
Trustworthy	
 Numerical	

Computa4on	
 in	
 Scala	

Eva	
 Darulová,	
 Viktor	
 Kuncak	

h?p://lara.epfl.ch/~edarulov/TrustworthyComputa4on.pdf	

Reasoning	
 about	
 the	
 real	
 world	
 ma?ers	

The	
 most	
 widely	
 used	
 data	
 type	
 are	
 floa4ng-­‐points	

•  IEEE	
 754-­‐2008	
 standard	
 gives	
 precise	
 behaviour	

•  efficient	
 and,	
 we	
 hope,	
 adequate	
 is	
 many	
 cases	

“It	
 makes	
 us	
 nervous	
 to	
 fly	
 an	
 airplane	
 since	
 we	
 know	
 they	
 operate	

using	
 floa4ng-­‐point	
 arithme4c.”,	
 Xavier	
 Leroy.	
 Verified	
 squared:	
 does	
 cri4cal	

soYware	
 deserve	
 verified	
 tools?	
 In	
 POPL,	
 2011.	
 	

	

“…	
 any	
 opera4on	
 involving	
 numerical	
 realiza4on	
 of	
 a	
 geophysical	

algorithm	
 led	
 to	
 significant	
 disagreement.”,	
 L.	
 Ha?on	
 and	
 A.	
 Roberts.	
 How	

Accurate	
 is	
 Scien4fic	
 SoYware?	
 In	
 IEEE	
 Trans.	
 So2w.	
 Eng.,	
 20,	
 1994.	
 	

	

How	
 do	
 you	
 know	
 you	
 can	
 trust	

your	
 numerical	
 computa4on?	

def	
 rootKahan(a:	
 Double,	
 b:	
 Double,	
 c:	
 Double)	
 {	

	
 val	
 discr	
 =	
 b	
 *	
 b	
 -­‐	
 a	
 *	
 c	
 *	
 4.0	

 if (b*b - a*c > 10.0 && b > 0.0)
 return c * 2.0 /(-b - sqrt(discr))
 else

 return (-b + sqrt(discr))/(a * 2.0)
}

def	
 root(a:	
 Double,	
 b:	
 Double,	
 c:	
 Double)	
 {	

	
 val	
 discr	
 =	
 b	
 *	
 b	
 -­‐	
 a	
 *	
 c	
 *	
 4.0	

	
 	
 	
 	
 	
 	
 return	
 	
 (-­‐b	
 +	
 sqrt(discr))/(a	
 *	
 2.0)	

}	

Equivalently	
 in	
 real	
 numbers:	
 	

scala> root(2.999, 56.000003, 1.00076)
res0: Double = -0.017887849139318127

scala> rootKahan(2.999, 56.000003, 1.00076)
res0: Double = -0.017887849139317836	

Floa4ng-­‐points	

•  Standard	
 defines:	
 	

–  arithme4c	
 formats	
 (incl.	
 NaN,	
 infini4es)	

–  interchange	
 formats	

–  rounding	
 rules	

–  opera4ons	

–  excep4on	
 handling	

•  (mostly	
 full)	
 hardware	
 support	

•  varying	
 soYware	
 support	
 	

754	

100000000001001001000011111101101010100010001000010110100011000!

•  JVM	

–  	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 rounded	
 to	
 nearest	

–  sin,	
 cos,	
 …	
 :	
 API-­‐specified	
 roundoff	
 errors	

	

•  C99	

–  low-­‐level	
 control	
 of	
 hardware	
 (all	
 rounding	
 modes)	

–  beware	
 of	
 compiler	
 op4miza4ons	

•  	
 CPython	

–  math	
 module	
 wrapper	
 around	
 C	
 library	
 func4ons	

–  “almost	
 all	
 planorms	
 map	
 Python	
 floats	
 to	
 IEEE-­‐754	

“double	
 precision”	

soYware	
 support	

100000000001001001000011111101101010100010001000010110100011000!

754	

How	
 do	
 you	
 know	
 you	
 can	
 trust	

your	
 numerical	
 computa4on?	

•  interval	
 width	
 ～	
 maximum	
 roundoff	
 error	

Interval	
 arithme4c	

scala> root(2.999, 56.000003, 1.00076)
[-0.017887849139321683,-0.017887849139313385] (2.6514e-13)

scala> rootKahan(2.999, 56.000003, 1.00076)
[-0.017887849139317846,-0.017887849139317825] (5.8187e-16)

2 THE AUTHOR

x =

⇣
x0 +

nX

i=1

xi✏i ,

mX

i=1

ri

⌘

4. 4

x = x0 +

nX

i=1

xi✏i, ✏i 2 [�1, 1]

5. 5

↵x̂+ �ŷ + ⇣ = (↵x0 + �y0 + ⇣)+

nX

i=1

(↵xi + �yi)✏i + ◆✏n+1

6. 6

x 2 [0, 1]

u = x+ 3 2 [3, 4]

z = u� x 2 [2, 4] but z = x+ 3� x = 3!

b 2 [1.01, 1.02]

b ⇤ b 2 [1.02, 1.05] //1.01

2
= 1.0201, 1.02

2
= 1.0404

7. 7

x = 0.5 + 0.5✏1 2 [0, 1]

u = x+ 3 = 3.5 + 0.5✏1

z = u� x = 3.5 + 0.5✏1 � 0.5� 0.5✏1

= 3.0

Problems	
 with	
 interval	
 arithme4c	

•  Imprecision:	
 losing	
 dependencies	

	

•  Lack	
 of	
 generality:	
 input	
 range	
 vs.	
 roundoff	

What	
 is	
 the	
 maximum	
 roundoff	
 error	
 over	
 an	
 en4re	
 input	
 range?	

scala> root(Interval(2.0, 4.0), Interval(50.0, 60.0),
 Interval(0.5, 1.5))
[-2.560144695375273,2.4916643505649514] (1.0073e+00)

2 THE AUTHOR

x =

⇣
x0 +

nX

i=1

xi✏i ,

mX

i=1

ri⇢i

⌘

4. 4

x = x0 +

nX

i=1

xi✏i, ✏i 2 [�1, 1]

5. 5

↵x̂+ �ŷ + ⇣ = (↵x0 + �y0 + ⇣)+

nX

i=1

(↵xi + �yi)✏i + ◆✏n+1

6. 6

x 2 [0, 1]

u = x+ 3 u 2 [3, 4]

z = u� x z 2 [2, 4] but z = x+ 3� x = 3!

b 2 [1.01, 1.02]

b ⇤ b 2 [1.02, 1.05] //1.01

2
= 1.0201, 1.02

2
= 1.0404

7. 7

x = 0.5 + 0.5✏1 2 [0, 1]

u = x+ 3 = 3.5 + 0.5✏1

z = u� x = 3.5 + 0.5✏1 � 0.5� 0.5✏1

= 3.0

	
 Rigorous	
 numerical	
 data	
 types	
 for	
 	

precision	
 and	
 generality	
 	

Dependency-­‐preserving	
 es4ma4on	

of	
 roundoff	
 errors	
 of	
 a	
 concrete	

floa4ng-­‐point	
 computa4on.	

Es4ma4on	
 of	
 upper	
 bounds	

on	
 roundoff	
 errors	
 over	
 an	

en8re	
 range	
 of	
 input	
 values.	

Contribu4ons	

AffineFloat	
 SmartFloat	

•  represents	
 the	
 interval	

	
 	
 	
 	
 	

Affine	
 arithme4c	

Note that a range-based arithmetic as such does necessarily
attempt to quantify the roundoff errors itself. A possible ap-
plication of affine arithmetic, as originally proposed, is find-
ing zeroes of a function in a given initial interval. The idea
is to bisect the initial interval and to compute an estimate of
the function value over each subdomain. If the output range
for one subdomain does not include a zero, then that part of
the domain can be safely discarded.

Affine arithmetic represents possible values of variables
as affine forms

x̂ = x0 +
n
∑

i=1

xiεi

where x0 denotes the central value (of the represented in-
terval) and each noise symbol εi is a formal variable de-
noting a deviation from the central value, intended to range
over [−1, 1]. The maximum magnitude of each noise term
is given by the corresponding xi. Note that the sign of xi

does not matter in isolation, it does, however, reflect the re-
lative dependence between values. For example, take x =
x0 + x1ε1, then in real number semantics,

x− x = x0 + x1ε1 − (x0 + x1ε1)

= x0 − x0 + x1ε1 − x1ε1 = 0

If we subtracted x = x0−x1ε1 instead, the resulting interval
would have width 2 ∗ x1 and not zero.

The range represented by an affine form is computed as

[x̂] = [x0 − rad(x̂), x0 + rad(x̂)], rad(x̂) =
n
∑

i=1

|xi|

When implementing affine forms in a program, we need to
take into account that some operations are not performed
exactly, because the central value and the coefficients need
to be represented in some finite (e.g. double) precision. As
suggested in [17], the roundoff errors committed during the
computation can be added with a new fresh noise symbol to
the final affine form. A general affine operation αx̂+βŷ+ ζ
consists of addition, subtraction, addition of a constant (ζ)
or multiplication by a constant (α,β). Expanding the affine
forms x̂ and ŷ we get

αx̂+βŷ+ζ = (αx0+βy0+ζ)+
n
∑

i=1

(αxi+βyi)εi+ ιεn+1

(3)
with α,β, ζ ∈ F and where ι denotes the accumulated
internal errors, that is, the roundoff errors committed when
computing the individual terms of the new affine form.

Each operation carries a roundoff error and all of them
must be taken into account to achieve the parameter ι for the
rigorous bound. The challenge hereby consists of account-
ing for all roundoff errors, but still creating a tight approxi-
mation. While for the basic arithmetic operations the round-
off can be computed with Equation 1, there is no such simple

formula for calculating the roundoff for composed expres-
sions (e.g. α ∗ x0 + ζ). We determine the maximum round-
off error of an expression f(v1, . . . , vm) using the following
procedure [17]:

z = f(v1, v2, . . . , vm)

z−∞ = ↓f(v1, v2, . . . , vm)↓
z+∞ = ↑f(v1, v2, . . . , vm)↑

ι = max(z+∞ − z, z − z−∞)

That is, the program computes three results: (1) the floating-
point result z using rounding to-nearest, (2) the result z−∞

assuming worst-case roundoff errors when rounding towards
−∞, and the analogous result z+∞ with rounding towards
+∞ at each step. As the worst-case committed roundoff
error ι we use the maximum difference (ι) between these
values.

A possible use of affine arithmetic for keeping track of
roundoff errors is to represent each double precision value
by an affine form. That is, the actually computed double
precision value is equal to the central value and the noise
terms collect the accumulating roundoff errors. One expects
to obtain tighter bounds than with interval arithmetic, espe-
cially when a computation exhibits many correlations bet-
ween variables. However, a straightforward application of
affine arithmetic in the original formulation is not always
sound, as we show in Section 6. Namely, the standard affine
arithmetic takes the liberty of choosing a convenient central
value in a range, which does not preserve the compatibility
with Double. Using such computation on non-affine opera-
tions (such as division or trigonometric functions) can shift
the central value away from the actually computed Double
value. Roundoff errors computed using this method would
be those of a different computation and would thus be un-
sound. Our implementation therefore provides a modified
approximation that ensures soundness.

Before proceeding with the description of the technique
we use in our solution, we show in the next section how
the library behaves in practice. The library provides two
data types, AffineFloat and SmartFloat, that replace ordinary
floating-point numbers in a program, track a computation
and provide estimates on the roundoff errors committed.
An AffineFloat variable represents exactly one floating-point
number and thus replaces the computation one-to-one, a
SmartFloat variable represents a range of values and com-
putes the maximum roundoff error over this range. The tech-
nical implications of this difference will be described in de-
tail in Section 6 and Section 7. Note that whereas SmartFloat
must compute worst-case roundoff errors over the entire
interval, AffineFloat only needs to do this for one value.
AffineFloat can therefore generally provide a more precise
estimate.

2 THE AUTHOR

x =

⇣
x0 +

nX

i=1

xi✏i ,

mX

i=1

ri

⌘

4. 4

x = x0 +

nX

i=1

xi✏i, ✏i 2 [�1, 1]

5. 5

↵x̂+ �ŷ + ⇣ = (↵x0 + �y0 + ⇣)+

nX

i=1

(↵xi + �yi)✏i + ◆✏n+1

6. 6

x 2 [0, 1]

u = x+ 3 2 [3, 4]

z = u� x 2 [2, 4]

b 2 [1.01, 1.02]

b ⇤ b = [1.02, 1.05] //1.01

2
= 1.0201, 1.02

2
= 1.0404

7. 7

x = 0.5 + 0.5✏1 2 [0, 1]

u = x+ 3 = 3.5 + 0.5✏1

z = u� x = 3.5 + 0.5✏1 � 0.5� 0.5✏1

= 3.0

Note that a range-based arithmetic as such does necessarily
attempt to quantify the roundoff errors itself. A possible ap-
plication of affine arithmetic, as originally proposed, is find-
ing zeroes of a function in a given initial interval. The idea
is to bisect the initial interval and to compute an estimate of
the function value over each subdomain. If the output range
for one subdomain does not include a zero, then that part of
the domain can be safely discarded.

Affine arithmetic represents possible values of variables
as affine forms

x̂ = x0 +
n
∑

i=1

xiεi

where x0 denotes the central value (of the represented in-
terval) and each noise symbol εi is a formal variable de-
noting a deviation from the central value, intended to range
over [−1, 1]. The maximum magnitude of each noise term
is given by the corresponding xi. Note that the sign of xi

does not matter in isolation, it does, however, reflect the re-
lative dependence between values. For example, take x =
x0 + x1ε1, then in real number semantics,

x− x = x0 + x1ε1 − (x0 + x1ε1)

= x0 − x0 + x1ε1 − x1ε1 = 0

If we subtracted x = x0−x1ε1 instead, the resulting interval
would have width 2 ∗ x1 and not zero.

The range represented by an affine form is computed as

[x̂] = [x0 − rad(x̂), x0 + rad(x̂)], rad(x̂) =
n
∑

i=1

|xi|

When implementing affine forms in a program, we need to
take into account that some operations are not performed
exactly, because the central value and the coefficients need
to be represented in some finite (e.g. double) precision. As
suggested in [17], the roundoff errors committed during the
computation can be added with a new fresh noise symbol to
the final affine form. A general affine operation αx̂+βŷ+ ζ
consists of addition, subtraction, addition of a constant (ζ)
or multiplication by a constant (α,β). Expanding the affine
forms x̂ and ŷ we get

αx̂+βŷ+ζ = (αx0+βy0+ζ)+
n
∑

i=1

(αxi+βyi)εi+ ιεn+1

(3)
with α,β, ζ ∈ F and where ι denotes the accumulated
internal errors, that is, the roundoff errors committed when
computing the individual terms of the new affine form.

Each operation carries a roundoff error and all of them
must be taken into account to achieve the parameter ι for the
rigorous bound. The challenge hereby consists of account-
ing for all roundoff errors, but still creating a tight approxi-
mation. While for the basic arithmetic operations the round-
off can be computed with Equation 1, there is no such simple

formula for calculating the roundoff for composed expres-
sions (e.g. α ∗ x0 + ζ). We determine the maximum round-
off error of an expression f(v1, . . . , vm) using the following
procedure [17]:

z = f(v1, v2, . . . , vm)

z−∞ = ↓f(v1, v2, . . . , vm)↓
z+∞ = ↑f(v1, v2, . . . , vm)↑

ι = max(z+∞ − z, z − z−∞)

That is, the program computes three results: (1) the floating-
point result z using rounding to-nearest, (2) the result z−∞

assuming worst-case roundoff errors when rounding towards
−∞, and the analogous result z+∞ with rounding towards
+∞ at each step. As the worst-case committed roundoff
error ι we use the maximum difference (ι) between these
values.

A possible use of affine arithmetic for keeping track of
roundoff errors is to represent each double precision value
by an affine form. That is, the actually computed double
precision value is equal to the central value and the noise
terms collect the accumulating roundoff errors. One expects
to obtain tighter bounds than with interval arithmetic, espe-
cially when a computation exhibits many correlations bet-
ween variables. However, a straightforward application of
affine arithmetic in the original formulation is not always
sound, as we show in Section 6. Namely, the standard affine
arithmetic takes the liberty of choosing a convenient central
value in a range, which does not preserve the compatibility
with Double. Using such computation on non-affine opera-
tions (such as division or trigonometric functions) can shift
the central value away from the actually computed Double
value. Roundoff errors computed using this method would
be those of a different computation and would thus be un-
sound. Our implementation therefore provides a modified
approximation that ensures soundness.

Before proceeding with the description of the technique
we use in our solution, we show in the next section how
the library behaves in practice. The library provides two
data types, AffineFloat and SmartFloat, that replace ordinary
floating-point numbers in a program, track a computation
and provide estimates on the roundoff errors committed.
An AffineFloat variable represents exactly one floating-point
number and thus replaces the computation one-to-one, a
SmartFloat variable represents a range of values and com-
putes the maximum roundoff error over this range. The tech-
nical implications of this difference will be described in de-
tail in Section 6 and Section 7. Note that whereas SmartFloat
must compute worst-case roundoff errors over the entire
interval, AffineFloat only needs to do this for one value.
AffineFloat can therefore generally provide a more precise
estimate.

Note that a range-based arithmetic as such does necessarily
attempt to quantify the roundoff errors itself. A possible ap-
plication of affine arithmetic, as originally proposed, is find-
ing zeroes of a function in a given initial interval. The idea
is to bisect the initial interval and to compute an estimate of
the function value over each subdomain. If the output range
for one subdomain does not include a zero, then that part of
the domain can be safely discarded.

Affine arithmetic represents possible values of variables
as affine forms

x̂ = x0 +
n
∑

i=1

xiεi

where x0 denotes the central value (of the represented in-
terval) and each noise symbol εi is a formal variable de-
noting a deviation from the central value, intended to range
over [−1, 1]. The maximum magnitude of each noise term
is given by the corresponding xi. Note that the sign of xi

does not matter in isolation, it does, however, reflect the re-
lative dependence between values. For example, take x =
x0 + x1ε1, then in real number semantics,

x− x = x0 + x1ε1 − (x0 + x1ε1)

= x0 − x0 + x1ε1 − x1ε1 = 0

If we subtracted x = x0−x1ε1 instead, the resulting interval
would have width 2 ∗ x1 and not zero.

The range represented by an affine form is computed as

[x̂] = [x0 − rad(x̂), x0 + rad(x̂)], rad(x̂) =
n
∑

i=1

|xi|

When implementing affine forms in a program, we need to
take into account that some operations are not performed
exactly, because the central value and the coefficients need
to be represented in some finite (e.g. double) precision. As
suggested in [17], the roundoff errors committed during the
computation can be added with a new fresh noise symbol to
the final affine form. A general affine operation αx̂+βŷ+ ζ
consists of addition, subtraction, addition of a constant (ζ)
or multiplication by a constant (α,β). Expanding the affine
forms x̂ and ŷ we get

αx̂+βŷ+ζ = (αx0+βy0+ζ)+
n
∑

i=1

(αxi+βyi)εi+ ιεn+1

(3)
with α,β, ζ ∈ F and where ι denotes the accumulated
internal errors, that is, the roundoff errors committed when
computing the individual terms of the new affine form.

Each operation carries a roundoff error and all of them
must be taken into account to achieve the parameter ι for the
rigorous bound. The challenge hereby consists of account-
ing for all roundoff errors, but still creating a tight approxi-
mation. While for the basic arithmetic operations the round-
off can be computed with Equation 1, there is no such simple

formula for calculating the roundoff for composed expres-
sions (e.g. α ∗ x0 + ζ). We determine the maximum round-
off error of an expression f(v1, . . . , vm) using the following
procedure [17]:

z = f(v1, v2, . . . , vm)

z−∞ = ↓f(v1, v2, . . . , vm)↓
z+∞ = ↑f(v1, v2, . . . , vm)↑

ι = max(z+∞ − z, z − z−∞)

That is, the program computes three results: (1) the floating-
point result z using rounding to-nearest, (2) the result z−∞

assuming worst-case roundoff errors when rounding towards
−∞, and the analogous result z+∞ with rounding towards
+∞ at each step. As the worst-case committed roundoff
error ι we use the maximum difference (ι) between these
values.

A possible use of affine arithmetic for keeping track of
roundoff errors is to represent each double precision value
by an affine form. That is, the actually computed double
precision value is equal to the central value and the noise
terms collect the accumulating roundoff errors. One expects
to obtain tighter bounds than with interval arithmetic, espe-
cially when a computation exhibits many correlations bet-
ween variables. However, a straightforward application of
affine arithmetic in the original formulation is not always
sound, as we show in Section 6. Namely, the standard affine
arithmetic takes the liberty of choosing a convenient central
value in a range, which does not preserve the compatibility
with Double. Using such computation on non-affine opera-
tions (such as division or trigonometric functions) can shift
the central value away from the actually computed Double
value. Roundoff errors computed using this method would
be those of a different computation and would thus be un-
sound. Our implementation therefore provides a modified
approximation that ensures soundness.

Before proceeding with the description of the technique
we use in our solution, we show in the next section how
the library behaves in practice. The library provides two
data types, AffineFloat and SmartFloat, that replace ordinary
floating-point numbers in a program, track a computation
and provide estimates on the roundoff errors committed.
An AffineFloat variable represents exactly one floating-point
number and thus replaces the computation one-to-one, a
SmartFloat variable represents a range of values and com-
putes the maximum roundoff error over this range. The tech-
nical implications of this difference will be described in de-
tail in Section 6 and Section 7. Note that whereas SmartFloat
must compute worst-case roundoff errors over the entire
interval, AffineFloat only needs to do this for one value.
AffineFloat can therefore generally provide a more precise
estimate.

2 THE AUTHOR

x =

⇣
x0 +

nX

i=1

xi✏i ,

mX

i=1

ri

⌘

4. 4

x = x0 +

nX

i=1

xi✏i, ✏i 2 [�1, 1]

5. 5

↵x̂+ �ŷ + ⇣ = (↵x0 + �y0 + ⇣)+

nX

i=1

(↵xi + �yi)✏i + ◆✏n+1

6. 6

x 2 [0, 1]

u = x+ 3 2 [3, 4]

z = u� x 2 [2, 4]

b 2 [1.01, 1.02]

b ⇤ b = [1.02, 1.05] //1.01

2
= 1.0201, 1.02

2
= 1.0404

central	
 value	

noise	
 symbol	

max.	
 magnitude	
 of	
 noise	
 term	

Note that a range-based arithmetic as such does necessarily
attempt to quantify the roundoff errors itself. A possible ap-
plication of affine arithmetic, as originally proposed, is find-
ing zeroes of a function in a given initial interval. The idea
is to bisect the initial interval and to compute an estimate of
the function value over each subdomain. If the output range
for one subdomain does not include a zero, then that part of
the domain can be safely discarded.

Affine arithmetic represents possible values of variables
as affine forms

x̂ = x0 +
n
∑

i=1

xiεi

where x0 denotes the central value (of the represented in-
terval) and each noise symbol εi is a formal variable de-
noting a deviation from the central value, intended to range
over [−1, 1]. The maximum magnitude of each noise term
is given by the corresponding xi. Note that the sign of xi

does not matter in isolation, it does, however, reflect the re-
lative dependence between values. For example, take x =
x0 + x1ε1, then in real number semantics,

x− x = x0 + x1ε1 − (x0 + x1ε1)

= x0 − x0 + x1ε1 − x1ε1 = 0

If we subtracted x = x0−x1ε1 instead, the resulting interval
would have width 2 ∗ x1 and not zero.

The range represented by an affine form is computed as

[x̂] = [x0 − rad(x̂), x0 + rad(x̂)], rad(x̂) =
n
∑

i=1

|xi|

When implementing affine forms in a program, we need to
take into account that some operations are not performed
exactly, because the central value and the coefficients need
to be represented in some finite (e.g. double) precision. As
suggested in [17], the roundoff errors committed during the
computation can be added with a new fresh noise symbol to
the final affine form. A general affine operation αx̂+βŷ+ ζ
consists of addition, subtraction, addition of a constant (ζ)
or multiplication by a constant (α,β). Expanding the affine
forms x̂ and ŷ we get

αx̂+βŷ+ζ = (αx0+βy0+ζ)+
n
∑

i=1

(αxi+βyi)εi+ ιεn+1

(3)
with α,β, ζ ∈ F and where ι denotes the accumulated
internal errors, that is, the roundoff errors committed when
computing the individual terms of the new affine form.

Each operation carries a roundoff error and all of them
must be taken into account to achieve the parameter ι for the
rigorous bound. The challenge hereby consists of account-
ing for all roundoff errors, but still creating a tight approxi-
mation. While for the basic arithmetic operations the round-
off can be computed with Equation 1, there is no such simple

formula for calculating the roundoff for composed expres-
sions (e.g. α ∗ x0 + ζ). We determine the maximum round-
off error of an expression f(v1, . . . , vm) using the following
procedure [17]:

z = f(v1, v2, . . . , vm)

z−∞ = ↓f(v1, v2, . . . , vm)↓
z+∞ = ↑f(v1, v2, . . . , vm)↑

ι = max(z+∞ − z, z − z−∞)

That is, the program computes three results: (1) the floating-
point result z using rounding to-nearest, (2) the result z−∞

assuming worst-case roundoff errors when rounding towards
−∞, and the analogous result z+∞ with rounding towards
+∞ at each step. As the worst-case committed roundoff
error ι we use the maximum difference (ι) between these
values.

A possible use of affine arithmetic for keeping track of
roundoff errors is to represent each double precision value
by an affine form. That is, the actually computed double
precision value is equal to the central value and the noise
terms collect the accumulating roundoff errors. One expects
to obtain tighter bounds than with interval arithmetic, espe-
cially when a computation exhibits many correlations bet-
ween variables. However, a straightforward application of
affine arithmetic in the original formulation is not always
sound, as we show in Section 6. Namely, the standard affine
arithmetic takes the liberty of choosing a convenient central
value in a range, which does not preserve the compatibility
with Double. Using such computation on non-affine opera-
tions (such as division or trigonometric functions) can shift
the central value away from the actually computed Double
value. Roundoff errors computed using this method would
be those of a different computation and would thus be un-
sound. Our implementation therefore provides a modified
approximation that ensures soundness.

Before proceeding with the description of the technique
we use in our solution, we show in the next section how
the library behaves in practice. The library provides two
data types, AffineFloat and SmartFloat, that replace ordinary
floating-point numbers in a program, track a computation
and provide estimates on the roundoff errors committed.
An AffineFloat variable represents exactly one floating-point
number and thus replaces the computation one-to-one, a
SmartFloat variable represents a range of values and com-
putes the maximum roundoff error over this range. The tech-
nical implications of this difference will be described in de-
tail in Section 6 and Section 7. Note that whereas SmartFloat
must compute worst-case roundoff errors over the entire
interval, AffineFloat only needs to do this for one value.
AffineFloat can therefore generally provide a more precise
estimate.

•  affine	
 opera4ons	
 (+,	
 -­‐)	

	

	
 	
 	
 	
 	

	
 	
 	

•  non-­‐linear	
 opera4ons	
 need	
 a	
 linear	
 approxima4on	

•  avoids	
 dependency	
 problem	
 for	
 linear	
 opera4ons	

Affine	
 arithme4c	

2 THE AUTHOR

x =

⇣
x0 +

nX

i=1

xi✏i ,

mX

i=1

ri

⌘

4. 4

x = x0 +

nX

i=1

xi✏i, ✏i 2 [�1, 1]

5. 5

↵x̂+ �ŷ + ⇣ = (↵x0 + �y0 + ⇣)+

nX

i=1

(↵xi + �yi)✏i + ◆✏n+1

6. 6

x 2 [0, 1]

u = x+ 3 2 [3, 4]

z = u� x 2 [2, 4]

b 2 [1.01, 1.02]

b ⇤ b = [1.02, 1.05] //1.01

2
= 1.0201, 1.02

2
= 1.0404

7. 7

x = 0.5 + 0.5✏1 2 [0, 1]

u = x+ 3 = 3.5 + 0.5✏1

z = u� x = 3.5 + 0.5✏1 � 0.5� 0.5✏1

= 3.0

2 THE AUTHOR

x =

⇣
x0 +

nX

i=1

xi✏i ,

mX

i=1

ri

⌘

4. 4

x = x0 +

nX

i=1

xi✏i, ✏i 2 [�1, 1]

5. 5

↵x̂+ �ŷ + ⇣ = (↵x0 + �y0 + ⇣)+

nX

i=1

(↵xi + �yi)✏i + ◆✏n+1

6. 6

x 2 [0, 1]

u = x+ 3 2 [3, 4]

z = u� x 2 [2, 4]

b 2 [1.01, 1.02]

b ⇤ b = [1.02, 1.05] //1.01

2
= 1.0201, 1.02

2
= 1.0404

central	
 value	

noise	
 symbol	

max.	
 magnitude	
 of	
 noise	
 term	

AffineFloat data	
 type	

computed	
 Double	
 value	
 roundoff	
 errors	

2 THE AUTHOR

x̂ = x0 +

nX

i=1

xi✏i) x̂ = x0 +

mX

i=1

xi✏i , m < n

x =

⇣
x0 +

nX

i=1

xi✏i ,

mX

i=1

ri⇢i

⌘

4. 4

x = x0 +

nX

i=1

ri✏i, ✏i 2 [�1, 1]

5. 5

↵x̂+ �ŷ + ⇣ = (↵x0 + �y0 + ⇣)+

nX

i=1

(↵xi + �yi)✏i + ◆✏n+1

6. 6

x 2 [0, 1]

u = x+ 3 u 2 [3, 4]

z = u� x z 2 [2, 4] but z = x+ 3� x = 3!

b 2 [1.01, 1.02]

b ⇤ b 2 [1.02, 1.05] //1.01

2
= 1.0201, 1.02

2
= 1.0404

7. 7

x = 0.5 + 0.5✏1 2 [0, 1]

u = x+ 3 = 3.5 + 0.5✏1

z = u� x = 3.5 + 0.5✏1 � 0.5� 0.5✏1

= 3.0

•  each	
 opera4on	
 adds	
 a	
 new	
 noise	
 term	

•  each	
 opera4on	
 propagates	
 exis4ng	
 noise	
 terms	
 	

•  roundoff	
 =	

BRIEF ARTICLE

THE AUTHOR

1. Test

x = [xa, xb]

x� x = [xa � xb, xb � xa]

6= [0, 0]

x = [1.2, 2.3]

2. 2

f(x, y) = x

2
+

x

y

(1)

x = [2.35, 2.36](2)

y = [�1.2, �1.2](3)

(4)

x

2
= [2.35

2
, 2.36

2
] = [5.5225, 5.5696] = [5.52, 5.57](5)

x

y

=


2.36

�1.2

,

2.35

�1.2

�
= [�1.9

¯

6, �1.958

¯

3] = [�1.97, �1.95](6)

f(x, y) = z = [5.52� 1.97, 5.57� 1.95] = [3.55, 3.62](7)

(8)

) roundo↵ = width(z) = 0.07(9)

3. 3

nX

i=1

|ri|

x̂ = x0 +

nX

i=1

xi✏i) x̂ = x0 +

mX

i=1

xi✏i , m < n

1

SmartFloat data	
 type	

uncertainty	
 on	
 variable	
 maximum	
 roundoff	
 errors	

•  At	
 each	
 opera4on,	
 adds	
 the	
 worst-­‐case	
 roundoff	
 error	

for	
 all	
 possible	
 values	

•  Propaga4on	
 of	
 errors	
 is	
 a	
 li?le	
 more	
 involved	

•  maximum	
 roundoff	
 =	

	
 	

BRIEF ARTICLE

THE AUTHOR

1. Test

x = [xa, xb]

x� x = [xa � xb, xb � xa]

6= [0, 0]

x = [1.2, 2.3]

2. 2

f(x, y) = x

2
+

x

y

(1)

x = [2.35, 2.36](2)

y = [�1.2, �1.2](3)

(4)

x

2
= [2.35

2
, 2.36

2
] = [5.5225, 5.5696] = [5.52, 5.57](5)

x

y

=


2.36

�1.2

,

2.35

�1.2

�
= [�1.9

¯

6, �1.958

¯

3] = [�1.97, �1.95](6)

f(x, y) = z = [5.52� 1.97, 5.57� 1.95] = [3.55, 3.62](7)

(8)

) roundo↵ = width(z) = 0.07(9)

3. 3

nX

i=1

|ri|

x̂ = x0 +

nX

i=1

xi✏i) x̂ = x0 +

mX

i=1

xi✏i , m < n

1

2 THE AUTHOR

x =

⇣
x0 +

nX

i=1

xi✏i ,

mX

i=1

ri⇢i

⌘

4. 4

x = x0 +

nX

i=1

xi✏i, ✏i 2 [�1, 1]

5. 5

↵x̂+ �ŷ + ⇣ = (↵x0 + �y0 + ⇣)+

nX

i=1

(↵xi + �yi)✏i + ◆✏n+1

6. 6

x 2 [0, 1]

u = x+ 3 2 [3, 4]

z = u� x 2 [2, 4] but z = x+ 3� x = 3!

b 2 [1.01, 1.02]

b ⇤ b 2 [1.02, 1.05] //1.01

2
= 1.0201, 1.02

2
= 1.0404

7. 7

x = 0.5 + 0.5✏1 2 [0, 1]

u = x+ 3 = 3.5 + 0.5✏1

z = u� x = 3.5 + 0.5✏1 � 0.5� 0.5✏1

= 3.0

The	
 quest	
 for	
 precision	

In	
 our	
 implementa4on,	
 we	
 face	
 the	
 same	
 roundoff	

errors	
 that	
 we	
 aim	
 to	
 quan4fy!	

	

•  directed	
 rounding	
 in	
 C++	

•  DoubleDouble	
 precision	

•  precise	
 handling	
 of	
 constants	

•  recognizing	
 exact	
 computa4ons	

•  dependency	
 problem	
 with	
 mul4plica4on	

•  non-­‐linear	
 opera4ons	

	

Nonlinear	
 approxima4ons	

Minrange	
 approxima8on	

•  rounding	
 direc4on	
 is	
 clear	

Less	
 precise,	
 but	
 reliable!	

Chebyshev	
 approxima8on	

•  needs	
 a	
 3rd	
 point,	
 whose	

rounding	
 direc4on	
 is	
 not	
 clear	

•  can	
 give	
 wrong	
 results	
 for	
 small	

input	
 intervals	

	
 	
 	
 	
 	
 Integra4on	
 into	
 	
 	

def	
 rootKahan(a:	
 SmartFloat,	
 b:	
 SmartFloat,	
 c:	
 SmartFloat)	
 {	

	
 val	
 discr	
 =	
 b	
 *	
 b	
 -­‐	
 a	
 *	
 c	
 *	
 4.0	

 if (b*b - a*c > 10.0 && b > 0.0)
 return c * 2.0 /(-b - sqrt(discr))
 else
 return (-b + sqrt(discr))/(a * 2.0)
}

•  easy	
 integra4on	
 with	
 implicits	
 and	
 strong	
 type	
 inference	

•  support	
 for	
 most	
 common	
 math.	
 func4ons	
 (exp,	
 sin,	
 cos,	
 log,	
 Pi,	
 …)	
 	

•  symmetric	
 equals	

scala> rootKahan(SmartFloat(3.0, 1.0),
 SmartFloat(55.0, 5.0), SmartFloat(0.5, 1.5))
[-0.13109336344405553,0.09429437802880317] (7.5543e-16)

Precision:	
 AffineFloat	
 vs.	
 Intervals	

Intervals	
 AffineFloat	

LU	
 5x5,	
 with	
 pivo4ng	

LU	
 10x10	

LU	
 15x15	

	

6.69e-­‐13	

2.13e-­‐10	

1.92e-­‐8	

1.04e-­‐13	

7.75e-­‐12	

6.10e-­‐10	
 	

LU	
 5x5,	
 no	
 pivo4ng	

LU	
 10x10	

1.24e-­‐9	

4.89e-­‐6	

2.50e-­‐11	

2.38e-­‐10	

FFT	
 512	

FFT	
 256	

6.43e-­‐12	

2.38e-­‐12	

9.73e-­‐13	

3.03e-­‐13	
 	
 	

LU:	
 solu4on	
 to	
 Ax	
 =	
 b	
 by	
 factorizing	
 A	

FFT:	
 Fast	
 Fourier	
 Transform,	
 followed	
 by	
 its	
 inverse	

Up	
 to	
 4	
 decimal	
 orders	
 of	
 magnitude	
 improvement!	

Generality:	
 Doppler	
 frequency	
 shiY	

€

−30°C ≤ T ≤ 50°C
20Hz ≤ v ≤ 20000Hz
−100 m

s ≤ u ≤100 m
s

SMT[1]	
 bits	
 SmartFloat	
 abs.	
 roundoff	

q1	
 [313,	
 362]	
 	
 6	
 [313.3999,361.40]	
 	
 8.6908e-­‐14	

	

q2	
 [6267,	
 7228000]	
 	
 23	
 [6267.9999,7228000.00]	
 	
 3.3431e-­‐09	

q3	
 [213,	
 462]	
 	
 8	
 [213.3999,461.40]	
 	
 1.4924e-­‐13	
 	

q4	
 [45539,	
 212890]	
 	
 18	
 [44387.5599,212889.96]	
 1.6135e-­‐10	

z	
 [0,	
 138]	
 	
 8	
 [-­‐13.3398,162.7365]	
 	
 6.8184e-­‐13	

running	
 4me:	
 order	
 100s	
 our	
 running	
 8me:	
 order	
 1s	

q1 = 331.4 + 0.6T
q2 = q1v
q3 = q1 + u
q4 = q3*q3
z = q2 / q4

[1]	
 A.B.	
 Kinsman,	
 N.	
 Nicolici.	
 Finite	
 Precision	
 bit-­‐width	
 alloca4on	
 using	
 SAT-­‐Modulo	
 Theory.	
 DATE,	
 2009.	

Performance	
 (ms)	

double	
 interval	
 AffineFloat	
 SmartFloat	

Nbody	
 (100	
 steps)	
 2.1	
 21	
 779	
 33756	

Spectral	
 norm	
 (10	
 iter.)	
 0.6	
 31	
 198	
 778	

Whetstone	
 (10	
 repeats)	
 1.2	
 2	
 59	
 680	

Fbench	
 0.2	
 1.3	
 10	
 1082	

Scimark	
 -­‐	
 FFT	
 (512x512)	
 1.2	
 18	
 1220	
 39987	

Scimark	
 -­‐	
 SOR	
 (100x100)	
 0.8	
 25	
 698	
 127168	

Scimark	
 -­‐	
 LU	
 (50x50)	
 2.6	
 30	
 2419	
 4914	

Spring	
 sim.	
 (10000	
 steps)	
 0.2	
 46	
 1283	
 4086	

•  acceptable	
 for	
 understanding	
 floa4ng-­‐point	
 computa4ons	

•  slower	
 than	
 a	
 hardware	
 implementa4on,	
 but	
 faster	
 than	
 exis4ng	

approaches	
 that	
 achieve	
 similar	
 precision	

Seman4cs	
 for	
 floa4ng-­‐point	
 programs	

•  interval	
 arithme4c	

•  affine	
 arithme4c	

•  stochas4c	
 arithme4c	

Run	
 the	
 program	
 repeatedly	
 with	
 random	
 rounding.	
 Mainly	
 useful	
 for	

finding	
 stability	
 issues.	
 	

•  automa4c	
 differen4a4on	

Computes	
 the	
 derivate	
 of	
 a	
 program	
 to	
 expose	
 sensi4vi4es	
 to	
 input	

changes.	

Floa4ng-­‐point	
 verifica4on	

•  Abstract	
 interpreta4on	

Computes	
 an	
 overapproxima4on	
 of	
 variable	
 values	
 used	
 to	

–  guarantee	
 no	
 run-­‐4me	
 errors	
 can	
 occur	
 (Astree)	

–  roundoff	
 errors	
 are	
 within	
 certain	
 bounds	
 (Fluctuat)	
 	

•  Model-­‐checking	

Models	
 a	
 floa4ng-­‐point	
 computa4on	
 as	
 a	
 finite-­‐state	
 system	
 and	

performs	
 a	
 path	
 sensi4ve	
 analysis	

–  precise	
 but	
 expensive	

•  SAT	

Encodes	
 floa4ng-­‐point	
 opera4ons	
 bit-­‐precisely	
 (basically	
 encodes	
 the	

circuit)	
 and	
 checks	
 the	
 formula	
 against	
 user-­‐provided	
 asser4ons.	

–  check	
 for	
 excep4ons	
 (e.g.	
 underflow)	

Floa4ng-­‐point	
 verifica4on	

•  Theorem	
 proving	

Provide	
 code	
 contracts	
 (specifica4ons)	
 about	
 the	
 precision	
 of	
 methods	

and	
 check	
 the	
 proper4es	
 with	
 a	
 theorem	
 prover.	

–  detailed	
 specifica4on	
 necessary	

–  interac4on	
 with	
 the	
 theorem	
 prover	

	

Example:	
 check	
 that	
 a	
 piece	
 of	
 code	
 is	
 overflow-­‐safe:	

	

@rnd = float<ieee_32,ne>;  
z = rnd(rnd(x * x) + rnd(sqrt(y))); !
{ |x| <= 2 /\ y in [1,9] !
 -> z in [1,7] /\ |rnd(x * x)| <= 0x1.FFFFFEp127 /\ !
 |rnd(sqrt(y))| <= 0x1.FFFFFEp127 } !
!

That’s	
 all.	

h?p://lara.epfl.ch/w/smarnloat	

1.  Compact	
 all	
 other	
 terms	
 based	
 on	

average	
 errors	
 and	
 their	
 devia4on.	

2.  For	
 pathological	
 cases,	
 compact	
 all	

noise	
 symbols	
 into	
 a	
 single	
 one.	

Packing	

BRIEF ARTICLE

THE AUTHOR

1. Test

x = [xa, xb]

x� x = [xa � xb, xb � xa]

6= [0, 0]

x = [1.2, 2.3]

2. 2

f(x, y) = x

2
+

x

y

(1)

x = [2.35, 2.36](2)

y = [�1.2, �1.2](3)

(4)

x

2
= [2.35

2
, 2.36

2
] = [5.5225, 5.5696] = [5.52, 5.57](5)

x

y

=


2.36

�1.2

,

2.35

�1.2

�
= [�1.9

¯

6, �1.958

¯

3] = [�1.97, �1.95](6)

f(x, y) = z = [5.52� 1.97, 5.57� 1.95] = [3.55, 3.62](7)

(8)

) roundo↵ = width(z) = 0.07(9)

3. 3

nX

i=1

|ri|

x̂ = x0 +

nX

i=1

xi✏i) x̂ = x0 +

mX

i=1

xi✏i , m < n

1
Precision	
 Performance	

Packing	
 of	
 noise	
 terms	

        


















































