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Reasoning	
  about	
  the	
  real	
  world	
  ma?ers	
  

The	
  most	
  widely	
  used	
  data	
  type	
  are	
  floa4ng-­‐points	
  
•  IEEE	
  754-­‐2008	
  standard	
  gives	
  precise	
  behaviour	
  
•  efficient	
  and,	
  we	
  hope,	
  adequate	
  is	
  many	
  cases	
  

“It	
  makes	
  us	
  nervous	
  to	
  fly	
  an	
  airplane	
  since	
  we	
  know	
  they	
  operate	
  
using	
  floa4ng-­‐point	
  arithme4c.”,	
  Xavier	
  Leroy.	
  Verified	
  squared:	
  does	
  cri4cal	
  
soYware	
  deserve	
  verified	
  tools?	
  In	
  POPL,	
  2011.	
  	
  
	
  

“…	
  any	
  opera4on	
  involving	
  numerical	
  realiza4on	
  of	
  a	
  geophysical	
  
algorithm	
  led	
  to	
  significant	
  disagreement.”,	
  L.	
  Ha?on	
  and	
  A.	
  Roberts.	
  How	
  
Accurate	
  is	
  Scien4fic	
  SoYware?	
  In	
  IEEE	
  Trans.	
  So2w.	
  Eng.,	
  20,	
  1994.	
  	
  
	
  



How	
  do	
  you	
  know	
  you	
  can	
  trust	
  
your	
  numerical	
  computa4on?	
  



def	
  rootKahan(a:	
  Double,	
  b:	
  Double,	
  c:	
  Double)	
  {	
  
	
  val	
  discr	
  =	
  b	
  *	
  b	
  -­‐	
  a	
  *	
  c	
  *	
  4.0	
  

      if (b*b - a*c > 10.0 && b > 0.0) 
       return c * 2.0 /(-b - sqrt(discr)) 
    else   

  return (-b + sqrt(discr))/(a * 2.0) 
} 

def	
  root(a:	
  Double,	
  b:	
  Double,	
  c:	
  Double)	
  {	
  
	
  val	
  discr	
  =	
  b	
  *	
  b	
  -­‐	
  a	
  *	
  c	
  *	
  4.0	
  

	
  	
  	
  	
  	
  	
  return	
   	
  (-­‐b	
  +	
  sqrt(discr))/(a	
  *	
  2.0)	
  
}	
  

Equivalently	
  in	
  real	
  numbers:	
  	
  

scala> root(2.999, 56.000003, 1.00076) 
res0: Double = -0.017887849139318127 

scala> rootKahan(2.999, 56.000003, 1.00076) 
res0: Double = -0.017887849139317836	
  



Floa4ng-­‐points	
  

•  Standard	
  defines:	
  	
  
–  arithme4c	
  formats	
  (incl.	
  NaN,	
  infini4es)	
  
–  interchange	
  formats	
  
–  rounding	
  rules	
  
–  opera4ons	
  
–  excep4on	
  handling	
  

•  (mostly	
  full)	
  hardware	
  support	
  
•  varying	
  soYware	
  support	
  	
  

754	
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•  JVM	
  
–  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  rounded	
  to	
  nearest	
  
–  sin,	
  cos,	
  …	
  :	
  API-­‐specified	
  roundoff	
  errors	
  
	
  

•  C99	
  
–  low-­‐level	
  control	
  of	
  hardware	
  (all	
  rounding	
  modes)	
  
–  beware	
  of	
  compiler	
  op4miza4ons	
  

•  	
  CPython	
  
–  math	
  module	
  wrapper	
  around	
  C	
  library	
  func4ons	
  
–  “almost	
  all	
  planorms	
  map	
  Python	
  floats	
  to	
  IEEE-­‐754	
  
“double	
  precision”	
  

soYware	
  support	
  

100000000001001001000011111101101010100010001000010110100011000!

754	
  



How	
  do	
  you	
  know	
  you	
  can	
  trust	
  
your	
  numerical	
  computa4on?	
  



•  interval	
  width	
  ～	
  maximum	
  roundoff	
  error	
  

Interval	
  arithme4c	
  

scala> root(2.999, 56.000003, 1.00076) 
[-0.017887849139321683,-0.017887849139313385] (2.6514e-13) 
 
scala> rootKahan(2.999, 56.000003, 1.00076) 
[-0.017887849139317846,-0.017887849139317825] (5.8187e-16)  
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Problems	
  with	
  interval	
  arithme4c	
  
•  Imprecision:	
  losing	
  dependencies	
  

	
  
•  Lack	
  of	
  generality:	
  input	
  range	
  vs.	
  roundoff	
  
What	
  is	
  the	
  maximum	
  roundoff	
  error	
  over	
  an	
  en4re	
  input	
  range?	
  

scala> root(Interval(2.0, 4.0), Interval(50.0, 60.0),  
            Interval(0.5, 1.5)) 
[-2.560144695375273,2.4916643505649514] (1.0073e+00) 
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  Rigorous	
  numerical	
  data	
  types	
  for	
  	
  
precision	
  and	
  generality	
  	
  

Dependency-­‐preserving	
  es4ma4on	
  
of	
  roundoff	
  errors	
  of	
  a	
  concrete	
  
floa4ng-­‐point	
  computa4on.	
  

Es4ma4on	
  of	
  upper	
  bounds	
  
on	
  roundoff	
  errors	
  over	
  an	
  
en8re	
  range	
  of	
  input	
  values.	
  

Contribu4ons	
  

AffineFloat	
   SmartFloat	
  



•  represents	
  the	
  interval	
  

	
  	
  	
  	
  	
  

Affine	
  arithme4c	
  

Note that a range-based arithmetic as such does necessarily
attempt to quantify the roundoff errors itself. A possible ap-
plication of affine arithmetic, as originally proposed, is find-
ing zeroes of a function in a given initial interval. The idea
is to bisect the initial interval and to compute an estimate of
the function value over each subdomain. If the output range
for one subdomain does not include a zero, then that part of
the domain can be safely discarded.

Affine arithmetic represents possible values of variables
as affine forms

x̂ = x0 +
n
∑

i=1

xiεi

where x0 denotes the central value (of the represented in-
terval) and each noise symbol εi is a formal variable de-
noting a deviation from the central value, intended to range
over [−1, 1]. The maximum magnitude of each noise term
is given by the corresponding xi. Note that the sign of xi

does not matter in isolation, it does, however, reflect the re-
lative dependence between values. For example, take x =
x0 + x1ε1, then in real number semantics,

x− x = x0 + x1ε1 − (x0 + x1ε1)

= x0 − x0 + x1ε1 − x1ε1 = 0

If we subtracted x = x0−x1ε1 instead, the resulting interval
would have width 2 ∗ x1 and not zero.

The range represented by an affine form is computed as

[x̂] = [x0 − rad(x̂), x0 + rad(x̂)], rad(x̂) =
n
∑

i=1

|xi|

When implementing affine forms in a program, we need to
take into account that some operations are not performed
exactly, because the central value and the coefficients need
to be represented in some finite (e.g. double) precision. As
suggested in [17], the roundoff errors committed during the
computation can be added with a new fresh noise symbol to
the final affine form. A general affine operation αx̂+βŷ+ ζ
consists of addition, subtraction, addition of a constant (ζ)
or multiplication by a constant (α,β). Expanding the affine
forms x̂ and ŷ we get

αx̂+βŷ+ζ = (αx0+βy0+ζ)+
n
∑

i=1

(αxi+βyi)εi+ ιεn+1

(3)
with α,β, ζ ∈ F and where ι denotes the accumulated
internal errors, that is, the roundoff errors committed when
computing the individual terms of the new affine form.

Each operation carries a roundoff error and all of them
must be taken into account to achieve the parameter ι for the
rigorous bound. The challenge hereby consists of account-
ing for all roundoff errors, but still creating a tight approxi-
mation. While for the basic arithmetic operations the round-
off can be computed with Equation 1, there is no such simple

formula for calculating the roundoff for composed expres-
sions (e.g. α ∗ x0 + ζ). We determine the maximum round-
off error of an expression f(v1, . . . , vm) using the following
procedure [17]:

z = f(v1, v2, . . . , vm)

z−∞ = ↓f(v1, v2, . . . , vm)↓
z+∞ = ↑f(v1, v2, . . . , vm)↑

ι = max(z+∞ − z, z − z−∞)

That is, the program computes three results: (1) the floating-
point result z using rounding to-nearest, (2) the result z−∞

assuming worst-case roundoff errors when rounding towards
−∞, and the analogous result z+∞ with rounding towards
+∞ at each step. As the worst-case committed roundoff
error ι we use the maximum difference (ι) between these
values.

A possible use of affine arithmetic for keeping track of
roundoff errors is to represent each double precision value
by an affine form. That is, the actually computed double
precision value is equal to the central value and the noise
terms collect the accumulating roundoff errors. One expects
to obtain tighter bounds than with interval arithmetic, espe-
cially when a computation exhibits many correlations bet-
ween variables. However, a straightforward application of
affine arithmetic in the original formulation is not always
sound, as we show in Section 6. Namely, the standard affine
arithmetic takes the liberty of choosing a convenient central
value in a range, which does not preserve the compatibility
with Double. Using such computation on non-affine opera-
tions (such as division or trigonometric functions) can shift
the central value away from the actually computed Double
value. Roundoff errors computed using this method would
be those of a different computation and would thus be un-
sound. Our implementation therefore provides a modified
approximation that ensures soundness.

Before proceeding with the description of the technique
we use in our solution, we show in the next section how
the library behaves in practice. The library provides two
data types, AffineFloat and SmartFloat, that replace ordinary
floating-point numbers in a program, track a computation
and provide estimates on the roundoff errors committed.
An AffineFloat variable represents exactly one floating-point
number and thus replaces the computation one-to-one, a
SmartFloat variable represents a range of values and com-
putes the maximum roundoff error over this range. The tech-
nical implications of this difference will be described in de-
tail in Section 6 and Section 7. Note that whereas SmartFloat
must compute worst-case roundoff errors over the entire
interval, AffineFloat only needs to do this for one value.
AffineFloat can therefore generally provide a more precise
estimate.
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Note that a range-based arithmetic as such does necessarily
attempt to quantify the roundoff errors itself. A possible ap-
plication of affine arithmetic, as originally proposed, is find-
ing zeroes of a function in a given initial interval. The idea
is to bisect the initial interval and to compute an estimate of
the function value over each subdomain. If the output range
for one subdomain does not include a zero, then that part of
the domain can be safely discarded.

Affine arithmetic represents possible values of variables
as affine forms

x̂ = x0 +
n
∑

i=1

xiεi

where x0 denotes the central value (of the represented in-
terval) and each noise symbol εi is a formal variable de-
noting a deviation from the central value, intended to range
over [−1, 1]. The maximum magnitude of each noise term
is given by the corresponding xi. Note that the sign of xi

does not matter in isolation, it does, however, reflect the re-
lative dependence between values. For example, take x =
x0 + x1ε1, then in real number semantics,

x− x = x0 + x1ε1 − (x0 + x1ε1)

= x0 − x0 + x1ε1 − x1ε1 = 0

If we subtracted x = x0−x1ε1 instead, the resulting interval
would have width 2 ∗ x1 and not zero.

The range represented by an affine form is computed as

[x̂] = [x0 − rad(x̂), x0 + rad(x̂)], rad(x̂) =
n
∑

i=1

|xi|

When implementing affine forms in a program, we need to
take into account that some operations are not performed
exactly, because the central value and the coefficients need
to be represented in some finite (e.g. double) precision. As
suggested in [17], the roundoff errors committed during the
computation can be added with a new fresh noise symbol to
the final affine form. A general affine operation αx̂+βŷ+ ζ
consists of addition, subtraction, addition of a constant (ζ)
or multiplication by a constant (α,β). Expanding the affine
forms x̂ and ŷ we get

αx̂+βŷ+ζ = (αx0+βy0+ζ)+
n
∑

i=1

(αxi+βyi)εi+ ιεn+1

(3)
with α,β, ζ ∈ F and where ι denotes the accumulated
internal errors, that is, the roundoff errors committed when
computing the individual terms of the new affine form.

Each operation carries a roundoff error and all of them
must be taken into account to achieve the parameter ι for the
rigorous bound. The challenge hereby consists of account-
ing for all roundoff errors, but still creating a tight approxi-
mation. While for the basic arithmetic operations the round-
off can be computed with Equation 1, there is no such simple

formula for calculating the roundoff for composed expres-
sions (e.g. α ∗ x0 + ζ). We determine the maximum round-
off error of an expression f(v1, . . . , vm) using the following
procedure [17]:

z = f(v1, v2, . . . , vm)

z−∞ = ↓f(v1, v2, . . . , vm)↓
z+∞ = ↑f(v1, v2, . . . , vm)↑

ι = max(z+∞ − z, z − z−∞)

That is, the program computes three results: (1) the floating-
point result z using rounding to-nearest, (2) the result z−∞

assuming worst-case roundoff errors when rounding towards
−∞, and the analogous result z+∞ with rounding towards
+∞ at each step. As the worst-case committed roundoff
error ι we use the maximum difference (ι) between these
values.

A possible use of affine arithmetic for keeping track of
roundoff errors is to represent each double precision value
by an affine form. That is, the actually computed double
precision value is equal to the central value and the noise
terms collect the accumulating roundoff errors. One expects
to obtain tighter bounds than with interval arithmetic, espe-
cially when a computation exhibits many correlations bet-
ween variables. However, a straightforward application of
affine arithmetic in the original formulation is not always
sound, as we show in Section 6. Namely, the standard affine
arithmetic takes the liberty of choosing a convenient central
value in a range, which does not preserve the compatibility
with Double. Using such computation on non-affine opera-
tions (such as division or trigonometric functions) can shift
the central value away from the actually computed Double
value. Roundoff errors computed using this method would
be those of a different computation and would thus be un-
sound. Our implementation therefore provides a modified
approximation that ensures soundness.

Before proceeding with the description of the technique
we use in our solution, we show in the next section how
the library behaves in practice. The library provides two
data types, AffineFloat and SmartFloat, that replace ordinary
floating-point numbers in a program, track a computation
and provide estimates on the roundoff errors committed.
An AffineFloat variable represents exactly one floating-point
number and thus replaces the computation one-to-one, a
SmartFloat variable represents a range of values and com-
putes the maximum roundoff error over this range. The tech-
nical implications of this difference will be described in de-
tail in Section 6 and Section 7. Note that whereas SmartFloat
must compute worst-case roundoff errors over the entire
interval, AffineFloat only needs to do this for one value.
AffineFloat can therefore generally provide a more precise
estimate.

Note that a range-based arithmetic as such does necessarily
attempt to quantify the roundoff errors itself. A possible ap-
plication of affine arithmetic, as originally proposed, is find-
ing zeroes of a function in a given initial interval. The idea
is to bisect the initial interval and to compute an estimate of
the function value over each subdomain. If the output range
for one subdomain does not include a zero, then that part of
the domain can be safely discarded.

Affine arithmetic represents possible values of variables
as affine forms

x̂ = x0 +
n
∑

i=1

xiεi

where x0 denotes the central value (of the represented in-
terval) and each noise symbol εi is a formal variable de-
noting a deviation from the central value, intended to range
over [−1, 1]. The maximum magnitude of each noise term
is given by the corresponding xi. Note that the sign of xi

does not matter in isolation, it does, however, reflect the re-
lative dependence between values. For example, take x =
x0 + x1ε1, then in real number semantics,

x− x = x0 + x1ε1 − (x0 + x1ε1)

= x0 − x0 + x1ε1 − x1ε1 = 0

If we subtracted x = x0−x1ε1 instead, the resulting interval
would have width 2 ∗ x1 and not zero.

The range represented by an affine form is computed as

[x̂] = [x0 − rad(x̂), x0 + rad(x̂)], rad(x̂) =
n
∑

i=1

|xi|

When implementing affine forms in a program, we need to
take into account that some operations are not performed
exactly, because the central value and the coefficients need
to be represented in some finite (e.g. double) precision. As
suggested in [17], the roundoff errors committed during the
computation can be added with a new fresh noise symbol to
the final affine form. A general affine operation αx̂+βŷ+ ζ
consists of addition, subtraction, addition of a constant (ζ)
or multiplication by a constant (α,β). Expanding the affine
forms x̂ and ŷ we get

αx̂+βŷ+ζ = (αx0+βy0+ζ)+
n
∑

i=1

(αxi+βyi)εi+ ιεn+1

(3)
with α,β, ζ ∈ F and where ι denotes the accumulated
internal errors, that is, the roundoff errors committed when
computing the individual terms of the new affine form.

Each operation carries a roundoff error and all of them
must be taken into account to achieve the parameter ι for the
rigorous bound. The challenge hereby consists of account-
ing for all roundoff errors, but still creating a tight approxi-
mation. While for the basic arithmetic operations the round-
off can be computed with Equation 1, there is no such simple

formula for calculating the roundoff for composed expres-
sions (e.g. α ∗ x0 + ζ). We determine the maximum round-
off error of an expression f(v1, . . . , vm) using the following
procedure [17]:

z = f(v1, v2, . . . , vm)

z−∞ = ↓f(v1, v2, . . . , vm)↓
z+∞ = ↑f(v1, v2, . . . , vm)↑

ι = max(z+∞ − z, z − z−∞)

That is, the program computes three results: (1) the floating-
point result z using rounding to-nearest, (2) the result z−∞

assuming worst-case roundoff errors when rounding towards
−∞, and the analogous result z+∞ with rounding towards
+∞ at each step. As the worst-case committed roundoff
error ι we use the maximum difference (ι) between these
values.

A possible use of affine arithmetic for keeping track of
roundoff errors is to represent each double precision value
by an affine form. That is, the actually computed double
precision value is equal to the central value and the noise
terms collect the accumulating roundoff errors. One expects
to obtain tighter bounds than with interval arithmetic, espe-
cially when a computation exhibits many correlations bet-
ween variables. However, a straightforward application of
affine arithmetic in the original formulation is not always
sound, as we show in Section 6. Namely, the standard affine
arithmetic takes the liberty of choosing a convenient central
value in a range, which does not preserve the compatibility
with Double. Using such computation on non-affine opera-
tions (such as division or trigonometric functions) can shift
the central value away from the actually computed Double
value. Roundoff errors computed using this method would
be those of a different computation and would thus be un-
sound. Our implementation therefore provides a modified
approximation that ensures soundness.

Before proceeding with the description of the technique
we use in our solution, we show in the next section how
the library behaves in practice. The library provides two
data types, AffineFloat and SmartFloat, that replace ordinary
floating-point numbers in a program, track a computation
and provide estimates on the roundoff errors committed.
An AffineFloat variable represents exactly one floating-point
number and thus replaces the computation one-to-one, a
SmartFloat variable represents a range of values and com-
putes the maximum roundoff error over this range. The tech-
nical implications of this difference will be described in de-
tail in Section 6 and Section 7. Note that whereas SmartFloat
must compute worst-case roundoff errors over the entire
interval, AffineFloat only needs to do this for one value.
AffineFloat can therefore generally provide a more precise
estimate.
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Note that a range-based arithmetic as such does necessarily
attempt to quantify the roundoff errors itself. A possible ap-
plication of affine arithmetic, as originally proposed, is find-
ing zeroes of a function in a given initial interval. The idea
is to bisect the initial interval and to compute an estimate of
the function value over each subdomain. If the output range
for one subdomain does not include a zero, then that part of
the domain can be safely discarded.

Affine arithmetic represents possible values of variables
as affine forms

x̂ = x0 +
n
∑

i=1

xiεi

where x0 denotes the central value (of the represented in-
terval) and each noise symbol εi is a formal variable de-
noting a deviation from the central value, intended to range
over [−1, 1]. The maximum magnitude of each noise term
is given by the corresponding xi. Note that the sign of xi

does not matter in isolation, it does, however, reflect the re-
lative dependence between values. For example, take x =
x0 + x1ε1, then in real number semantics,

x− x = x0 + x1ε1 − (x0 + x1ε1)

= x0 − x0 + x1ε1 − x1ε1 = 0

If we subtracted x = x0−x1ε1 instead, the resulting interval
would have width 2 ∗ x1 and not zero.

The range represented by an affine form is computed as

[x̂] = [x0 − rad(x̂), x0 + rad(x̂)], rad(x̂) =
n
∑

i=1

|xi|

When implementing affine forms in a program, we need to
take into account that some operations are not performed
exactly, because the central value and the coefficients need
to be represented in some finite (e.g. double) precision. As
suggested in [17], the roundoff errors committed during the
computation can be added with a new fresh noise symbol to
the final affine form. A general affine operation αx̂+βŷ+ ζ
consists of addition, subtraction, addition of a constant (ζ)
or multiplication by a constant (α,β). Expanding the affine
forms x̂ and ŷ we get

αx̂+βŷ+ζ = (αx0+βy0+ζ)+
n
∑

i=1

(αxi+βyi)εi+ ιεn+1

(3)
with α,β, ζ ∈ F and where ι denotes the accumulated
internal errors, that is, the roundoff errors committed when
computing the individual terms of the new affine form.

Each operation carries a roundoff error and all of them
must be taken into account to achieve the parameter ι for the
rigorous bound. The challenge hereby consists of account-
ing for all roundoff errors, but still creating a tight approxi-
mation. While for the basic arithmetic operations the round-
off can be computed with Equation 1, there is no such simple

formula for calculating the roundoff for composed expres-
sions (e.g. α ∗ x0 + ζ). We determine the maximum round-
off error of an expression f(v1, . . . , vm) using the following
procedure [17]:

z = f(v1, v2, . . . , vm)

z−∞ = ↓f(v1, v2, . . . , vm)↓
z+∞ = ↑f(v1, v2, . . . , vm)↑

ι = max(z+∞ − z, z − z−∞)

That is, the program computes three results: (1) the floating-
point result z using rounding to-nearest, (2) the result z−∞

assuming worst-case roundoff errors when rounding towards
−∞, and the analogous result z+∞ with rounding towards
+∞ at each step. As the worst-case committed roundoff
error ι we use the maximum difference (ι) between these
values.

A possible use of affine arithmetic for keeping track of
roundoff errors is to represent each double precision value
by an affine form. That is, the actually computed double
precision value is equal to the central value and the noise
terms collect the accumulating roundoff errors. One expects
to obtain tighter bounds than with interval arithmetic, espe-
cially when a computation exhibits many correlations bet-
ween variables. However, a straightforward application of
affine arithmetic in the original formulation is not always
sound, as we show in Section 6. Namely, the standard affine
arithmetic takes the liberty of choosing a convenient central
value in a range, which does not preserve the compatibility
with Double. Using such computation on non-affine opera-
tions (such as division or trigonometric functions) can shift
the central value away from the actually computed Double
value. Roundoff errors computed using this method would
be those of a different computation and would thus be un-
sound. Our implementation therefore provides a modified
approximation that ensures soundness.

Before proceeding with the description of the technique
we use in our solution, we show in the next section how
the library behaves in practice. The library provides two
data types, AffineFloat and SmartFloat, that replace ordinary
floating-point numbers in a program, track a computation
and provide estimates on the roundoff errors committed.
An AffineFloat variable represents exactly one floating-point
number and thus replaces the computation one-to-one, a
SmartFloat variable represents a range of values and com-
putes the maximum roundoff error over this range. The tech-
nical implications of this difference will be described in de-
tail in Section 6 and Section 7. Note that whereas SmartFloat
must compute worst-case roundoff errors over the entire
interval, AffineFloat only needs to do this for one value.
AffineFloat can therefore generally provide a more precise
estimate.

•  affine	
  opera4ons	
  (+,	
  -­‐)	
  
	
  
	
  	
  	
  	
  	
  
	
  	
  	
  
•  non-­‐linear	
  opera4ons	
  need	
  a	
  linear	
  approxima4on	
  



•  avoids	
  dependency	
  problem	
  for	
  linear	
  opera4ons	
  

Affine	
  arithme4c	
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AffineFloat data	
  type	
  

computed	
  Double	
  value	
   roundoff	
  errors	
  

2 THE AUTHOR

x̂ = x0 +

nX

i=1

xi✏i ) x̂ = x0 +

mX

i=1

xi✏i , m < n

x =

⇣
x0 +

nX

i=1

xi✏i ,

mX

i=1

ri⇢i

⌘

4. 4

x = x0 +

nX

i=1

ri✏i, ✏i 2 [�1, 1]

5. 5
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•  each	
  opera4on	
  adds	
  a	
  new	
  noise	
  term	
  
•  each	
  opera4on	
  propagates	
  exis4ng	
  noise	
  terms	
  	
  

•  roundoff	
  =	
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THE AUTHOR
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SmartFloat data	
  type	
  

uncertainty	
  on	
  variable	
   maximum	
  roundoff	
  errors	
  

•  At	
  each	
  opera4on,	
  adds	
  the	
  worst-­‐case	
  roundoff	
  error	
  
for	
  all	
  possible	
  values	
  

•  Propaga4on	
  of	
  errors	
  is	
  a	
  li?le	
  more	
  involved	
  

•  maximum	
  roundoff	
  =	
  
	
  	
  

BRIEF ARTICLE

THE AUTHOR

1. Test

x = [xa, xb]

x� x = [xa � xb, xb � xa]

6= [0, 0]

x = [1.2, 2.3]

2. 2

f(x, y) = x

2
+

x

y

(1)

x = [2.35, 2.36](2)

y = [�1.2, �1.2](3)

(4)

x

2
= [2.35

2
, 2.36

2
] = [5.5225, 5.5696] = [5.52, 5.57](5)

x

y

=


2.36

�1.2

,

2.35

�1.2

�
= [�1.9

¯

6, �1.958

¯

3] = [�1.97, �1.95](6)

f(x, y) = z = [5.52� 1.97, 5.57� 1.95] = [3.55, 3.62](7)

(8)

) roundo↵ = width(z) = 0.07(9)

3. 3

nX

i=1

|ri|

x̂ = x0 +

nX

i=1

xi✏i ) x̂ = x0 +

mX

i=1

xi✏i , m < n

1

2 THE AUTHOR

x =

⇣
x0 +

nX

i=1

xi✏i ,

mX

i=1

ri⇢i

⌘

4. 4

x = x0 +

nX

i=1

xi✏i, ✏i 2 [�1, 1]

5. 5
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The	
  quest	
  for	
  precision	
  

In	
  our	
  implementa4on,	
  we	
  face	
  the	
  same	
  roundoff	
  
errors	
  that	
  we	
  aim	
  to	
  quan4fy!	
  

	
  
•  directed	
  rounding	
  in	
  C++	
  
•  DoubleDouble	
  precision	
  
•  precise	
  handling	
  of	
  constants	
  
•  recognizing	
  exact	
  computa4ons	
  
•  dependency	
  problem	
  with	
  mul4plica4on	
  
•  non-­‐linear	
  opera4ons	
  
	
  



Nonlinear	
  approxima4ons	
  

Minrange	
  approxima8on	
  
•  rounding	
  direc4on	
  is	
  clear	
  

Less	
  precise,	
  but	
  reliable!	
  

Chebyshev	
  approxima8on	
  
•  needs	
  a	
  3rd	
  point,	
  whose	
  

rounding	
  direc4on	
  is	
  not	
  clear	
  
•  can	
  give	
  wrong	
  results	
  for	
  small	
  

input	
  intervals	
  



	
  	
  	
  	
  	
  Integra4on	
  into	
  	
  	
  
def	
  rootKahan(a:	
  SmartFloat,	
  b:	
  SmartFloat,	
  c:	
  SmartFloat)	
  {	
  

	
  val	
  discr	
  =	
  b	
  *	
  b	
  -­‐	
  a	
  *	
  c	
  *	
  4.0	
  
      if (b*b - a*c > 10.0 && b > 0.0) 
       return c * 2.0 /(-b - sqrt(discr)) 
    else   
     return (-b + sqrt(discr))/(a * 2.0) 
} 
 
•  easy	
  integra4on	
  with	
  implicits	
  and	
  strong	
  type	
  inference	
  
•  support	
  for	
  most	
  common	
  math.	
  func4ons	
  (exp,	
  sin,	
  cos,	
  log,	
  Pi,	
  …)	
  	
  
•  symmetric	
  equals	
  

scala> rootKahan(SmartFloat(3.0, 1.0),  
         SmartFloat(55.0, 5.0), SmartFloat(0.5, 1.5))  
[-0.13109336344405553,0.09429437802880317] (7.5543e-16) 



Precision:	
  AffineFloat	
  vs.	
  Intervals	
  

Intervals	
   AffineFloat	
  
LU	
  5x5,	
  with	
  pivo4ng	
  
LU	
  10x10	
  
LU	
  15x15	
  
	
  

6.69e-­‐13	
  
2.13e-­‐10	
  
1.92e-­‐8	
  

1.04e-­‐13	
  
7.75e-­‐12	
  
6.10e-­‐10	
  	
  

LU	
  5x5,	
  no	
  pivo4ng	
  
LU	
  10x10	
  

1.24e-­‐9	
  
4.89e-­‐6	
  

2.50e-­‐11	
  
2.38e-­‐10	
  

FFT	
  512	
  
FFT	
  256	
  

6.43e-­‐12	
  
2.38e-­‐12	
  

9.73e-­‐13	
  
3.03e-­‐13	
  	
  	
  

LU:	
  solu4on	
  to	
  Ax	
  =	
  b	
  by	
  factorizing	
  A	
  
FFT:	
  Fast	
  Fourier	
  Transform,	
  followed	
  by	
  its	
  inverse	
  

Up	
  to	
  4	
  decimal	
  orders	
  of	
  magnitude	
  improvement!	
  



Generality:	
  Doppler	
  frequency	
  shiY	
  

€ 

−30°C ≤ T ≤ 50°C
20Hz ≤ v ≤ 20000Hz
−100 m

s ≤ u ≤100 m
s

SMT[1]	
   bits	
   SmartFloat	
   abs.	
  roundoff	
  

q1	
   [313,	
  362]	
  	
   6	
   [313.3999,361.40]	
  	
   8.6908e-­‐14	
  
	
  

q2	
   [6267,	
  7228000]	
  	
   23	
   [6267.9999,7228000.00]	
  	
   3.3431e-­‐09	
  
q3	
   [213,	
  462]	
  	
   8	
   [213.3999,461.40]	
  	
   1.4924e-­‐13	
  	
  
q4	
   [45539,	
  212890]	
  	
   18	
   [44387.5599,212889.96]	
   1.6135e-­‐10	
  
z	
   [0,	
  138]	
  	
   8	
   [-­‐13.3398,162.7365]	
  	
   6.8184e-­‐13	
  

running	
  4me:	
  order	
  100s	
   our	
  running	
  8me:	
  order	
  1s	
  

q1 = 331.4 + 0.6T 
q2 = q1v 
q3 = q1 + u 
q4 = q3*q3  
z = q2 / q4 

[1]	
  A.B.	
  Kinsman,	
  N.	
  Nicolici.	
  Finite	
  Precision	
  bit-­‐width	
  alloca4on	
  using	
  SAT-­‐Modulo	
  Theory.	
  DATE,	
  2009.	
  



Performance	
  (ms)	
  
double	
   interval	
   AffineFloat	
   SmartFloat	
  

Nbody	
  (100	
  steps)	
   2.1	
   21	
   779	
   33756	
  
Spectral	
  norm	
  (10	
  iter.)	
   0.6	
   31	
   198	
   778	
  
Whetstone	
  (10	
  repeats)	
   1.2	
   2	
   59	
   680	
  
Fbench	
   0.2	
   1.3	
   10	
   1082	
  
Scimark	
  -­‐	
  FFT	
  (512x512)	
   1.2	
   18	
   1220	
   39987	
  
Scimark	
  -­‐	
  SOR	
  (100x100)	
   0.8	
   25	
   698	
   127168	
  
Scimark	
  -­‐	
  LU	
  (50x50)	
   2.6	
   30	
   2419	
   4914	
  
Spring	
  sim.	
  (10000	
  steps)	
   0.2	
   46	
   1283	
   4086	
  

•  acceptable	
  for	
  understanding	
  floa4ng-­‐point	
  computa4ons	
  
•  slower	
  than	
  a	
  hardware	
  implementa4on,	
  but	
  faster	
  than	
  exis4ng	
  

approaches	
  that	
  achieve	
  similar	
  precision	
  



Seman4cs	
  for	
  floa4ng-­‐point	
  programs	
  

•  interval	
  arithme4c	
  
•  affine	
  arithme4c	
  

•  stochas4c	
  arithme4c	
  
Run	
  the	
  program	
  repeatedly	
  with	
  random	
  rounding.	
  Mainly	
  useful	
  for	
  
finding	
  stability	
  issues.	
  	
  

•  automa4c	
  differen4a4on	
  
Computes	
  the	
  derivate	
  of	
  a	
  program	
  to	
  expose	
  sensi4vi4es	
  to	
  input	
  
changes.	
  



Floa4ng-­‐point	
  verifica4on	
  

•  Abstract	
  interpreta4on	
  
Computes	
  an	
  overapproxima4on	
  of	
  variable	
  values	
  used	
  to	
  
–  guarantee	
  no	
  run-­‐4me	
  errors	
  can	
  occur	
  (Astree)	
  
–  roundoff	
  errors	
  are	
  within	
  certain	
  bounds	
  (Fluctuat)	
  	
  

•  Model-­‐checking	
  
Models	
  a	
  floa4ng-­‐point	
  computa4on	
  as	
  a	
  finite-­‐state	
  system	
  and	
  
performs	
  a	
  path	
  sensi4ve	
  analysis	
  
–  precise	
  but	
  expensive	
  

•  SAT	
  
Encodes	
  floa4ng-­‐point	
  opera4ons	
  bit-­‐precisely	
  (basically	
  encodes	
  the	
  
circuit)	
  and	
  checks	
  the	
  formula	
  against	
  user-­‐provided	
  asser4ons.	
  
–  check	
  for	
  excep4ons	
  (e.g.	
  underflow)	
  



Floa4ng-­‐point	
  verifica4on	
  

•  Theorem	
  proving	
  
Provide	
  code	
  contracts	
  (specifica4ons)	
  about	
  the	
  precision	
  of	
  methods	
  
and	
  check	
  the	
  proper4es	
  with	
  a	
  theorem	
  prover.	
  
–  detailed	
  specifica4on	
  necessary	
  
–  interac4on	
  with	
  the	
  theorem	
  prover	
  

	
  
Example:	
  check	
  that	
  a	
  piece	
  of	
  code	
  is	
  overflow-­‐safe:	
  

	
  

@rnd = float<ieee_32,ne>;  
z = rnd(rnd(x * x) + rnd(sqrt(y))); !
{ |x| <= 2 /\ y in [1,9] !
   -> z in [1,7] /\ |rnd(x * x)| <= 0x1.FFFFFEp127 /\  !
      |rnd(sqrt(y))| <= 0x1.FFFFFEp127 } !
!



That’s	
  all.	
  

h?p://lara.epfl.ch/w/smarnloat	
  





1.  Compact	
  all	
  other	
  terms	
  based	
  on	
  
average	
  errors	
  and	
  their	
  devia4on.	
  

2.  For	
  pathological	
  cases,	
  compact	
  all	
  
noise	
  symbols	
  into	
  a	
  single	
  one.	
  

Packing	
  

BRIEF ARTICLE

THE AUTHOR
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Packing	
  of	
  noise	
  terms	
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