e "
Verification of Functional

Programs in Scala
Philippe Suter

(joint work w/ Ali Sinan Koksal and Viktor Kuncak)

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE, SWITZERLAND

~$./demo

Leon

* A verifier for Scala programs. ’Scala

* The programming and specification languages
are the same, purely functional, subset.

def insert(e:Int, t: Tree) = t match {
case Leaf = Node(Leaf,e,Leaf)

def content(t: Tree) = t match { case Node(l,vr)ife<v =
case Leaf = Set.empty Node(insert(e,l),v,r)
case Node(l,v,r) = case Node(l,v,r) ife >v =
(content(l) ++ content(r)) + e Node(l,v,insert(r))
J case =t
} ensuring(

res = content(res) == content(t) + e)

Postconditions

def size(lst: List) = (Ist match {
case Nil=0
case Cons(_, xs) = 1 + size(xs)
}) ensuring(res = res > 0)

(size(xs) = 0) = (Ist match { (size(xs) = 0) A (Ist match {
case Nil= 0 case Nil= 0
. —> .
case Cons(_, xs) = 1 + size(xs) case Cons(_, xs) = 1 + size(xs)

20 <0

Preconditions

 We encode the path condition and use it to
prove that precond. can’t be violated.

def zip(l1: List, 12: List) : PairList = {
require(size(l1) == size(12))

|1 match { T size(l1) == size(12)

case Nil() = PNil() —» A1 # Nil A xs = 11.tail
case Cons(x, xs) = IW A 12 # Nil A ys =12 .tail
case Cons(y, ys) = / N size(xs) # size(ys)
PCons(P(x, y), zip(xs, ys))
} l
}

} Unsatisfiable.

Pattern-Matching Exhaustiveness

 We generate a formula that expresses that no
case matches, and prove it unsatisfiable.

def zip(l1: List, 12: List) : PairList = {
require(size(l1) == size(12))

|1 match { T size(l1) == size(l2)
case Nil() = PNil() —> A 11 # Nil
case Cons(x, xs) = IW A 12 == Nil
case Cons(y, ys) = l
PCons(P(x, y), zip(xs, ys))
} Unsatisfiable.

J
J

Decision Procedures

* Algorithms that answer a satisfiability/validity
qguestion for a class of formulas.

3*x+2*y =7 »x=1,y=2

3*x +2*y=7Ay<0Ax<y ~— Unsatisfiable.

@ is valid < -@ is unsatisfiable.

Satisfiability Modulo Theories Solvers

* Essentially, efficient implementations of
decision procedures.

* Decide the satisfiability of a formula modulo a
combination of theories.

e Usually for quantifier-free formulas.

Yices [M4®E:

SMT Solving

|, = Cons(e,, |,)

|, = Cons(e,, I,) fle,) # f(e,)
A(l,=Nilve,=0) ~(f(e,) = 0)
A (f(e,) = f(e,) V I, = Nil) — =it
A (e, =0V f(e,) =0) er="0-

_ e5=-0-
|, > Cons(e,, |,), |, = Nil, |, = Nil
e,>1l,e,20, e,=0

f:{1->1, -0}

Assignment to the free variables, and a model for the
functions symbols that satisfy the axiom: a = b = f(a) = f(b).

SMT + Computable Functions

Tree ::= Leaf | Node(Tree, Int, Tree)

content(Leaf) = @
content(Node(t,, e, t,)) = content(t,) U{e } Ucontent(t,)

t, = Node(t,, e,, t;)
A e, >e,
A content(t,) = content(t,) U {e, }
A content(Node(t,, e,, t;)) # content(t,) U { e, }

...of quantifier-free formulas

in a decidable base theory...

#
4 / N

Satisfiability Modulo

} Computagg Functions)

..pure, total, deterministic, first-
order and terminating on all inputs...

* Semi-decidable problem worthy of attention.

 What are general techniques for proving and
disproving constraints?

 What are interesting decidable fragments?

Proving with Inlining

def size(lst: List) = Ist match { def sizeTR(lst: List, acc: Int) = Ist match {
case Nil= 0 case Nil = acc
case Cons(_, xs) = 1 + size(xs) case Cons(_, xs) = sizeTR(xs, 1 + acc)

} } ensuring(res = res = size(lst) + acc)

size(Ist) = sizeTR(Ist, 0)

v v
def size(lst: List) = if(Ist = Nil) { def sizeTR(Ist: List, acc: Int) = if (Ist = Nil) {
0) acc
} else { } else {
1 + size(lst.tail) sizeTR(lst.tail, 1 + acc)
} } ensuring(res = res = size(lIst) + acc)

Proving with Inlining

def size(lst: List) = if(Ist = Nil) { def sizeTR(Ist: List, acc: Int) = if (Ist = Nil) {
0) acc

} else { } else {
1 + size(Ist.tail) sizeTR(Ist.tail, 1 + acc)
} } ensuring(res = res = size(lIst) + acc)

V Ist, V acc : (if(Ist = Nil) acc else sizeTR(Ist.tail, 1 + acc)) = size(lst) + acc

l

3 Ist, 3 acc : (if(Ist = Nil) acc else sizeTR(Ist.tail, 1 + acc)) # size(lst) + acc

Ist > Nil, acc> 0, size:{Nil>1, -0} sizeTR:{_ —->0}

Proving with Inlining

3 Ist, 3 acc:

(if(Ist = Nil) acc else sizeTR(Ist.tail, 1 + acc)) # size(lst) + acc
A size(lst) = if(Ist = Nil) O else 1 + size(Ist.tail)

A sizeTR(Ist.tail, 1 + acc) = size(lIst.tail) + 1 + acc

| AN H | AN o s R s TN f \ N
ISt=>-Ni1,~acc—>0; S'I'Z'E"'{'N‘I'Iﬁﬂ._e'e'}_ﬁfe — ; M= —7"07

. \ 4 . [SO oo A
—bH'eUﬁ'S'('e_Hﬂ')_a'CC, , BV N) A —Hra R A R] VA i i b S B V A

=> Unsatisfiable.

Disproving with Inlining

def sizellst: 1ist) = Ist match {
case Cons(_, Nil) > 1

case Cons(_, xs) = 1 + size(xs)

}

v
def size(lst: List) = if(Ist = Nil) {
1
} else if(Ist.tail = Nil) {
1
} else {
1 + size(lst.tail)

}

size(Ist) = sizeTR(Ist, 0)

def sizeTR(lst: List, acc: Int) = Ist match {
case Nil = acc
case Cons(_, xs) = sizeTR(xs, 1 + acc)

}

v
def sizeTR(Ist: List, acc: Int) = if (Ist = Nil) {
acc
} else {
sizeTR(lst.tail, 1 + acc)

}

Disproving with Inlining

def size(lst: List) = if(Ist = Nil) { def sizeTR(Ist: List, acc: Int) = if (Ist = Nil) {
1 acc

} else if(Ist.tail = Nil) { } else {

1 sizeTR(Ist.tail, 1 + acc)
} else { }

1 + size(lst.tail)
}

V Ist, V acc : (if(Ist = Nil) acc else sizeTR(Ist.tail, 1 + acc)) = size(Ist) + acc

V

3 Ist, 3 acc : (if(Ist = Nil) acc else sizeTR(Ist.tail, 1 + acc)) # size(lst) + acc

Ist > Cons(0, Nil), acc> 0, size:{_ —> 1}, sizeTR:{_ —->0}

Disproving with Inlining
3 Ist, 3 acc:
(if(Ist = Nil) O else sizeTR(Ist.tail, 1 + acc)) # size(Ist) + acc
A size(lst) = if(Ist = Nil V Ist.tail = Nil) 1 else 1 + size(Ist.tail)
A sizeTR(lst.tail, 1 + acc) = if (Ist.tail = Nil) 1 + acc else
sizeTR(Ist.tail.tail, 2 + acc)

A size(lst.tail) = if(Ist.tail = Nil V Ist.tail.tail = Nil) 1 else 1 +
size(lst.tail.tail)

A sizeTR(Ist.tail.tail, 2 + acc) = if (Ist.tail.tail = Nil) 2 + acc else
sizeTR(Ist.tail.tail.tail, 3 + acc)

Ist >[0,1], acc>0,sizeTR:{ >0}
size:{[0]=>1,[0,1]>2, —>0}

Ist>1[0,1,2], acc—> 0,sizeTR:{_ —> 0},
size:{[0]—>1,[0,1]->2,[0,1,2]—>3, —>0} oo

Disproving with Inlining

size(lst) sizeTR(lst, aux)

There are always unknown branches in the evaluation tree.
We can never be sure that there exists no smaller solution.

Branch Rewriting

size(lst) = if(Ist = Nil) { size(Ist) = ite,

1 A p; < Ist=Nil
} else if(Ist.tail = Nil) { ANp,=ite;=1

1 > \-p, = ite, = ite,
} else { A p, & lIst.tail = Nil

1 + size(lst.tail) Ap,=ite,=1
} A -p, = ite, = 1 + size(lst.tail)

size(lst)
A p,
P1

—P; A P, ~P1 A —Py

Algorithm

((P, B) = unroII((p,) Some literals in B may be

while(true) { implied by @ : no need to
unroll what they guard.

solve(® A B) match { -
case “SAT” = return “SAT”

case “UNSAT” = solve(() match {
case “UNSAT” = return “UNSAT”

case “SAT” = (@, B) = unroll(¢, B)

} Inlining must be fair

} “I’'m feeling lucky”

Inlines some postconditions and bodies of function
applications that were guarded by a literal in B,
returns the new formula and new set of guards B.

1)
2)
3)

4)

Assumptions & Guarantees

All functions terminate on all inputs.

All functions satisfy their postconditions.
All function invocations satisfy the precondition.
All match expressions are exhaustive.

The SMT solver is sound and complete.

(We currently prove 2) —4).)

Properties of the Algorithm

Three Facts

1) The algorithm terminates when there exists an
assume/guarantee style inductive proofs.

2) The algorithm terminates when the formula
admits a counter-example.

3) (The algorithm is a decision procedure for
sufficiently surjective abstraction functions.)

Inductive Proofs

* If there exists a proof in assume/guarantee
style, it will be found by sufficient inlining of
the postconditions.

* Also succeeds when the property becomes
inductive only after a certain number of
iterations (a la k-induction).

Counter-examples

* Leta,,... a, be the free variables of ¢, and
c,,...,C, be a counter-example to @.

* Let T be the evaluation tree of @[a,>c, ..,
a,—~>c,].

T:

* Eventually, the algorithm will reach a point
where T is covered.

Verification System.

.scala

=

o

4 N\
FScala

compiler

Leon

)

~

prunes out

- rewrites functions

- generate VCs

- solve VCs

- (generate testcases)

|

final report

Try out LeonOnline : http://lara.epfl.ch/leon/

http://lara.epfl.ch/leon/

Leon

Proves that all match expressions are exhaustive.

Proves that the preconditions imply the
postconditions.

Proves that all function invocations satisfy the
preconditions.

Can generate testcases that satisfy some
precondition.

Some Experimental Results

-m

ListOperations 1.29
AssociativelList 60 5 11 0.91
InsertionSort 86 6 9 0.87
RedBlackTrees 112 10 24 2.98
PropositionallLogic 86 9 23 4.17

Functional correctness properties of data structures: red black trees implement a set
and maintain height invariants, associative list has read-over-write property, insertion
sort returns a sorted list of identical content, etc. Properties of propositional logic
transformations: nnf and removing implications are stable, applying a (wrong)
simplification to an nnf formula does not keep it in nnf, etc.

Limitations & Future work

* System features
— Termination proofs.
— Generic types.
— Support for more Scala constructs (tuples, etc.).

* Proof system

— Currently, supports only a limited form of
induction on arguments (@induct).

— Folding is limited to functions present in the
formula.

Related Work

* SMT Solvers + axioms
— can be very efficient for well-formed axioms
— in general, no guarantee than instantiations are fair
— cannot in general conclude satisfiability (changing...)

* |nteractive verification systems (AcL2, Isabelle, Coq)
— very good at building inductive proofs

—could benefit greatly from counter-example
generation (as feedback to the user but also to
prune out branches in the search)

* Sinha’s Inertial Refinement technique
— similar use of “blocked paths”
— no guarantee to find counter-examples

Related Work cont’d

e DSolve (Liquid Types)

— because the proofs are based on type inference
rules, cannot immediately be used to prove
assertions relating different functions

 Bounded Model Checking

— offer similar guarantees on the discovery of
counter-examples

— applied to the verification of temporal properties
— reduces to SAT rather than SMT

* Finite Model Finding (Alloy, Paradox)
— lack of theory reasoning, no proofs

