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Today 

Introduction and overview of topics 

– Analysis and Verification 

– Synthesis 

Course organization and grading 



SAV in One Slide 

We study how to build software  
 analysis, verification, and synthesis  
tools that automatically  
answer questions about software systems. 
 
We cover theory and tool building through  
lectures, exercises, and labs. 
 
Grade is based on  

– quizzes 
– home works (theory and programming) 
– a mini project, presented in the class 



Steps in Developing Tools 
Modeling: establish precise mathematical meaning for: 
 software, environment, and questions of interest 

– discrete mathematics, mathematical logic, algebra 

Formalization: formalize this meaning using appropriate 
representation of programming languages and  
specification languages 

– program analysis, compilers, theory of formal languages,  
formal methods 

Designing algorithms: derive algorithms that manipulate such 
formal objects - key technical step 

– algorithms, dataflow analysis, abstract interpretation, decision 
procedures, constraint solving (e.g. SAT), theorem proving 

Experimental evaluation: implement these algorithms and 
apply them to software systems 

– developing and using tools and infrastructures,  
learning lessons to improve and repeat previous steps 



Comparison to other Sciences 
Like science we model a part of reality (software systems and their environment) by 
introducing mathematical models. Models are by necessity approximations of reality, 
because 1) our partial knowledge of the world is partial and  
                2) too detailed models would become intractable for automated reasoning 
Specific to SAV is the nature of software as the subject of study, which has several 
consequences:  
• software is an engineering artifact: to an extent we can choose our reality through 

programming language design and software methodology 
• software has complex discrete, non-linear structure: millions of lines of code, 

gigabytes of bits of state, one condition in if statement can radically change future 
execution path (non-continuous behavior) 

• high standards of correctness: interest in details and exceptional behavior (bugs), 
not just in general trends of software behavior 

• high standards along with large the size of software make manual analysis 
infeasible in most cases, and requires automation 

• automation requires not just mathematical modeling, where we use everyday 
mathematical techniques, but also formal modeling, which requires us to specify 
the representation of systems and properties, making techniques from 
mathematical logic and model theory relevant 

• automation means implementing algorithms for processing representation of 
software (e.g. source code) and representation of properties (e.g. formulas 
expressing desired properties), the study of these algorithms leads to questions of 
decidability, computational complexity, and heuristics that work in practice. 



Analysis and Verification 

auxiliary information 
(hints, proof steps) 



Questions of Interest 

Example questions in analysis and verification 
(with sample links to tools or papers):  

• Will the program crash? 

• Does it compute the correct result? 

• Does it leak private information? 

• How long does it take to run? 

• How much power does it consume? 

• Will it turn off automated cruise control?  

http://www.altran-praxis.com/spark.aspx
http://www.key-project.org/
http://www.cs.cornell.edu/jif/
http://www.absint.com/ait/
http://portal.acm.org/citation.cfm?id=963948.963960
http://dx.doi.org/10.1016/j.conengprac.2004.04.002


Viewer Discretion is Advised 



French Guyana, June 4, 1996 
t = 0 sec 

t = 40 sec 
$800 million software failure 

Space Missions 



(Jun 18, 2008 – Scientific data lost from flash memory) 

Space Missions 
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Essential Infrastructure: Northeast Blackout 



Life-Critical Medical Devices 

Radio Therapy 

Nancy Leveson 
Safeware: System Safety and Computers 

Addison-Wesley, 1995 



Life-Critical Medical Devices 



 
Air-Traffic Control System in LA Airport 

 
• Incident Date: 9/14/2004  
• (IEEE Spectrum) -- It was an air traffic controller's worst nightmare. Without 

warning, on Tuesday, 14 September, at about 5 p.m. Pacific daylight time, air traffic 
controllers lost voice contact with 400 airplanes they were tracking over the 
southwestern United States. Planes started to head toward one another, something 
that occurs routinely under careful control of the air traffic controllers, who keep 
airplanes safely apart. But now the controllers had no way to redirect the planes' 
courses.  

• The controllers lost contact with the planes when the main voice communications 
system shut down unexpectedly. To make matters worse, a backup system that was 
supposed to take over in such an event crashed within a minute after it was turned 
on. The outage disrupted about 800 flights across the country.  

• Inside the control system unit is a countdown timer that ticks off time in 
milliseconds. The VCSU uses the timer as a pulse to send out periodic queries to the 
VSCS. It starts out at the highest possible number that the system's server and its 
software can handle—232. It's a number just over 4 billion milliseconds. When the 
counter reaches zero, the system runs out of ticks and can no longer time itself. So it 
shuts down.  

• Counting down from 232 to zero in milliseconds takes just under 50 days. The FAA 
procedure of having a technician reboot the VSCS every 30 days resets the timer to 
232 almost three weeks before it runs out of digits. 



Zune 30 leapyear problem 

• December 31, 2008 
• “After doing some poking around in the source code for the Zune’s clock driver 

(available free from the Freescale website), I found the root cause of the now-
infamous Zune 30 leapyear issue that struck everyone on New Year’s Eve. The 
Zune’s real-time clock stores the time in terms of days and seconds since January 
1st, 1980. When the Zune’s clock is accessed, the driver turns the number of days 
into years/months/days and the number of seconds into hours/minutes/seconds. 
Likewise, when the clock is set, the driver does the opposite. 

• The Zune frontend first accesses the clock toward the end of the boot sequence. 
Doing this triggers the code that reads the clock and converts it to a date and 
time...” 

• “...The function keeps subtracting either 365 or 366 until it gets down to less than a 
year’s worth of days, which it then turns into the month and day of month. Thing 
is, in the case of the last day of a leap year, it keeps going until it hits 366. Thanks 
to the if (days > 366), it stops subtracting anything if the loop happens to be on a 
leap year. But 366 is too large to break out of the main loop, meaning that the 
Zune keeps looping forever and doesn’t do anything else.” 

http://www.zuneboards.com/forums/zune-news/38143-cause-zune-30-leapyear-
problem-isolated.html  

http://pastie.org/349916
http://www.zuneboards.com/forums/zune-news/38143-cause-zune-30-leapyear-problem-isolated.html
http://www.zuneboards.com/forums/zune-news/38143-cause-zune-30-leapyear-problem-isolated.html
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More Information 

http://mtc.epfl.ch/~tah/Lectures/EPFL-
Inaugural-Dec06.pdf  

 

http://www.cse.lehigh.edu/~gtan/bug/software
bug.html  

 

 

http://www.cse.lehigh.edu/~gtan/bug/softwarebug.html
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Success Stories 



ASTREE Analyzer 

“In Nov. 2003, ASTRÉE was able to prove 
completely automatically the absence of any 
RTE in the primary flight control software of the 
Airbus A340 fly-by-wire system, a program of 
132,000 lines of C analyzed in 1h20 on a 2.8 GHz 
32-bit PC using 300 Mb of memory (and 50mn 
on a 64-bit AMD Athlon™ 64 using 580 Mb of 
memory).”  

• http://www.astree.ens.fr/ 

http://www.astree.ens.fr/
http://www.astree.ens.fr/


AbsInt 

• 7 April 2005. AbsInt contributes to 
guaranteeing the safety of the A380, the 
world's largest passenger aircraft. The 
Analyzer is able to verify the proper response 
time of the control software of all components 
by computing the worst-case execution time 
(WCET) of all tasks in the flight control 
software. This analysis is performed on the 
ground as a critical part of the safety 
certification of the aircraft. 

 

http://www.absint.com/releases/050427.htm
http://www.absint.com/releases/050427.htm
http://www.absint.com/releases/050427.htm
http://www.absint.com/releases/050427.htm
http://www.absint.com/releases/050427.htm
http://www.absint.com/releases/050427.htm


Interactive Theorem Provers 

• A Mechanically Checked Proof of IEEE 
Compliance of a Register-Transfer-Level 
Specification of the AMD K7 Floating Point 
Multiplication, Division and Square Root 
Instructions, doine using ACL2 Prover 

• Formal certification of a compiler back-end, 
or: programming a compiler with a proof 
assistant. by Xavier Leroy 

 

http://www.lms.ac.uk/jcm/1/lms1998-001/sub/lms98001.pdf
http://www.lms.ac.uk/jcm/1/lms1998-001/sub/lms98001.pdf
http://www.lms.ac.uk/jcm/1/lms1998-001/sub/lms98001.pdf
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http://www.lms.ac.uk/jcm/1/lms1998-001/sub/lms98001.pdf
http://www.cs.utexas.edu/users/moore/publications/acl2-papers.html
http://doi.acm.org/10.1145/1111037.1111042
http://doi.acm.org/10.1145/1111037.1111042
http://doi.acm.org/10.1145/1111037.1111042
http://doi.acm.org/10.1145/1111037.1111042
http://doi.acm.org/10.1145/1111037.1111042


Coverity Prevent 

• SAN FRANCISCO - January 8, 2008 - Coverity®, 
Inc., the leader in improving software quality and 
security, today announced that as a result of its 
contract with US Department of Homeland 
Security (DHS), potential security and quality 
defects in 11 popular open source software 
projects were identified and fixed. The 11 
projects are Amanda, NTP, OpenPAM, OpenVPN, 
Overdose, Perl, PHP, Postfix, Python, Samba, 
and TCL. 

 

http://www.coverity.com/
http://www.coverity.com/
http://www.coverity.com/


Microsoft’s Static Driver Verifier 
Static Driver Verifier (SDV) is a thorough, compile-time, static verification 
tool designed for kernel-mode drivers. SDV finds serious errors that are 
unlikely to be encountered even in thorough testing. SDV systematically 
analyzes the source code of Windows drivers that are written in the C 
language. SDV uses a set of interface rules and a model of the operating 
system to determine whether the driver interacts properly with the 
Windows operating system.  
SDV can verify device drivers (function drivers, filter drivers, and bus 
drivers) that use the Windows Driver Model (WDM), Kernel-Mode Driver 
Framework (KMDF), or NDIS miniport model. SDV is designed to be used 
throughout the development cycle. You should run SDV as soon as the 
basic structure of a driver is in place, and continue to run it as you make 
changes to the driver. Development teams at Microsoft use SDV to 
improve the quality of the WDM, KMDF, and NDIS miniport drivers that 
ship with the operating system and the sample drivers that ship with the 
Windows Driver Kit (WDK). 
SDV is included in the Windows Driver Kit (WDK) and supports all x86-
based and x64-based build environments. 

http://www.microsoft.com/whdc/DevTools/WDK/WDKpkg.mspx
http://www.microsoft.com/whdc/DevTools/WDK/WDKpkg.mspx


Impact on Computer Science 

Turing award is ACM’s most prestigious award and 
equivalent to Nobel prize in Computing 

 

In the next slides are some papers written by the 
award winners connected to the topics of this class 

http://awards.acm.org/homepage.cfm?srt=all&awd=140
http://awards.acm.org/homepage.cfm?srt=all&awd=140


• A Basis for a Mathematical Theory of Computation  
by John McCarthy, 1961.  

“It is reasonable to hope that the relationship between 
computation and mathematical logic will be as fruitful in the 
next century as that between analysis and physics in the last. 
The development of this relationship demands a concern for 
both applications and for mathematical elegance.” 

• Social processes and proofs of theorems and programs a 
controversial article by Richard A. De Millo, Richard J. Lipton, 
and Alan J. Perlis 

• Guarded Commands, Nondeterminacy and Formal 
Derivation of Programs by Edsger W. Dijkstra from 1975, and 
other Manuscripts 

• Simple word problems in universal algebras by D. Knuth and 
P. Bendix (see Knuth-Bendix_completion_algorithm), used in 
automated reasoning 

http://www-formal.stanford.edu/jmc/basis/basis.html
http://doi.acm.org/10.1145/359104.359106
http://doi.acm.org/10.1145/360933.360975
http://doi.acm.org/10.1145/360933.360975
http://doi.acm.org/10.1145/360933.360975
http://doi.acm.org/10.1145/360933.360975
http://doi.acm.org/10.1145/360933.360975
http://www.cs.utexas.edu/~EWD/
http://www.google.com/search?q=Knuth-Bendix_completion_algorithm&btnI=lucky
http://www.google.com/search?q=Knuth-Bendix_completion_algorithm&btnI=lucky
http://www.google.com/search?q=Knuth-Bendix_completion_algorithm&btnI=lucky


• Decidability of second-order theories and automata on 
infinite trees by Michael O. Rabin in 1965, proving 
decidability for one of the most expressive decidable logics 

• Domains for Denotational Semantics by Dana Scott, 1982 
• Can programming be liberated from the von Neumann style?: 

a functional style and its algebra of programs by John Backus 
• Assigning meanings to programs by R. W. Floyd, 1967 
• The Ideal of Verified Software by C.A.R. Hoare 
• Soundness and Completeness of an Axiom System for 

Program Verification by Stephen A. Cook 
• An Axiomatic Definition of the Programming Language 

PASCAL by  
C. A. R. Hoare and Niklaus Wirth, 1973 

• On the Computational Power of Pushdown Automata, by 
Alfred V. Aho, Jeffrey D. Ullman, John E. Hopcroft in 1970 

• An Algorithm for Reduction of Operator Strength by  
John Cocke, Ken Kennedy in 1977 

http://portal.acm.org/citation.cfm?id=682867
http://portal.acm.org/citation.cfm?id=682867
http://portal.acm.org/citation.cfm?id=682867
http://portal.acm.org/citation.cfm?id=682867
http://doi.acm.org/10.1145/359576.359579
http://doi.acm.org/10.1145/359576.359579
http://dx.doi.org/10.1007/11817963_4


• A Metalanguage for Interactive Proof in LCF by Michael 
J. C. Gordon, Robin Milner, L. Morris, Malcolm C. 
Newey, Christopher P. Wadsworth, 1978 

• Proof Rules for the Programming Language Euclid, by 
Ralph L. London, John V. Guttag, James J. Horning, 
Butler W. Lampson, James G. Mitchell, Gerald J. Popek, 
1978 

• Computational Complexity and Mathematical Proofs by 
J. Hartmanis 

• Software reliability via run-time result-checking by 
Manuel Blum 

• The Temporal Logic of Programs, by Amir Pnueli (see 
also the others of a few hundreds of publications) 

• No Silver Bullet - Essence and Accidents of Software 
Engineering, by  
Frederick P. Brooks Jr., 1987 

http://doi.acm.org/10.1145/512760.512773
http://doi.acm.org/10.1145/512760.512773
http://doi.acm.org/10.1145/512760.512773
http://doi.acm.org/10.1145/512760.512773
http://www.springerlink.com/content/agm46t6a89ulwpx1/
http://doi.acm.org/10.1145/268999.269003
http://doi.acm.org/10.1145/268999.269003
http://doi.acm.org/10.1145/268999.269003
http://doi.acm.org/10.1145/268999.269003
http://doi.acm.org/10.1145/268999.269003


• Formal Development with ABEL, by Ole-Johan Dahl and Olaf 
Owe 

• Abstraction Mechanisms in the Beta Programming Language, 
by Bent Bruun Kristensen, Ole Lehrmann Madsen, Birger 
Møller-Pedersen, Kristen Nygaard, 1983 

• Formalization in program development, by Peter Naur, 1982 
• Interprocedural Data Flow Analysis, by Frances E. Allen, 

1974 
• Counterexample-guided abstraction refinement for symbolic 

model checking by Edmund Clarke, Orna Grumberg, Somesh 
Jha, Yuan Lu, Helmut Veith, 2003 

• Automatic Verification of Finite-State Concurrent Systems 
Using Temporal Logic Specifications by Edmund M. Clarke, E. 
Allen Emerson, A. Prasad Sistla 

• The Algorithmic Analysis of Hybrid Systems by Rajeev Alur, 
Costas Courcoubetis, Nicolas Halbwachs, Thomas A. 
Henzinger, Pei-Hsin Ho, Xavier Nicollin, Alfredo Olivero, 
Joseph Sifakis, Sergio Yovine 

http://doi.acm.org/10.1145/876638.876643
http://doi.acm.org/10.1145/876638.876643
http://doi.acm.org/10.1145/876638.876643
http://doi.acm.org/10.1145/876638.876643
http://doi.acm.org/10.1145/5397.5399
http://doi.acm.org/10.1145/5397.5399
http://doi.acm.org/10.1145/5397.5399
http://doi.acm.org/10.1145/5397.5399
http://dx.doi.org/10.1016/0304-3975(94)00202-T


How to prove programs 



Proving Program Correctness 
int f(int x, int y) 
{ 
    if (y == 0) { 
        return 0; 
    } else { 
      if (y % 2 == 0) { 
          int z = f(x, y / 2); 
          return (2 * z); 
      } else { 
          return (x + f(x, y - 1)); 
      } 
    } 
} 

• What does ‘f’ compute? 

• How can we prove it? 





An imperative version 

int fi(int x, int y) 
{  
    int r = 0; 
    int i = 0; 
    while (i < y) { 
      i = i + 1; 
      r = r + x; 
    } 
    return r; 
} 

• What does ‘fi’ compute? 

• How can we prove it? 



Preconditions, Postconditions, 
Invariants 

void p() 
/*: requires Pre 
      ensures Post */ 
{ 
  s1; 
  while /*: invariant I */   (e) {  
   s2; 
  } 
  s3; 
} 



Loop Invariant 
I is a loop invariant if the following three conditions hold:  

• I holds initially: in all states satisfying Pre, when 
execution reaches loop entry, I holds 

• I is preserved: if we assume I and loop condition (e), 
we can prove that I will hold again after executing s2 

• I is strong enough: if we assume I and the negation of 
loop condition e, we can prove that Post holds after s3 

Explanation: because I holds initially, and it is preserved, 
by induction from holds initially and preserved follows 
that I will hold in every loop iteration. The strong enough 
condition ensures that when loop terminates, the rest of 
the program will satisfy the desired postcondition.  

 



Back to our Program: what is 
Invariant, Precondition, Postcondition 

int fi(int x, int y) 
{  
    int r = 0; 
    int i = 0; 
    while (i < y) { 
      i = i + 1; 
      r = r + x; 
    } 
    return r; 
} 

• What does ‘fi’ compute? 

• How can we prove it? 



Bubbling up an Element in Bubble Sort 
(not shown) 

int apartmentRents[]; 
int grades[]; 
... 
void bubbleUp(int[] a, int from) 
{  
    int i = from; 
    while (i < a.length) { 
  
      
 
    } 
} 
Proving 

– array indices are within bounds 
– the element in a[from] is smaller than those stored after ‘from’ 
– property sufficient to prove correctness of bubble sort 



How can we automate verification? 

Important algorithmic questions: 
– verification condition generation: compute formulas 

expressing program correctness 
• Hoare logic, weakest precondition, strongest postcondition 

– theorem proving: prove verification conditions 
• proof search, counterexample search 
• decision procedures 

– loop invariant inference 
• predicate abstraction 
• abstract interpretation and data-flow analysis 
• pointer analysis, typestate 

– reasoning about numerical computation 
– pre-condition and post-condition inference 
– ranking error reports and warnings 
– finding error causes from counterexample traces 



Spec Sharp: the Movie 

• See webcasts by Mike Barnett 
minutes 8 to 22 


