
This Week

• Lecture on relational semantics

• Exercises on logic and relations

• Labs on using Isabelle to do proofs

Synthesis, Analysis, and Verification
Lecture 02a

Lectures:

 Viktor Kuncak

Relational Semantics

More Relations and Functions

Function Updates

A Simple Property

Transitive Closure

proof

Analysis and Verification

auxiliary information
(hints, proof steps)

Verification-Condition Generation
Steps in Verification
• generate formulas implying program correctness
• attempt to prove formulas

• if formula is valid, program is correct
• if formula has a counterexample, it indicates

one of these:
• error in the program
• error in the property
• error in auxiliary statements (e.g. loop

invariants)
Terminology
• generated formulas:

 verification conditions
• generation process:

 verification-condition generation
• program that generates formulas:

 verification-condition generator (VCG)

Validity and Satisfiability

F is valid  F is unsatisfiable
F is invalid  F is satisfiable

F is invalid  not the case that F is valid
F is unsatisfiable  not the case that F is satisfiable

Verification-Condition Generation
Steps in Verification
• generate formulas implying program correctness
• attempt to prove formulas

• if formula is valid, program is correct
• if formula has a counterexample, it indicates

one of these:
• error in the program
• error in the property
• error in auxiliary statements (e.g. loop

invariants)
Terminology
• generated formulas:

 verification conditions
• generation process:

 verification-condition generation
• program that generates formulas:

 verification-condition generator (VCG)

Simple Programming Language

x = T
if (F) c1 else c2
c1 ; c2
while (F) c1

c ::= x=T | (if (F) c else c) | c ; c | (while (F) c)
 T ::= K | V | (T + T) | (T - T) | (K * T) | (T / K) | (T % K)
 F ::= (T==T) | (T < T) | (T > T) | (~F) | (F && F) | (F || F)
 V ::= x | y | z | ...
 K ::= 0 | 1 | 2 | ...

Simple Program and its Syntax Tree

while (x > 1) {
 if (x % 2 = 0)
 x = x / 2
 else
 x = 3 * x + 1
}

Remark: Turing-Completeness
This language is Turing-complete
• it subsumes counter machines, which are known to be Turing-complete
• every possible program (Turing machine) can be encoded into computation
on integers (computed integers can become very large)
• the problem of taking a program and checking whether it terminates is
undecidable
• Rice's theorem: all properties of programs that are expressed in terms of
the results that the programs compute
(and not in terms of the structure of programs) are undecidable

In real programming languages we have bounded integers, but we have
other sources of unboundedness, e.g.
• bignums
• example: sizes of linked lists and other containers
• program syntax trees for an interpreter or compiler
 (would like to handle programs of any size!)

http://en.wikipedia.org/wiki/Rice's theorem
http://en.wikipedia.org/wiki/Rice's theorem
http://en.wikipedia.org/wiki/Rice's theorem

Relational Semantics

Examples

Why Relations

The meaning is, in general, an arbitrary relation. Therefore:

• For certain states there will be no results.

 In particular, if a computation starting at a state does not terminate

• For certain states there will be multiple results.

 This means command execution starting in state will sometimes

compute one and sometimes other result.

 Verification of such program must account for both possibilities.

• Multiple results are important for modeling e.g. concurrency, as well

as approximating behavior that we do not know

(e.g. what the operating system or environment will do,

or what the result of complex computation is)

Guarded Command Language

assume(F) - stop execution if F does not hold
 pretend execution never happened

s1 [] s2 - do either s1 or s2

s* - execute s zero, once, or more times

Guarded Commands and Relations - Idea

x = T {(x,T) | true }

 gets more complex for more variables

assume(F) ΔS
 S is set of values for which F is true
 (satisfying assignments of F)

s* r*

s1 [] s2 r1 U r2

Assignment for More Variables

var x,y

…
y = x + 1

‘if’ condition using assume and []

if (F)
 s1
else
 s2

(assume(F); s1)
 []
(assume(F); s2)

Example: y is absolute value of x

if (x>0)
 y = x
else
 y = -x

(assume(x>0); y=x)
 []
(assume((x>0)); y=-x)

(calculating absolute value)

guards

F  c

‘while’ using assume and *

while (F)
 s

(assume(F); s)*
 []
assume(F)

