Propositional and First Order
Reasoning

Terminology

Propositional variable: boolean variable (p)
Literal: propositional variable or its negation
P —p

Clause: disjunction of literals g \/ =p \/ —r
given by set of literalsL {q, —p, —r}

Conjunctive Normal Form: conjunction of

clauses (q\/—=p\/ —=r)/\(p\/r)

given by set of sets of literals
{{d, =p, =r}, {p, a} }

Generate Verification Condition

if (p) [(PAqualrae>r)V
g=true; (PN ¥Ya N(gye q))} A
else
—true- [(’lp AN19, A (V‘,_C——) Y‘i)) \4
if (1p) (P A% A (qae>q)) | A
g=false;
else (e)
r=false;

assert(q = !r);

Resolution Rule

C U {py DUTTPS
B CUD

Goal: obtain empty clause (contradiction)
Observation: if the above resolution can be made, and
if D’ is a superset of D, then also this works (but is worse):

Cu fp) D'USTP]
CoD’

We keep only D. A subset clause subsumes its supersets.

Unit Resolution

unit clause: {p}

i2] DU 17¢3

D

Since p is true, —p is false, so it can be removed
New clauses subsumes previous one

Boolean Constraint Propagation

def BCP(S : Set[Clause]) : Set[Clause] =
If for some unit clause U € S clause C € S,
resolve(U,C) ¢ S
then BCP(S u resolve(U,C))
else S

def delSubsumed(S : Set[Clause]) : Set[Clause] =
if there are C1,C2 € S such that C1 < C2
then delSubsumes(S \ {C2}) else S

DPLL Algorithm

def isSatDPLL(S : Set[Clause]) : Boolean =
val S' = delSubsumed(BCP(S))
if ({} in S') then false
else if (S' has only unit clauses) then true
else
val P = pick a variable from FV(S')
DPLL(F' union {p}) || DPLL(F' union {Not(p)})

How to obtain clauses?

Translate to Conjunctive Normal Form

Generate a set of clauses for a formula

A) Applying: p\/(a/Ar) = (pVa)/\(p\/r)
+ simple
+ no new variables introduced in translation
- obtain exponentially size formula, e.g. from
(Ps A=p)) V(P A=ps) Ve V(P s A —=py)
B) Introducing fresh variables — due to Tseitin
+ not exponential
+ useful and used in practice
Key idea: give names to subformulas

Apply Transformation to Example

 Without fresh variables
 With fresh variables

Tseitin’s translation

Translate to negation normal form (optional)
— push negation to leaves
— polynomial time, simple transformation

For each subformula F; have variable p,

For F. of the form F_ \/ F, introduce into CNF
the conjunct
Pi <-> (P \V/) e

(P> pPm VP, (P VP, ->p
(=i, P s P b 2P, Pi L 12 P, B}

3 small clauses per node of original formula

Polynomial algorithm for SAT?

* Checking satisfiability of formulas in DNF is
polynomial time process

— DNF is disjunction of conjunctions of literals

— If a formula is in DNF, it is satisfiable iff one of its
disjuncts is satisfiable

— A conjunction is satisfiable iff it does not list two
contradictory literals

* Algorithm:

— Analogously to CNF, use Tseitin’s transformation to
generate DNF of a formula

— test the satisfiability of the resulting formula

Correctness of Tseitin’s transformation

e Original formula: F
* Translated formula: [[F]]
* Variables introduced in translation: p,, ..., p

N

[[F]] isequivalentto dp,, ..., p,. F

* A satisfiable assignment for [[F]] is a satisfiable
assignment for F.

* If we find satisfiable assignment for F,
subformulas give us assignment for p.

DPLL

Davis—Putnam—-Logemann—Loveland
* Algorithm for SAT
* Key ideas

— use Boolean Constraint Propagation (BCP)
exhaustively apply unit resolution

— otherwise, try to set variable p true/false
(add the appropriate unit clause {p}, {— p})

DPLL Algorithm

def isSatDPLL(S : Set[Clause]) : Boolean =
val S' = delSubsumed(BCP(S))
if ({} in S') then false
else if (S' has only unit clauses) then true
else
val P = pick a variable from FV(S')
DPLL(S" union {p}) || DPLL(S' union {Not(p)})

DPLL is complete

e Case analysis on all truth values
* Truth table method, with optimizations

DPLL Proof is Resolution Proof

Why is each reasoning step resolution
When DPLL terminates, it can emit a proof

Claim:
— it can always emit a resolution proof

— emitting proofs is only polynomial overhead,
a natural extension of the algorithm

What steps does DPLL make:

— unit resolution is resolution

— subsumption — does not remove proof existence

— case analysis on truth values — why is it resolution?

(09 Wy §q %y fpay {l4,r}

‘K V twe Lalse V...
falsev. decision: p—2> false
P/f‘lq,'l"’] 'P,'{Q?l’ ﬁq;r}
AR N
RELY
ipy?

&
g,u{‘»% - &
£héwn ¢ - 173

Why Case Analysis is Resolution

cuiwl - & cuiri - &
50, have pwot so, have proof
< C
|)
iP) {1p}
\ o Y proof fov
QS so, qot P ;

|
fo.3

First-Order Logic Terminology

Terms: built using function symbols from
— variables
— constants

Atomic formulas: combine terms using relation
symbols

— they are like propositional formulas (but have
structure)

— equality is one binary relation symbol
Literal: atomic formula or its negation
Clause: disjunction of literals

Conjunctive Normal Form: conjunction of clauses
{ {Q(f(x)lx)l _IP(a)l _IR(XIf(X))}I {Q(alb)l P(b)} }

