
Trustworthy	 Numerical	
Computa4on	 in	 Scala	

Eva	 Darulová,	 Viktor	 Kuncak	
h?p://lara.epfl.ch/~edarulov/TrustworthyComputa4on.pdf	

Reasoning	 about	 the	 real	 world	 ma?ers	

The	 most	 widely	 used	 data	 type	 are	 floa4ng-‐points	
•  IEEE	 754-‐2008	 standard	 gives	 precise	 behaviour	
•  efficient	 and,	 we	 hope,	 adequate	 is	 many	 cases	

“It	 makes	 us	 nervous	 to	 fly	 an	 airplane	 since	 we	 know	 they	 operate	
using	 floa4ng-‐point	 arithme4c.”,	 Xavier	 Leroy.	 Verified	 squared:	 does	 cri4cal	
soYware	 deserve	 verified	 tools?	 In	 POPL,	 2011.	 	
	

“…	 any	 opera4on	 involving	 numerical	 realiza4on	 of	 a	 geophysical	
algorithm	 led	 to	 significant	 disagreement.”,	 L.	 Ha?on	 and	 A.	 Roberts.	 How	
Accurate	 is	 Scien4fic	 SoYware?	 In	 IEEE	 Trans.	 So2w.	 Eng.,	 20,	 1994.	 	
	

How	 do	 you	 know	 you	 can	 trust	
your	 numerical	 computa4on?	

def	 rootKahan(a:	 Double,	 b:	 Double,	 c:	 Double)	 {	
	 val	 discr	 =	 b	 *	 b	 -‐	 a	 *	 c	 *	 4.0	

 if (b*b - a*c > 10.0 && b > 0.0)
 return c * 2.0 /(-b - sqrt(discr))
 else

 return (-b + sqrt(discr))/(a * 2.0)
}

def	 root(a:	 Double,	 b:	 Double,	 c:	 Double)	 {	
	 val	 discr	 =	 b	 *	 b	 -‐	 a	 *	 c	 *	 4.0	

	 	 	 	 	 	 return	 	 (-‐b	 +	 sqrt(discr))/(a	 *	 2.0)	
}	

Equivalently	 in	 real	 numbers:	 	

scala> root(2.999, 56.000003, 1.00076)
res0: Double = -0.017887849139318127

scala> rootKahan(2.999, 56.000003, 1.00076)
res0: Double = -0.017887849139317836	

Floa4ng-‐points	

•  Standard	 defines:	 	
–  arithme4c	 formats	 (incl.	 NaN,	 infini4es)	
–  interchange	 formats	
–  rounding	 rules	
–  opera4ons	
–  excep4on	 handling	

•  (mostly	 full)	 hardware	 support	
•  varying	 soYware	 support	 	

754	

100000000001001001000011111101101010100010001000010110100011000!

•  JVM	
–  	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 rounded	 to	 nearest	
–  sin,	 cos,	 …	 :	 API-‐specified	 roundoff	 errors	
	

•  C99	
–  low-‐level	 control	 of	 hardware	 (all	 rounding	 modes)	
–  beware	 of	 compiler	 op4miza4ons	

•  	 CPython	
–  math	 module	 wrapper	 around	 C	 library	 func4ons	
–  “almost	 all	 planorms	 map	 Python	 floats	 to	 IEEE-‐754	
“double	 precision”	

soYware	 support	

100000000001001001000011111101101010100010001000010110100011000!

754	

How	 do	 you	 know	 you	 can	 trust	
your	 numerical	 computa4on?	

•  interval	 width	 ～	 maximum	 roundoff	 error	

Interval	 arithme4c	

scala> root(2.999, 56.000003, 1.00076)
[-0.017887849139321683,-0.017887849139313385] (2.6514e-13)

scala> rootKahan(2.999, 56.000003, 1.00076)
[-0.017887849139317846,-0.017887849139317825] (5.8187e-16)

2 THE AUTHOR

x =

⇣
x0 +

nX

i=1

xi✏i ,

mX

i=1

ri

⌘

4. 4

x = x0 +

nX

i=1

xi✏i, ✏i 2 [�1, 1]

5. 5

↵x̂+ �ŷ + ⇣ = (↵x0 + �y0 + ⇣)+

nX

i=1

(↵xi + �yi)✏i + ◆✏n+1

6. 6

x 2 [0, 1]

u = x+ 3 2 [3, 4]

z = u� x 2 [2, 4] but z = x+ 3� x = 3!

b 2 [1.01, 1.02]

b ⇤ b 2 [1.02, 1.05] //1.01

2
= 1.0201, 1.02

2
= 1.0404

7. 7

x = 0.5 + 0.5✏1 2 [0, 1]

u = x+ 3 = 3.5 + 0.5✏1

z = u� x = 3.5 + 0.5✏1 � 0.5� 0.5✏1

= 3.0

Problems	 with	 interval	 arithme4c	
•  Imprecision:	 losing	 dependencies	

	
•  Lack	 of	 generality:	 input	 range	 vs.	 roundoff	
What	 is	 the	 maximum	 roundoff	 error	 over	 an	 en4re	 input	 range?	

scala> root(Interval(2.0, 4.0), Interval(50.0, 60.0),
 Interval(0.5, 1.5))
[-2.560144695375273,2.4916643505649514] (1.0073e+00)

2 THE AUTHOR

x =

⇣
x0 +

nX

i=1

xi✏i ,

mX

i=1

ri⇢i

⌘

4. 4

x = x0 +

nX

i=1

xi✏i, ✏i 2 [�1, 1]

5. 5

↵x̂+ �ŷ + ⇣ = (↵x0 + �y0 + ⇣)+

nX

i=1

(↵xi + �yi)✏i + ◆✏n+1

6. 6

x 2 [0, 1]

u = x+ 3 u 2 [3, 4]

z = u� x z 2 [2, 4] but z = x+ 3� x = 3!

b 2 [1.01, 1.02]

b ⇤ b 2 [1.02, 1.05] //1.01

2
= 1.0201, 1.02

2
= 1.0404

7. 7

x = 0.5 + 0.5✏1 2 [0, 1]

u = x+ 3 = 3.5 + 0.5✏1

z = u� x = 3.5 + 0.5✏1 � 0.5� 0.5✏1

= 3.0

	 Rigorous	 numerical	 data	 types	 for	 	
precision	 and	 generality	 	

Dependency-‐preserving	 es4ma4on	
of	 roundoff	 errors	 of	 a	 concrete	
floa4ng-‐point	 computa4on.	

Es4ma4on	 of	 upper	 bounds	
on	 roundoff	 errors	 over	 an	
en8re	 range	 of	 input	 values.	

Contribu4ons	

AffineFloat	 SmartFloat	

•  represents	 the	 interval	

	 	 	 	 	

Affine	 arithme4c	

Note that a range-based arithmetic as such does necessarily
attempt to quantify the roundoff errors itself. A possible ap-
plication of affine arithmetic, as originally proposed, is find-
ing zeroes of a function in a given initial interval. The idea
is to bisect the initial interval and to compute an estimate of
the function value over each subdomain. If the output range
for one subdomain does not include a zero, then that part of
the domain can be safely discarded.

Affine arithmetic represents possible values of variables
as affine forms

x̂ = x0 +
n
∑

i=1

xiεi

where x0 denotes the central value (of the represented in-
terval) and each noise symbol εi is a formal variable de-
noting a deviation from the central value, intended to range
over [−1, 1]. The maximum magnitude of each noise term
is given by the corresponding xi. Note that the sign of xi

does not matter in isolation, it does, however, reflect the re-
lative dependence between values. For example, take x =
x0 + x1ε1, then in real number semantics,

x− x = x0 + x1ε1 − (x0 + x1ε1)

= x0 − x0 + x1ε1 − x1ε1 = 0

If we subtracted x = x0−x1ε1 instead, the resulting interval
would have width 2 ∗ x1 and not zero.

The range represented by an affine form is computed as

[x̂] = [x0 − rad(x̂), x0 + rad(x̂)], rad(x̂) =
n
∑

i=1

|xi|

When implementing affine forms in a program, we need to
take into account that some operations are not performed
exactly, because the central value and the coefficients need
to be represented in some finite (e.g. double) precision. As
suggested in [17], the roundoff errors committed during the
computation can be added with a new fresh noise symbol to
the final affine form. A general affine operation αx̂+βŷ+ ζ
consists of addition, subtraction, addition of a constant (ζ)
or multiplication by a constant (α,β). Expanding the affine
forms x̂ and ŷ we get

αx̂+βŷ+ζ = (αx0+βy0+ζ)+
n
∑

i=1

(αxi+βyi)εi+ ιεn+1

(3)
with α,β, ζ ∈ F and where ι denotes the accumulated
internal errors, that is, the roundoff errors committed when
computing the individual terms of the new affine form.

Each operation carries a roundoff error and all of them
must be taken into account to achieve the parameter ι for the
rigorous bound. The challenge hereby consists of account-
ing for all roundoff errors, but still creating a tight approxi-
mation. While for the basic arithmetic operations the round-
off can be computed with Equation 1, there is no such simple

formula for calculating the roundoff for composed expres-
sions (e.g. α ∗ x0 + ζ). We determine the maximum round-
off error of an expression f(v1, . . . , vm) using the following
procedure [17]:

z = f(v1, v2, . . . , vm)

z−∞ = ↓f(v1, v2, . . . , vm)↓
z+∞ = ↑f(v1, v2, . . . , vm)↑

ι = max(z+∞ − z, z − z−∞)

That is, the program computes three results: (1) the floating-
point result z using rounding to-nearest, (2) the result z−∞

assuming worst-case roundoff errors when rounding towards
−∞, and the analogous result z+∞ with rounding towards
+∞ at each step. As the worst-case committed roundoff
error ι we use the maximum difference (ι) between these
values.

A possible use of affine arithmetic for keeping track of
roundoff errors is to represent each double precision value
by an affine form. That is, the actually computed double
precision value is equal to the central value and the noise
terms collect the accumulating roundoff errors. One expects
to obtain tighter bounds than with interval arithmetic, espe-
cially when a computation exhibits many correlations bet-
ween variables. However, a straightforward application of
affine arithmetic in the original formulation is not always
sound, as we show in Section 6. Namely, the standard affine
arithmetic takes the liberty of choosing a convenient central
value in a range, which does not preserve the compatibility
with Double. Using such computation on non-affine opera-
tions (such as division or trigonometric functions) can shift
the central value away from the actually computed Double
value. Roundoff errors computed using this method would
be those of a different computation and would thus be un-
sound. Our implementation therefore provides a modified
approximation that ensures soundness.

Before proceeding with the description of the technique
we use in our solution, we show in the next section how
the library behaves in practice. The library provides two
data types, AffineFloat and SmartFloat, that replace ordinary
floating-point numbers in a program, track a computation
and provide estimates on the roundoff errors committed.
An AffineFloat variable represents exactly one floating-point
number and thus replaces the computation one-to-one, a
SmartFloat variable represents a range of values and com-
putes the maximum roundoff error over this range. The tech-
nical implications of this difference will be described in de-
tail in Section 6 and Section 7. Note that whereas SmartFloat
must compute worst-case roundoff errors over the entire
interval, AffineFloat only needs to do this for one value.
AffineFloat can therefore generally provide a more precise
estimate.

2 THE AUTHOR

x =

⇣
x0 +

nX

i=1

xi✏i ,

mX

i=1

ri

⌘

4. 4

x = x0 +

nX

i=1

xi✏i, ✏i 2 [�1, 1]

5. 5

↵x̂+ �ŷ + ⇣ = (↵x0 + �y0 + ⇣)+

nX

i=1

(↵xi + �yi)✏i + ◆✏n+1

6. 6

x 2 [0, 1]

u = x+ 3 2 [3, 4]

z = u� x 2 [2, 4]

b 2 [1.01, 1.02]

b ⇤ b = [1.02, 1.05] //1.01

2
= 1.0201, 1.02

2
= 1.0404

7. 7

x = 0.5 + 0.5✏1 2 [0, 1]

u = x+ 3 = 3.5 + 0.5✏1

z = u� x = 3.5 + 0.5✏1 � 0.5� 0.5✏1

= 3.0

Note that a range-based arithmetic as such does necessarily
attempt to quantify the roundoff errors itself. A possible ap-
plication of affine arithmetic, as originally proposed, is find-
ing zeroes of a function in a given initial interval. The idea
is to bisect the initial interval and to compute an estimate of
the function value over each subdomain. If the output range
for one subdomain does not include a zero, then that part of
the domain can be safely discarded.

Affine arithmetic represents possible values of variables
as affine forms

x̂ = x0 +
n
∑

i=1

xiεi

where x0 denotes the central value (of the represented in-
terval) and each noise symbol εi is a formal variable de-
noting a deviation from the central value, intended to range
over [−1, 1]. The maximum magnitude of each noise term
is given by the corresponding xi. Note that the sign of xi

does not matter in isolation, it does, however, reflect the re-
lative dependence between values. For example, take x =
x0 + x1ε1, then in real number semantics,

x− x = x0 + x1ε1 − (x0 + x1ε1)

= x0 − x0 + x1ε1 − x1ε1 = 0

If we subtracted x = x0−x1ε1 instead, the resulting interval
would have width 2 ∗ x1 and not zero.

The range represented by an affine form is computed as

[x̂] = [x0 − rad(x̂), x0 + rad(x̂)], rad(x̂) =
n
∑

i=1

|xi|

When implementing affine forms in a program, we need to
take into account that some operations are not performed
exactly, because the central value and the coefficients need
to be represented in some finite (e.g. double) precision. As
suggested in [17], the roundoff errors committed during the
computation can be added with a new fresh noise symbol to
the final affine form. A general affine operation αx̂+βŷ+ ζ
consists of addition, subtraction, addition of a constant (ζ)
or multiplication by a constant (α,β). Expanding the affine
forms x̂ and ŷ we get

αx̂+βŷ+ζ = (αx0+βy0+ζ)+
n
∑

i=1

(αxi+βyi)εi+ ιεn+1

(3)
with α,β, ζ ∈ F and where ι denotes the accumulated
internal errors, that is, the roundoff errors committed when
computing the individual terms of the new affine form.

Each operation carries a roundoff error and all of them
must be taken into account to achieve the parameter ι for the
rigorous bound. The challenge hereby consists of account-
ing for all roundoff errors, but still creating a tight approxi-
mation. While for the basic arithmetic operations the round-
off can be computed with Equation 1, there is no such simple

formula for calculating the roundoff for composed expres-
sions (e.g. α ∗ x0 + ζ). We determine the maximum round-
off error of an expression f(v1, . . . , vm) using the following
procedure [17]:

z = f(v1, v2, . . . , vm)

z−∞ = ↓f(v1, v2, . . . , vm)↓
z+∞ = ↑f(v1, v2, . . . , vm)↑

ι = max(z+∞ − z, z − z−∞)

That is, the program computes three results: (1) the floating-
point result z using rounding to-nearest, (2) the result z−∞

assuming worst-case roundoff errors when rounding towards
−∞, and the analogous result z+∞ with rounding towards
+∞ at each step. As the worst-case committed roundoff
error ι we use the maximum difference (ι) between these
values.

A possible use of affine arithmetic for keeping track of
roundoff errors is to represent each double precision value
by an affine form. That is, the actually computed double
precision value is equal to the central value and the noise
terms collect the accumulating roundoff errors. One expects
to obtain tighter bounds than with interval arithmetic, espe-
cially when a computation exhibits many correlations bet-
ween variables. However, a straightforward application of
affine arithmetic in the original formulation is not always
sound, as we show in Section 6. Namely, the standard affine
arithmetic takes the liberty of choosing a convenient central
value in a range, which does not preserve the compatibility
with Double. Using such computation on non-affine opera-
tions (such as division or trigonometric functions) can shift
the central value away from the actually computed Double
value. Roundoff errors computed using this method would
be those of a different computation and would thus be un-
sound. Our implementation therefore provides a modified
approximation that ensures soundness.

Before proceeding with the description of the technique
we use in our solution, we show in the next section how
the library behaves in practice. The library provides two
data types, AffineFloat and SmartFloat, that replace ordinary
floating-point numbers in a program, track a computation
and provide estimates on the roundoff errors committed.
An AffineFloat variable represents exactly one floating-point
number and thus replaces the computation one-to-one, a
SmartFloat variable represents a range of values and com-
putes the maximum roundoff error over this range. The tech-
nical implications of this difference will be described in de-
tail in Section 6 and Section 7. Note that whereas SmartFloat
must compute worst-case roundoff errors over the entire
interval, AffineFloat only needs to do this for one value.
AffineFloat can therefore generally provide a more precise
estimate.

Note that a range-based arithmetic as such does necessarily
attempt to quantify the roundoff errors itself. A possible ap-
plication of affine arithmetic, as originally proposed, is find-
ing zeroes of a function in a given initial interval. The idea
is to bisect the initial interval and to compute an estimate of
the function value over each subdomain. If the output range
for one subdomain does not include a zero, then that part of
the domain can be safely discarded.

Affine arithmetic represents possible values of variables
as affine forms

x̂ = x0 +
n
∑

i=1

xiεi

where x0 denotes the central value (of the represented in-
terval) and each noise symbol εi is a formal variable de-
noting a deviation from the central value, intended to range
over [−1, 1]. The maximum magnitude of each noise term
is given by the corresponding xi. Note that the sign of xi

does not matter in isolation, it does, however, reflect the re-
lative dependence between values. For example, take x =
x0 + x1ε1, then in real number semantics,

x− x = x0 + x1ε1 − (x0 + x1ε1)

= x0 − x0 + x1ε1 − x1ε1 = 0

If we subtracted x = x0−x1ε1 instead, the resulting interval
would have width 2 ∗ x1 and not zero.

The range represented by an affine form is computed as

[x̂] = [x0 − rad(x̂), x0 + rad(x̂)], rad(x̂) =
n
∑

i=1

|xi|

When implementing affine forms in a program, we need to
take into account that some operations are not performed
exactly, because the central value and the coefficients need
to be represented in some finite (e.g. double) precision. As
suggested in [17], the roundoff errors committed during the
computation can be added with a new fresh noise symbol to
the final affine form. A general affine operation αx̂+βŷ+ ζ
consists of addition, subtraction, addition of a constant (ζ)
or multiplication by a constant (α,β). Expanding the affine
forms x̂ and ŷ we get

αx̂+βŷ+ζ = (αx0+βy0+ζ)+
n
∑

i=1

(αxi+βyi)εi+ ιεn+1

(3)
with α,β, ζ ∈ F and where ι denotes the accumulated
internal errors, that is, the roundoff errors committed when
computing the individual terms of the new affine form.

Each operation carries a roundoff error and all of them
must be taken into account to achieve the parameter ι for the
rigorous bound. The challenge hereby consists of account-
ing for all roundoff errors, but still creating a tight approxi-
mation. While for the basic arithmetic operations the round-
off can be computed with Equation 1, there is no such simple

formula for calculating the roundoff for composed expres-
sions (e.g. α ∗ x0 + ζ). We determine the maximum round-
off error of an expression f(v1, . . . , vm) using the following
procedure [17]:

z = f(v1, v2, . . . , vm)

z−∞ = ↓f(v1, v2, . . . , vm)↓
z+∞ = ↑f(v1, v2, . . . , vm)↑

ι = max(z+∞ − z, z − z−∞)

That is, the program computes three results: (1) the floating-
point result z using rounding to-nearest, (2) the result z−∞

assuming worst-case roundoff errors when rounding towards
−∞, and the analogous result z+∞ with rounding towards
+∞ at each step. As the worst-case committed roundoff
error ι we use the maximum difference (ι) between these
values.

A possible use of affine arithmetic for keeping track of
roundoff errors is to represent each double precision value
by an affine form. That is, the actually computed double
precision value is equal to the central value and the noise
terms collect the accumulating roundoff errors. One expects
to obtain tighter bounds than with interval arithmetic, espe-
cially when a computation exhibits many correlations bet-
ween variables. However, a straightforward application of
affine arithmetic in the original formulation is not always
sound, as we show in Section 6. Namely, the standard affine
arithmetic takes the liberty of choosing a convenient central
value in a range, which does not preserve the compatibility
with Double. Using such computation on non-affine opera-
tions (such as division or trigonometric functions) can shift
the central value away from the actually computed Double
value. Roundoff errors computed using this method would
be those of a different computation and would thus be un-
sound. Our implementation therefore provides a modified
approximation that ensures soundness.

Before proceeding with the description of the technique
we use in our solution, we show in the next section how
the library behaves in practice. The library provides two
data types, AffineFloat and SmartFloat, that replace ordinary
floating-point numbers in a program, track a computation
and provide estimates on the roundoff errors committed.
An AffineFloat variable represents exactly one floating-point
number and thus replaces the computation one-to-one, a
SmartFloat variable represents a range of values and com-
putes the maximum roundoff error over this range. The tech-
nical implications of this difference will be described in de-
tail in Section 6 and Section 7. Note that whereas SmartFloat
must compute worst-case roundoff errors over the entire
interval, AffineFloat only needs to do this for one value.
AffineFloat can therefore generally provide a more precise
estimate.

2 THE AUTHOR

x =

⇣
x0 +

nX

i=1

xi✏i ,

mX

i=1

ri

⌘

4. 4

x = x0 +

nX

i=1

xi✏i, ✏i 2 [�1, 1]

5. 5

↵x̂+ �ŷ + ⇣ = (↵x0 + �y0 + ⇣)+

nX

i=1

(↵xi + �yi)✏i + ◆✏n+1

6. 6

x 2 [0, 1]

u = x+ 3 2 [3, 4]

z = u� x 2 [2, 4]

b 2 [1.01, 1.02]

b ⇤ b = [1.02, 1.05] //1.01

2
= 1.0201, 1.02

2
= 1.0404

central	 value	

noise	 symbol	

max.	 magnitude	 of	 noise	 term	

Note that a range-based arithmetic as such does necessarily
attempt to quantify the roundoff errors itself. A possible ap-
plication of affine arithmetic, as originally proposed, is find-
ing zeroes of a function in a given initial interval. The idea
is to bisect the initial interval and to compute an estimate of
the function value over each subdomain. If the output range
for one subdomain does not include a zero, then that part of
the domain can be safely discarded.

Affine arithmetic represents possible values of variables
as affine forms

x̂ = x0 +
n
∑

i=1

xiεi

where x0 denotes the central value (of the represented in-
terval) and each noise symbol εi is a formal variable de-
noting a deviation from the central value, intended to range
over [−1, 1]. The maximum magnitude of each noise term
is given by the corresponding xi. Note that the sign of xi

does not matter in isolation, it does, however, reflect the re-
lative dependence between values. For example, take x =
x0 + x1ε1, then in real number semantics,

x− x = x0 + x1ε1 − (x0 + x1ε1)

= x0 − x0 + x1ε1 − x1ε1 = 0

If we subtracted x = x0−x1ε1 instead, the resulting interval
would have width 2 ∗ x1 and not zero.

The range represented by an affine form is computed as

[x̂] = [x0 − rad(x̂), x0 + rad(x̂)], rad(x̂) =
n
∑

i=1

|xi|

When implementing affine forms in a program, we need to
take into account that some operations are not performed
exactly, because the central value and the coefficients need
to be represented in some finite (e.g. double) precision. As
suggested in [17], the roundoff errors committed during the
computation can be added with a new fresh noise symbol to
the final affine form. A general affine operation αx̂+βŷ+ ζ
consists of addition, subtraction, addition of a constant (ζ)
or multiplication by a constant (α,β). Expanding the affine
forms x̂ and ŷ we get

αx̂+βŷ+ζ = (αx0+βy0+ζ)+
n
∑

i=1

(αxi+βyi)εi+ ιεn+1

(3)
with α,β, ζ ∈ F and where ι denotes the accumulated
internal errors, that is, the roundoff errors committed when
computing the individual terms of the new affine form.

Each operation carries a roundoff error and all of them
must be taken into account to achieve the parameter ι for the
rigorous bound. The challenge hereby consists of account-
ing for all roundoff errors, but still creating a tight approxi-
mation. While for the basic arithmetic operations the round-
off can be computed with Equation 1, there is no such simple

formula for calculating the roundoff for composed expres-
sions (e.g. α ∗ x0 + ζ). We determine the maximum round-
off error of an expression f(v1, . . . , vm) using the following
procedure [17]:

z = f(v1, v2, . . . , vm)

z−∞ = ↓f(v1, v2, . . . , vm)↓
z+∞ = ↑f(v1, v2, . . . , vm)↑

ι = max(z+∞ − z, z − z−∞)

That is, the program computes three results: (1) the floating-
point result z using rounding to-nearest, (2) the result z−∞

assuming worst-case roundoff errors when rounding towards
−∞, and the analogous result z+∞ with rounding towards
+∞ at each step. As the worst-case committed roundoff
error ι we use the maximum difference (ι) between these
values.

A possible use of affine arithmetic for keeping track of
roundoff errors is to represent each double precision value
by an affine form. That is, the actually computed double
precision value is equal to the central value and the noise
terms collect the accumulating roundoff errors. One expects
to obtain tighter bounds than with interval arithmetic, espe-
cially when a computation exhibits many correlations bet-
ween variables. However, a straightforward application of
affine arithmetic in the original formulation is not always
sound, as we show in Section 6. Namely, the standard affine
arithmetic takes the liberty of choosing a convenient central
value in a range, which does not preserve the compatibility
with Double. Using such computation on non-affine opera-
tions (such as division or trigonometric functions) can shift
the central value away from the actually computed Double
value. Roundoff errors computed using this method would
be those of a different computation and would thus be un-
sound. Our implementation therefore provides a modified
approximation that ensures soundness.

Before proceeding with the description of the technique
we use in our solution, we show in the next section how
the library behaves in practice. The library provides two
data types, AffineFloat and SmartFloat, that replace ordinary
floating-point numbers in a program, track a computation
and provide estimates on the roundoff errors committed.
An AffineFloat variable represents exactly one floating-point
number and thus replaces the computation one-to-one, a
SmartFloat variable represents a range of values and com-
putes the maximum roundoff error over this range. The tech-
nical implications of this difference will be described in de-
tail in Section 6 and Section 7. Note that whereas SmartFloat
must compute worst-case roundoff errors over the entire
interval, AffineFloat only needs to do this for one value.
AffineFloat can therefore generally provide a more precise
estimate.

•  affine	 opera4ons	 (+,	 -‐)	
	
	 	 	 	 	
	 	 	
•  non-‐linear	 opera4ons	 need	 a	 linear	 approxima4on	

•  avoids	 dependency	 problem	 for	 linear	 opera4ons	

Affine	 arithme4c	

2 THE AUTHOR

x =

⇣
x0 +

nX

i=1

xi✏i ,

mX

i=1

ri

⌘

4. 4

x = x0 +

nX

i=1

xi✏i, ✏i 2 [�1, 1]

5. 5

↵x̂+ �ŷ + ⇣ = (↵x0 + �y0 + ⇣)+

nX

i=1

(↵xi + �yi)✏i + ◆✏n+1

6. 6

x 2 [0, 1]

u = x+ 3 2 [3, 4]

z = u� x 2 [2, 4]

b 2 [1.01, 1.02]

b ⇤ b = [1.02, 1.05] //1.01

2
= 1.0201, 1.02

2
= 1.0404

7. 7

x = 0.5 + 0.5✏1 2 [0, 1]

u = x+ 3 = 3.5 + 0.5✏1

z = u� x = 3.5 + 0.5✏1 � 0.5� 0.5✏1

= 3.0

2 THE AUTHOR

x =

⇣
x0 +

nX

i=1

xi✏i ,

mX

i=1

ri

⌘

4. 4

x = x0 +

nX

i=1

xi✏i, ✏i 2 [�1, 1]

5. 5

↵x̂+ �ŷ + ⇣ = (↵x0 + �y0 + ⇣)+

nX

i=1

(↵xi + �yi)✏i + ◆✏n+1

6. 6

x 2 [0, 1]

u = x+ 3 2 [3, 4]

z = u� x 2 [2, 4]

b 2 [1.01, 1.02]

b ⇤ b = [1.02, 1.05] //1.01

2
= 1.0201, 1.02

2
= 1.0404

central	 value	

noise	 symbol	

max.	 magnitude	 of	 noise	 term	

AffineFloat data	 type	

computed	 Double	 value	 roundoff	 errors	

2 THE AUTHOR

x̂ = x0 +

nX

i=1

xi✏i) x̂ = x0 +

mX

i=1

xi✏i , m < n

x =

⇣
x0 +

nX

i=1

xi✏i ,

mX

i=1

ri⇢i

⌘

4. 4

x = x0 +

nX

i=1

ri✏i, ✏i 2 [�1, 1]

5. 5

↵x̂+ �ŷ + ⇣ = (↵x0 + �y0 + ⇣)+

nX

i=1

(↵xi + �yi)✏i + ◆✏n+1

6. 6

x 2 [0, 1]

u = x+ 3 u 2 [3, 4]

z = u� x z 2 [2, 4] but z = x+ 3� x = 3!

b 2 [1.01, 1.02]

b ⇤ b 2 [1.02, 1.05] //1.01

2
= 1.0201, 1.02

2
= 1.0404

7. 7

x = 0.5 + 0.5✏1 2 [0, 1]

u = x+ 3 = 3.5 + 0.5✏1

z = u� x = 3.5 + 0.5✏1 � 0.5� 0.5✏1

= 3.0

•  each	 opera4on	 adds	 a	 new	 noise	 term	
•  each	 opera4on	 propagates	 exis4ng	 noise	 terms	 	

•  roundoff	 =	

BRIEF ARTICLE

THE AUTHOR

1. Test

x = [xa, xb]

x� x = [xa � xb, xb � xa]

6= [0, 0]

x = [1.2, 2.3]

2. 2

f(x, y) = x

2
+

x

y

(1)

x = [2.35, 2.36](2)

y = [�1.2, �1.2](3)

(4)

x

2
= [2.35

2
, 2.36

2
] = [5.5225, 5.5696] = [5.52, 5.57](5)

x

y

=

2.36

�1.2

,

2.35

�1.2

�
= [�1.9

¯

6, �1.958

¯

3] = [�1.97, �1.95](6)

f(x, y) = z = [5.52� 1.97, 5.57� 1.95] = [3.55, 3.62](7)

(8)

) roundo↵ = width(z) = 0.07(9)

3. 3

nX

i=1

|ri|

x̂ = x0 +

nX

i=1

xi✏i) x̂ = x0 +

mX

i=1

xi✏i , m < n

1

SmartFloat data	 type	

uncertainty	 on	 variable	 maximum	 roundoff	 errors	

•  At	 each	 opera4on,	 adds	 the	 worst-‐case	 roundoff	 error	
for	 all	 possible	 values	

•  Propaga4on	 of	 errors	 is	 a	 li?le	 more	 involved	

•  maximum	 roundoff	 =	
	 	

BRIEF ARTICLE

THE AUTHOR

1. Test

x = [xa, xb]

x� x = [xa � xb, xb � xa]

6= [0, 0]

x = [1.2, 2.3]

2. 2

f(x, y) = x

2
+

x

y

(1)

x = [2.35, 2.36](2)

y = [�1.2, �1.2](3)

(4)

x

2
= [2.35

2
, 2.36

2
] = [5.5225, 5.5696] = [5.52, 5.57](5)

x

y

=

2.36

�1.2

,

2.35

�1.2

�
= [�1.9

¯

6, �1.958

¯

3] = [�1.97, �1.95](6)

f(x, y) = z = [5.52� 1.97, 5.57� 1.95] = [3.55, 3.62](7)

(8)

) roundo↵ = width(z) = 0.07(9)

3. 3

nX

i=1

|ri|

x̂ = x0 +

nX

i=1

xi✏i) x̂ = x0 +

mX

i=1

xi✏i , m < n

1

2 THE AUTHOR

x =

⇣
x0 +

nX

i=1

xi✏i ,

mX

i=1

ri⇢i

⌘

4. 4

x = x0 +

nX

i=1

xi✏i, ✏i 2 [�1, 1]

5. 5

↵x̂+ �ŷ + ⇣ = (↵x0 + �y0 + ⇣)+

nX

i=1

(↵xi + �yi)✏i + ◆✏n+1

6. 6

x 2 [0, 1]

u = x+ 3 2 [3, 4]

z = u� x 2 [2, 4] but z = x+ 3� x = 3!

b 2 [1.01, 1.02]

b ⇤ b 2 [1.02, 1.05] //1.01

2
= 1.0201, 1.02

2
= 1.0404

7. 7

x = 0.5 + 0.5✏1 2 [0, 1]

u = x+ 3 = 3.5 + 0.5✏1

z = u� x = 3.5 + 0.5✏1 � 0.5� 0.5✏1

= 3.0

The	 quest	 for	 precision	

In	 our	 implementa4on,	 we	 face	 the	 same	 roundoff	
errors	 that	 we	 aim	 to	 quan4fy!	

	
•  directed	 rounding	 in	 C++	
•  DoubleDouble	 precision	
•  precise	 handling	 of	 constants	
•  recognizing	 exact	 computa4ons	
•  dependency	 problem	 with	 mul4plica4on	
•  non-‐linear	 opera4ons	
	

Nonlinear	 approxima4ons	

Minrange	 approxima8on	
•  rounding	 direc4on	 is	 clear	

Less	 precise,	 but	 reliable!	

Chebyshev	 approxima8on	
•  needs	 a	 3rd	 point,	 whose	

rounding	 direc4on	 is	 not	 clear	
•  can	 give	 wrong	 results	 for	 small	

input	 intervals	

	 	 	 	 	 Integra4on	 into	 	 	
def	 rootKahan(a:	 SmartFloat,	 b:	 SmartFloat,	 c:	 SmartFloat)	 {	

	 val	 discr	 =	 b	 *	 b	 -‐	 a	 *	 c	 *	 4.0	
 if (b*b - a*c > 10.0 && b > 0.0)
 return c * 2.0 /(-b - sqrt(discr))
 else
 return (-b + sqrt(discr))/(a * 2.0)
}

•  easy	 integra4on	 with	 implicits	 and	 strong	 type	 inference	
•  support	 for	 most	 common	 math.	 func4ons	 (exp,	 sin,	 cos,	 log,	 Pi,	 …)	 	
•  symmetric	 equals	

scala> rootKahan(SmartFloat(3.0, 1.0),
 SmartFloat(55.0, 5.0), SmartFloat(0.5, 1.5))
[-0.13109336344405553,0.09429437802880317] (7.5543e-16)

Precision:	 AffineFloat	 vs.	 Intervals	

Intervals	 AffineFloat	
LU	 5x5,	 with	 pivo4ng	
LU	 10x10	
LU	 15x15	
	

6.69e-‐13	
2.13e-‐10	
1.92e-‐8	

1.04e-‐13	
7.75e-‐12	
6.10e-‐10	 	

LU	 5x5,	 no	 pivo4ng	
LU	 10x10	

1.24e-‐9	
4.89e-‐6	

2.50e-‐11	
2.38e-‐10	

FFT	 512	
FFT	 256	

6.43e-‐12	
2.38e-‐12	

9.73e-‐13	
3.03e-‐13	 	 	

LU:	 solu4on	 to	 Ax	 =	 b	 by	 factorizing	 A	
FFT:	 Fast	 Fourier	 Transform,	 followed	 by	 its	 inverse	

Up	 to	 4	 decimal	 orders	 of	 magnitude	 improvement!	

Generality:	 Doppler	 frequency	 shiY	

€

−30°C ≤ T ≤ 50°C
20Hz ≤ v ≤ 20000Hz
−100 m

s ≤ u ≤100 m
s

SMT[1]	 bits	 SmartFloat	 abs.	 roundoff	

q1	 [313,	 362]	 	 6	 [313.3999,361.40]	 	 8.6908e-‐14	
	

q2	 [6267,	 7228000]	 	 23	 [6267.9999,7228000.00]	 	 3.3431e-‐09	
q3	 [213,	 462]	 	 8	 [213.3999,461.40]	 	 1.4924e-‐13	 	
q4	 [45539,	 212890]	 	 18	 [44387.5599,212889.96]	 1.6135e-‐10	
z	 [0,	 138]	 	 8	 [-‐13.3398,162.7365]	 	 6.8184e-‐13	

running	 4me:	 order	 100s	 our	 running	 8me:	 order	 1s	

q1 = 331.4 + 0.6T
q2 = q1v
q3 = q1 + u
q4 = q3*q3
z = q2 / q4

[1]	 A.B.	 Kinsman,	 N.	 Nicolici.	 Finite	 Precision	 bit-‐width	 alloca4on	 using	 SAT-‐Modulo	 Theory.	 DATE,	 2009.	

Performance	 (ms)	
double	 interval	 AffineFloat	 SmartFloat	

Nbody	 (100	 steps)	 2.1	 21	 779	 33756	
Spectral	 norm	 (10	 iter.)	 0.6	 31	 198	 778	
Whetstone	 (10	 repeats)	 1.2	 2	 59	 680	
Fbench	 0.2	 1.3	 10	 1082	
Scimark	 -‐	 FFT	 (512x512)	 1.2	 18	 1220	 39987	
Scimark	 -‐	 SOR	 (100x100)	 0.8	 25	 698	 127168	
Scimark	 -‐	 LU	 (50x50)	 2.6	 30	 2419	 4914	
Spring	 sim.	 (10000	 steps)	 0.2	 46	 1283	 4086	

•  acceptable	 for	 understanding	 floa4ng-‐point	 computa4ons	
•  slower	 than	 a	 hardware	 implementa4on,	 but	 faster	 than	 exis4ng	

approaches	 that	 achieve	 similar	 precision	

Seman4cs	 for	 floa4ng-‐point	 programs	

•  interval	 arithme4c	
•  affine	 arithme4c	

•  stochas4c	 arithme4c	
Run	 the	 program	 repeatedly	 with	 random	 rounding.	 Mainly	 useful	 for	
finding	 stability	 issues.	 	

•  automa4c	 differen4a4on	
Computes	 the	 derivate	 of	 a	 program	 to	 expose	 sensi4vi4es	 to	 input	
changes.	

Floa4ng-‐point	 verifica4on	

•  Abstract	 interpreta4on	
Computes	 an	 overapproxima4on	 of	 variable	 values	 used	 to	
–  guarantee	 no	 run-‐4me	 errors	 can	 occur	 (Astree)	
–  roundoff	 errors	 are	 within	 certain	 bounds	 (Fluctuat)	 	

•  Model-‐checking	
Models	 a	 floa4ng-‐point	 computa4on	 as	 a	 finite-‐state	 system	 and	
performs	 a	 path	 sensi4ve	 analysis	
–  precise	 but	 expensive	

•  SAT	
Encodes	 floa4ng-‐point	 opera4ons	 bit-‐precisely	 (basically	 encodes	 the	
circuit)	 and	 checks	 the	 formula	 against	 user-‐provided	 asser4ons.	
–  check	 for	 excep4ons	 (e.g.	 underflow)	

Floa4ng-‐point	 verifica4on	

•  Theorem	 proving	
Provide	 code	 contracts	 (specifica4ons)	 about	 the	 precision	 of	 methods	
and	 check	 the	 proper4es	 with	 a	 theorem	 prover.	
–  detailed	 specifica4on	 necessary	
–  interac4on	 with	 the	 theorem	 prover	

	
Example:	 check	 that	 a	 piece	 of	 code	 is	 overflow-‐safe:	

	

@rnd = float<ieee_32,ne>;  
z = rnd(rnd(x * x) + rnd(sqrt(y))); !
{ |x| <= 2 /\ y in [1,9] !
 -> z in [1,7] /\ |rnd(x * x)| <= 0x1.FFFFFEp127 /\ !
 |rnd(sqrt(y))| <= 0x1.FFFFFEp127 } !
!

That’s	 all.	

h?p://lara.epfl.ch/w/smarnloat	

1.  Compact	 all	 other	 terms	 based	 on	
average	 errors	 and	 their	 devia4on.	

2.  For	 pathological	 cases,	 compact	 all	
noise	 symbols	 into	 a	 single	 one.	

Packing	

BRIEF ARTICLE

THE AUTHOR

1. Test

x = [xa, xb]

x� x = [xa � xb, xb � xa]

6= [0, 0]

x = [1.2, 2.3]

2. 2

f(x, y) = x

2
+

x

y

(1)

x = [2.35, 2.36](2)

y = [�1.2, �1.2](3)

(4)

x

2
= [2.35

2
, 2.36

2
] = [5.5225, 5.5696] = [5.52, 5.57](5)

x

y

=

2.36

�1.2

,

2.35

�1.2

�
= [�1.9

¯

6, �1.958

¯

3] = [�1.97, �1.95](6)

f(x, y) = z = [5.52� 1.97, 5.57� 1.95] = [3.55, 3.62](7)

(8)

) roundo↵ = width(z) = 0.07(9)

3. 3

nX

i=1

|ri|

x̂ = x0 +

nX

i=1

xi✏i) x̂ = x0 +

mX

i=1

xi✏i , m < n

1
Precision	 Performance	

Packing	 of	 noise	 terms	

