
Synthesis, Analysis, and Verification
Lecture 08

Lectures:

 Viktor Kuncak

BAPA: Quantifier Elimination and Decision Procedures

WS1S: Automata-Based Decision Procedure

Boolean Algebra with
Presburger Arithmetic

Quantifier Elimination

Usually harder than just satisfiability checking

High-level idea:

– express everything using cardinalities

– separate integer arithmetic and set part
(using auxiliary integer variables)

– reduce set quantifier to integer quantifier

– eliminate integer quantifier

– eliminate auxiliary integer variables

Eliminate Quantifier

Eliminate Quantifier

Eliminate Quantifier

Eliminate Quantifier

Eliminate Quantifier

Another Example

Quantifier-free Boolean Algebra with
Presburger Arithmetic (QFBAPA)

• If sets are over integers:

φ

A

S

T

c

::= φ ∨ φ, φ ∧ φ, ¬ φ, A

::= S = S, S ⊆ S, T = T, T ≤ T

::= si, ∅, S ∪ S, S ∩ S, S \ S

::= ki, c, c · T, T + T, T - T, |S|

::= …, -2, -1, 0, 1, 2, …

A

S

::= …, T ∈ S

::= …, { T }

A Decision Procedure for QFBAPA

| A | > 1 ∧ A ⊆ B ∧ | B ∩ C | ≤ 2

A

B C

k7

k6

k5
k4

k3
k2

k1
k0

k1 + k4 + k5 + k7 > 1
k1 + k5 = 0
k6 + k7 ≤ 2

∀ i ∈ { 0, …, 7 } . ki ≥ 0

k4 = k7 = 1
∀ i ∉ { 4, 7 } . ki = 0

A = { 1, 2 }, B = { 1, 2 }, C = { 2 }

A Decision Procedure for QFBAPA

• Simple proof of decidability.

• Very simple linear arithmetic constraints, but…

• …for n set variables, uses 2n integer variables

• Two orthogonal ways to improve it

– sparse solutions

– identifying independent constraints

Sparse Solutions

The difficulty of the general problem reduces to

 integer linear programming problems

with many integer variables

but still polynomially many constraints.

card(A B) = k1 card(B C) = k2
x1 + x2 + x3 + x5 + x6 + x7 = k1 x6 + x7 = k2

2 3

6
1

4

A
B

C

5 7

0

Caratheodory theorem

Vector v of dimension d

 is a convex combination of { a1 , … , an }

Then it is a convex combination of a subset

{ ak(1) , … , ak(d+1) } of (d+1) of them

ILP associated w/ formula of size n

x1 + x2 + x3 + x5 + x6 + x7 = p

 . . .

x6 + x7 = q

n equations

2n variables

Integer linear programming problem: for non-negative xi

Are there sparse solutions where O(nk) variables are non-zero?
 for reals - yes, matrix rank is O(n)
 for non-negative reals
 for non-negative integers

- yes, Caratheodory them
- Eisenbrand, Shmonin’06

Integer Caratheodory thm. (only when coefficients are bounded)

Independent Constraints

A

B

C

D

A

B

C

| A U B | = 3 ∧ C ⊆ D

| A \ B | = | C |

Independent Constraints

• A and C are only indirectly related.

• All that matters is that the models for B are
compatible.

| A U B | = 4 ∧ | B ∩ C | = 2

A
B

B

C

When can Models be Combined?

|A| = 1 ∧ |B| = 1 ∧ |A ∩ B| = 1
∧ |A| = 1 ∧ |C| = 1 ∧ |A ∩ C| = 1
∧ |B| = 1 ∧ |C| = 1 ∧ |B ∩ C| = 0

A A

B

B

C C

The models are pairwise compatible, yet cannot be combined.

When can Models be Combined?

• Let φ1, …, φn be BAPA constraints.

• Let V be the set of all set variables that appear
in at least two constraints.

• Models M1, …, Mn for φ1, …, φn can be
combined into a model M for φ1 ∧ … ∧ φn if
and only if they “agree” on the sizes of all
Venn regions of the variables in V.

Theorem 3

When can Models be Combined?

|A| = 1 ∧ |B| = 1 ∧ |A ∩ B| = 1
∧ |A| = 1 ∧ |C| = 1 ∧ |A ∩ C| = 1
∧ |B| = 1 ∧ |C| = 1 ∧ |B ∩ C| = 0

A A

B

B

C C

V = { A, B, C } and models don’t agree on | A ∩ B ∩ C |.

|A \ B| > |A ∩ B| ∧ B ∩ C ∩ D = ∅ ∧ |B \ D| > |B \ C|

A

B
B

B

D

C

B

|A \ B| > |A ∩ B| ∧ B ∩ C ∩ D = ∅ ∧ |B \ D| > |B \ C|

A

B
B

B

D

C

k3

k2

k1
k0

k5

k4

k13

k11

k12

k10

k9

k8

k7 k6

k0 + k1 = k4

k2 + k3 = k5
k4 = k6 + k8 + k9 + k12

k5 = k7 + k10 + k11 + k13

k1 > k3 ∧ k13 = 0 ∧ k7 + k10 > k7 + k11
B

|A \ B| > |A ∩ B| ∧ B ∩ C ∩ D = ∅ ∧ |B \ D| > |B \ C|

A

B
B

B

D

C

B 22 23

21

k3

k2

k1
k0

k5

k4

k13

k11

k12

k10

k9

k8

k7 k6

Hypertree Decomposition

B C,D

G

|A ∪ B| ≤ 3 ∧ C ⊆ B ∧ |(C ∩ D) \ E| = 2
∧ |(C ∩ F) \ D| = 2 ∧ G ⊆ F

• Hyperedges correspond to applications of
Theorem 3.

Functional Programs: Example
• Given:

def length(lst : List[Int]) : Int = lst match {
 case Nil ⇒ 0
 case Cons(x, xs) ⇒ 1 + length(xs)
}

length(list) > | content(list) |
∧ content(Nil) = ∅
∧ ∀ x: Int, ∀ xs: List[Int] : content(Cons(x, xs)) = { x } ∪ content(xs)
∧ length(Nil) = 0
∧ ∀ x: Int, ∀ xs: List[Int] : length(Cons(x, xs)) = 1 + length(xs)

def content(lst: List[Int]) : Set[Int] = lst match {
 case Nil ⇒ ∅
 case Cons(x, xs) ⇒ { x } ∪ content(xs)
}

• We want to prove:

 ∀ list : List[Int] . | content(list) | ≤ length(list)

• SMT query:

J
V

M

• Maintains the hypertree decomposition
• Translates constraints on sets to constraints on integers
• Lifts integer model to model for sets

• Reasons about all other theories
• Communicates new BAPA constraints

• Notifies when push/pop occurs

System Architecture

WS1S

• Weak Monadic Second-Order Logic of One
Successor

• Like BAPA, allows quantification over sets

• Unlike BAPA, does not allow |A|=|B|

• However, it allows talking about lists

– BAPA talks only about identities of elements

– (There is a way to combine WS1S and BAPA)

• WS1S generalizes to WSkS – reachability in trees!

A Verification Condition in WS1S

