
Synthesis, Analysis, and Verification
Lecture 12

Verifying Programs that have Data Structures

What we have seen so far

• Programs that manipulate integers

• Verification-condition generation for them

• Proving such verification conditions using
quantifier elimination

• Using abstract interpretation
to infer invariants

• Predicate abstraction as abstract domain,
and the idea of discovering new predicates

user gives
invariants

user gives
only

properties

more
predictable

more
automated

QUESTION

What do we need to add to
handle more general programs?

Verification-Condition Generation
Steps in Verification
• generate a formulas whose validity implies

correctness of the program
• attempt to prove all formulas

• if formulas all valid, program is correct
• if a formula has a counterexample, it indicates

one of these:
• error in the program
• error in the property
• error in auxiliary statements

(e.g. loop invariants)
Terminology
• generated formulas:

 verification conditions
• generation process:

 verification-condition generation
• program that generates formulas:

 verification-condition generator (VCG)

VCG for Real Languages
Programs that Manipulate Integers,
Arrays, Maps, Linked Data Structures

Compute Formulas from Programs
have more operations in expressions for x:=E

Formulas with Integer Variables and Operations,
as well as variables and operations on functions

Prover for integer linear arithmetic
+ provers for function symbols,
 mathematical arrays,
 term algebras, ...

FIND INTEGER
OPERATIONS IN
THIS PICTURE

RULES
REMAIN

SAME

Some Immutable String Operations
Domain is the set of all strings over some a finite set of
characters Char, and the empty string, ""

Operations include:

Concatenation: "abc" ++ "def" == "abcdef"
Head: head("abcd") == "a"
Tail: tail("abcd") == "bcd"

A Program with Immutable Strings
var first, second, given : String
var done : Boolean
first = ""
second = given
done = false
while (!done) {
 assume(second != "")
 if (head(second) =="/") {
 second = tail(second)
 done = true
 } else {
 first = first ++ head(second)
 second = tail(second)
 }
}
assert (first ++ "/" ++ second == given)

Find a loop invariant.

State verification conditions.

Prove verification conditions.

Some Verification Conditions

!done /\ first ++ second == given /\
 second != "" /\ head(second) != "/" /\
 first' = first + head(second) /\
 second' = tail(second) /\
 done' = done -->
!done' /\ first' ++ second' == given

done /\ first ++ second == given /\
 second != "" /\ head(second) == "/" /\
 second' = tail(second) /\
 first' = first /\
 done' = true -->
done' /\ first' ++ "/" ++ second' == given

Remark: Theory of Strings with ++

Given quantifier-free formula in theory of
strings, check whether there are values for
which formula is true (satisfiability).

NP-hard problem, not known to be in NP, only in
PSPACE.

Wojciech Plandowski: Satisfiability of word
equations with constants is in PSPACE.
 J. ACM 51(3): 483-496 (2004)

http://www.informatik.uni-trier.de/~ley/db/journals/jacm/jacm51.html

In the sequel

• We will

– not look at strings so much

– use more general notion, Map

– avoid operations such as concatenation

• Theories of maps (array)

– using them to represent program data structures

– reasoning about them

Subtlety of Array Assignment

Rule for wp of assignment of expression E to
variable x, for postcondition P:

 wp(x=E , P) =

Example:

 wp(x=y+1,x > 5) =

wp of assignment to a pre-allocated array cell:

 wp(a[i]=y+1, a[i]>5) =

 wp(a[i]=y+1, a[i]>5 /\ a[j]>3) =

MAPS
Map[A,B] - immutable (function) A -> B

type is like ... this map
String Map[Int,Char]

List[B] Map[Int,B]

class A { var f: B} var f : Map[A,B]

x.f==y f(x)==y

a1,a2: Array[B] ga: Map[Object,Map[Int,B]]

 ga(a1) : Map[Int,B]
 ga(a2) : Map[Int,B]

for now ignore this:

Key Operation on Maps

Map lookup: f(x)

Map update: f(x:=v) == g meaning f(x->v)==g

1. g(x)=v

2. g(y)=f(y) for y != x.

Represent assignments:

 x = a[i]  x = a(i)

 a[i]=v 

Pre-Allocated Arrays

• These are static arrays identified by name, to
which we can only refer through this name

• Many reasonable languages had such arrays,
for example as global array variables in Pascal

• They can be approximated by:

– static initialized Java arrays, e.g.
 static int[] a = new int[100];
if we never do array assignments of form foo=a;

– static arrays in C, if we never create extra pointers
to them nor to their elements

Modeling Pre-Allocated Arrays
We always update entire map

Copy semantics!

guarded commands:

b= b(0:=100);

assert(b(0)==100);

original program

b[0]=100;

assert(b(0)==100);

using Scala immutable maps

b= b + (0 -> 100)

assert(b(0)==100)

Modeling using Immutable Maps
We always update entire arrays

Copy semantics!

guarded commands:

b= b(0:=100);

assert(b(0)==100); ok

a= b; // copy

a= a(0:=200);

assert(b(0)==100); ok

corresponds to Scala maps

var a = Map[Int,Int]()

var b = Map[Int,Int]()

b= b + (0 -> 100)

assert(b(0)==100) ok

a= b // share, immutable

a= a + (0 -> 200)

assert(b(0)==100) ok

Weakest Preconditions
for Pre-Allocated Arrays

wp(a[i]=E, P) =

Example

if (a[i] > 0) {

 b[k]= b[k] + a[i];

 i= i + 1;

 k = k + 1;

} else {

 b[k] = b[k] + a[j];

 j= j + 1;

 k = k – 1;
}

Formula for this Example

(assume(a(i) > 0);

 b= b(k:= b(k)+ a(i));

 i= i + 1;

 k = k + 1;)

[] (assume(a(i)<=0);

 b= b(k:= b(k)+ a(j));

 j= j + 1;

 k = k – 1;
)

guarded commands: formula:

Array Bounds Checks: Index >= 0

if (a[i] > 0) {

 b[k]= b[k] + a[i];

 i= i + 1;

 k = k + 1;

} else {

 b[k] = b[k] + a[j];

 j= j + 1;

 k = k – 1;
}

assert(i >= 0)
(assume(a(i) > 0);
 assert
 assert
 assert
 b= b(k:= b(k)+ a(i));
 i= i + 1;
 k = k + 1;)
[] (assume(a(i)<=0);
 assert
 assert
 assert
 b= b(k:= b(k)+ a(j));
 j= j + 1;
 k = k – 1;
)

How to model “index not too large”

const M = 100
const N = 2*M
int a[N], b[N];
...
if (a[i] > 0) {
 b[k]= b[k] + a[i];
 i= i + 1;
 k = k + 1;
}

assert

(assume(a(i) > 0);

 assert

 assert

 assert

 b= b(k:= b(k)+ a(i));

 i= i + 1;

 k = k + 1;)

[] (assume(a(i)<=0))

Translation of Array Manipulations
with Bounds Checks when Size is Known

x= a[i] 

a[i] = y 

assert(0 <= i);

assert(i < a_size);

x = a(i);

assert(0 <= i);
...

Example for Checking Assertions

const M = 100;
const N = 2*M;
int a[N], b[N];
i = -1;
while (i < N) {
 i= i + 1;
 if (a[i] > 0) {
 k = k + 1;
 b[k]= b[k] + a[i];
 }
}

1. Translate to guarded commands
2. Find a loop invariant and prove it inductive
3. Show that the invariant implies assertions

Mutable Arrays are by Reference

Java (also Scala arrays and mutable maps):

b[0]= 100;

assert(b[0]==100);

a= b; // make references point to same array

a[0]= 200;

assert(b[0]==100); // fails, b[0]==a[0]==200

To model Java Arrays, we first examine

how to model objects in general

Reference Fields

class Node { Node next; }

How to model ‘next’ field?

y = x.next; 

x.next = y; 

Each Field Becomes Function
Each Field assignment becomes Function Update

radius : Circle -> int

center : Circle -> Point



this.radius = this.radius * 2



class Circle {

 int radius;
 Point center;
 void grow() {

 radius = radius * 2;

 }
}

radius= radius(this:= radius(this)*2)

Field Manipulations with Checks

x=y.f 

y.f = x 

x.f.f= z.f + y.f.f.f ; 

assert

x= f(y)

assert

f=

All Arrays of Given Result Become One Class
Array Assignment Updates Given Array at Given Index

length : Array -> int

data : Array -> (Int -> Int)

 or simply: Array x Int -> Int

 a.data[i] = x

 data= data((a,i):= x)

class Array {
 int length;
 data : int[]
}
a[i] = x

Assignments to Java arrays:
Now including All Assertions

(safety ensured, or your models back)

length : Array -> int

data : Array -> (Int -> Int)

 or simply: Array x Int -> Int

 assert
 assert

 data= data((a,i):= x)



class Array {
 int length;
 data : int[]
}
a[i] = x

y = a[i]

Can this assertion fail in C++ (or Pascal)?

 x= 4;

 y= 5;

 assert(x==4);

Variables in C and Assembly

void funny(int& x, int& y) {

}
int z;
funny(z, z);

Memory Model in C and Assembly

Just one global array of locations:
 mem : int  int // one big array (or int32 -> int32)
 each variable x has address in memory, xAddr, which is &x
We map operations to operations on this array:
int x;
int y;
int* p;
y= x  mem[yAddr]= mem[xAddr]
x=y+z  mem[xAddr]= mem[yAddr] + mem[zAddr]
y = *p  mem[yAddr]= mem[mem[pAddr]]
p = &x  mem[pAddr] = xAddr
*p = x  mem[mem[pAddr]]= mem[xAddr]

Can this assertion fail in C++ (or Pascal)?

Variables in C and Assembly

void funny(int& x, int& y) {

 x= 4;

 y= 5;

 assert(x==4);

}
int z;
funny(&z, &z);

void funny(xAddr, yAddr) {

 mem[xAddr]= 4;

 mem[yAddr]= 5;

 assert(mem[xAddr]==4);

}
zAddr = someNiceLocation
funny(zAddr, zAddr);

Exact Preconditions in C,Assembly

Let x be a local integer variable.

In Java:
 wp(x=E, y > 0) =

In C:
 wp(x=E, y > 0) =

Disadvantage of Global Array

In Java:
 wp(x=E, y > 0) = y > 0
In C:
 wp(x=E, y > 0) =
 wp(mem[xAddr]=E’, mem[yAddr]>0) =
 wp(mem= mem(xAddr:=E’), mem(yAddr)>0) =
 (mem(yAddr)>0)[mem:=mem(xAddr:=E’)] =
 (mem(xAddr:=E’))(yAddr) > 0
Each assignment can interfere with each value!
This is absence of interference makes low-level languages
unsafe and difficult to prove partial properties.
To prove even simple property, we must know something
about everything.

How to do array bounds checks in C?

See e.g. the Ccured project:

http://ostatic.com/ccured

 CCured: type-safe retrofitting of legacy software
Necula et al.
ACM Transactions on Programming Languages and Systems (TOPLAS)

Volume 27 Issue 3, May 2005

Back to Memory Safety

Memory Allocation in Java

x = new C();

y = new C();

assert(x != y); // fresh object references-distinct

Why should this assertion hold?

How to give meaning to ‘new’ so we can prove it?

How to represent fresh objects?

assume(N > 0 /\ p > 0 /\ q > 0 /\ p != q);

a = new Object[N];

i = 0;

while (i < N) {

 a[i] = new Object();

 i = i + 1;

}

assert(a[p] != a[q]);

A View of the World

Everything exists, and will always exist.
(It is just waiting for its time to become allocated.)

It will never die (but may become unreachable).

alloc : Obj  Boolean i.e. alloc : Set[Obj]

x = new C(); 

 ^defult constructor

