Trustworthy Numerical
Computation in Scala

e Sty

" Eva Darulova, Viktor Kuncak

http://lara.epfl.ch/~edarulov/TrustworthyComputation.pdf

Reasoning about the real world matters

The most widely used data type are floating-points
 |EEE 754-2008 standard gives precise behaviour
» efficient and, we hope, adequate is many cases

“... any operation involving numerical realization of a geophysical

algorithm led to significant disagreement.”, L. Hatton and A. Roberts. How
Accurate is Scientific Software? In IEEE Trans. Softw. Eng., 20, 1994.

“It makes us nervous to fly an airplane since we know they operate

using floati ng—point arithmetic.”, Xavier Leroy. Verified squared: does critical
software deserve verified tools? In POPL, 2011.

How do you know you can trust
your numerical computation?

def root(a: Double, b: Double, c: Double) {
valdiscr=b *b-a*c*4.0
return (-b + sqgrt(discr))/(a * 2.0)

Equivalently in real numbers:

def rootKahan(a: Double, b: Double, c: Double) {
valdiscr=b*b-a*c*4.0
if (b™b-a*c>10.0 && b >0.0)
return c * 2.0 /(-b - sqrt(discr))
else
return (-b + sqrt(discr))/(a * 2.0)

scala> root(2.999, 56.000003, 1.00076)
res0O: Double = -0.017887849139318127

scala> rootKahan(2.999, 56.000003, 1.00076)
resO: Double = -0.017887849139317836

Floating-points <Y IEEE 754

e Standard defines:
— arithmetic formats (incl. NaN, infinities)
— interchange formats
— rounding rules
— operations
— exception handling

e (mostly full) hardware support
* varying software support

& IEEE 752 software support

e JVM
— {+,—,%,/,4/} rounded to nearest

5/) — sin, cos, ... : APIl-specified roundoff errors
* C99
C — low-level control of hardware (all rounding modes)

Language

>

— beware of compiler optimizations

e CPython

— math module wrapper around C library functions

— “almost all platforms map Python floats to IEEE-754
“double precision”

How do you know you can trust
your numerical computation?

Interval arithmetic

e interval width ~ maximum roundoff error

b € [1.01,1.02]
bxbe[1.02,1.05] //1.01 =1.0201, 1.02% = 1.0404

scala> root(2.999, 56.000003, 1.00076)
[-0.017887849139321683,-0.017887849139313385] (2.6514e-13)

scala> rootKahan(2.999, 56.000003, 1.00076)
[-0.017887849139317846,-0.017887849139317825] (5.8187e-16)

Problems with interval arithmetic

* I[mprecision: losing dependencies
z € |0,1]

u=x+3 uecl34
z=u—x z€|2,4 but z =243 —z =3l

* Lack of generality: input range vs. roundoff
What is the maximum roundoff error over an entire input range?

scala> root(Interval(2.0, 4.0), Interval(50.0, 60.0),
Interval (0.5, 1.5))
[-2.560144695375273,2.4916643505649514] (1.0073e+00)

Contributions

Rigorous numerical data types for
precision and generality

Dependency-preserving estimation Estimation of upper bounds
of roundoff errors of a concrete on roundoff errors over an
floating-point computation. entire range of input values.

AffineFloat SmartFloat

Affine arithmetic

noise symbol

n
:U:x()%—Za:?;ei, e € |—1,1]
i=1

b T~

central value max. magnitude of noise term

* represents the interval

X .
! io } rad(i) = Z ||
\ > I\ v J i—1
rad(x) rad(x)
 affine operations (+, -) "
aZ+fy+¢ = (axo+ Pyo+¢) + Z(O@i + BYi)€i +€nt1

1=1
* non-linear operations need a linear approximation

Affine arithmetic

noise symbol

n
x:x(ﬁ—Zaziei, e € |—1,1]
i=1

b T~

central value max. magnitude of noise term

* avoids dependency problem for linear operations

r=05+05¢ €]0,1]
u=2x-+3=3.9+0.9¢;
z2=u—x =3.9+0.0e1 — 0.0 —0.5¢q
= 3.0

AffineFloat datatype

r = To T+ Z?"Z‘q
_— i=1 >

computed Double value roundoff errors

* each operation adds a new noise term
* each operation propagates existing noise terms

mn
* roundoff = Z‘T@‘
1=1

SmartFloat data type

L — (37() =+ L€ , Zripi)
/z— =1 \

uncertainty on variable maximum roundoff errors

* At each operation, adds the worst-case roundoff error
for all possible values

* Propagation of errors is a little more involved

* maximum roundoff = g |Tz‘
1=1

The quest for precision

In our implementation, we face the same roundoff
errors that we aim to quantify!

directed rounding in C++

DoubleDouble precision

precise handling of constants
recognizing exact computations
dependency problem with multiplication
non-linear operations

Nonlinear approximations

Chebyshev approximation Minrange approximation

* needs a 3" point, whose * rounding direction is clear
rounding direction is not clear

e can give wrong results for small Less precise, but reliable!

input intervals

~ *

S ax F
\\ -
\

08T

04T

Integration into ! Scala

def rootKahan(a: SmartFloat, b: SmartFloat, c: SmartFloat) {
valdiscr=b*b-a*c*4.0
if (b*b-a*c>10.0 && b > 0.0)
return c * 2.0 /(-b - sqgrt(discr))
else
return (-b + sqrt(discr))/(a * 2.0)

easy integration with implicits and strong type inference

support for most common math. functions (exp, sin, cos, log, Pi, ...)

symmetric equals

scala> rootKahan (SmartFloat (3.0, 1.0),
SmartFloat (55.0, 5.0), SmartFloat(0.5, 1.5))
[-0.13109336344405553,0.09429437802880317] (7.5543e-16)

Precision: AffineFloat vs. Intervals

LU: solution to Ax = b by factorizing A

FFT: Fast Fourier Transform, followed by its inverse

Intervals AffineFloat
LU 5x5, with pivoting 6.69e-13 1.04e-13
LU 10x10 2.13e-10 7.75e-12
LU 15x15 1.92e-8 6.10e-10
LU 5x5, no pivoting 1.24e-9 2.50e-11
LU 10x10 4.89e-6 2.38e-10
FFT 512 6.43e-12 9.73e-13
FFT 256 2.38e-12 3.03e-13

Up to 4 decimal orders of magnitude improvement!

Generality: Doppler frequency shift

gl = 331.4 + 0.6T

-30°C <T <50°C
g2 = glv
93 = gl + u 20Hz < v < 20000Hz
q4 = g3*qg3 -1002 < u <1002
z = g2 / d4
SMT[1] bits SmartFloat abs. roundoff
ql [313, 362] 6 [313.3999,361.40] 8.6908e-14
g2 | [6267,7228000] 23 [6267.9999,7228000.00] 3.3431e-09
g3 [213, 462] 8 [213.3999,461.40] 1.4924e-13
g4 | [45539, 212890] 18 [44387.5599,212889.96] 1.6135e-10
4 [0, 138] 8 [-13.3398,162.7365] 6.8184e-13
running time: order 100s our running time: order 1s

[1] A.B. Kinsman, N. Nicolici. Finite Precision bit-width allocation using SAT-Modulo Theory. DATE, 2009.

Performance (ms)

double interval AffineFloat | SmartFloat
Nbody (100 steps) 2.1 21 779 33756
Spectral norm (10 iter.) 0.6 31 198 778
Whetstone (10 repeats) 1.2 2 59 680
Fbench 0.2 1.3 10 1082
Scimark - FFT (512x512) 1.2 18 1220 39987
Scimark - SOR (100x100) 0.8 25 698 127168
Scimark - LU (50x50) 2.6 30 2419 4914
Spring sim. (10000 steps) 0.2 46 1283 4086

e acceptable for understanding floating-point computations
* slower than a hardware implementation, but faster than existing

approaches that achieve similar precision

Semantics for floating-point programs

interval arithmetic
affine arithmetic

stochastic arithmetic

Run the program repeatedly with random rounding. Mainly useful for
finding stability issues.

automatic differentiation

Computes the derivate of a program to expose sensitivities to input
changes.

Floating-point verification

* Abstract interpretation
Computes an overapproximation of variable values used to
— guarantee no run-time errors can occur (Astree)
— roundoff errors are within certain bounds (Fluctuat)

* Model-checking

Models a floating-point computation as a finite-state system and
performs a path sensitive analysis

— precise but expensive

* SAT

Encodes floating-point operations bit-precisely (basically encodes the
circuit) and checks the formula against user-provided assertions.

— check for exceptions (e.g. underflow)

Floating-point verification

* Theorem proving
Provide code contracts (specifications) about the precision of methods
and check the properties with a theorem prover.
— detailed specification necessary
— interaction with the theorem prover

Example: check that a piece of code is overflow-safe:

@rnd = float<ieee 32,ne>;
z = rnd(rnd(x * x) + rnd(sqrt(y)));

{ |x|] <=2 /\ y in [1,9]
-> z in [1,7] /\ |rnd(x * x)| <= O0x1.FFFFFEpl27 /\

|rnd(sqrt(y))| <= O0x1.FFFFFEpl27 }

That’s all.

http://lara.epfl.ch/w/smartfloat

Packing

n m
a?:a;g—l—g Ti€ = a?::vg—l—g Ti€, MmN
Precision) Performance

1. Compact all other terms based on
average errors and their deviation.

2. For pathological cases, compact all
noise symbols into a single one.

Packing of noise terms

Average running time in ms

2000

1500

1000

Maximum number of noise symbols

—a—— Nbody
—*—— Spectral
- === Fbench
—— SOR

