This Week

Finish relational semantics
Hoare logic

Interlude on one-point rule
Building formulas from programs

Synthesis, Analysis, and Verification
Lecture 03a

Relational Semantics and Consequences
Hoare Logic

Lectures:
Viktor Kuncak

B

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Mapping Programs

while (x> 1) { /W‘“"‘"-\
if (x% 2 =0) s :

—_ \
X=X/2 7\ 2N _
else N N 7|

/7 \ *
X=3*X+1 o/o 0 X/ \/ /+\
/ \ / \ *
} X 2 x 2 /7 \\ '
3 x

into relations

{((Xl,...,xn)' (Xll,...,X’n)) ‘ I:(Xl,...,xn Xll,...,xln)}

Guarded Command Language

assume(F) - stop execution if F does not hold
pretend execution never happened

s1] s2 - non-deterministic execution of
both s1 and s2

S* - execute s zero, once, or more times

Guarded Commands and Relations - Idea

x=T {(x,T) | true}

gets more complex for more variables

assume(F) A

S is set of values for which F is true
(satisfying assignments of F)

g* r*

s,]s, rpur,

Assignment for More Variables

var X,y

e\) -
y=x+1 §06m, 00,y | =0 A X =x
o\// 7\

‘CmW\e.
Couéihon

State as a Map from Variables to Values

\I — vaﬁo\)\es

s VU= Z states

statewmeut
X=3)

becowmes

2
{ (55" l Sz s(=} c (V-2

awnd
x =& meaning of L s stete s

becomes e

{(5153)) 5\:5(MX":= [[t-ﬂs)%

‘if’ condition using assume and |]

ifs(lF) (assume(F); s1)
else .
ot (assume(—F); s2)
CF °S4)

[/&”:] U(A osl)
A

‘while’ using assume and *

|
while (F) ° [%]
C C <L LF]

]
!

(assume(F); c)*;
assume(—F)

Juwle (A cT= (Bpg° 0o Agqyy

Compute Relation for this Program

= e (..) ...
r=0: A essen (
while (x > 0) {
r=r+3;

x=x-1

} /?
v = {((\',sﬁ,(v‘,x‘)\ \ e %

As the program state use the pair of integer variables (r,x)

1) compute guarded command language for this program
(express ‘while’” and ‘if’ using ‘assume’).

Compute Relation for this Program

r=0; r=0;

while (x > 0) { (assume(x>0);

r=r+3; E r=r+3;

x=x-1 x=x-1)%;

} assume(x <= 0)
| assume(x>0); X'z y=1 A
r=r+3; =“%“={-«-\ MN=v43 A §
. x=x-1 x>0

e+ '—ﬂBD*-" U[ZB]’ { '\(‘rx3 (x=-x") A

20 AN X- ><>0.50.,.

_ k=20
I
r=0; \ \ \
- -3(¥"<)/\ X'>0 A x-y' 20
B*; - —rv () 1‘ U
assume(x<=O)J =5 |l ¢= 3x A = O A XD 0”{(U{,“o/\’\)c‘r':xaa

2) compute meaning of program pieces, from smaller to bigger

rr=r+3 &&
X =x—k &&

x>0

r' =r+ 3k &&

X =x—-k &&

X>0 & & x-1>0&& ... && x—-(k-1) >0
l.e.

r'=r+ 3k &&

X'=x—-k &&

x—(k=1)>0 l.e. x—k>=0

B*

(s,s’) in B* <& exists k. (s,s’) in BX
B* :
exists k. k >= 0 &&

r'=r+3k &&
X =x—k &&
x—k>=0

i.e. by one-point rule:
r'=r+3(x-x") && x'>=0 &&x—x">=0

and we must also add the diagonal

Havoc Statement

Havoc Statement

* Havoc statement is another useful declarative statement. It changes
a given variable entirely arbitrarily: there will be one possible state
for each possible value of integer variable.

havoc (%) 5 V) v sl (M iz V)
(e, () | v ¢80\ 3 S (L
Expressing Assignment with Havoc+Assume

 We can prove that the following equality holds under certain

conditions: \Wod"% % =3

3
x=E is havoc(x); assume(x==E) | assamwe (¢=3)

In other words, assigning a variable is the same as changing it
arbitrarily and then assuming that it has the right value.

Under what condition does this equality hold?

Correctness as Relation Inclusion

program -2 relation p
specification -2 relation s

program meets specification:
ps s

example: p ={((r,x),(r’,x’)). r'=2x && x’=0 }
s ={((r,x),(r'x’)).x>0=2r" >x"}

then the above program p meets the specification s
because implication holds:

r'=2x && x'=0 2 (x>0—=2>r'>x")

Normal form for Loop-Free Programs

Lemma: Let P be a program without loops. Then
for some natural number n,

[P)=U P
where each p; is relation composition of

— relations for assignments
— diagonal relations A.;.

Prove this. [F(Z/\?F] &g olx=xr] o Ap o lc(offy=-T

X‘;YH\O/ QS > HX:EU) °, U

OL/ \2 move U ko ‘\‘DP |€v¢\
\y J/

Proof
Sbfud'u'ra\ iuduckDm O prograw 'Eree

v
/o\/ N, o //\

///\\ /\\ /\\ /k\\
&S X =Y+l / \ A ov dsg.guwew\:

6 O

/NG
\(.:&,—H / <
Y=gy X=0

base case: tvivial

Inductive Case

1)
‘0/(’10‘\ s U //\ = ///\\
/l\ A N\ ?L‘;\ 7\ /\ PUop b pe Pc T
2) U . U Y, :30;,,30?5
AN /S N\ "/ \\
P Pz V3 Pa Psc PioPa PioPs Peopy P20Ps
n’ n?d

(r US)O‘t: Yot U S°‘t
Yo(PUC,): voP O req

A Hoare Logic Proof

//{0 <=y}

i=y;

//{0<=y &i=y}

r=0;

//{0<=y &i=y&r=0}
while //{r = (y-i)*x & 0 <= i}

(i>0) ‘
[/r=(y-i)*x & 0 < i} fr=(y=Nxx A oc<i§
r=r+x, Y- Ya+YX

//{r = (y-i+1)*x & 0 < i} fvr=(y-1+)ex A 0<i]
i=i-1

//{r = (y-i)*x & 0 <= i}
)
[/{r=x*y}

Hoare Logic

e see wiki

