Trustworthy Numerical Computation in Scala

http://lara.epfl.ch/~edarulov/TrustworthyComputation.pdf

Reasoning about the *real* world matters

The most widely used data type are floating-points

- IEEE 754-2008 standard gives precise behaviour
- efficient and, we hope, adequate is many cases

"... **any** operation involving numerical realization of a geophysical algorithm led to significant disagreement.", L. Hatton and A. Roberts. How Accurate is Scientific Software? In *IEEE Trans. Softw. Eng.*, 20, 1994.

"It makes us nervous to fly an airplane since we know they operate using floating-point arithmetic.", Xavier Leroy. Verified squared: does critical software deserve verified tools? In *POPL*, 2011.

How do you know you can trust your numerical computation?

```
def root(a: Double, b: Double, c: Double) {
    val discr = b * b - a * c * 4.0
    return (-b + sqrt(discr))/(a * 2.0)
```

Equivalently in real numbers:

```
def rootKahan(a: Double, b: Double, c: Double) {
   val discr = b * b - a * c * 4.0
   if (b*b - a*c > 10.0 \&\& b > 0.0)
      return c * 2.0 /(-b - sqrt(discr))
   else
      return (-b + sqrt(discr))/(a * 2.0)
    scala> root(2.999, 56.000003, 1.00076)
    res0: Double = -0.017887849139318127
    scala> rootKahan(2.999, 56.000003, 1.00076)
    res0: Double = -0.017887849139317836
```

Floating-points

- Standard defines:
 - arithmetic formats (incl. NaN, infinities)
 - interchange formats
 - rounding rules
 - operations
 - exception handling
- (mostly full) hardware support
- varying software support

- − {+, −, *, /, √} rounded to nearest
 − sin, cos, ... : API-specified roundoff errors

299

JVM

- low-level control of hardware (all rounding modes)
- beware of compiler optimizations

- CPython
 - math module wrapper around C library functions
 - "almost all platforms map Python floats to IEEE-754 "double precision"

How do you know you can trust your numerical computation?

Interval arithmetic

- interval width \sim maximum roundoff error

 $b \in [1.01, 1.02]$ $b * b \in [1.02, 1.05]$ //1.01² = 1.0201, 1.02² = 1.0404

scala> root(2.999, 56.000003, 1.00076)
[-0.017887849139321683,-0.017887849139313385] (2.6514e-13)

scala> rootKahan(2.999, 56.000003, 1.00076)
[-0.017887849139317846,-0.017887849139317825] (5.8187e-16)

Problems with interval arithmetic

• Imprecision: losing dependencies

$$x \in [0, 1]$$

 $u = x + 3$ $u \in [3, 4]$
 $z = u - x$ $z \in [2, 4]$ but $z = x + 3 - x = 3!$

• Lack of generality: input range vs. roundoff What is the maximum roundoff error over an entire input range?

Contributions

Rigorous numerical data types for **precision** and **generality**

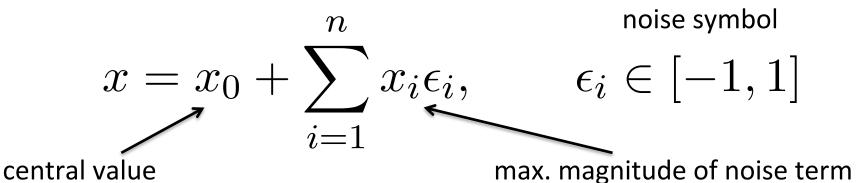
Dependency-preserving estimation of roundoff errors of a concrete floating-point computation.

AffineFloat

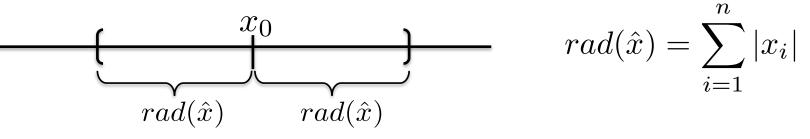
Estimation of upper bounds on roundoff errors over an *entire range of input values.*

SmartFloat

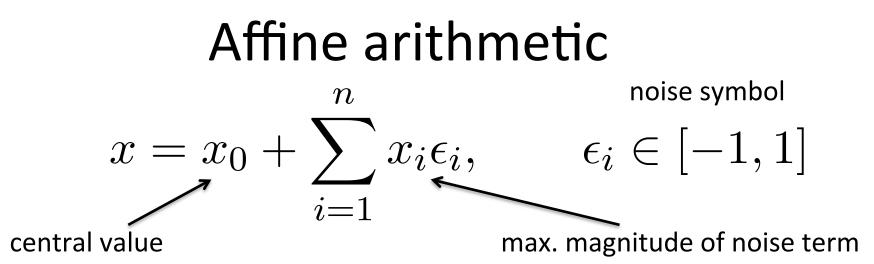
Affine arithmetic



• represents the interval



- affine operations (+, -) $\alpha \hat{x} + \beta \hat{y} + \zeta = (\alpha x_0 + \beta y_0 + \zeta) + \sum_{i=1}^n (\alpha x_i + \beta y_i) \epsilon_i + \iota \epsilon_{n+1}$
- non-linear operations need a linear approximation



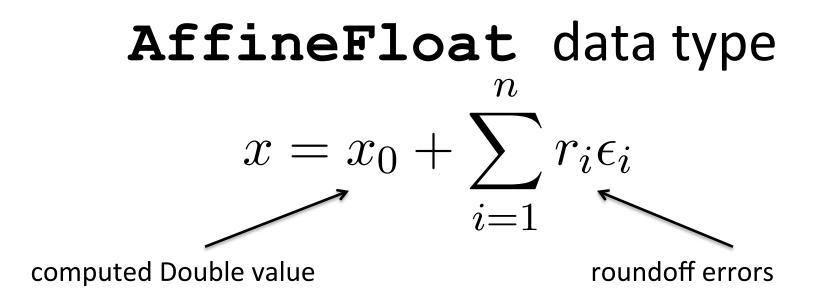
avoids dependency problem for linear operations

$$x = 0.5 + 0.5\epsilon_1 \quad \in [0, 1]$$

$$u = x + 3 = 3.5 + 0.5\epsilon_1$$

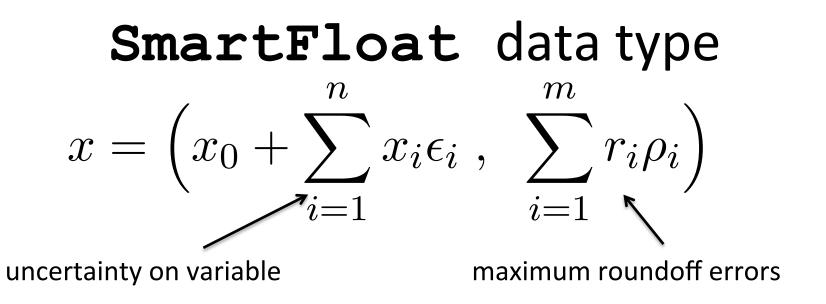
$$z = u - x = 3.5 + 0.5\epsilon_1 - 0.5 - 0.5\epsilon_1$$

$$= 3.0$$



- each operation adds a new noise term
- each operation propagates existing noise terms

• roundoff =
$$\sum_{i=1}^{n} |r_i|$$



- At each operation, adds the *worst-case* roundoff error for all possible values
- Propagation of errors is a little more involved

maximum roundoff =
$$\sum_{i=1}^{n} |r_i|$$

The quest for precision

In our implementation, we face the same roundoff errors that we aim to quantify!

- directed rounding in C++
- DoubleDouble precision
- precise handling of constants
- recognizing exact computations
- dependency problem with multiplication
- non-linear operations

Nonlinear approximations

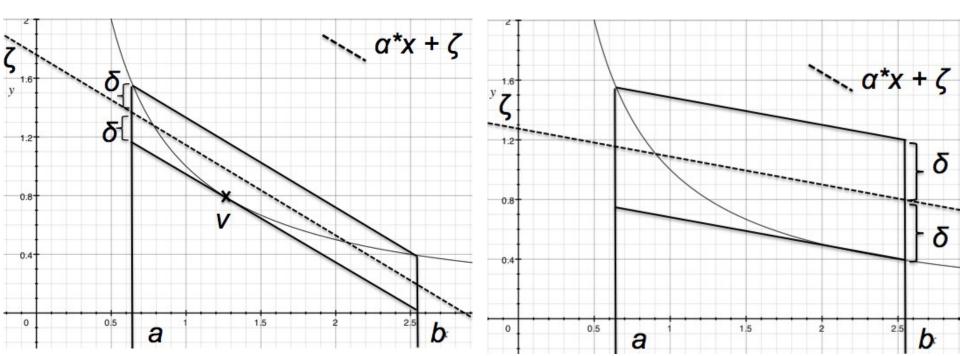
Chebyshev approximation

- needs a 3rd point, whose rounding direction is not clear
- can give wrong results for small input intervals

Minrange approximation

rounding direction is clear

Less precise, but reliable!



Integration into **Scala**


```
def rootKahan(a: SmartFloat, b: SmartFloat, c: SmartFloat) {
    val discr = b * b - a * c * 4.0
    if (b*b - a*c > 10.0 && b > 0.0)
        return c * 2.0 /(-b - sqrt(discr))
    else
        return (-b + sqrt(discr))/(a \times 2.0)
```

- easy integration with implicits and strong type inference
- support for most common math. functions (*exp, sin, cos, log, Pi, ...*)
- symmetric equals

```
scala> rootKahan(SmartFloat(3.0, 1.0),
         SmartFloat(55.0, 5.0), SmartFloat(0.5, 1.5))
[-0.13109336344405553, 0.09429437802880317] (7.5543e-16)
```

Precision: AffineFloat vs. Intervals

LU: solution to Ax = b by factorizing A FFT: Fast Fourier Transform, followed by its inverse

	Intervals	AffineFloat
LU 5x5, with pivoting	6.69e-13	1.04e-13
LU 10x10	2.13e-10	7.75e-12
LU 15x15	1.92e-8	6.10e-10
LU 5x5, no pivoting	1.24e-9	2.50e-11
LU 10x10	4.89e-6	2.38e-10
FFT 512	6.43e-12	9.73e-13
FFT 256	2.38e-12	3.03e-13

Up to 4 decimal orders of magnitude improvement!

Generality: Doppler frequency shift

 $-30^{\circ}C \leq T \leq 50^{\circ}C$

 $20Hz \leq v \leq 20000Hz$

$$-100\frac{m}{s} \le u \le 100\frac{m}{s}$$

	SMT[1]	bits	SmartFloat	abs. roundoff
q1	[313, 362]	6	[313.3999,361.40]	8.6908e-14
q2	[6267, 7228000]	67, 7228000] 23 [6267.99		3.3431e-09
q3	[213, 462]	8	[213.3999,461.40]	1.4924e-13
q4	[45539, 212890]	18	[44387.5599,212889.96]	1.6135e-10
Z	[0, 138]	8	[-13.3398,162.7365]	6.8184e-13
	running time: order 100s		our running time: order 1s	

[1] A.B. Kinsman, N. Nicolici. Finite Precision bit-width allocation using SAT-Modulo Theory. DATE, 2009.

Performance (ms)

	double	interval	AffineFloat	SmartFloat
Nbody (100 steps)	2.1	21	779	33756
Spectral norm (10 iter.)	0.6	31	198	778
Whetstone (10 repeats)	1.2	2	59	680
Fbench	0.2	1.3	10	1082
Scimark - FFT (512x512)	1.2	18	1220	39987
Scimark - SOR (100x100)	0.8	25	698	127168
Scimark - LU (50x50)	2.6	30	2419	4914
Spring sim. (10000 steps)	0.2	46	1283	4086

- acceptable for understanding floating-point computations
- slower than a hardware implementation, but faster than existing approaches that achieve similar precision

Semantics for floating-point programs

- interval arithmetic
- affine arithmetic

• stochastic arithmetic

Run the program repeatedly with random rounding. Mainly useful for finding stability issues.

automatic differentiation

Computes the derivate of a program to expose sensitivities to input changes.

Floating-point verification

• Abstract interpretation

Computes an overapproximation of variable values used to

- guarantee no run-time errors can occur (Astree)
- roundoff errors are within certain bounds (Fluctuat)

Model-checking

Models a floating-point computation as a finite-state system and performs a path sensitive analysis

precise but expensive

• SAT

Encodes floating-point operations bit-precisely (basically encodes the circuit) and checks the formula against user-provided assertions.

check for exceptions (e.g. underflow)

Floating-point verification

Theorem proving

Provide code contracts (specifications) about the precision of methods and check the properties with a theorem prover.

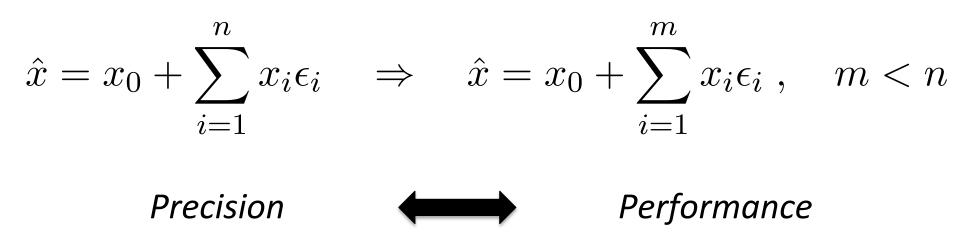
- detailed specification necessary
- interaction with the theorem prover

Example: check that a piece of code is overflow-safe:

That's all.

http://lara.epfl.ch/w/smartfloat

Packing



- 1. Compact all other terms based on average errors and their deviation.
- 2. For pathological cases, compact all noise symbols into a single one.

Packing of noise terms

