
Lecture 4 



Compute Relation for this Program 

r = 0; 

while (x > 0) { 

  r = r + 3; 

  x = x - 1 

} 

As the program state use the pair of integer variables (r,x) 

 

1) compute guarded command language for this program 

(express ‘while’ and ‘if’ using ‘assume’). 



Compute Relation for this Program 

r = 0; 

while (x > 0) { 

  r = r + 3; 

  x = x - 1 

} 

r = 0; 

( assume(x>0); 

  r = r + 3; 

  x = x – 1 )* ; 

assume(x <= 0) 

assume(x>0); 

r = r + 3; 

x = x – 1 

B* 

r = 0; 

B*; 

assume(x <= 0) 

2) compute meaning of program pieces, from smaller to bigger 



B 

r’ = r + 3  /\    

x’ = x – 1 /\ 

x > 0 

 



Bk for k > 0 

r’ = r + 3k  /\ 

x’ = x – k   /\ 

x > 0  /\  x – 1 > 0 /\  ... /\  x – (k-1) > 0 

i.e. 

r’ = r + 3k  /\ 

x’ = x – k   /\ 

x – (k – 1) > 0 



Bk for k >= 0 

(k > 0 /\  

 r’ = r + 3k  /\ 

 x’ = x – k   /\ 

 x – (k – 1) > 0)    

                           \/   

(k = 0 /\ r’= r /\ x’ = x) 

 



B* 
(s,s’)  B*       k >=0.  (s,s’)  Bk 

 

B* = {((r,x),(r’,x’)) |  k. k >= 0 /\ 

  ((k > 0 /\ r’ = r + 3k  /\ x’ = x – k   /\ x – k >= 0)   \/   

   (k = 0 /\ r’= r /\ x’ = x))} =  

 

{((r,x),(r’,x’)) |  
  ( k.k > 0 /\ r’= r + 3k /\ x’=x – k /\ x – k >= 0) \/   

  ( k. k = 0 /\ r’= r /\ x’ = x)} = 

 

{((r,x),(r’,x’)) | (r’= r + 3(x-x’) /\ x’ >= 0 /\ x-x’ > 0)   \/   
                      (r’= r /\ x’ = x)} 

k=x-x’ 



Back to the Entire Program 

r = 0; 

B*; 

assume(x <= 0) 

 

{((r,x),(r’,x’)) | x’ = x /\ r’ = 0} o 

{((r,x),(r’,x’)) | (r’= r + 3(x-x’) /\ x’ >= 0 /\ x-x’ > 0)   \/  (r’= r /\ x’ = x)} o 

{((r,x),(r’,x’)) | r’ = r /\ x’ = x /\ x <= 0)} = 

 

{((r,x),(r’,x’)) | (r’= 3(x-x’) /\ x’ >= 0 /\ x-x’ > 0)   \/  (r = 0 /\ r’= 0 /\ x’ = x)} o 

{((r,x),(r’,x’)) | r’ = r /\ x’ = x /\ x <= 0)} = 

 

{((r,x),(r’,x’)) | (r’= 3(x-x’) /\ x’ >= 0 /\ x-x’ > 0) \/  

                      (r = 0 /\ r’= 0 /\ x’ = x /\ x <= 0)}   

    The above is the final relation for the program. 

r = 0; 

while (x > 0) { 

  r = r + 3; 

  x = x - 1 

} 



Correctness as Relation Inclusion 

program   relation  p 
specification  relation s 

program meets specification: 

p  s 

example:     p = {((r,x),(r’,x’)). r’=2x /\ x’=0 } 
    s = {((r,x),(r’,x’)). x > 0  r’ > x’ } 

then the above program p meets the 
specification s 

 because implication holds: 

 

 r’=2x  /\  x’=0    ( x > 0  r’ > x’ ) 



Checking Contracts (require/ensure) 

 

 

{((r,x),(r’,x’)) | (r’= 3(x’-x) /\ x’ >= 0 /\ x-x’ > 0) \/  

                      (r = 0 /\ r’= 0 /\ x’ = x /\ x <= 0)} 

 

 

 

Try to prove the validity of: 

 

((r’= 3(x-x’) /\ x’ >= 0 /\ x-x’ > 0) \/ (r = 0 /\ r’= 0 /\ x’ = x /\ x <= 0))   

       (x > 0  r’ == 3(x’ – x)) 

 

The program assertion holds if and only if the formula is valid. 

Translating ensure:     x becomes x’     whereas   old(x) becomes x      

require(x > 0) 

r = 0; 

while (x > 0) { 

  r = r + 3; 

  x = x - 1 

} 

ensure(r == 3*(x-old(x))) 



Checking Assertions 

 

 

{((r,x),(r’,x’)) | (r’= 3(x’-x) /\ x’ >= 0 /\ x-x’ > 0) \/  

                      (r = 0 /\ r’= 0 /\ x’ = x /\ x <= 0)} 

 

 

 

Try to prove the validity of: 

 

((r’= 3(x-x’) /\ x’ >= 0 /\ x-x’ > 0) \/ (r = 0 /\ r’= 0 /\ x’ = x /\ x <= 0))   

       r’ >= x’ 

 

The program assertion holds if and only if the formula is valid. 

r = 0; 

while (x > 0) { 

  r = r + 3; 

  x = x - 1 

} 

assert(r >= x) 



Recall the Simple Language 

x = T 

if (F) c1 else c2 

c1 ; c2 

while (F) c1 

c ::=  x=T | (if (F) c else c) | c ; c | (while (F) c) 

T ::= K | V | (T + T) | (T - T) | (K * T) | (T / K) | (T % K) 

F ::= (T==T) | (T < T) | (T > T) | (~F) | (F && F) | (F || F) 

V ::= x | y | z | ... 

K ::= 0 | 1 | 2 | ... 

terms like in P.A. 

ordinary control structures 

Boolean terms like  

P.A. formulas without quantifiers 



Normal form for Loop-Free Programs 

Lemma: Let P be a program without loops. 
Then for some  natural number n, 
 
 
where each pi  is relation composition of 

– relations for assignments 

– Partial diagonal relations (assumes) 

Prove this. 
 

  

 

 



 


