This Week

* Lecture on relational semantics
* Exercises on logic and relations
* Labs on using Isabelle to do proofs

Synthesis, Analysis, and Verification
Lecture 02a

Relational Semantics

Lectures:
Viktor Kuncak

B

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

More Relations and Functions
r € AXB
AL
funch oual uh:)} X, Y1, Y, . (YD eY AN (v, qDeV = Y=Y,

-\'o‘\’d\ own MxB ¥x el 3\4 €EB. (%,YEY

y: ASDB vis fauchoudl A d¢otal ou AxB

. AL
m)e ctive: Ay‘ L s fuunchonal WL R
defd: R ((x\‘z\ £l & x=y \Ad
z

surjective: y-1 ;s +otal

bijeckive : 'm]ec(ﬁ’ e N Suv')e,el-ivc

Function Updates

dow (r)y= 1% | 3y Gper] dow aiu
ran(¥) ={yl 3Ix. (x,») € ¥] range

Pavrhal Fuuchon £: AB s fuuctioual celabon F<SAXTR

£ AB | %‘A‘—”%
f®9 = { (x4 | [(x,w\é-?r\ x4 dow\(gﬂvb‘\.ﬂegl‘

£ (\(= V) wmeawns £ o1 (x,v)?y
v o, £ \’ = X

Obevve:

A Simple Property

reweuwber:

Sev : Y| Ixes. (xer]

tor= {(».2\‘ 2y (¢ et A(\1,23é\r’}
Ap= L)) el

Theovrew : SerT = Vg_‘i(Aso Y‘) tor Y S A A
QE Ser - A ov) S< A
IxeS (g,e)er ce ram(/s
=)

auff () lue sy o “)
ccran i ;) Fw. (pW) € Ds
rT (w,q) € ¥ 7}

3. Qw. (pW e, Jpes,
)€Y (?ie)GY’

o Transitive Closure

Y = Ap rl=vep, =¥
Wz Yor® = vV

= UJr = ADJY’UP"‘U-.-.
(2,0 { J

Theorew: (N {s | 4, U ser csy =r*
(r¥*is the leest Sahsfyaug k\ne, recursive coudihov)

Proot.: = USorc<s should e: n H=r*
H= {s]| 2a prov

() e éa"\;\‘ DpUr*er cr¥
A V) (Ur"ﬁof = AAU UV“H 1\3*

- L,,o
(%0

r*¥ ¢H

50" NH = ...Nr¥A. < ¥

proof ‘
(2) SeH — r*ss Q

LQAuﬁiSS} QQ

AAQS /:Y'
rES /o (2) v* € N™
YoY € Ser € S
y2cs AR = Y¥¥
r"cs /o\(

YYof & So¥ < §
W
x»Jr €5
¥uyortes o+

0, NH=T _Nsy0s,n.. 2..nrinrin

Analysis and Verification

[SOFTWARE] QUESTIOM
e.q. specification
auxiliary information
’ (hints, proof steps)

(ARSWER, j

Verification-Condition Generation

Armotated
Program

l

WCG

l

YWarification
Condition

|

Theoram
Frowver

(CV 23,23, Mona)

valid/ \

1rmvalid
PIagrara
matizfiaz
property

Steps in Verification
e generate formulas implying program correctness
e attempt to prove formulas
e if formulais valid, program is correct
e if formula has a counterexample, it indicates
one of these:
e errorin the program
e errorin the property
e error in auxiliary statements (e.g. loop
invariants)
Terminology
e generated formulas:
verification conditions
e generation process:
verification-condition generation
e program that generates formulas:
verification-condition generator (VCG)

Validity and Satisfiability

F (<) - formula with free variable(s) x

GENERAL SITUATION . VALID: INVALID
£

i \)

LvuR o (6] e ©O o © © 20 twe o o o o
1 ¥%,F (%)
false ° ° fale L fae e
[\) 3 =) % > ‘>
' | o F) %, 7

o ¥ x. counter-exawmple

UNSATIS FIABLE: = SATISFIABLE

F p T\ sa.].is-f\,{mg qSSiguMCM‘l’
tvwe twe \!,
£alse © © 2 90 ‘>£4|a © o o o
e
X
134, F6) Ix. F(x)
Fisvalid < —F is unsatisfiable Fisinvalid < notthe case that F is valid

Fisinvalid <& —F is satisfiable F is unsatisfiable <& not the case that F is satisfiable

Verification-Condition Generation

Armotated
Program

l

WCG

l

YWarification
Condition

|

Theoram
Frowver

(CV 23,23, Mona)

valid/ \

1rmvalid
PIagrara
matizfiaz
property

Steps in Verification
e generate formulas implying program correctness
e attempt to prove formulas
e if formulais valid, program is correct
e if formula has a counterexample, it indicates
one of these:
e errorin the program
e errorin the property
e error in auxiliary statements (e.g. loop
invariants)
Terminology
e generated formulas:
verification conditions
e generation process:
verification-condition generation
e program that generates formulas:
verification-condition generator (VCG)

Simple Programming Language

X=T

if (F) c1 else c2

cl;c2

while (F) c1

c:= x=T | (if(F)celsec) | c;c| (while (F) c)
To=K[VI(T+T) [(T-T) [(K*T) [(T/K) | (T %K)
Fo=(T==T) [(T<T) [(T>T) | (~F) | (F&&F) | (F|]F)
Vi=x]|yl|lz]|..

K:=O|1|2|...

Simple Program and its Syntax Tree

while (x > 1) {
if (x% 2=0)
X=X/2 W\,\.le
else PN
x=3%*x+1 > i§
/ / - T
} X \‘ == \: /-I
/\O / \. * 4
7
/ \ 8 //\ x-/ \,
X 2 * 2 /7 \\

Remark: Turing-Completeness

This language is Turing-complete

* it subsumes counter machines, which are known to be Turing-complete
 every possible program (Turing machine) can be encoded into computation
on integers (computed integers can become very large)

* the problem of taking a program and checking whether it terminates is
undecidable

* Rice's theorem: all properties of programs that are expressed in terms of
the results that the programs compute

(and not in terms of the structure of programs) are undecidable

In real programming languages we have bounded integers, but we have
other sources of unboundedness, e.g.
* bighums
* example: sizes of linked lists and other containers
e program syntax trees for an interpreter or compiler
(would like to handle programs of any size!)

http://en.wikipedia.org/wiki/Rice's theorem
http://en.wikipedia.org/wiki/Rice's theorem
http://en.wikipedia.org/wiki/Rice's theorem

Relational Semantics

Ammotated
Frogm \
l re lal-. OWn

(nbivie mathewahical o\;}QC{)

VCG
l /vem by set cowmpreheusion
<9 th finit tav tvee)
Varificat (fovwmala | with finite sywtex
{ C:ﬂc: &] o <« sewicolow
1aon . s
X = X+3) .
| S > /TN
VAN
Theorem > + x/ \‘
Frowver /7 \ Y, ~
(CVC3, 23, Mona) 4 3 " 2
Sl irrvalid
Pmal;am {(X,X\)lx‘: X-H} C- { (0))), (1,2), (2,3)' (3)4')' N ‘é
zatizfiaz

property

Examples

= 35 y)

e T | =+ BT

X= Yo {(xo) | = 2x]

while (x t=10) {(x,) | x <10 A ®'=10]
X= X4 |

j

while (5=5)1 &
= X

3

Relabion betweeu imibial and all possible Fiual states

Why Relations

The meaning is, in general, an arbitrary relation. Therefore:

 For certain states there will be no results.
In particular, if a computation starting at a state does not terminate

* For certain states there will be multiple results.

This means command execution starting in state will sometimes
compute one and sometimes other result.

Verification of such program must account for both possibilities.

« Multiple results are important for modeling e.g. concurrency, as well
as approximating behavior that we do not know

(e.g. what the operating system or environment will do,

or what the result of complex computation is)

Guarded Command Language

assume(F) - stop execution if F does not hold
pretend execution never happened

s1] s2 - do either s1 or s2

g* - execute s zero, once, or more times

Guarded Commands and Relations - Idea

x=T {(x,T) | true}

gets more complex for more variables

assume(F) A

S is set of values for which F is true
(satisfying assignments of F)

g* r*

s,]s, rpur,

Assignment for More Variables

var X,y

e\) -
y=x+1 §06m, 00,y | =0 A X =x
o\// 7\

‘CmW\e.
Couéihon

‘if’ condition using assume and |]

ifs(lF) (assume(F); s1)
else .
ot (assume(—F); s2)
CF °S4)

[/&”:] U(A osl)
A

Example: y is absolute value of x

if (x>0) (assume(x>0); @
y=X []
else

(assume(—.(x>0)),
y =X X €0

AR X £0" Myt
Ay’ ‘{-((X\V),(x\n\f‘))\ X>0A ¥'=x A= \1} -

4 “xc.a“"{ (Gey), (“\\ \1\“ \ X €0 A X=X A \‘f‘ | 13
f'\1;~x = i((“\ﬁ\)(\z\‘]\»)\\ =Y A \7‘ = = XY}

oY

-

(calculating absolute value)
Xo Vo
w0 nGF % AP
[
X':@(D,\ \1': .®>(o

¥, X
(6, g | '
Ivore - XSO0 AN X=X NVYo=Y A

X‘:Xo A \1\: -XO } - A“ uor'-

= 3 (4,6 ‘)\\ X€0 A X=¥%A V-”Kl“
£ ux>ol\x =% N y'= % Aoy ©F

Ax. x=t A HED

guards 1
H (1)
F2>cC assume (F) 3 C
| ow |
ad 7()]FAxy . v = ()\N§
=93
BXO,‘]o. F A ¥Xo=X '\\[o-y [aN N[x:::xo)
[assume (A= IN(ORCAR) M =Y.]
F NN 2}

gcy= ¥ (o 649 | N

& - {((x.v),év\v‘» ‘ (o.\se?}
(FAN)V(TIF Afalse) = FAN

‘while’ using assume and *

while (F) (assume(F); s)*

S]

assume(—F)
CFG: 7
sﬁj\[ﬂ‘]

