Verification of Functional Programs in Scala

Philippe Suter

(joint work w/ Ali Sinan Köksal and Viktor Kuncak)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE, SWITZERLAND

~\$./demo

Leon

A verifier for Scala programs.

 The programming and specification languages are the same, purely functional, subset.

```
def content(t: Tree) = t match {
  case Leaf ⇒ Set.empty
  case Node(I,v,r) ⇒
  (content(I) ++ content(r)) + e
}
```

```
def insert(e:Int, t: Tree) = t match {
  case Leaf ⇒ Node(Leaf,e,Leaf)
  case Node(I,v,r) if e < v ⇒
    Node(insert(e,I),v,r)
  case Node(I,v,r) if e > v ⇒
    Node(I,v,insert(r))
  case _ ⇒ t
} ensuring(
  res ⇒ content(res) == content(t) + e)
```

Postconditions

```
def size(lst: List) = (lst match {
  case Nil ⇒ 0
  case Cons(_, xs) ⇒ 1 + size(xs)
}) ensuring(res ⇒ res ≥ 0)
```



```
(size(xs) ≥ 0) ∧ (lst match {
  case Nil ⇒ 0
  case Cons(_, xs) ⇒ 1 + size(xs)
}) < 0</pre>
```

Preconditions

 We encode the path condition and use it to prove that precond. can't be violated.

```
def zip(l1: List, l2: List) : PairList = {
 require(size(l1) == size(l2))
                                                                  size(11) == size(12)
 11 match {
                                                                \wedge |1 \neq Ni| \wedge xs = |1.tai|
   case Nil() \Rightarrow PNil()
                                                               \wedge 12 \neq Nil \wedge ys = 12.tail
   case Cons(x, xs) \Rightarrow 12 match {
                                                               \land size(xs) \neq size(ys)
    case Cons(y, ys) \Rightarrow
      PCons(P(x, y), zip(xs, ys))
                                                                  Unsatisfiable.
```

Pattern-Matching Exhaustiveness

 We generate a formula that expresses that no case matches, and prove it unsatisfiable.

```
def zip(l1: List, l2: List) : PairList = {
 require(size(l1) == size(l2))
                                                              size(11) == size(12)
 11 match {
  case Nil() \Rightarrow PNil()
                                                            \wedge |2 == Nil
  case Cons(x, xs) \Rightarrow 12 match {
    case Cons(y, ys) \Rightarrow
     PCons(P(x, y), zip(xs, ys))
                                                             Unsatisfiable.
```

Decision Procedures

 Algorithms that answer a satisfiability/validity question for a class of formulas.

$$3*x + 2*y = 7$$
 $x = 1, y = 2$

$$3*x + 2*y = 7 \land y < 0 \land x \le y$$
 Unsatisfiable.

 φ is valid $\Leftrightarrow \neg \varphi$ is unsatisfiable.

Satisfiability Modulo Theories Solvers

- Essentially, efficient implementations of decision procedures.
- Decide the satisfiability of a formula modulo a combination of theories.
- Usually for quantifier-free formulas.

SMT Solving

$$I_1 = Cons(e_1, I_2)$$

 $\Lambda (I_2 = Nil \lor e_1 = 0)$
 $\Lambda (f(e_1) \neq f(e_2) \lor I_1 = Nil)$
 $\Lambda (e_2 = 0 \lor f(e_2) = 0)$

$$l_1 \rightarrow Cons(e_1, l_2), l_2 \rightarrow Nil,$$

 $e_1 \rightarrow 1, e_2 \rightarrow 0,$
 $f: \{1 \rightarrow 1, _ \rightarrow 0\}$

$$I_1 = Cons(e_1, I_2)$$
 $f(e_1) \neq f(e_2)$
 $\neg (f(e_2) = 0)$
 $\neg (I_2 = NiI)$
 $e_1 = 0$
 $e_2 = 0$
 $I_2 = NiI$
 $e_2 = 0$

Assignment to the free variables, and a model for the functions symbols that satisfy the axiom: $a = b \Rightarrow f(a) = f(b)$.

SMT + Computable Functions

```
Tree ::= Leaf | Node(Tree, Int, Tree)

content(Leaf) = \emptyset

content(Node(t_1, e, t_2)) = content(t_1) U { e } U content(t_2)
```

```
t_1 = Node(t_2, e_1, t_3)
 \land e_1 > e_2
 \land content(t_4) = content(t_2) \cup \{e_2\}
 \land content(Node(t_4, e_1, t_3)) \neq content(t_1) \cup \{e_2\}
```

...of quantifier-free formulas in a decidable base theory...

Satisfiability Modulo Computable Functions

...pure, total, deterministic, firstorder and terminating on all inputs...

- Semi-decidable problem worthy of attention.
- What are general techniques for proving and disproving constraints?
- What are interesting decidable fragments?

Proving with Inlining

```
def size(lst: List) = lst match {
                                           def sizeTR(lst: List, acc: Int) = lst match {
 case Nil \Rightarrow 0
                                             case Nil \Rightarrow acc
 case Cons( , xs) \Rightarrow 1 + size(xs)
                                             case Cons( , xs) \Rightarrow sizeTR(xs, 1 + acc)
                                            } ensuring(res ⇒ res = size(lst) + acc)
                         size(lst) = sizeTR(lst, 0)
                                            def sizeTR(lst: List, acc: Int) = if (lst = Nil) {
def size(lst: List) = if(lst = Nil) {
                                             acc
} else {
                                            } else {
 1 + size(lst.tail)
                                             sizeTR(lst.tail, 1 + acc)
                                            ensuring(res \Rightarrow res = size(lst) + acc)
```

Proving with Inlining

```
\forall lst, \forall acc : (if(lst = Nil) acc else sizeTR(lst.tail, 1 + acc)) = size(lst) + acc
```

∃ lst, ∃ acc : (if(lst = Nil) acc else sizeTR(lst.tail, 1 + acc)) ≠ size(lst) + acc

```
lst \rightarrow Nil, acc \rightarrow 0, size : { Nil \rightarrow 1, \_ \rightarrow 0 }, sizeTR : { \_ \rightarrow 0 }
```

Proving with Inlining

∃ lst, ∃ acc:

```
(if(lst = Nil) acc else sizeTR(lst.tail, 1 + acc)) ≠ size(lst) + acc
```

$$\land$$
 size(lst) = if(lst = Nil) 0 else 1 + size(lst.tail)

$$\land$$
 sizeTR(lst.tail, 1 + acc) = size(lst.tail) + 1 + acc

$$\begin{array}{c} |\text{lst} \rightarrow \text{Nil, acc} \rightarrow 0, \text{ size} : \{ \text{Nil} \rightarrow 1, _ \rightarrow 0 \}, \text{ sizeTR} : \{ _ \rightarrow 0 \} \\ |\text{lst} \rightarrow \text{Cons}(0, \text{Nil}), \text{ acc} \rightarrow 1, \text{ size} : \{ _ \rightarrow 0 \}, \text{ sizeTR} : \{ _ \rightarrow 0 \} \\ |\text{lst} \rightarrow \text{Cons}(0, \text{Nil}), \text{ acc} \rightarrow 1, \text{ size} : \{ _ \rightarrow 0 \}, \text{ sizeTR} : \{ _ \rightarrow 0 \} \\ |\text{lst} \rightarrow \text{Cons}(0, \text{Nil}), \text{ acc} \rightarrow 1, \text{ size} : \{ _ \rightarrow 0 \}, \text{ sizeTR} : \{ _ \rightarrow 0 \} \\ |\text{lst} \rightarrow \text{Cons}(0, \text{Nil}), \text{ acc} \rightarrow 1, \text{ size} : \{ _ \rightarrow 0 \}, \text{ sizeTR} : \{ _ \rightarrow 0 \} \\ |\text{lst} \rightarrow \text{Cons}(0, \text{Nil}), \text{ acc} \rightarrow 1, \text{ size} : \{ _ \rightarrow 0 \}, \text{ sizeTR} : \{ _ \rightarrow 0 \} \\ |\text{lst} \rightarrow \text{Cons}(0, \text{Nil}), \text{ acc} \rightarrow 1, \text{ size} : \{ _ \rightarrow 0 \}, \text{ sizeTR} : \{ _ \rightarrow 0 \}$$

⇒ Unsatisfiable.

```
def size(lst: List) = lst match {
                                             def sizeTR(lst: List, acc: Int) = lst match {
 case Nil \Rightarrow 1
                                              case Nil \Rightarrow acc
 case Cons(, Nil) \Rightarrow 1
                                              case Cons( , xs) \Rightarrow sizeTR(xs, 1 + acc)
 case Cons(\_, xs) \Rightarrow 1 + size(xs)
                          size(lst) = sizeTR(lst, 0)
def size(lst: List) = if(lst = Nil) {
                                             def sizeTR(lst: List, acc: Int) = if (lst = Nil) {
} else if(lst.tail = Nil) {
                                              acc
                                             } else {
                                              sizeTR(lst.tail, 1 + acc)
} else {
 1 + size(lst.tail)
```

```
def size(lst: List) = if(lst = Nil) {
                                             def sizeTR(lst: List, acc: Int) = if (lst = Nil) {
                                              acc
} else if(lst.tail = Nil) {
                                             } else {
                                              sizeTR(lst.tail, 1 + acc)
} else {
 1 + size(lst.tail)
\forall lst, \forall acc : (if(lst = Nil) acc else sizeTR(lst.tail, 1 + acc)) = size(lst) + acc
\exists lst, \exists acc : (if(lst = Nil) acc else sizeTR(lst.tail, 1 + acc)) \neq size(lst) + acc
```

```
lst \rightarrow Cons(0, Nil), acc \rightarrow 0, size : { \_ \rightarrow 1 }, sizeTR : { \_ \rightarrow 0 }
```

Jist 7 and

∧ sizeTR(lst.tail.tail, 2 + acc) = **if** (lst.tail.tail = Nil) 2 + acc **else** sizeTR(lst.tail.tail.tail, 3 + acc)

```
lst → [0, 1], acc → 0, sizeTR : { _ → 0 }
size : { [0] → 1, [0, 1] → 2, _ → 0 }
```

```
lst \rightarrow [ 0, 1, 2 ], acc \rightarrow 0, sizeTR : { _ \rightarrow 0 }, size : { [ 0 ] \rightarrow 1, [ 0, 1 ] \rightarrow 2, [ 0, 1, 2 ] \rightarrow 3, _ \rightarrow 0 }
```


There are always unknown branches in the evaluation tree. We can never be sure that there exists no smaller solution.

Branch Rewriting

```
size(lst) = ite_1
    size(lst) = if(lst = Nil) {
                                                                   \wedge p_1 \Leftrightarrow lst = Nil
    } else if(lst.tail = Nil) {
                                                                   \land p_1 \Rightarrow ite_1 = 1
                                                                \rightarrow \land \neg p_1 \Rightarrow ite_1 = ite_2
                                                                   \wedge p_2 \Leftrightarrow |st.tai| = Nil
    } else {
      1 + size(lst.tail)
                                                                   \land p_2 \Rightarrow ite_2 = 1
                                                                   \land \neg p_2 \Rightarrow ite_2 = 1 + size(lst.tail)
size(lst)
                                                                   \Lambda p_2
          p_1
                     \neg p_1 \wedge p_2 \neg p_1 \wedge \neg p_2
```

Algorithm

```
(\Phi, B) = unroll(\Phi, \underline{\hspace{0.2cm}})
while(true) {
 solve(\phi \land B) match {
   case "SAT" ⇒ return "SAT"
  case "UNSAT" \Rightarrow solve(Φ) match {
    case "UNSAT" ⇒ return "UNSAT"
    case "SAT" \Rightarrow (\phi, B) = unroll(\phi, B)
       "I'm feeling lucky"
```

Some literals in B may be implied by ϕ : no need to unroll what they guard.

Inlining must be fair

Inlines some postconditions and bodies of function applications that were guarded by a literal in B, returns the new formula and new set of guards B.

Assumptions & Guarantees

- 1) All functions terminate on all inputs.
- 2) All functions satisfy their postconditions.
- 3) All function invocations satisfy the precondition.
- 4) All match expressions are exhaustive.
- 5) The SMT solver is sound and complete.

Three Facts

- 1) The algorithm terminates when there exists an assume/guarantee style inductive proofs.
- 2) The algorithm terminates when the formula admits a counter-example.
- 3) (The algorithm is a decision procedure for sufficiently surjective abstraction functions.)

Inductive Proofs

• If there exists a proof in assume/guarantee style, it will be found by sufficient inlining of the postconditions.

 Also succeeds when the property becomes inductive only after a certain number of iterations (à la k-induction).

Counter-examples

• Let $a_1,...$ a_n be the free variables of φ , and $c_1,...,c_n$ be a counter-example to φ .

• Let T be the evaluation tree of $\phi[a_1 \rightarrow c_{1,} ...,$

 $a_n \rightarrow c_n$].

• Eventually, the algorithm will reach a point where T is covered.

Leon

Try out LeonOnline: http://lara.epfl.ch/leon/

Leon

- Proves that all match expressions are exhaustive.
- Proves that the preconditions imply the postconditions.
- Proves that all function invocations satisfy the preconditions.
- Can generate testcases that satisfy some precondition.

Some Experimental Results

Benchmark	LoC	#Funs.	#VCs.	Time (s)
ListOperations	122	15	22	1.29
AssociativeList	60	5	11	0.91
InsertionSort	86	6	9	0.87
RedBlackTrees	112	10	24	2.98
PropositionalLogic	86	9	23	4.17

Functional correctness properties of data structures: red black trees implement a set and maintain height invariants, associative list has read-over-write property, insertion sort returns a sorted list of identical content, etc. Properties of propositional logic transformations: nnf and removing implications are stable, applying a (wrong) simplification to an nnf formula does not keep it in nnf, etc.

Limitations & Future work

System features

- Termination proofs.
- Generic types.
- Support for more Scala constructs (tuples, etc.).

Proof system

- Currently, supports only a limited form of induction on arguments (@induct).
- Folding is limited to functions present in the formula.

Related Work

- SMT Solvers + axioms
 - can be very efficient for well-formed axioms
 - in general, no guarantee than instantiations are fair
 - cannot in general conclude satisfiability (changing...)
- Interactive verification systems (ACL2, Isabelle, Coq)
 - very good at building inductive proofs
 - could benefit greatly from counter-example generation (as feedback to the user but also to prune out branches in the search)
- Sinha's Inertial Refinement technique
 - similar use of "blocked paths"
 - no guarantee to find counter-examples

Related Work cont'd

- DSolve (Liquid Types)
 - because the proofs are based on type inference rules, cannot immediately be used to prove assertions relating different functions
- Bounded Model Checking
 - offer similar guarantees on the discovery of counter-examples
 - applied to the verification of temporal properties
 - reduces to SAT rather than SMT
- Finite Model Finding (Alloy, Paradox)
 - lack of theory reasoning, no proofs