This Week

Finish relational semantics
Hoare logic

Interlude on one-point rule
Building formulas from programs
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Mapping Programs
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Guarded Command Language

assume(F) - stop execution if F does not hold
pretend execution never happened

s1 ] s2 - non-deterministic execution of
both s1 and s2

S* - execute s zero, once, or more times



Guarded Commands and Relations - Idea

x=T {(x,T) | true}

gets more complex for more variables

assume(F) A

S is set of values for which F is true
(satisfying assignments of F)

g* r*

s, ]s, rpur,



Assignment for More Variables

var X,y
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State as a Map from Variables to Values
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‘if’ condition using assume and |]

ifs(lF) (assume(F); s1)
else .
ot (assume(—F); s2)
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‘while’ using assume and *

|
while (F) ° [%]
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(assume(F); c)*;
assume(—F)
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Compute Relation for this Program

= e (..) ...
r=0: A essen (
while (x > 0) {
r=r+3;

x=x-1

} /?
v = {((\',sﬁ,(v‘,x‘)\ \ e %

As the program state use the pair of integer variables (r,x)

1) compute guarded command language for this program
(express ‘while’” and ‘if’ using ‘assume’).



Compute Relation for this Program

r=0; r=0;

while (x > 0) { ( assume(x>0);

r=r+3; E r=r+3;

x=x-1 x=x-1)%;

} assume(x <= 0)
| assume(x>0); X'z y=1 A
r=r+3; =“%“={-«-\ MN=v43 A §
. x=x-1 x>0
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2) compute meaning of program pieces, from smaller to bigger



rr=r+3 &&
X =x—k &&

x>0



r' =r+ 3k &&

X =x—-k &&

X>0 & & x-1>0&& ... && x—-(k-1) >0
l.e.

r'=r+ 3k &&

X'=x—-k &&

x—(k=1)>0 l.e. x—k>=0



B*

(s,s’) in B* <& exists k. (s,s’) in BX
B* :
exists k. k >= 0 &&

r'=r+3k &&
X =x—k &&
x—k>=0

i.e. by one-point rule:
r'=r+3(x-x") && x'>=0 &&x—x">=0

and we must also add the diagonal



Havoc Statement

Havoc Statement

* Havoc statement is another useful declarative statement. It changes
a given variable entirely arbitrarily: there will be one possible state
for each possible value of integer variable.

havoc (%) 5 V) v sl (M iz V)
(e, () | v ¢80\ 3 S ( L
Expressing Assignment with Havoc+Assume

 We can prove that the following equality holds under certain

conditions: \Wod"% % =3

3
x=E is havoc(x); assume(x==E) | assamwe (¢=3)

In other words, assigning a variable is the same as changing it
arbitrarily and then assuming that it has the right value.

Under what condition does this equality hold?



Correctness as Relation Inclusion

program -2 relation p
specification -2 relation s

program meets specification:
ps s

example: p ={((r,x),(r’,x’)). r'=2x && x’=0 }
s ={((r,x),(r'x’)).x>0=2r" >x"}

then the above program p meets the specification s
because implication holds:

r'=2x && x'=0 2 (x>0—=2>r'>x")



Normal form for Loop-Free Programs

Lemma: Let P be a program without loops. Then
for some natural number n,

[P)=U P
where each p; is relation composition of

— relations for assignments
— diagonal relations A.;.
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Inductive Case
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A Hoare Logic Proof

//{0 <=y}

i=y;

//{0<=y &i=y}

r=0;

//{0<=y &i=y&r=0}
while //{r = (y-i)*x & 0 <= i}

(i>0) ‘
[/r=(y-i)*x & 0 < i} fr=(y=Nxx A oc<i§
r=r+x, Y- Ya+YX

//{r = (y-i+1)*x & 0 < i} fvr=(y-1+)ex A 0<i]
i=i-1

//{r = (y-i)*x & 0 <= i}
)
[/{r=x*y}



Hoare Logic

e see wiki



