
Propositional and First Order
Reasoning

Terminology

• Propositional variable: boolean variable (p)

• Literal: propositional variable or its negation

p p

• Clause: disjunction of literals q \/ p \/ r
given by set of literalsL {q, p, r}

• Conjunctive Normal Form: conjunction of
clauses (q \/ p \/ r) /\ (p \/ r)
given by set of sets of literals
 { {q, p, r}, {p, q} }

Generate Verification Condition

 if (p)
 q=true;
 else
 r=true;
 if (!p)
 q=false;
 else
 r=false;
 assert(q = !r);

Resolution Rule

Goal: obtain empty clause (contradiction)
Observation: if the above resolution can be made, and
if D’ is a superset of D, then also this works (but is worse):

We keep only D. A subset clause subsumes its supersets.

Unit Resolution

Since p is true, p is false, so it can be removed
New clauses subsumes previous one

unit clause: {p}

Boolean Constraint Propagation

def BCP(S : Set[Clause]) : Set[Clause] =

 if for some unit clause U  S clause C  S,

 resolve(U,C)  S

 then BCP(S  resolve(U,C))

 else S

def delSubsumed(S : Set[Clause]) : Set[Clause] =

 if there are C1,C2  S such that C1  C2

 then delSubsumes(S \ {C2}) else S

DPLL Algorithm

def isSatDPLL(S : Set[Clause]) : Boolean =

 val S' = delSubsumed(BCP(S))

 if ({} in S') then false

 else if (S' has only unit clauses) then true

 else

 val P = pick a variable from FV(S')

 DPLL(F' union {p}) || DPLL(F' union {Not(p)})

How to obtain clauses?

Translate to Conjunctive Normal Form

Generate a set of clauses for a formula

A) Applying: p \/ (q /\ r)  (p \/ q) /\ (p \/ r)
+ simple

+ no new variables introduced in translation

- obtain exponentially size formula, e.g. from
 (p1 /\  p2) \/ (p2 /\  p3) \/ ... \/ (pn-1 /\  pn)

B) Introducing fresh variables – due to Tseitin
+ not exponential

+ useful and used in practice

Key idea: give names to subformulas

Apply Transformation to Example

• Without fresh variables

• With fresh variables

Tseitin’s translation
• Translate to negation normal form (optional)

– push negation to leaves

– polynomial time, simple transformation

• For each subformula Fi have variable pi

• For Fi of the form Fm \/ Fn introduce into CNF
the conjunct

pi <-> (pm \/ pn) i.e.

(pi -> pm \/ pn), (pm \/ pn) -> pi

{pi , pm , pn }, {pm , pi }, { pn , pi }

• 3 small clauses per node of original formula

Polynomial algorithm for SAT?

• Checking satisfiability of formulas in DNF is
polynomial time process
– DNF is disjunction of conjunctions of literals
– If a formula is in DNF, it is satisfiable iff one of its

disjuncts is satisfiable
– A conjunction is satisfiable iff it does not list two

contradictory literals

• Algorithm:
– Analogously to CNF, use Tseitin’s transformation to

generate DNF of a formula
– test the satisfiability of the resulting formula

Correctness of Tseitin’s transformation

• Original formula: F
• Translated formula: [[F]]
• Variables introduced in translation: p1, ..., pn

[[F]] is equivalent to p1, ..., pn. F

• A satisfiable assignment for [[F]] is a satisfiable
assignment for F.

• If we find satisfiable assignment for F,
subformulas give us assignment for pi

DPLL

Davis–Putnam–Logemann–Loveland

• Algorithm for SAT

• Key ideas

– use Boolean Constraint Propagation (BCP)
exhaustively apply unit resolution

– otherwise, try to set variable p true/false
(add the appropriate unit clause {p}, { p})

DPLL Algorithm

def isSatDPLL(S : Set[Clause]) : Boolean =

 val S' = delSubsumed(BCP(S))

 if ({} in S') then false

 else if (S' has only unit clauses) then true

 else

 val P = pick a variable from FV(S')

 DPLL(S' union {p}) || DPLL(S' union {Not(p)})

DPLL is complete

• Case analysis on all truth values

• Truth table method, with optimizations

DPLL Proof is Resolution Proof

• Why is each reasoning step resolution

• When DPLL terminates, it can emit a proof

• Claim:
– it can always emit a resolution proof

– emitting proofs is only polynomial overhead,
a natural extension of the algorithm

• What steps does DPLL make:
– unit resolution is resolution

– subsumption – does not remove proof existence

– case analysis on truth values – why is it resolution?

decision: p false

Why Case Analysis is Resolution

First-Order Logic Terminology

• Terms: built using function symbols from
– variables
– constants

• Atomic formulas: combine terms using relation
symbols
– they are like propositional formulas (but have

structure)
– equality is one binary relation symbol

• Literal: atomic formula or its negation
• Clause: disjunction of literals
• Conjunctive Normal Form: conjunction of clauses

 { {Q(f(x),x), P(a), R(x,f(x))}, {Q(a,b), P(b)} }

