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WS1S: Automata-Based Decision Procedure 



Boolean Algebra with  
Presburger Arithmetic 



Quantifier Elimination 

Usually harder than just satisfiability checking 

High-level idea: 

– express everything using cardinalities 

– separate integer arithmetic and set part  
(using auxiliary integer variables) 

– reduce set quantifier to integer quantifier 

– eliminate integer quantifier 

– eliminate auxiliary integer variables 



Eliminate Quantifier 



 



Eliminate Quantifier 
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Eliminate Quantifier 



Eliminate Quantifier 



Another Example 





Quantifier-free Boolean Algebra with 
Presburger Arithmetic (QFBAPA) 

• If sets are over integers: 

φ 

A 

S 

T 

c 

::=  φ ∨ φ,   φ ∧ φ,   ¬ φ,    A 

::=  S = S,   S ⊆ S,   T = T,   T ≤ T 

::=  si,   ∅,   S ∪ S,   S ∩ S,   S \ S 

::=  ki,   c,   c · T,   T + T,   T - T,   |S| 

::=  …,  -2,  -1,  0,  1,  2,   … 

A 

S 

::=  …,   T ∈ S 

::=  …,   { T } 



A Decision Procedure for QFBAPA 

| A | > 1  ∧  A ⊆ B  ∧  | B ∩ C | ≤ 2 
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k1 + k4 + k5 + k7 > 1 
k1 + k5 = 0 
k6 + k7 ≤ 2 

∀ i ∈ { 0, …, 7 } . ki ≥ 0 

k4 = k7 = 1 
∀ i ∉ { 4, 7 } . ki = 0 

A = { 1, 2 }, B = { 1, 2 }, C = { 2 } 



A Decision Procedure for QFBAPA 

• Simple proof of decidability. 

• Very simple linear arithmetic constraints, but… 

• …for n set variables, uses 2n integer variables 

• Two orthogonal ways to improve it 

– sparse solutions 

– identifying independent constraints 



Sparse Solutions 

The difficulty of the general problem reduces to 

 integer linear programming problems 

with many integer variables 

but still polynomially many constraints. 

 

card(A    B) = k1                               card(B    C) = k2 
x1 + x2 + x3 + x5 + x6 + x7 = k1         x6 + x7 = k2 
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Caratheodory theorem 

Vector v of dimension d 

   is a convex combination of { a1 , … , an } 

 

 

 

 

 

Then it is a convex combination of a subset  

{ ak(1) , … , ak(d+1) } of (d+1) of them 



ILP associated w/ formula of size n 

x1 + x2 + x3 + x5 + x6 + x7 = p 

   . . .  

x6 + x7 = q 

 

n equations 

2n variables  

Integer linear programming problem: for non-negative xi 

Are there sparse solutions where O(nk) variables are non-zero? 
 for reals   - yes, matrix rank is O(n)  
 for non-negative reals  
   for non-negative integers 

- yes, Caratheodory them 
- Eisenbrand, Shmonin’06 

Integer Caratheodory thm. (only when coefficients are bounded) 



Independent Constraints 
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C 

| A U B | = 3  ∧  C ⊆ D 

| A \ B | = | C | 



Independent Constraints 

• A and C are only indirectly related. 

• All that matters is that the models for B are 
compatible. 

| A U B | = 4 ∧  | B ∩ C | = 2 

A 
B 

B 

C 



When can Models be Combined? 

|A| = 1  ∧  |B| = 1  ∧  |A ∩ B| = 1 
∧ |A| = 1  ∧  |C| = 1  ∧  |A ∩ C| = 1 
∧ |B| = 1  ∧ |C| = 1  ∧  |B ∩ C| = 0 

A A 

B 

B 

C C 

The models are pairwise compatible, yet cannot be combined. 



When can Models be Combined? 

• Let φ1, …, φn be BAPA constraints. 

• Let V be the set of all set variables that appear 
in at least two constraints. 

• Models M1, …, Mn for φ1, …, φn can be 
combined into a model M for φ1 ∧ … ∧ φn if 
and only if they “agree” on the sizes of all 
Venn regions of the variables in V. 

Theorem 3 



When can Models be Combined? 

|A| = 1  ∧  |B| = 1  ∧  |A ∩ B| = 1 
∧ |A| = 1  ∧  |C| = 1  ∧  |A ∩ C| = 1 
∧ |B| = 1  ∧  |C| = 1  ∧  |B ∩ C| = 0 

A A 

B 

B 

C C 

V = { A, B, C } and models don’t agree on | A ∩ B ∩ C |. 



|A \ B| > |A ∩ B| ∧  B ∩ C ∩ D = ∅ ∧  |B \ D| > |B \ C| 
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|A \ B| > |A ∩ B| ∧  B ∩ C ∩ D = ∅ ∧  |B \ D| > |B \ C| 
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k0 + k1 = k4 

k2 + k3 = k5 
k4 = k6 + k8 + k9 + k12 

k5 = k7 + k10 + k11 + k13 

k1 > k3  ∧  k13 = 0  ∧  k7 + k10 > k7 + k11 
B 



|A \ B| > |A ∩ B| ∧  B ∩ C ∩ D = ∅ ∧  |B \ D| > |B \ C| 
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Hypertree Decomposition 

B C,D 

G 

|A ∪ B| ≤ 3 ∧ C ⊆ B ∧ |(C ∩ D) \ E| = 2 
∧ |(C ∩ F) \ D| = 2 ∧  G ⊆ F 

• Hyperedges correspond to applications of 
Theorem 3. 



Functional Programs: Example 
• Given: 

def length(lst : List[Int]) : Int = lst match { 
  case Nil ⇒ 0 
  case Cons(x, xs) ⇒ 1 + length(xs) 
} 

length(list) > | content(list) | 
∧  content(Nil) = ∅ 
∧  ∀ x: Int, ∀ xs: List[Int] : content(Cons(x, xs)) = { x } ∪ content(xs) 
∧ length(Nil) = 0 
∧ ∀ x: Int, ∀ xs: List[Int] : length(Cons(x, xs)) = 1 + length(xs) 

def content(lst: List[Int]) : Set[Int] = lst match { 
  case Nil ⇒ ∅ 
  case Cons(x, xs) ⇒ { x } ∪ content(xs) 
} 

• We want to prove: 

 ∀ list : List[Int] . | content(list) | ≤ length(list) 

• SMT query: 



J
V

M
 

• Maintains the hypertree decomposition 
• Translates constraints on sets to constraints on integers 
• Lifts integer model to model for sets 

• Reasons about all other theories 
• Communicates new BAPA constraints 

• Notifies when push/pop occurs 

System Architecture 



WS1S 

• Weak Monadic Second-Order Logic of One 
Successor 
 

• Like BAPA, allows quantification over sets 

• Unlike BAPA, does not allow |A|=|B| 

• However, it allows talking about lists 

– BAPA talks only about identities of elements 

– (There is a way to combine WS1S and BAPA) 

• WS1S generalizes to WSkS – reachability in trees! 



A Verification Condition in WS1S 


