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Exercise: Abstract Postcondition for Intervals

A = {⊥} ∪ {[p, q] | p ∈ {−∞} ∪ Z, q ∈ Z ∪ {∞}, p ≤ q}
γ([p, q]) = {x ∈ Z | p ≤ x ≤ q}, γ(⊥) = ∅
a1 v a2

def⇐⇒ γ(a1) ⊆ γ(a2)
α(c) = [inf(c), sup(c)], if c 6= ∅ α(∅) = ⊥

Consider program with two variables x , y . We track interval for each.
Domain for one program point: Ā = A× A of intervals for x and for y
γ̄(([p1, q1], [p2, q2])) = γ([p1, q1])× γ([p2, q2]), ᾱ analogous
Define effect of statement c on two intervals using (ᾱ, γ̄) and sp:

sp#(([p1, q1], [p2, q2]), c) = ᾱ(sp(γ̄(([p1, q1], [p2, q2])), ρ(c)))

Let c be the assignment x = 2 ∗ x − 5 ∗ y . Compute sp# for this case.



Automatic Computation of sp# on Intervals

Describe an algorithm that computes sp#(a, c) for the domain of two
intervals, where c is given as an input in terms of its defining formula
R(c) = T (x , y , x ′, y ′). Assume that the formula is in Presburger arithmetic.
For example, the previous case is when R(x , y , x ′, y ′) is
x ′ = 2 ∗ x − 5 ∗ y ∧ y ′ = y



Maximization using Quantifier Elimination

(Usually not the best way, but possible.)

max{t(x̄) | F (x̄)}

The result is ā such that:

F (ā) ∧ ∀x̄ .(F (x̄)→ t(x̄) ≤ t(ā))

How to find such ā? Check satisfiability of the above formula.
What if F has some parameters, say b

x ′ = 2 ∗ x − 5 ∗ y + b

The result is described by

choose ā. F (ā) ∧ ∀x̄ .(F (x̄)→ t(x̄) ≤ t(ā))

We can use synthesis to recover such ā
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Check satisfiability of the above formula.
What if F has some parameters, say b

x ′ = 2 ∗ x − 5 ∗ y + b

The result is described by
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Maximization using Quantifier Elimination

(Usually not the best way, but possible.)

max{t(x̄) | F (x̄)}

The result is ā such that:
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We can use synthesis to recover such ā
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How to find such ā? Check satisfiability of the above formula.
What if F has some parameters, say b

x ′ = 2 ∗ x − 5 ∗ y + b

The result is described by
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Exercise

Draw the control-flow graph for the
following program.

Run abstract interpretation that
maintains an interval for x at each
program point, until you reach a
fixpoint.

What are the fixpoint values at pro-
gram points v4 and v5?

// v0
x := 0;
// v1
while (x < 10) {

// v2
x := x + 3;
}
// v3
if (x >= 0) {
if (x <= 15) {

a[x]=7; // index in range
} else {

// v4
error;
}
} else {

// v5
error;
}



More about Fixed Point Iterations



Comparing Limits of Sequences

Lemma: Let (L,v) be a lattice and let xi , yi ∈ L and for i ≥ 0 be
sequences such that for each i there exists j such that xi v yj . Suppose
that there exist x∗ and y∗ (e.g. if L is a complete lattice) such that

x∗ =
⊔
i≥0

xi

y∗ =
⊔
j≥0

yj

Then x∗ v y∗.
Proof: Take any xi . Then there is yj such

xi v yj v y∗

Thus, y∗ is an upper bound on the set {xi | i ≥ 0}. Because x∗ is the least
upper bound, x∗ v y∗.



Parallel versus “Imperative” Updates

Consider a function H : A2 → A2 (e.g. A = R)
This function can be given by two component functions Hx ,Hy : R2 → R,
one for each result component of the pair:

H(x1, x2) = (H1(x1, x2),H2(x1, x2))

Consider an imperative program that iterates H. Compare two versions.

First compute both values, then update:

while (iter < max) {
x1next = H1(x1,x2)
x2next = H1(x1,x2)
x1 = x1next
x2 = x2next
iter = iter + 1
}

Immediately update:

while (iter < max) {
x1 = H1(x1,x2)
x2 = H2(x1,x2)
iter = iter + 1
}

Do these two loops behave the same in the limit?
Can one converge and the other not?



Abstract Semantic Function for the Program
In Collecting Semantics for Example Program we had

v0 g0

v1
g1

v3 g3

v2 g2

x = 0

[x ≥ 10]

[x ≤ 9]x = x + 3

F (g0, g1, g2, g3) =
(Z,
sp(g0, x := 0) ∪ sp(g2, x := x + 3),
sp(g1, assume(x ≤ 9)),
sp(g1, assume(x ≥ 10)))

Here we have:

F#(g#
0 , g

#
1 , g

#
2 , g

#
3 ) =

(>,
sp#(g#

0 , x := 0) t sp#(g#
2 , x := x + 3),

sp#(g#
1 , assume(x ≤ 9)),

sp#(g#
1 , assume(x ≥ 10)))



Parallel and Iterative Updates in Abstract Interpretation

Program points v1, . . . , vn. Solving the system of n equations in variables g1, . . . , gn

g1 = H1(g1, . . . , gn)
. . .
gn = Hn(g1, . . . , gn)

where
Hi (g1, . . . , gn) = Initi t

⊔
(vj ,vi )∈E

sp#(gj , r(vj , vi ))

lfp(H) =
⊔

k≥0 H
k(⊥, . . . ,⊥) =

⊔
k≥0(gk

1 , . . . , g
k
n ) (this is parallel iteration)

parallel iteration step
gk+1
1 = H1(gk

1 , . . . , g
k
n )

. . .

gk+1
i = Hi (g

k
1 , . . . , g

k
n )

. . .
gk+1
n = Hn(gk

1 , . . . , g
k
n )

chaotic iteration step

gk+1
i = Hi (g

k
1 , . . . , g

k
n )

gk+1
j = gk

j , for all j 6= i

In chaotic iteration we select some equation i to update and keep the rest same.



Questions for Chaotic Iteration

I What is the cost of doing one chaotic versus one parallel iteration?

Chaotic is n times cheaper!

I Does chaotic iteration converge if parallel converges?

I If chaotic converges, will it converge to same value as parallel?

I If chaotic converges, how many steps will convergence take?

I What is a good way of choosing index i (iteration strategy)?
Example: take some permutation π : {1, . . . , n} → {1, . . . , n} of
equations. At step k select equation π(k%n)
More generally: a fair strategy, for each vertex and each position in the
sequence, there exists a position afterwards where this vertex is chosen.
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Sequences in Chaotic vs Parallel Iteration

⊥, L1, L2, . . . , Ln, . . . , given by parallel iteration: (gk
1 , . . . , g

k
n ) = F#k

(⊥̄)

⊥,C1,C2, . . . ,Cn, . . . , given by chaotic iteration: (gk
1 , . . . , g

k
n ) = F#

L

k
(⊥̄)

These two sequences are given by monotonic functions F#
C and F#. Clearly

F#
C (g1, . . . , gn) v F#

L (g1, . . . , gn)

Compare values L1, C1, ..., Ln, Cn in the lattice:

I C0 v L0, generally Ci v Li (proof by induction)

I when selecting equations by fixed permutation, L1 v Cn, generally
Li v Cni

Therefore, using the Lemma from on Comparing Fixpoints of Sequences
twice, we have that these two sequences converge to the same value.
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Worklist Algorithm and Iteration Strategies

Hi (g1, . . . , gn) depends only on small number of gj , namely predecessors of
node vi .
If we chose i , next time it suffices to look at successors of i
(This saves traversing CFG).
This leads to a worklist algorithm:

I initialize lattice, put all CFG node indices into worklist

I choose i , compute new gi , remove i from worklist

I if gi has changed, update it and add to worklist all j where vj is a
successor of vi

Algorithm terminates when worklist is empty (no more changes).
Useful iteration strategy: reverse postorder and strongly connected
components.
Reverse postorder: follow changes through successors in the graph.
Strongly connected component (SCC) of a directed graph: path between
each two nodes of component.

I compute until fixpoint within each SCC



For intervals of integers, what is the height of the lattice?

What is the bound on the number of iterations?



Widening and Narrowing in Variable Range Analysis

Interval analysis domain, for each program point, maps each program
variable to an interval.
Analysis domain has elements g# : V → I where I denotes the set of such
intervals.

Height of the entire lattice for unbounded integers:

infinite.

Height of lattice of one interval for 64-bit integers: around 264

Moreover, if we have q variables in program and p program points, height
of lattice for the analysis domain is pq times larger.

How to guarantee (reasonably fast) termination?
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Widening technique

If the iteration does not seem to be converging, take a ”jump” and make
the interval much wider (larger).
Finite set of jump points J (e.g. set of all integer constants in the program)

In fixpoint computation, compose F#
i with function

w([a, b]) = [max{x ∈ J | x ≤ a},min{x ∈ J | b ≤ x}]

(For multiple variables, do this for every interval.)
We require the condition:

x vW (x)

for all x .
The condition holds for the example above.



When to Apply Widening

I Iterate a few times without using w , if we are not at a fixpoint at this
program point, then widen.
This is not monotonic: if you start at fixpoint, it converges, if start
below, can jump over fixpoint!

I Always apply widening. We will assume this.

Standard iteration: ⊥,F#(⊥), . . . , (F#)n(⊥), . . .
Widening: ⊥, (W ◦ F#(⊥), . . . , ((W ◦ F#)n(⊥), . . .



Example where widening works nicely

Consider program:

x = 0;
while (x < 1000) {

x = x + 1;
}

Interval analysis without widening will need around 1000 iterations to
converge to interval [1000, 1000] for x at the end of the program.
This may be too slow.

Let us derive the set J by taking all constants that appear in the program,
as well as −∞ and +∞:

J = {−∞, 0, 1, 1000,+∞}

After a few iterations, widening maps interval [0, 2] into [0, 1000]. This
gives [0, 999] for x at loop entry and again [1000, 1000] for x at the end of
the program, but in many fewer iterations.



Example showing problems with widening

Consider program:

x = 0;
y = 1;
while (x < 1000) {

x = x + 1;
y = 2∗x;
y = y + 1;
print(y);
}

Interval analysis without widening will need around 1000 iterations to
converge to

x 7→ [1000, 1000]; y 7→ [1, 2001]

This may be too slow.
Now apply widening with the same J as before. When within loop we
obtain x 7→ [0, 1000], applying widening function to the interval [0, 2000] for
y results in [0,+∞). We obtain y 7→ [1,+∞) at the end of the program:

x 7→ [1000, 1000]; y 7→ [1,+∞)



Narrowing

Observation
Consider a monotonic function, such as f (x) = x/2 + 1 on the set of real
numbers.
If we consider a sequence x0, f (x0), . . . , this sequence is

I monotonically increasing iff x0 < x1 (e.g. for x0 = 0)

I monotonically decreasing iff x1 < x0 (e.g. for x0 = 3)

Informally, the sequence continues of the direction in which it starts in the
first step.

This is because x0 < x1 implies by monotonicity of f that x1 < x2 etc.,
whereas x1 < x0 implies x2 < x1.

The Idea
Let W : A→ A such that x vW (x).
After finding fixpoint of (W ◦ F )#, apply F# to improve precision.



Widen and Narrow

Lemma: Let F# and W be monotonic functions on a partial order v such
that x vW (x) for all x . Define the following:

I x∗ = tn≥0(F#)n(⊥)

I y∗ = tn≥0(W ◦ F#)n(⊥)

I z∗ = un≥0(F#)n(y∗)

where we also assume that the two t and one u exist. Then

I x∗ is the least fixpoint of F#

I z∗, is the least fixpoint of W ◦ F#

I x∗ v z∗ v y∗.



Proof

By induction, for each n we have

(F#)n(⊥) v (W ◦ F#)n(⊥)

Thus by Comparing Fixpoints of Sequences, we have x∗ v y∗.
Next, we have that

x∗ = F#(x∗) v F#(y∗) v (W ◦ F#)(y∗) v y∗

Thus, F#(y∗) v y∗. From there by induction and monotonicity of F# we obtain

(F#)n+1(y∗) v (F#)n(y∗)

i.e. the sequence (F#)n(y∗) is decreasing. Therefore, y∗ is its upper bound and
therefore z∗ v y∗.
On the other hand, we have by monotonicity of F#, the fact that x∗ is fixpoint,
and x∗ v y∗ that:

x∗ = (F#)n(x∗) v (F#)n(y∗)

Thus, x∗ is the lower bound on (F#)n(y∗), so x∗ v z∗.



What is we do not have u?

Can we still do something useful if

un≥0(F#)n(y∗)

does not exist?

Even if z∗ does not exist, we can simply compute (F#)n(y∗) for any chosen
value of n, it is still a sound over-approximation, because it approximates
x∗, which approximates the concrete value:

x∗ v zn

so
s∗ ⊆ γ(x∗) ⊆ γ(zn)

Being able to stop at any point gives us an anytime algorithm.
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Example showing how narrowing may improve result after
widening

In the above example for the program, the results obtained using widening

are:

x = 0;
y = 1;
// x −> [0,0], y −> [1,1]
// (merge point)
// x −> [0,1000], y −> [1,+infty)
while (x < 1000) {

// x −> [0,999], y −> [1,+infty)
x = x + 1;
// x −> [0,1000], y −> [1,+infty)
y = 2∗x;
// x −> [0,1000], y −> [0,+infty)
y = y + 1;
// x −> [0,1000], y −> [1,+infty)
print(y);
}
// x −> [1000,1000], y −> [1,+infty)



Example cont.
Let us now apply one ordinary iteration, without widening. We obtain:

x = 0;
y = 1;
// x −> [0,0], y −> [1,1]
// (merge point)
// x −> [0,1000], y −> [1,2001]
while (x < 1000) {

// x −> [0,999], y −> [1,+infty)
x = x + 1;
// x −> [0,1000], y −> [1,+infty)
y = 2∗x;
// x −> [0,1000], y −> [0,2000]
y = y + 1;
// x −> [0,1000], y −> [1,2001]
print(y);
}
// x −> [1000,1000], y −> [1,2001]

Thus, we obtained a good first approximation by a few iterations with
widening and then improved it with a single iteration without widening.


