
This Week

• Finish relational semantics

• Hoare logic

• Interlude on one-point rule

• Building formulas from programs

Synthesis, Analysis, and Verification
Lecture 03a

Lectures:

 Viktor Kuncak

Relational Semantics and Consequences

Hoare Logic

Mapping Programs

while (x > 1) {
 if (x % 2 = 0)
 x = x / 2
 else
 x = 3 * x + 1
}

into relations

{((x1,...,xn), (x’1,...,x’n)) | F(x1,...,xn x’1,...,x’n)}

Guarded Command Language

assume(F) - stop execution if F does not hold
 pretend execution never happened

s1 [] s2 - non-deterministic execution of
 both s1 and s2

s* - execute s zero, once, or more times

Guarded Commands and Relations - Idea

x = T {(x,T) | true }

 gets more complex for more variables

assume(F) ΔS
 S is set of values for which F is true
 (satisfying assignments of F)

s* r*

s1 [] s2 r1 U r2

Assignment for More Variables

var x,y

…
y = x + 1

State as a Map from Variables to Values

‘if’ condition using assume and *+

if (F)
 s1
else
 s2

(assume(F); s1)
 []
(assume(F); s2)

‘while’ using assume and *

while (F)
 c

(assume(F); c)*;
assume(F)

Compute Relation for this Program
r = 0;

while (x > 0) {

 r = r + 3;

 x = x - 1

}

As the program state use the pair of integer variables (r,x)

1) compute guarded command language for this program
(express ‘while’ and ‘if’ using ‘assume’).

Compute Relation for this Program
r = 0;

while (x > 0) {

 r = r + 3;

 x = x - 1

}

r = 0;

(assume(x>0);

 r = r + 3;
 x = x – 1)* ;

assume(x <= 0)

assume(x>0);

r = r + 3;
x = x – 1

B*

r = 0;

B*;

assume(x <= 0)

2) compute meaning of program pieces, from smaller to bigger

B

r’ = r + 3 &&

x’ = x – k &&

x > 0

Bk

r’ = r + 3k &&

x’ = x – k &&

x > 0 && x – 1 > 0 && ... && x – (k-1) > 0

i.e.

r’ = r + 3k &&

x’ = x – k &&

x – (k – 1) > 0 i.e. x – k >= 0

B*

(s,s’) in B* exists k. (s,s’) in Bk

B* :

exists k. k >= 0 &&

 r’ = r + 3k &&

 x’ = x – k &&

 x – k >= 0

i.e. by one-point rule:
 r’ = r + 3(x-x’) && x’ >= 0 && x – x’ >= 0

and we must also add the diagonal

Havoc Statement

Havoc Statement
• Havoc statement is another useful declarative statement. It changes

a given variable entirely arbitrarily: there will be one possible state
for each possible value of integer variable.

Expressing Assignment with Havoc+Assume
• We can prove that the following equality holds under certain

conditions:

 x = E is havoc(x); assume(x==E)

In other words, assigning a variable is the same as changing it
arbitrarily and then assuming that it has the right value.

Under what condition does this equality hold?

Correctness as Relation Inclusion

program relation p
specification relation s

program meets specification:

p s

example: p = {((r,x),(r’,x’)). r’=2x && x’=0 }
 s = {((r,x),(r’,x’)). x > 0 r’ > x’ }

then the above program p meets the specification s

 because implication holds:

 r’=2x && x’=0 (x > 0 r’ > x’)

Normal form for Loop-Free Programs

Lemma: Let P be a program without loops. Then
for some natural number n,

where each pi is relation composition of

– relations for assignments

– diagonal relations
Prove this.

Proof

Inductive Case

A Hoare Logic Proof
//{0 <= y}
i = y;
//{0 <= y & i = y}
r = 0;
//{0 <= y & i = y & r = 0}
while //{r = (y-i)*x & 0 <= i}
 (i > 0) (
 //{r = (y-i)*x & 0 < i}
 r = r + x;
 //{r = (y-i+1)*x & 0 < i}
 i = i - 1
 //{r = (y-i)*x & 0 <= i}
)
//{r = x * y}

Hoare Logic

• see wiki

