Propositional and First Order Reasoning

Terminology

- Propositional variable: boolean variable (p)
- Literal: propositional variable or its negation
 p ¬p
- Clause: disjunction of literals q \/ ¬p \/ ¬r given by set of literalsL {q, ¬p, ¬r}
- Conjunctive Normal Form: conjunction of clauses (q \/ ¬p \/ ¬r) /\ (p \/ r) given by set of sets of literals
 { {q, ¬p, ¬r}, {p, q} }

Generate Verification Condition

if (p) q=true; else r=true; if (!p) q=false; else r=false; assert(q = !r); $\begin{bmatrix} \left(P \land q_{1} \land (r_{1} \leftarrow > r) \right) \lor \\ \left(\neg P \land \forall_{1} \land \left(q_{1} \leftrightarrow q \right) \right) \end{bmatrix} \land \\ \begin{bmatrix} \left(\neg P \land \neg q_{2} \land (r_{2} \leftrightarrow r_{1}) \right) \lor \\ \left(P \land \neg r_{2} \land (q_{2} \leftarrow > q_{i}) \right) \end{bmatrix} \land \\ \neg \left(q_{2} \leftarrow \neg r_{2} \right) \end{bmatrix}$

Goal: obtain empty clause (contradiction) Observation: if the above resolution can be made, and if D' is a superset of D, then also this works (but is worse): $C \cup \{P\} \qquad D' \cup \{P\}$ $C \cup D'$

We keep only D. A subset clause **subsumes** its supersets.

Unit Resolution

unit clause: {p}

Since p is true, ¬p is false, so it can be removed New clauses *subsumes* previous one

Boolean Constraint Propagation

def BCP(S : Set[Clause]) : Set[Clause] = if for some unit clause U ∈ S clause C ∈ S, resolve(U,C) \notin S then BCP(S ∪ resolve(U,C)) else S

def delSubsumed(S : Set[Clause]) : Set[Clause] = if there are C1,C2 \in S such that C1 \subseteq C2 then delSubsumes(S \ {C2}) else S

DPLL Algorithm

- def isSatDPLL(S : Set[Clause]) : Boolean =
 - val S' = delSubsumed(BCP(S))
 - if ({} in S') then false
 - else if (S' has only unit clauses) then true

else

val P = pick a variable from FV(S')

DPLL(F' union {p}) || DPLL(F' union {Not(p)})

How to obtain clauses?

Translate to Conjunctive Normal Form

Generate a set of clauses for a formula

- A) Applying: $p \setminus (q \wedge r) \rightarrow (p \vee q) \wedge (p \vee r)$ + simple
 - + no new variables introduced in translation
 - obtain exponentially size formula, e.g. from
 (p₁ /\ ¬ p₂) \/ (p₂ /\ ¬ p₃) \/ ... \/ (p_{n-1} /\ ¬ p_n)

B) Introducing fresh variables – due to Tseitin

- + not exponential
- + useful and used in practice
- Key idea: give names to subformulas

Apply Transformation to Example

- Without fresh variables
- With fresh variables

Tseitin's translation

- Translate to negation normal form (optional)
 - push negation to leaves
 - polynomial time, simple transformation
- For each subformula F_i have variable p_i
- For F_i of the form $F_m \bigvee F_n$ introduce into CNF the conjunct

$$\begin{split} p_i &<-> (p_m \bigvee p_n) \text{ i.e.} \\ (p_i &-> p_m \bigvee p_n), \quad (p_m \bigvee p_n) -> p_i \\ &\{\neg p_i, p_m, p_n\}, \{\neg p_m, p_i\}, \{\neg p_n, p_i\} \end{split}$$

• 3 small clauses per node of original formula

Polynomial algorithm for SAT?

- Checking satisfiability of formulas in DNF is polynomial time process
 - DNF is disjunction of conjunctions of literals
 - If a formula is in DNF, it is satisfiable iff one of its disjuncts is satisfiable
 - A conjunction is satisfiable iff it does not list two contradictory literals
- Algorithm:
 - Analogously to CNF, use Tseitin's transformation to generate DNF of a formula
 - test the satisfiability of the resulting formula

Correctness of Tseitin's transformation

- Original formula: F
- Translated formula: [[F]]
- Variables introduced in translation: p₁, ..., p_n

[[F]] is equivalent to $\exists p_1, ..., p_n$. F

- A satisfiable assignment for [[F]] is a satisfiable assignment for F.
- If we find satisfiable assignment for F, subformulas give us assignment for p_i

DPLL

Davis–Putnam–Logemann–Loveland

- Algorithm for SAT
- Key ideas
 - use Boolean Constraint Propagation (BCP)
 exhaustively apply unit resolution
 - otherwise, try to set variable p true/false
 (add the appropriate unit clause {p}, {¬ p})

DPLL Algorithm

- def isSatDPLL(S : Set[Clause]) : Boolean =
 - val S' = delSubsumed(BCP(S))
 - if ({} in S') then false
 - else if (S' has only unit clauses) then true

else

val P = pick a variable from FV(S')

DPLL(S' union {p}) || DPLL(S' union {Not(p)})

DPLL is complete

- Case analysis on all truth values
- Truth table method, with optimizations

DPLL Proof is Resolution Proof

- Why is each reasoning step resolution
- When DPLL terminates, it can emit a proof
- Claim:
 - it can always emit a resolution proof
 - emitting proofs is only polynomial overhead, a natural extension of the algorithm
- What steps does DPLL make:
 - unit resolution is resolution
 - subsumption does not remove proof existence
 - case analysis on truth values why is it resolution?

Why Case Analysis is Resolution

First-Order Logic Terminology

- Terms: built using function symbols from
 - variables
 - constants
- Atomic formulas: combine terms using relation symbols
 - they are like propositional formulas (but have structure)
 - equality is one binary relation symbol
- Literal: atomic formula or its negation
- **Clause**: disjunction of literals
- Conjunctive Normal Form: conjunction of clauses
 { {Q(f(x),x), ¬P(a), ¬R(x,f(x))}, {Q(a,b), P(b)} }