, | F,VF, | -F| 3k.F | Vk.F
A:=T,=T, | T,<T,

t%C - the reminder in division by C
Formula dx.x<y has

* one bound variable: x

* one free variable: y

If we have free variables we cannot ask if formula is true,
but only if it is satisfiable (true for some values of free
variables), valid (always true), unsatisfiable (always false)

Presburger arithmetic is decidable

There is an algorithm that, given arbitrary formula in the syntax
of Presburger arithmetic, detects whether this formulas is
satisfiable.

Thus also decidable are:
unsatisfiability, validity, equivalence, entailment.

Mojzesz Presburger. Uber die Vollstandigkeit eines gewissen Systems der

Arithmetik. Comptes rendus du I Congres des Pays Slaves, Warsaw 1929.

Mojzesz Presburger (1904-1943) was student of Alfred Tarski
and is known for, among other things, having invented
Presburger arithmetic.

Method used: quantifier elimination

Quantifier Elimination

Take a formula of the form
3y. F(xy)

replace it with an equivalent formula
G(X)

without introducing new variables.

ldea: eliminate quantified variables. E.g.

Jk. (x+k=2Ak<10)

k. (k=2 -x Ak<10) (one-pointrule)

2—-x<10

Arithmetic with only multiplication
x=y*z*p*z N x*y=u*z V u'u=x)
Decidable. Use prime factor representation
X = 2°P1 3p2 5p3 7p4 11p>
y = 291 392 503 794 119> .
xy = 2(P1*q1) 3(p2+q2) 5(p3+a3) 7(p4+qd) 1 1(po+ad)

Feferman-Vaught theorem: if we can decide logic of
elements, we can decide logic of sequences of

elements with point-wise relations on them.

Solomon Feferman (born 13 December 1928) is an American
philosopher and mathematician with major works in mathematical logic.
He was born in New York City, New York, and received his Ph.D. in

1957 from the University of California, Berkeley under Alfred Tarski. He
is a Stanford University professor.

Alfred Tarski (January 14, 1901, Warsaw, Russian-ruled
Poland — October 26, 1983, Berkeley, California) was a
Polish logician and mathematician. Educated in the
Warsaw School of Mathematics and philosophy, he
emigrated to the USA in 1939, and taught and carried out
research in mathematics at the University of California,
Berkeley, from 1942 until his death.

. He is regarded as perhaps one of the four greatest

logicians of all time, matched only by Aristotle, Kurt Godel,
and Gottlob Frege.

Formulas with both plus and times
over integers

* Posed as a big open problem at the
beginning of 20" century to find decision
procedure (Hilbert’'s 10t Problem)

Yur: Matiyasevich. Enumerable sets are diophantine. Journal of Sovietic

Mathematics, (11):354 358, 1970.

Undecidability of Hilbert’s Tenth Problem:

Given a Diophantine equation with any number of unknown quantities and
with rational integral numerical coefficients: To devise a process according
to which it can be determined in a finite number of operations whether the

equation is solvable in rational integers.

Formulas over plus and times
over real numbers

* Decidable!
— Also over complex numbers

* Shown by Alfred Tarski before WW ||

 First implementation by Collins
— we have a Scala implementation available

Summary

* Programs can be converted to formulas

* To prove program correct, we prove
formula valid (true in all models)

 For some classes
(e.g. Presburger arithmetic) we
understand how to prove them
— other classes — future research

— such research can lead to tools that make
software reliable

