
Lecture 3 



Plan 

• Verification Condition Concept 

• Demo: proving formulas in Princess 

• Language of Guarded Commands 

• Programs as relations 



Verification-Condition Generation 
Steps in Verification 

• generate a formulas whose validity implies 

correctness of the program 

• attempt to prove all formulas 

• if formulas all valid, program is correct 

• if a formula has a counterexample, it 

indicates one of these: 

• error in the program 

• error in the property 

• error in auxiliary statements  

(e.g. loop invariants) 

Terminology 

• generated formulas:  

 verification conditions 

• generation process:  

 verification-condition generation 

• program that generates formulas:  

 verification-condition generator (VCG) 

 

 



Program from Before 

VC for invariant preservation (proved it by hand): 

res + 2*i = 2*x  Æ  i1=i -1  Æ  res1=res+2   

res1 + 2*i1 = 2*x 

res = 0 

i = x 

while invariant res + 2*i == 2*x 

 (i > 0) {  

  i = i – 1 

  res = res + 2 

}  

assert(res == 2*x) 



This VC in the Princess Prover 

res = 0 

i = x 

while invariant res + 2*i == 2*x 

 (i > 0) {  

  i = i – 1 

  res = res + 2 

}  

assert(res == 2*x) 

\universalConstants {  

    int x, i, res, i1, res1; } 

\problem {  

(res + 2*i = 2*x & i1 = i - 1 & res1 = res + 2) 

-> res1 + 2*i1 = 2*x } 



A More Difficult Example 

9 x,y,k,p. 

  (x < y + 2 Æ y < x + 1 Æ x = 3k Æ  
   (y = 6p+1 Ç y = 6p-1)) 

 

Is this statement true? Or, replace y+2 with y+1. 

Is a formula of Presburger arithmetic satisfiable? 

F ::= A |  F1 Æ F2  |  F1 Ç F2  | :F | 9k.F | k.F 

A ::= T1 = T2  |  T1 < T2  

T ::= k  |  C  |  T1 + T2  |  T1 – T2  | C * T | T % C 



In Princess 

\existentialConstants { 

  int x,y,k,p; 

}  

\problem { 

     (x < y + 2 & y < x + 1 & x = 3 * k  

   & (y = 6 * p + 1 | y = 6*p - 1)) 

} 

 

Remarks:  

• Existential constants are like existentially quantified variables 

• If all symbols are quantified (like x,y,k,p) or have a fixed interpretation 

(like *, +, =, <) then we satisfiability and validity are the same, and we 

can talk simply whether the formula is true or false. 



Simple Programming Language 

x = T 

if (F) c1 else c2 

c1 ; c2 

while (F) c1 

c ::=  x=T | (if (F) c else c) | c ; c | (while (F) c) 

T ::= K | V | (T + T) | (T - T) | (K * T) | (T / K) | (T % K) 

F ::= (T==T) | (T < T) | (T > T) | (~F) | (F && F) | (F || F) 

V ::= x | y | z | ... 

K ::= 0 | 1 | 2 | ... 

terms like in P.A. 

ordinary control structures 

Boolean terms like  

P.A. formulas without quantifiers 



Simple Program and its Syntax 

Tree 
while (x > 1) { 

  if (x % 2 = 0)  

    x = x / 2 

  else  

    x = 3 * x + 1 

} 

All programs are integers, and are initially zero. 



Remark: Turing-Completeness 
This language is Turing-complete  

• it subsumes counter machines, which are known to be Turing-

complete 

• every possible program (Turing machine) can be encoded into 

computation on integers (computed integers can become very large) 

• the problem of taking a program and checking whether it terminates 

is undecidable 

• Rice's theorem: all properties of programs that are expressed in 

terms of the results that the programs compute  

(and not in terms of the structure of programs)  are undecidable 

 

In real programming languages we have bounded integers, but we 

have other sources of unboundedness, e.g. 

• BigInt data type of Java and Scala (sequence of digits of any length) 

• example: sizes of linked lists and of other data structure 

• program syntax trees for an interpreter or compiler  

  (we would like to handle programs of any size!) 

http://en.wikipedia.org/wiki/Rice's theorem
http://en.wikipedia.org/wiki/Rice's theorem
http://en.wikipedia.org/wiki/Rice's theorem


What is decidable 

• Checking satisfiability of Presburger arithmetic 
formulas (even with quantifiers) is decidable 

• Checking if there exists an input to a  program in 
our language for which program computes a given 
value (e.g. 1) is undecidable 

• Quantifiers in Presburger arithmetic cannot be 
used to define z=x*y, but we can write a program 
that computes x*z and stores it in z 

• Programs without loops can be translated into 
Presburger arithmetic 

• Loops give much more expressive power to 
Presburger arithmetic than quantifiers (situation 
can be different if we did not work with Presburger 
arithmetic) 



Relational Semantics 



Mapping Programs 

while (x > 1) { 

  if (x % 2 = 0)  

    x = x / 2 

  else  

    x = 3 * x + 1 

} 

into relations 

{((x1,...,xn ), (x’1,...,x’n )) | F(x1,...,xn ,x’1,...,x’n )} 

initial state final state 



Examples 



Example of Non-Determinism 

x = randomInteger() 

if (x > 10) { 

  y = y+1 

} else { 

  y = y+2 

} 

relation between the initial and the final y: 

{(y,y’) |  (y’ = y+1  ||  y’ = y + 2) } = 
{…,(100,101),(100,102), (101,102),(101,103), … } 

obviously, not a function 

    



Why Relations 

The meaning is, in general, an arbitrary relation. Therefore:  

 

• For certain states there will be no results.  

  In particular, if a computation starting at a state does not terminate 

  (due to a program that blocks on input, or loops forever) 

 

• For certain states there will be multiple results. 

  This means command execution starting in state will sometimes 

compute one and sometimes other result.  

  Verification of such program must account for both possibilities. 

 

• Multiple results are important for modeling e.g. concurrency, as well 

as approximating behavior that we do not know  

(e.g. random numbers, what the operating system or users do,  

what the result of a complex computation is) 

 



Guarded Command Language 

assume(F)  - stop execution if F does not hold 

     pretend execution never happened 

 

s1 ; s2        - do first s1, then s2 

 

s1 [] s2       - do either s1 or s2 arbitrarily 

      (drunk if statement) 

 

s*               - execute s zero, once, or more times 

 



Guarded Commands and Relations - Idea 

x = term  {(x,term) | true } 

    gets more complex for more variables 

assume(F)  ΔS   

   S is set of values for which F is true 

   (satisfying assignments of F) 

s1 ; s2  r1 o r2        (r1 is for s1  , r2 for s2) 

 

s*   r* where r describes s 

 

s1 [] s2  r1 U r2      (r1 is for s1  , r2 for s2) 



Relation Composition 

r1 o r2 = {(a,c) |  b.  (a,b) r1  (b,c)  r2} 

[[ (x = x + 1 ; x = x – 5) ]] =  

[[x = x + 1]] o [[x = x – 5]] =  

{(x,x’) | x’ = x +1} o {(x,x’) | x’ = x – 5} = 

{(a,c) |  



Assignment for More Variables 

var x,y 

… 

y = x + 1 



‘if’ condition using assume and [] 

if (F)  
  s1  
else  
  s2 

 

 

(assume(F); s1) 

     [] 

(assume(F); s2) 



Example: y is absolute value of x 

if (x>0)  
  y = x 
else  
  y = -x 

 

(assume(x>0); y=x) 

     [] 

(assume((x>0)); y=-x) 



Guards are assume statements 

F  c  shorthand for:   assume(F);c 

 

 

{(x,x) | F(x) } o {(x,x’) | R(x,x’)} = 

{(x,x’) | F(x) /\ R(x,x’) } 

Adding a guard F corresponds to adding the 

condition F to the initial state in the relation. 

Analogously: 

  [[ c; assume(F) ]] = {(x,x’) | R(x,x’) /\ F(x’)} 



‘while’ using assume and * 

while (F)  

  s 

(assume(F); s)* ; 
assume(F) 

 
Consider all paths from before the 
loop to after the loop, and look at the 
resulting regular expression. 

 

In Control-Flow Graph we denote 
assume(F) by [F]. 



Havoc Statement 

Havoc Statement 

• Havoc statement is another useful declarative statement. It 
changes a given variable entirely arbitrarily: there will be one 
possible state for each possible value of integer variable. 
 
 

Expressing Assignment with Havoc+Assume 

• We can prove that the following equality holds when x does 
not occur in E: 
 
  x = E       is     havoc(x); assume(x==E) 
 
In other words, assigning a variable is the same as changing 
it arbitrarily and then assuming that it has the right value.  


