This Week

* Lecture on relational semantics
* Exercises on logic and relations
* Labs on using Isabelle to do proofs
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Function Updates
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A Simple Property
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o Transitive Closure
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Analysis and Verification

[ SOFTWARE ] QUESTIOM
e.q. specification
auxiliary information
’ (hints, proof steps)
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Verification-Condition Generation
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Steps in Verification
e generate formulas implying program correctness
e attempt to prove formulas
e if formulais valid, program is correct
e if formula has a counterexample, it indicates
one of these:
e errorin the program
e errorin the property
e error in auxiliary statements (e.g. loop
invariants)
Terminology
e generated formulas:
verification conditions
e generation process:
verification-condition generation
e program that generates formulas:
verification-condition generator (VCG)



Validity and Satisfiability

F (<) - formula with free variable(s) x
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Simple Programming Language

X=T

if (F) c1 else c2

cl;c2

while (F) c1

c:= x=T | (if(F)celsec) | c;c| (while (F) c)
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K:=O|1|2|...



Simple Program and its Syntax Tree
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Remark: Turing-Completeness

This language is Turing-complete

* it subsumes counter machines, which are known to be Turing-complete
 every possible program (Turing machine) can be encoded into computation
on integers (computed integers can become very large)

* the problem of taking a program and checking whether it terminates is
undecidable

* Rice's theorem: all properties of programs that are expressed in terms of
the results that the programs compute

(and not in terms of the structure of programs) are undecidable

In real programming languages we have bounded integers, but we have
other sources of unboundedness, e.g.
* bighums
* example: sizes of linked lists and other containers
e program syntax trees for an interpreter or compiler
(would like to handle programs of any size!)
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Relational Semantics
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Examples

= 35 y )

e T | =+ BT

X= Yo {(xo) | = 2x]

while (x t=10) {(x,) | x <10 A ®'=10]
X= X4 |

j

while (5=5)1 &
= X

3

Relabion betweeu imibial and all possible Fiual states



Why Relations

The meaning is, in general, an arbitrary relation. Therefore:

 For certain states there will be no results.
In particular, if a computation starting at a state does not terminate

* For certain states there will be multiple results.

This means command execution starting in state will sometimes
compute one and sometimes other result.

Verification of such program must account for both possibilities.

« Multiple results are important for modeling e.g. concurrency, as well
as approximating behavior that we do not know

(e.g. what the operating system or environment will do,

or what the result of complex computation is)



Guarded Command Language

assume(F) - stop execution if F does not hold
pretend execution never happened

s1 ] s2 - do either s1 or s2

g* - execute s zero, once, or more times



Guarded Commands and Relations - Idea

x=T {(x,T) | true}

gets more complex for more variables

assume(F) A

S is set of values for which F is true
(satisfying assignments of F)

g* r*
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Assignment for More Variables

var X,y

e\ ) -
y=x+1 §06m, 00,y | =0 A X =x
o\// 7\

‘CmW\e.
Couéihon



‘if’ condition using assume and |]

ifs(lF) (assume(F); s1)
else .
ot (assume(—F); s2)
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Example: y is absolute value of x

if (x>0) (assume(x>0); @
y=X []
else

(assume(—.(x>0)),
y =X X €0
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(calculating absolute value)
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‘while’ using assume and *

while (F) (assume(F); s)*

S ]

assume(—F)
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