
Lecture 4

Compute Relation for this Program

r = 0;

while (x > 0) {

 r = r + 3;

 x = x - 1

}

As the program state use the pair of integer variables (r,x)

1) compute guarded command language for this program

(express ‘while’ and ‘if’ using ‘assume’).

Compute Relation for this Program

r = 0;

while (x > 0) {

 r = r + 3;

 x = x - 1

}

r = 0;

(assume(x>0);

 r = r + 3;

 x = x – 1)* ;

assume(x <= 0)

assume(x>0);

r = r + 3;

x = x – 1

B*

r = 0;

B*;

assume(x <= 0)

2) compute meaning of program pieces, from smaller to bigger

B

r’ = r + 3 /\

x’ = x – 1 /\

x > 0

Bk for k > 0

r’ = r + 3k /\

x’ = x – k /\

x > 0 /\ x – 1 > 0 /\ ... /\ x – (k-1) > 0

i.e.

r’ = r + 3k /\

x’ = x – k /\

x – (k – 1) > 0

Bk for k >= 0

(k > 0 /\

 r’ = r + 3k /\

 x’ = x – k /\

 x – (k – 1) > 0)

 \/

(k = 0 /\ r’= r /\ x’ = x)

B*
(s,s’)  B*   k >=0. (s,s’)  Bk

B* = {((r,x),(r’,x’)) |  k. k >= 0 /\

 ((k > 0 /\ r’ = r + 3k /\ x’ = x – k /\ x – k >= 0) \/

 (k = 0 /\ r’= r /\ x’ = x))} =

{((r,x),(r’,x’)) |
 ( k.k > 0 /\ r’= r + 3k /\ x’=x – k /\ x – k >= 0) \/

 ( k. k = 0 /\ r’= r /\ x’ = x)} =

{((r,x),(r’,x’)) | (r’= r + 3(x-x’) /\ x’ >= 0 /\ x-x’ > 0) \/
 (r’= r /\ x’ = x)}

k=x-x’

Back to the Entire Program

r = 0;

B*;

assume(x <= 0)

{((r,x),(r’,x’)) | x’ = x /\ r’ = 0} o

{((r,x),(r’,x’)) | (r’= r + 3(x-x’) /\ x’ >= 0 /\ x-x’ > 0) \/ (r’= r /\ x’ = x)} o

{((r,x),(r’,x’)) | r’ = r /\ x’ = x /\ x <= 0)} =

{((r,x),(r’,x’)) | (r’= 3(x-x’) /\ x’ >= 0 /\ x-x’ > 0) \/ (r = 0 /\ r’= 0 /\ x’ = x)} o

{((r,x),(r’,x’)) | r’ = r /\ x’ = x /\ x <= 0)} =

{((r,x),(r’,x’)) | (r’= 3(x-x’) /\ x’ >= 0 /\ x-x’ > 0) \/

 (r = 0 /\ r’= 0 /\ x’ = x /\ x <= 0)}

 The above is the final relation for the program.

r = 0;

while (x > 0) {

 r = r + 3;

 x = x - 1

}

Correctness as Relation Inclusion

program  relation p
specification  relation s

program meets specification:

p  s

example: p = {((r,x),(r’,x’)). r’=2x /\ x’=0 }
 s = {((r,x),(r’,x’)). x > 0  r’ > x’ }

then the above program p meets the
specification s

 because implication holds:

 r’=2x /\ x’=0  (x > 0  r’ > x’)

Checking Contracts (require/ensure)

{((r,x),(r’,x’)) | (r’= 3(x’-x) /\ x’ >= 0 /\ x-x’ > 0) \/

 (r = 0 /\ r’= 0 /\ x’ = x /\ x <= 0)}

Try to prove the validity of:

((r’= 3(x-x’) /\ x’ >= 0 /\ x-x’ > 0) \/ (r = 0 /\ r’= 0 /\ x’ = x /\ x <= 0)) 

 (x > 0  r’ == 3(x’ – x))

The program assertion holds if and only if the formula is valid.

Translating ensure: x becomes x’ whereas old(x) becomes x

require(x > 0)

r = 0;

while (x > 0) {

 r = r + 3;

 x = x - 1

}

ensure(r == 3*(x-old(x)))

Checking Assertions

{((r,x),(r’,x’)) | (r’= 3(x’-x) /\ x’ >= 0 /\ x-x’ > 0) \/

 (r = 0 /\ r’= 0 /\ x’ = x /\ x <= 0)}

Try to prove the validity of:

((r’= 3(x-x’) /\ x’ >= 0 /\ x-x’ > 0) \/ (r = 0 /\ r’= 0 /\ x’ = x /\ x <= 0)) 

 r’ >= x’

The program assertion holds if and only if the formula is valid.

r = 0;

while (x > 0) {

 r = r + 3;

 x = x - 1

}

assert(r >= x)

Recall the Simple Language

x = T

if (F) c1 else c2

c1 ; c2

while (F) c1

c ::= x=T | (if (F) c else c) | c ; c | (while (F) c)

T ::= K | V | (T + T) | (T - T) | (K * T) | (T / K) | (T % K)

F ::= (T==T) | (T < T) | (T > T) | (~F) | (F && F) | (F || F)

V ::= x | y | z | ...

K ::= 0 | 1 | 2 | ...

terms like in P.A.

ordinary control structures

Boolean terms like

P.A. formulas without quantifiers

Normal form for Loop-Free Programs

Lemma: Let P be a program without loops.
Then for some natural number n,

where each pi is relation composition of

– relations for assignments

– Partial diagonal relations (assumes)

Prove this.

