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Reasoning	  about	  the	  real	  world	  ma?ers	  

The	  most	  widely	  used	  data	  type	  are	  floa4ng-‐points	  
•  IEEE	  754-‐2008	  standard	  gives	  precise	  behaviour	  
•  efficient	  and,	  we	  hope,	  adequate	  is	  many	  cases	  

“It	  makes	  us	  nervous	  to	  fly	  an	  airplane	  since	  we	  know	  they	  operate	  
using	  floa4ng-‐point	  arithme4c.”,	  Xavier	  Leroy.	  Verified	  squared:	  does	  cri4cal	  
soYware	  deserve	  verified	  tools?	  In	  POPL,	  2011.	  	  
	  

“…	  any	  opera4on	  involving	  numerical	  realiza4on	  of	  a	  geophysical	  
algorithm	  led	  to	  significant	  disagreement.”,	  L.	  Ha?on	  and	  A.	  Roberts.	  How	  
Accurate	  is	  Scien4fic	  SoYware?	  In	  IEEE	  Trans.	  So2w.	  Eng.,	  20,	  1994.	  	  
	  



How	  do	  you	  know	  you	  can	  trust	  
your	  numerical	  computa4on?	  



def	  rootKahan(a:	  Double,	  b:	  Double,	  c:	  Double)	  {	  
	  val	  discr	  =	  b	  *	  b	  -‐	  a	  *	  c	  *	  4.0	  

      if (b*b - a*c > 10.0 && b > 0.0) 
       return c * 2.0 /(-b - sqrt(discr)) 
    else   

  return (-b + sqrt(discr))/(a * 2.0) 
} 

def	  root(a:	  Double,	  b:	  Double,	  c:	  Double)	  {	  
	  val	  discr	  =	  b	  *	  b	  -‐	  a	  *	  c	  *	  4.0	  

	  	  	  	  	  	  return	   	  (-‐b	  +	  sqrt(discr))/(a	  *	  2.0)	  
}	  

Equivalently	  in	  real	  numbers:	  	  

scala> root(2.999, 56.000003, 1.00076) 
res0: Double = -0.017887849139318127 

scala> rootKahan(2.999, 56.000003, 1.00076) 
res0: Double = -0.017887849139317836	  



Floa4ng-‐points	  

•  Standard	  defines:	  	  
–  arithme4c	  formats	  (incl.	  NaN,	  infini4es)	  
–  interchange	  formats	  
–  rounding	  rules	  
–  opera4ons	  
–  excep4on	  handling	  

•  (mostly	  full)	  hardware	  support	  
•  varying	  soYware	  support	  	  

754	  

100000000001001001000011111101101010100010001000010110100011000!



•  JVM	  
–  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  rounded	  to	  nearest	  
–  sin,	  cos,	  …	  :	  API-‐specified	  roundoff	  errors	  
	  

•  C99	  
–  low-‐level	  control	  of	  hardware	  (all	  rounding	  modes)	  
–  beware	  of	  compiler	  op4miza4ons	  

•  	  CPython	  
–  math	  module	  wrapper	  around	  C	  library	  func4ons	  
–  “almost	  all	  planorms	  map	  Python	  floats	  to	  IEEE-‐754	  
“double	  precision”	  

soYware	  support	  

100000000001001001000011111101101010100010001000010110100011000!

754	  



How	  do	  you	  know	  you	  can	  trust	  
your	  numerical	  computa4on?	  



•  interval	  width	  ～	  maximum	  roundoff	  error	  

Interval	  arithme4c	  

scala> root(2.999, 56.000003, 1.00076) 
[-0.017887849139321683,-0.017887849139313385] (2.6514e-13) 
 
scala> rootKahan(2.999, 56.000003, 1.00076) 
[-0.017887849139317846,-0.017887849139317825] (5.8187e-16)  
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Problems	  with	  interval	  arithme4c	  
•  Imprecision:	  losing	  dependencies	  

	  
•  Lack	  of	  generality:	  input	  range	  vs.	  roundoff	  
What	  is	  the	  maximum	  roundoff	  error	  over	  an	  en4re	  input	  range?	  

scala> root(Interval(2.0, 4.0), Interval(50.0, 60.0),  
            Interval(0.5, 1.5)) 
[-2.560144695375273,2.4916643505649514] (1.0073e+00) 

2 THE AUTHOR

x =

⇣
x0 +

nX

i=1

xi✏i ,

mX

i=1

ri⇢i

⌘

4. 4

x = x0 +

nX

i=1

xi✏i, ✏i 2 [�1, 1]

5. 5
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	  Rigorous	  numerical	  data	  types	  for	  	  
precision	  and	  generality	  	  

Dependency-‐preserving	  es4ma4on	  
of	  roundoff	  errors	  of	  a	  concrete	  
floa4ng-‐point	  computa4on.	  

Es4ma4on	  of	  upper	  bounds	  
on	  roundoff	  errors	  over	  an	  
en8re	  range	  of	  input	  values.	  

Contribu4ons	  

AffineFloat	   SmartFloat	  



•  represents	  the	  interval	  

	  	  	  	  	  

Affine	  arithme4c	  

Note that a range-based arithmetic as such does necessarily
attempt to quantify the roundoff errors itself. A possible ap-
plication of affine arithmetic, as originally proposed, is find-
ing zeroes of a function in a given initial interval. The idea
is to bisect the initial interval and to compute an estimate of
the function value over each subdomain. If the output range
for one subdomain does not include a zero, then that part of
the domain can be safely discarded.

Affine arithmetic represents possible values of variables
as affine forms

x̂ = x0 +
n
∑

i=1

xiεi

where x0 denotes the central value (of the represented in-
terval) and each noise symbol εi is a formal variable de-
noting a deviation from the central value, intended to range
over [−1, 1]. The maximum magnitude of each noise term
is given by the corresponding xi. Note that the sign of xi

does not matter in isolation, it does, however, reflect the re-
lative dependence between values. For example, take x =
x0 + x1ε1, then in real number semantics,

x− x = x0 + x1ε1 − (x0 + x1ε1)

= x0 − x0 + x1ε1 − x1ε1 = 0

If we subtracted x = x0−x1ε1 instead, the resulting interval
would have width 2 ∗ x1 and not zero.

The range represented by an affine form is computed as

[x̂] = [x0 − rad(x̂), x0 + rad(x̂)], rad(x̂) =
n
∑

i=1

|xi|

When implementing affine forms in a program, we need to
take into account that some operations are not performed
exactly, because the central value and the coefficients need
to be represented in some finite (e.g. double) precision. As
suggested in [17], the roundoff errors committed during the
computation can be added with a new fresh noise symbol to
the final affine form. A general affine operation αx̂+βŷ+ ζ
consists of addition, subtraction, addition of a constant (ζ)
or multiplication by a constant (α,β). Expanding the affine
forms x̂ and ŷ we get

αx̂+βŷ+ζ = (αx0+βy0+ζ)+
n
∑

i=1

(αxi+βyi)εi+ ιεn+1

(3)
with α,β, ζ ∈ F and where ι denotes the accumulated
internal errors, that is, the roundoff errors committed when
computing the individual terms of the new affine form.

Each operation carries a roundoff error and all of them
must be taken into account to achieve the parameter ι for the
rigorous bound. The challenge hereby consists of account-
ing for all roundoff errors, but still creating a tight approxi-
mation. While for the basic arithmetic operations the round-
off can be computed with Equation 1, there is no such simple

formula for calculating the roundoff for composed expres-
sions (e.g. α ∗ x0 + ζ). We determine the maximum round-
off error of an expression f(v1, . . . , vm) using the following
procedure [17]:

z = f(v1, v2, . . . , vm)

z−∞ = ↓f(v1, v2, . . . , vm)↓
z+∞ = ↑f(v1, v2, . . . , vm)↑

ι = max(z+∞ − z, z − z−∞)

That is, the program computes three results: (1) the floating-
point result z using rounding to-nearest, (2) the result z−∞

assuming worst-case roundoff errors when rounding towards
−∞, and the analogous result z+∞ with rounding towards
+∞ at each step. As the worst-case committed roundoff
error ι we use the maximum difference (ι) between these
values.

A possible use of affine arithmetic for keeping track of
roundoff errors is to represent each double precision value
by an affine form. That is, the actually computed double
precision value is equal to the central value and the noise
terms collect the accumulating roundoff errors. One expects
to obtain tighter bounds than with interval arithmetic, espe-
cially when a computation exhibits many correlations bet-
ween variables. However, a straightforward application of
affine arithmetic in the original formulation is not always
sound, as we show in Section 6. Namely, the standard affine
arithmetic takes the liberty of choosing a convenient central
value in a range, which does not preserve the compatibility
with Double. Using such computation on non-affine opera-
tions (such as division or trigonometric functions) can shift
the central value away from the actually computed Double
value. Roundoff errors computed using this method would
be those of a different computation and would thus be un-
sound. Our implementation therefore provides a modified
approximation that ensures soundness.

Before proceeding with the description of the technique
we use in our solution, we show in the next section how
the library behaves in practice. The library provides two
data types, AffineFloat and SmartFloat, that replace ordinary
floating-point numbers in a program, track a computation
and provide estimates on the roundoff errors committed.
An AffineFloat variable represents exactly one floating-point
number and thus replaces the computation one-to-one, a
SmartFloat variable represents a range of values and com-
putes the maximum roundoff error over this range. The tech-
nical implications of this difference will be described in de-
tail in Section 6 and Section 7. Note that whereas SmartFloat
must compute worst-case roundoff errors over the entire
interval, AffineFloat only needs to do this for one value.
AffineFloat can therefore generally provide a more precise
estimate.

2 THE AUTHOR

x =

⇣
x0 +

nX

i=1

xi✏i ,

mX

i=1

ri

⌘

4. 4

x = x0 +

nX

i=1

xi✏i, ✏i 2 [�1, 1]

5. 5
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Note that a range-based arithmetic as such does necessarily
attempt to quantify the roundoff errors itself. A possible ap-
plication of affine arithmetic, as originally proposed, is find-
ing zeroes of a function in a given initial interval. The idea
is to bisect the initial interval and to compute an estimate of
the function value over each subdomain. If the output range
for one subdomain does not include a zero, then that part of
the domain can be safely discarded.

Affine arithmetic represents possible values of variables
as affine forms

x̂ = x0 +
n
∑

i=1

xiεi

where x0 denotes the central value (of the represented in-
terval) and each noise symbol εi is a formal variable de-
noting a deviation from the central value, intended to range
over [−1, 1]. The maximum magnitude of each noise term
is given by the corresponding xi. Note that the sign of xi

does not matter in isolation, it does, however, reflect the re-
lative dependence between values. For example, take x =
x0 + x1ε1, then in real number semantics,

x− x = x0 + x1ε1 − (x0 + x1ε1)

= x0 − x0 + x1ε1 − x1ε1 = 0

If we subtracted x = x0−x1ε1 instead, the resulting interval
would have width 2 ∗ x1 and not zero.

The range represented by an affine form is computed as

[x̂] = [x0 − rad(x̂), x0 + rad(x̂)], rad(x̂) =
n
∑

i=1

|xi|

When implementing affine forms in a program, we need to
take into account that some operations are not performed
exactly, because the central value and the coefficients need
to be represented in some finite (e.g. double) precision. As
suggested in [17], the roundoff errors committed during the
computation can be added with a new fresh noise symbol to
the final affine form. A general affine operation αx̂+βŷ+ ζ
consists of addition, subtraction, addition of a constant (ζ)
or multiplication by a constant (α,β). Expanding the affine
forms x̂ and ŷ we get

αx̂+βŷ+ζ = (αx0+βy0+ζ)+
n
∑

i=1

(αxi+βyi)εi+ ιεn+1

(3)
with α,β, ζ ∈ F and where ι denotes the accumulated
internal errors, that is, the roundoff errors committed when
computing the individual terms of the new affine form.

Each operation carries a roundoff error and all of them
must be taken into account to achieve the parameter ι for the
rigorous bound. The challenge hereby consists of account-
ing for all roundoff errors, but still creating a tight approxi-
mation. While for the basic arithmetic operations the round-
off can be computed with Equation 1, there is no such simple

formula for calculating the roundoff for composed expres-
sions (e.g. α ∗ x0 + ζ). We determine the maximum round-
off error of an expression f(v1, . . . , vm) using the following
procedure [17]:

z = f(v1, v2, . . . , vm)

z−∞ = ↓f(v1, v2, . . . , vm)↓
z+∞ = ↑f(v1, v2, . . . , vm)↑

ι = max(z+∞ − z, z − z−∞)

That is, the program computes three results: (1) the floating-
point result z using rounding to-nearest, (2) the result z−∞

assuming worst-case roundoff errors when rounding towards
−∞, and the analogous result z+∞ with rounding towards
+∞ at each step. As the worst-case committed roundoff
error ι we use the maximum difference (ι) between these
values.

A possible use of affine arithmetic for keeping track of
roundoff errors is to represent each double precision value
by an affine form. That is, the actually computed double
precision value is equal to the central value and the noise
terms collect the accumulating roundoff errors. One expects
to obtain tighter bounds than with interval arithmetic, espe-
cially when a computation exhibits many correlations bet-
ween variables. However, a straightforward application of
affine arithmetic in the original formulation is not always
sound, as we show in Section 6. Namely, the standard affine
arithmetic takes the liberty of choosing a convenient central
value in a range, which does not preserve the compatibility
with Double. Using such computation on non-affine opera-
tions (such as division or trigonometric functions) can shift
the central value away from the actually computed Double
value. Roundoff errors computed using this method would
be those of a different computation and would thus be un-
sound. Our implementation therefore provides a modified
approximation that ensures soundness.

Before proceeding with the description of the technique
we use in our solution, we show in the next section how
the library behaves in practice. The library provides two
data types, AffineFloat and SmartFloat, that replace ordinary
floating-point numbers in a program, track a computation
and provide estimates on the roundoff errors committed.
An AffineFloat variable represents exactly one floating-point
number and thus replaces the computation one-to-one, a
SmartFloat variable represents a range of values and com-
putes the maximum roundoff error over this range. The tech-
nical implications of this difference will be described in de-
tail in Section 6 and Section 7. Note that whereas SmartFloat
must compute worst-case roundoff errors over the entire
interval, AffineFloat only needs to do this for one value.
AffineFloat can therefore generally provide a more precise
estimate.

Note that a range-based arithmetic as such does necessarily
attempt to quantify the roundoff errors itself. A possible ap-
plication of affine arithmetic, as originally proposed, is find-
ing zeroes of a function in a given initial interval. The idea
is to bisect the initial interval and to compute an estimate of
the function value over each subdomain. If the output range
for one subdomain does not include a zero, then that part of
the domain can be safely discarded.

Affine arithmetic represents possible values of variables
as affine forms

x̂ = x0 +
n
∑

i=1

xiεi

where x0 denotes the central value (of the represented in-
terval) and each noise symbol εi is a formal variable de-
noting a deviation from the central value, intended to range
over [−1, 1]. The maximum magnitude of each noise term
is given by the corresponding xi. Note that the sign of xi

does not matter in isolation, it does, however, reflect the re-
lative dependence between values. For example, take x =
x0 + x1ε1, then in real number semantics,

x− x = x0 + x1ε1 − (x0 + x1ε1)

= x0 − x0 + x1ε1 − x1ε1 = 0

If we subtracted x = x0−x1ε1 instead, the resulting interval
would have width 2 ∗ x1 and not zero.

The range represented by an affine form is computed as

[x̂] = [x0 − rad(x̂), x0 + rad(x̂)], rad(x̂) =
n
∑

i=1

|xi|

When implementing affine forms in a program, we need to
take into account that some operations are not performed
exactly, because the central value and the coefficients need
to be represented in some finite (e.g. double) precision. As
suggested in [17], the roundoff errors committed during the
computation can be added with a new fresh noise symbol to
the final affine form. A general affine operation αx̂+βŷ+ ζ
consists of addition, subtraction, addition of a constant (ζ)
or multiplication by a constant (α,β). Expanding the affine
forms x̂ and ŷ we get

αx̂+βŷ+ζ = (αx0+βy0+ζ)+
n
∑

i=1

(αxi+βyi)εi+ ιεn+1

(3)
with α,β, ζ ∈ F and where ι denotes the accumulated
internal errors, that is, the roundoff errors committed when
computing the individual terms of the new affine form.

Each operation carries a roundoff error and all of them
must be taken into account to achieve the parameter ι for the
rigorous bound. The challenge hereby consists of account-
ing for all roundoff errors, but still creating a tight approxi-
mation. While for the basic arithmetic operations the round-
off can be computed with Equation 1, there is no such simple

formula for calculating the roundoff for composed expres-
sions (e.g. α ∗ x0 + ζ). We determine the maximum round-
off error of an expression f(v1, . . . , vm) using the following
procedure [17]:

z = f(v1, v2, . . . , vm)

z−∞ = ↓f(v1, v2, . . . , vm)↓
z+∞ = ↑f(v1, v2, . . . , vm)↑

ι = max(z+∞ − z, z − z−∞)

That is, the program computes three results: (1) the floating-
point result z using rounding to-nearest, (2) the result z−∞

assuming worst-case roundoff errors when rounding towards
−∞, and the analogous result z+∞ with rounding towards
+∞ at each step. As the worst-case committed roundoff
error ι we use the maximum difference (ι) between these
values.

A possible use of affine arithmetic for keeping track of
roundoff errors is to represent each double precision value
by an affine form. That is, the actually computed double
precision value is equal to the central value and the noise
terms collect the accumulating roundoff errors. One expects
to obtain tighter bounds than with interval arithmetic, espe-
cially when a computation exhibits many correlations bet-
ween variables. However, a straightforward application of
affine arithmetic in the original formulation is not always
sound, as we show in Section 6. Namely, the standard affine
arithmetic takes the liberty of choosing a convenient central
value in a range, which does not preserve the compatibility
with Double. Using such computation on non-affine opera-
tions (such as division or trigonometric functions) can shift
the central value away from the actually computed Double
value. Roundoff errors computed using this method would
be those of a different computation and would thus be un-
sound. Our implementation therefore provides a modified
approximation that ensures soundness.

Before proceeding with the description of the technique
we use in our solution, we show in the next section how
the library behaves in practice. The library provides two
data types, AffineFloat and SmartFloat, that replace ordinary
floating-point numbers in a program, track a computation
and provide estimates on the roundoff errors committed.
An AffineFloat variable represents exactly one floating-point
number and thus replaces the computation one-to-one, a
SmartFloat variable represents a range of values and com-
putes the maximum roundoff error over this range. The tech-
nical implications of this difference will be described in de-
tail in Section 6 and Section 7. Note that whereas SmartFloat
must compute worst-case roundoff errors over the entire
interval, AffineFloat only needs to do this for one value.
AffineFloat can therefore generally provide a more precise
estimate.
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Note that a range-based arithmetic as such does necessarily
attempt to quantify the roundoff errors itself. A possible ap-
plication of affine arithmetic, as originally proposed, is find-
ing zeroes of a function in a given initial interval. The idea
is to bisect the initial interval and to compute an estimate of
the function value over each subdomain. If the output range
for one subdomain does not include a zero, then that part of
the domain can be safely discarded.

Affine arithmetic represents possible values of variables
as affine forms

x̂ = x0 +
n
∑

i=1

xiεi

where x0 denotes the central value (of the represented in-
terval) and each noise symbol εi is a formal variable de-
noting a deviation from the central value, intended to range
over [−1, 1]. The maximum magnitude of each noise term
is given by the corresponding xi. Note that the sign of xi

does not matter in isolation, it does, however, reflect the re-
lative dependence between values. For example, take x =
x0 + x1ε1, then in real number semantics,

x− x = x0 + x1ε1 − (x0 + x1ε1)

= x0 − x0 + x1ε1 − x1ε1 = 0

If we subtracted x = x0−x1ε1 instead, the resulting interval
would have width 2 ∗ x1 and not zero.

The range represented by an affine form is computed as

[x̂] = [x0 − rad(x̂), x0 + rad(x̂)], rad(x̂) =
n
∑

i=1

|xi|

When implementing affine forms in a program, we need to
take into account that some operations are not performed
exactly, because the central value and the coefficients need
to be represented in some finite (e.g. double) precision. As
suggested in [17], the roundoff errors committed during the
computation can be added with a new fresh noise symbol to
the final affine form. A general affine operation αx̂+βŷ+ ζ
consists of addition, subtraction, addition of a constant (ζ)
or multiplication by a constant (α,β). Expanding the affine
forms x̂ and ŷ we get

αx̂+βŷ+ζ = (αx0+βy0+ζ)+
n
∑

i=1

(αxi+βyi)εi+ ιεn+1

(3)
with α,β, ζ ∈ F and where ι denotes the accumulated
internal errors, that is, the roundoff errors committed when
computing the individual terms of the new affine form.

Each operation carries a roundoff error and all of them
must be taken into account to achieve the parameter ι for the
rigorous bound. The challenge hereby consists of account-
ing for all roundoff errors, but still creating a tight approxi-
mation. While for the basic arithmetic operations the round-
off can be computed with Equation 1, there is no such simple

formula for calculating the roundoff for composed expres-
sions (e.g. α ∗ x0 + ζ). We determine the maximum round-
off error of an expression f(v1, . . . , vm) using the following
procedure [17]:

z = f(v1, v2, . . . , vm)

z−∞ = ↓f(v1, v2, . . . , vm)↓
z+∞ = ↑f(v1, v2, . . . , vm)↑

ι = max(z+∞ − z, z − z−∞)

That is, the program computes three results: (1) the floating-
point result z using rounding to-nearest, (2) the result z−∞

assuming worst-case roundoff errors when rounding towards
−∞, and the analogous result z+∞ with rounding towards
+∞ at each step. As the worst-case committed roundoff
error ι we use the maximum difference (ι) between these
values.

A possible use of affine arithmetic for keeping track of
roundoff errors is to represent each double precision value
by an affine form. That is, the actually computed double
precision value is equal to the central value and the noise
terms collect the accumulating roundoff errors. One expects
to obtain tighter bounds than with interval arithmetic, espe-
cially when a computation exhibits many correlations bet-
ween variables. However, a straightforward application of
affine arithmetic in the original formulation is not always
sound, as we show in Section 6. Namely, the standard affine
arithmetic takes the liberty of choosing a convenient central
value in a range, which does not preserve the compatibility
with Double. Using such computation on non-affine opera-
tions (such as division or trigonometric functions) can shift
the central value away from the actually computed Double
value. Roundoff errors computed using this method would
be those of a different computation and would thus be un-
sound. Our implementation therefore provides a modified
approximation that ensures soundness.

Before proceeding with the description of the technique
we use in our solution, we show in the next section how
the library behaves in practice. The library provides two
data types, AffineFloat and SmartFloat, that replace ordinary
floating-point numbers in a program, track a computation
and provide estimates on the roundoff errors committed.
An AffineFloat variable represents exactly one floating-point
number and thus replaces the computation one-to-one, a
SmartFloat variable represents a range of values and com-
putes the maximum roundoff error over this range. The tech-
nical implications of this difference will be described in de-
tail in Section 6 and Section 7. Note that whereas SmartFloat
must compute worst-case roundoff errors over the entire
interval, AffineFloat only needs to do this for one value.
AffineFloat can therefore generally provide a more precise
estimate.

•  affine	  opera4ons	  (+,	  -‐)	  
	  
	  	  	  	  	  
	  	  	  
•  non-‐linear	  opera4ons	  need	  a	  linear	  approxima4on	  



•  avoids	  dependency	  problem	  for	  linear	  opera4ons	  

Affine	  arithme4c	  
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AffineFloat data	  type	  

computed	  Double	  value	   roundoff	  errors	  
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•  each	  opera4on	  adds	  a	  new	  noise	  term	  
•  each	  opera4on	  propagates	  exis4ng	  noise	  terms	  	  

•  roundoff	  =	  
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SmartFloat data	  type	  

uncertainty	  on	  variable	   maximum	  roundoff	  errors	  

•  At	  each	  opera4on,	  adds	  the	  worst-‐case	  roundoff	  error	  
for	  all	  possible	  values	  

•  Propaga4on	  of	  errors	  is	  a	  li?le	  more	  involved	  

•  maximum	  roundoff	  =	  
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The	  quest	  for	  precision	  

In	  our	  implementa4on,	  we	  face	  the	  same	  roundoff	  
errors	  that	  we	  aim	  to	  quan4fy!	  

	  
•  directed	  rounding	  in	  C++	  
•  DoubleDouble	  precision	  
•  precise	  handling	  of	  constants	  
•  recognizing	  exact	  computa4ons	  
•  dependency	  problem	  with	  mul4plica4on	  
•  non-‐linear	  opera4ons	  
	  



Nonlinear	  approxima4ons	  

Minrange	  approxima8on	  
•  rounding	  direc4on	  is	  clear	  

Less	  precise,	  but	  reliable!	  

Chebyshev	  approxima8on	  
•  needs	  a	  3rd	  point,	  whose	  

rounding	  direc4on	  is	  not	  clear	  
•  can	  give	  wrong	  results	  for	  small	  

input	  intervals	  



	  	  	  	  	  Integra4on	  into	  	  	  
def	  rootKahan(a:	  SmartFloat,	  b:	  SmartFloat,	  c:	  SmartFloat)	  {	  

	  val	  discr	  =	  b	  *	  b	  -‐	  a	  *	  c	  *	  4.0	  
      if (b*b - a*c > 10.0 && b > 0.0) 
       return c * 2.0 /(-b - sqrt(discr)) 
    else   
     return (-b + sqrt(discr))/(a * 2.0) 
} 
 
•  easy	  integra4on	  with	  implicits	  and	  strong	  type	  inference	  
•  support	  for	  most	  common	  math.	  func4ons	  (exp,	  sin,	  cos,	  log,	  Pi,	  …)	  	  
•  symmetric	  equals	  

scala> rootKahan(SmartFloat(3.0, 1.0),  
         SmartFloat(55.0, 5.0), SmartFloat(0.5, 1.5))  
[-0.13109336344405553,0.09429437802880317] (7.5543e-16) 



Precision:	  AffineFloat	  vs.	  Intervals	  

Intervals	   AffineFloat	  
LU	  5x5,	  with	  pivo4ng	  
LU	  10x10	  
LU	  15x15	  
	  

6.69e-‐13	  
2.13e-‐10	  
1.92e-‐8	  

1.04e-‐13	  
7.75e-‐12	  
6.10e-‐10	  	  

LU	  5x5,	  no	  pivo4ng	  
LU	  10x10	  

1.24e-‐9	  
4.89e-‐6	  

2.50e-‐11	  
2.38e-‐10	  

FFT	  512	  
FFT	  256	  

6.43e-‐12	  
2.38e-‐12	  

9.73e-‐13	  
3.03e-‐13	  	  	  

LU:	  solu4on	  to	  Ax	  =	  b	  by	  factorizing	  A	  
FFT:	  Fast	  Fourier	  Transform,	  followed	  by	  its	  inverse	  

Up	  to	  4	  decimal	  orders	  of	  magnitude	  improvement!	  



Generality:	  Doppler	  frequency	  shiY	  

€ 

−30°C ≤ T ≤ 50°C
20Hz ≤ v ≤ 20000Hz
−100 m

s ≤ u ≤100 m
s

SMT[1]	   bits	   SmartFloat	   abs.	  roundoff	  

q1	   [313,	  362]	  	   6	   [313.3999,361.40]	  	   8.6908e-‐14	  
	  

q2	   [6267,	  7228000]	  	   23	   [6267.9999,7228000.00]	  	   3.3431e-‐09	  
q3	   [213,	  462]	  	   8	   [213.3999,461.40]	  	   1.4924e-‐13	  	  
q4	   [45539,	  212890]	  	   18	   [44387.5599,212889.96]	   1.6135e-‐10	  
z	   [0,	  138]	  	   8	   [-‐13.3398,162.7365]	  	   6.8184e-‐13	  

running	  4me:	  order	  100s	   our	  running	  8me:	  order	  1s	  

q1 = 331.4 + 0.6T 
q2 = q1v 
q3 = q1 + u 
q4 = q3*q3  
z = q2 / q4 

[1]	  A.B.	  Kinsman,	  N.	  Nicolici.	  Finite	  Precision	  bit-‐width	  alloca4on	  using	  SAT-‐Modulo	  Theory.	  DATE,	  2009.	  



Performance	  (ms)	  
double	   interval	   AffineFloat	   SmartFloat	  

Nbody	  (100	  steps)	   2.1	   21	   779	   33756	  
Spectral	  norm	  (10	  iter.)	   0.6	   31	   198	   778	  
Whetstone	  (10	  repeats)	   1.2	   2	   59	   680	  
Fbench	   0.2	   1.3	   10	   1082	  
Scimark	  -‐	  FFT	  (512x512)	   1.2	   18	   1220	   39987	  
Scimark	  -‐	  SOR	  (100x100)	   0.8	   25	   698	   127168	  
Scimark	  -‐	  LU	  (50x50)	   2.6	   30	   2419	   4914	  
Spring	  sim.	  (10000	  steps)	   0.2	   46	   1283	   4086	  

•  acceptable	  for	  understanding	  floa4ng-‐point	  computa4ons	  
•  slower	  than	  a	  hardware	  implementa4on,	  but	  faster	  than	  exis4ng	  

approaches	  that	  achieve	  similar	  precision	  



Seman4cs	  for	  floa4ng-‐point	  programs	  

•  interval	  arithme4c	  
•  affine	  arithme4c	  

•  stochas4c	  arithme4c	  
Run	  the	  program	  repeatedly	  with	  random	  rounding.	  Mainly	  useful	  for	  
finding	  stability	  issues.	  	  

•  automa4c	  differen4a4on	  
Computes	  the	  derivate	  of	  a	  program	  to	  expose	  sensi4vi4es	  to	  input	  
changes.	  



Floa4ng-‐point	  verifica4on	  

•  Abstract	  interpreta4on	  
Computes	  an	  overapproxima4on	  of	  variable	  values	  used	  to	  
–  guarantee	  no	  run-‐4me	  errors	  can	  occur	  (Astree)	  
–  roundoff	  errors	  are	  within	  certain	  bounds	  (Fluctuat)	  	  

•  Model-‐checking	  
Models	  a	  floa4ng-‐point	  computa4on	  as	  a	  finite-‐state	  system	  and	  
performs	  a	  path	  sensi4ve	  analysis	  
–  precise	  but	  expensive	  

•  SAT	  
Encodes	  floa4ng-‐point	  opera4ons	  bit-‐precisely	  (basically	  encodes	  the	  
circuit)	  and	  checks	  the	  formula	  against	  user-‐provided	  asser4ons.	  
–  check	  for	  excep4ons	  (e.g.	  underflow)	  



Floa4ng-‐point	  verifica4on	  

•  Theorem	  proving	  
Provide	  code	  contracts	  (specifica4ons)	  about	  the	  precision	  of	  methods	  
and	  check	  the	  proper4es	  with	  a	  theorem	  prover.	  
–  detailed	  specifica4on	  necessary	  
–  interac4on	  with	  the	  theorem	  prover	  

	  
Example:	  check	  that	  a	  piece	  of	  code	  is	  overflow-‐safe:	  

	  

@rnd = float<ieee_32,ne>;  
z = rnd(rnd(x * x) + rnd(sqrt(y))); !
{ |x| <= 2 /\ y in [1,9] !
   -> z in [1,7] /\ |rnd(x * x)| <= 0x1.FFFFFEp127 /\  !
      |rnd(sqrt(y))| <= 0x1.FFFFFEp127 } !
!



That’s	  all.	  

h?p://lara.epfl.ch/w/smarnloat	  





1.  Compact	  all	  other	  terms	  based	  on	  
average	  errors	  and	  their	  devia4on.	  

2.  For	  pathological	  cases,	  compact	  all	  
noise	  symbols	  into	  a	  single	  one.	  

Packing	  
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Packing	  of	  noise	  terms	  

        



















































