
Synthesis, Analysis, and Verification
Lecture 01

Lectures:
 Viktor Kuncak
Exercises and Labs:
 Eva Darulová
 Giuliano Losa

Introduction, Overview, Logistics

Monday, 21 February 2011 and 22 February 2011

Today

Introduction and overview of topics

– Analysis and Verification

– Synthesis

Course organization and grading

SAV in One Slide

We study how to build software
 analysis, verification, and synthesis
tools that automatically
answer questions about software systems.

We cover theory and tool building through
lectures, exercises, and labs.

Grade is based on

– quizzes
– home works (theory and programming)
– a mini project, presented in the class

Steps in Developing Tools
Modeling: establish precise mathematical meaning for:
 software, environment, and questions of interest

– discrete mathematics, mathematical logic, algebra

Formalization: formalize this meaning using appropriate
representation of programming languages and
specification languages

– program analysis, compilers, theory of formal languages,
formal methods

Designing algorithms: derive algorithms that manipulate such
formal objects - key technical step

– algorithms, dataflow analysis, abstract interpretation, decision
procedures, constraint solving (e.g. SAT), theorem proving

Experimental evaluation: implement these algorithms and
apply them to software systems

– developing and using tools and infrastructures,
learning lessons to improve and repeat previous steps

Comparison to other Sciences
Like science we model a part of reality (software systems and their environment) by
introducing mathematical models. Models are by necessity approximations of reality,
because 1) our partial knowledge of the world is partial and
 2) too detailed models would become intractable for automated reasoning
Specific to SAV is the nature of software as the subject of study, which has several
consequences:
• software is an engineering artifact: to an extent we can choose our reality through

programming language design and software methodology
• software has complex discrete, non-linear structure: millions of lines of code,

gigabytes of bits of state, one condition in if statement can radically change future
execution path (non-continuous behavior)

• high standards of correctness: interest in details and exceptional behavior (bugs),
not just in general trends of software behavior

• high standards along with large the size of software make manual analysis
infeasible in most cases, and requires automation

• automation requires not just mathematical modeling, where we use everyday
mathematical techniques, but also formal modeling, which requires us to specify
the representation of systems and properties, making techniques from
mathematical logic and model theory relevant

• automation means implementing algorithms for processing representation of
software (e.g. source code) and representation of properties (e.g. formulas
expressing desired properties), the study of these algorithms leads to questions of
decidability, computational complexity, and heuristics that work in practice.

Analysis and Verification

auxiliary information
(hints, proof steps)

Questions of Interest

Example questions in analysis and verification
(with sample links to tools or papers):

• Will the program crash?

• Does it compute the correct result?

• Does it leak private information?

• How long does it take to run?

• How much power does it consume?

• Will it turn off automated cruise control?

http://www.altran-praxis.com/spark.aspx
http://www.key-project.org/
http://www.cs.cornell.edu/jif/
http://www.absint.com/ait/
http://portal.acm.org/citation.cfm?id=963948.963960
http://dx.doi.org/10.1016/j.conengprac.2004.04.002

Viewer Discretion is Advised

French Guyana, June 4, 1996
t = 0 sec

t = 40 sec
$800 million software failure

Space Missions

(Jun 18, 2008 – Scientific data lost from flash memory)

Space Missions

 Air Transport

 Air Transport

 Air Transport

 Car Industry

 Car Industry

Essential Infrastructure: Northeast Blackout

Life-Critical Medical Devices

Radio Therapy

Nancy Leveson
Safeware: System Safety and Computers

Addison-Wesley, 1995

Life-Critical Medical Devices

Air-Traffic Control System in LA Airport

• Incident Date: 9/14/2004
• (IEEE Spectrum) -- It was an air traffic controller's worst nightmare. Without

warning, on Tuesday, 14 September, at about 5 p.m. Pacific daylight time, air traffic
controllers lost voice contact with 400 airplanes they were tracking over the
southwestern United States. Planes started to head toward one another, something
that occurs routinely under careful control of the air traffic controllers, who keep
airplanes safely apart. But now the controllers had no way to redirect the planes'
courses.

• The controllers lost contact with the planes when the main voice communications
system shut down unexpectedly. To make matters worse, a backup system that was
supposed to take over in such an event crashed within a minute after it was turned
on. The outage disrupted about 800 flights across the country.

• Inside the control system unit is a countdown timer that ticks off time in
milliseconds. The VCSU uses the timer as a pulse to send out periodic queries to the
VSCS. It starts out at the highest possible number that the system's server and its
software can handle—232. It's a number just over 4 billion milliseconds. When the
counter reaches zero, the system runs out of ticks and can no longer time itself. So it
shuts down.

• Counting down from 232 to zero in milliseconds takes just under 50 days. The FAA
procedure of having a technician reboot the VSCS every 30 days resets the timer to
232 almost three weeks before it runs out of digits.

Zune 30 leapyear problem

• December 31, 2008
• “After doing some poking around in the source code for the Zune’s clock driver

(available free from the Freescale website), I found the root cause of the now-
infamous Zune 30 leapyear issue that struck everyone on New Year’s Eve. The
Zune’s real-time clock stores the time in terms of days and seconds since January
1st, 1980. When the Zune’s clock is accessed, the driver turns the number of days
into years/months/days and the number of seconds into hours/minutes/seconds.
Likewise, when the clock is set, the driver does the opposite.

• The Zune frontend first accesses the clock toward the end of the boot sequence.
Doing this triggers the code that reads the clock and converts it to a date and
time...”

• “...The function keeps subtracting either 365 or 366 until it gets down to less than a
year’s worth of days, which it then turns into the month and day of month. Thing
is, in the case of the last day of a leap year, it keeps going until it hits 366. Thanks
to the if (days > 366), it stops subtracting anything if the loop happens to be on a
leap year. But 366 is too large to break out of the main loop, meaning that the
Zune keeps looping forever and doesn’t do anything else.”

http://www.zuneboards.com/forums/zune-news/38143-cause-zune-30-leapyear-
problem-isolated.html

http://pastie.org/349916
http://www.zuneboards.com/forums/zune-news/38143-cause-zune-30-leapyear-problem-isolated.html
http://www.zuneboards.com/forums/zune-news/38143-cause-zune-30-leapyear-problem-isolated.html
http://www.zuneboards.com/forums/zune-news/38143-cause-zune-30-leapyear-problem-isolated.html
http://www.zuneboards.com/forums/zune-news/38143-cause-zune-30-leapyear-problem-isolated.html
http://www.zuneboards.com/forums/zune-news/38143-cause-zune-30-leapyear-problem-isolated.html
http://www.zuneboards.com/forums/zune-news/38143-cause-zune-30-leapyear-problem-isolated.html
http://www.zuneboards.com/forums/zune-news/38143-cause-zune-30-leapyear-problem-isolated.html
http://www.zuneboards.com/forums/zune-news/38143-cause-zune-30-leapyear-problem-isolated.html
http://www.zuneboards.com/forums/zune-news/38143-cause-zune-30-leapyear-problem-isolated.html
http://www.zuneboards.com/forums/zune-news/38143-cause-zune-30-leapyear-problem-isolated.html
http://www.zuneboards.com/forums/zune-news/38143-cause-zune-30-leapyear-problem-isolated.html
http://www.zuneboards.com/forums/zune-news/38143-cause-zune-30-leapyear-problem-isolated.html
http://www.zuneboards.com/forums/zune-news/38143-cause-zune-30-leapyear-problem-isolated.html
http://www.zuneboards.com/forums/zune-news/38143-cause-zune-30-leapyear-problem-isolated.html
http://www.zuneboards.com/forums/zune-news/38143-cause-zune-30-leapyear-problem-isolated.html
http://www.zuneboards.com/forums/zune-news/38143-cause-zune-30-leapyear-problem-isolated.html

More Information

http://mtc.epfl.ch/~tah/Lectures/EPFL-
Inaugural-Dec06.pdf

http://www.cse.lehigh.edu/~gtan/bug/software
bug.html

http://www.cse.lehigh.edu/~gtan/bug/softwarebug.html
http://www.cse.lehigh.edu/~gtan/bug/softwarebug.html
http://www.cse.lehigh.edu/~gtan/bug/softwarebug.html
http://www.cse.lehigh.edu/~gtan/bug/softwarebug.html
http://www.cse.lehigh.edu/~gtan/bug/softwarebug.html
http://www.cse.lehigh.edu/~gtan/bug/softwarebug.html
http://www.cse.lehigh.edu/~gtan/bug/softwarebug.html
http://www.cse.lehigh.edu/~gtan/bug/softwarebug.html
http://www.cse.lehigh.edu/~gtan/bug/softwarebug.html
http://www.cse.lehigh.edu/~gtan/bug/softwarebug.html
http://www.cse.lehigh.edu/~gtan/bug/softwarebug.html
http://www.cse.lehigh.edu/~gtan/bug/softwarebug.html

Success Stories

ASTREE Analyzer

“In Nov. 2003, ASTRÉE was able to prove
completely automatically the absence of any
RTE in the primary flight control software of the
Airbus A340 fly-by-wire system, a program of
132,000 lines of C analyzed in 1h20 on a 2.8 GHz
32-bit PC using 300 Mb of memory (and 50mn
on a 64-bit AMD Athlon™ 64 using 580 Mb of
memory).”

• http://www.astree.ens.fr/

http://www.astree.ens.fr/
http://www.astree.ens.fr/

AbsInt

• 7 April 2005. AbsInt contributes to
guaranteeing the safety of the A380, the
world's largest passenger aircraft. The
Analyzer is able to verify the proper response
time of the control software of all components
by computing the worst-case execution time
(WCET) of all tasks in the flight control
software. This analysis is performed on the
ground as a critical part of the safety
certification of the aircraft.

http://www.absint.com/releases/050427.htm
http://www.absint.com/releases/050427.htm
http://www.absint.com/releases/050427.htm
http://www.absint.com/releases/050427.htm
http://www.absint.com/releases/050427.htm
http://www.absint.com/releases/050427.htm

Interactive Theorem Provers

• A Mechanically Checked Proof of IEEE
Compliance of a Register-Transfer-Level
Specification of the AMD K7 Floating Point
Multiplication, Division and Square Root
Instructions, doine using ACL2 Prover

• Formal certification of a compiler back-end,
or: programming a compiler with a proof
assistant. by Xavier Leroy

http://www.lms.ac.uk/jcm/1/lms1998-001/sub/lms98001.pdf
http://www.lms.ac.uk/jcm/1/lms1998-001/sub/lms98001.pdf
http://www.lms.ac.uk/jcm/1/lms1998-001/sub/lms98001.pdf
http://www.lms.ac.uk/jcm/1/lms1998-001/sub/lms98001.pdf
http://www.lms.ac.uk/jcm/1/lms1998-001/sub/lms98001.pdf
http://www.lms.ac.uk/jcm/1/lms1998-001/sub/lms98001.pdf
http://www.lms.ac.uk/jcm/1/lms1998-001/sub/lms98001.pdf
http://www.lms.ac.uk/jcm/1/lms1998-001/sub/lms98001.pdf
http://www.lms.ac.uk/jcm/1/lms1998-001/sub/lms98001.pdf
http://www.cs.utexas.edu/users/moore/publications/acl2-papers.html
http://doi.acm.org/10.1145/1111037.1111042
http://doi.acm.org/10.1145/1111037.1111042
http://doi.acm.org/10.1145/1111037.1111042
http://doi.acm.org/10.1145/1111037.1111042
http://doi.acm.org/10.1145/1111037.1111042

Coverity Prevent

• SAN FRANCISCO - January 8, 2008 - Coverity®,
Inc., the leader in improving software quality and
security, today announced that as a result of its
contract with US Department of Homeland
Security (DHS), potential security and quality
defects in 11 popular open source software
projects were identified and fixed. The 11
projects are Amanda, NTP, OpenPAM, OpenVPN,
Overdose, Perl, PHP, Postfix, Python, Samba,
and TCL.

http://www.coverity.com/
http://www.coverity.com/
http://www.coverity.com/

Microsoft’s Static Driver Verifier
Static Driver Verifier (SDV) is a thorough, compile-time, static verification
tool designed for kernel-mode drivers. SDV finds serious errors that are
unlikely to be encountered even in thorough testing. SDV systematically
analyzes the source code of Windows drivers that are written in the C
language. SDV uses a set of interface rules and a model of the operating
system to determine whether the driver interacts properly with the
Windows operating system.
SDV can verify device drivers (function drivers, filter drivers, and bus
drivers) that use the Windows Driver Model (WDM), Kernel-Mode Driver
Framework (KMDF), or NDIS miniport model. SDV is designed to be used
throughout the development cycle. You should run SDV as soon as the
basic structure of a driver is in place, and continue to run it as you make
changes to the driver. Development teams at Microsoft use SDV to
improve the quality of the WDM, KMDF, and NDIS miniport drivers that
ship with the operating system and the sample drivers that ship with the
Windows Driver Kit (WDK).
SDV is included in the Windows Driver Kit (WDK) and supports all x86-
based and x64-based build environments.

http://www.microsoft.com/whdc/DevTools/WDK/WDKpkg.mspx
http://www.microsoft.com/whdc/DevTools/WDK/WDKpkg.mspx

Impact on Computer Science

Turing award is ACM’s most prestigious award and
equivalent to Nobel prize in Computing

In the next slides are some papers written by the
award winners connected to the topics of this class

http://awards.acm.org/homepage.cfm?srt=all&awd=140
http://awards.acm.org/homepage.cfm?srt=all&awd=140

• A Basis for a Mathematical Theory of Computation
by John McCarthy, 1961.

“It is reasonable to hope that the relationship between
computation and mathematical logic will be as fruitful in the
next century as that between analysis and physics in the last.
The development of this relationship demands a concern for
both applications and for mathematical elegance.”

• Social processes and proofs of theorems and programs a
controversial article by Richard A. De Millo, Richard J. Lipton,
and Alan J. Perlis

• Guarded Commands, Nondeterminacy and Formal
Derivation of Programs by Edsger W. Dijkstra from 1975, and
other Manuscripts

• Simple word problems in universal algebras by D. Knuth and
P. Bendix (see Knuth-Bendix_completion_algorithm), used in
automated reasoning

http://www-formal.stanford.edu/jmc/basis/basis.html
http://doi.acm.org/10.1145/359104.359106
http://doi.acm.org/10.1145/360933.360975
http://doi.acm.org/10.1145/360933.360975
http://doi.acm.org/10.1145/360933.360975
http://doi.acm.org/10.1145/360933.360975
http://doi.acm.org/10.1145/360933.360975
http://www.cs.utexas.edu/~EWD/
http://www.google.com/search?q=Knuth-Bendix_completion_algorithm&btnI=lucky
http://www.google.com/search?q=Knuth-Bendix_completion_algorithm&btnI=lucky
http://www.google.com/search?q=Knuth-Bendix_completion_algorithm&btnI=lucky

• Decidability of second-order theories and automata on
infinite trees by Michael O. Rabin in 1965, proving
decidability for one of the most expressive decidable logics

• Domains for Denotational Semantics by Dana Scott, 1982
• Can programming be liberated from the von Neumann style?:

a functional style and its algebra of programs by John Backus
• Assigning meanings to programs by R. W. Floyd, 1967
• The Ideal of Verified Software by C.A.R. Hoare
• Soundness and Completeness of an Axiom System for

Program Verification by Stephen A. Cook
• An Axiomatic Definition of the Programming Language

PASCAL by
C. A. R. Hoare and Niklaus Wirth, 1973

• On the Computational Power of Pushdown Automata, by
Alfred V. Aho, Jeffrey D. Ullman, John E. Hopcroft in 1970

• An Algorithm for Reduction of Operator Strength by
John Cocke, Ken Kennedy in 1977

http://portal.acm.org/citation.cfm?id=682867
http://portal.acm.org/citation.cfm?id=682867
http://portal.acm.org/citation.cfm?id=682867
http://portal.acm.org/citation.cfm?id=682867
http://doi.acm.org/10.1145/359576.359579
http://doi.acm.org/10.1145/359576.359579
http://dx.doi.org/10.1007/11817963_4

• A Metalanguage for Interactive Proof in LCF by Michael
J. C. Gordon, Robin Milner, L. Morris, Malcolm C.
Newey, Christopher P. Wadsworth, 1978

• Proof Rules for the Programming Language Euclid, by
Ralph L. London, John V. Guttag, James J. Horning,
Butler W. Lampson, James G. Mitchell, Gerald J. Popek,
1978

• Computational Complexity and Mathematical Proofs by
J. Hartmanis

• Software reliability via run-time result-checking by
Manuel Blum

• The Temporal Logic of Programs, by Amir Pnueli (see
also the others of a few hundreds of publications)

• No Silver Bullet - Essence and Accidents of Software
Engineering, by
Frederick P. Brooks Jr., 1987

http://doi.acm.org/10.1145/512760.512773
http://doi.acm.org/10.1145/512760.512773
http://doi.acm.org/10.1145/512760.512773
http://doi.acm.org/10.1145/512760.512773
http://www.springerlink.com/content/agm46t6a89ulwpx1/
http://doi.acm.org/10.1145/268999.269003
http://doi.acm.org/10.1145/268999.269003
http://doi.acm.org/10.1145/268999.269003
http://doi.acm.org/10.1145/268999.269003
http://doi.acm.org/10.1145/268999.269003

• Formal Development with ABEL, by Ole-Johan Dahl and Olaf
Owe

• Abstraction Mechanisms in the Beta Programming Language,
by Bent Bruun Kristensen, Ole Lehrmann Madsen, Birger
Møller-Pedersen, Kristen Nygaard, 1983

• Formalization in program development, by Peter Naur, 1982
• Interprocedural Data Flow Analysis, by Frances E. Allen,

1974
• Counterexample-guided abstraction refinement for symbolic

model checking by Edmund Clarke, Orna Grumberg, Somesh
Jha, Yuan Lu, Helmut Veith, 2003

• Automatic Verification of Finite-State Concurrent Systems
Using Temporal Logic Specifications by Edmund M. Clarke, E.
Allen Emerson, A. Prasad Sistla

• The Algorithmic Analysis of Hybrid Systems by Rajeev Alur,
Costas Courcoubetis, Nicolas Halbwachs, Thomas A.
Henzinger, Pei-Hsin Ho, Xavier Nicollin, Alfredo Olivero,
Joseph Sifakis, Sergio Yovine

http://doi.acm.org/10.1145/876638.876643
http://doi.acm.org/10.1145/876638.876643
http://doi.acm.org/10.1145/876638.876643
http://doi.acm.org/10.1145/876638.876643
http://doi.acm.org/10.1145/5397.5399
http://doi.acm.org/10.1145/5397.5399
http://doi.acm.org/10.1145/5397.5399
http://doi.acm.org/10.1145/5397.5399
http://dx.doi.org/10.1016/0304-3975(94)00202-T

How to prove programs

Proving Program Correctness
int f(int x, int y)
{
 if (y == 0) {
 return 0;
 } else {
 if (y % 2 == 0) {
 int z = f(x, y / 2);
 return (2 * z);
 } else {
 return (x + f(x, y - 1));
 }
 }
}

• What does ‘f’ compute?

• How can we prove it?

An imperative version

int fi(int x, int y)
{
 int r = 0;
 int i = 0;
 while (i < y) {
 i = i + 1;
 r = r + x;
 }
 return r;
}

• What does ‘fi’ compute?

• How can we prove it?

Preconditions, Postconditions,
Invariants

void p()
/*: requires Pre
 ensures Post */
{
 s1;
 while /*: invariant I */ (e) {
 s2;
 }
 s3;
}

Loop Invariant
I is a loop invariant if the following three conditions hold:

• I holds initially: in all states satisfying Pre, when
execution reaches loop entry, I holds

• I is preserved: if we assume I and loop condition (e),
we can prove that I will hold again after executing s2

• I is strong enough: if we assume I and the negation of
loop condition e, we can prove that Post holds after s3

Explanation: because I holds initially, and it is preserved,
by induction from holds initially and preserved follows
that I will hold in every loop iteration. The strong enough
condition ensures that when loop terminates, the rest of
the program will satisfy the desired postcondition.

Back to our Program: what is
Invariant, Precondition, Postcondition

int fi(int x, int y)
{
 int r = 0;
 int i = 0;
 while (i < y) {
 i = i + 1;
 r = r + x;
 }
 return r;
}

• What does ‘fi’ compute?

• How can we prove it?

Bubbling up an Element in Bubble Sort
(not shown)

int apartmentRents[];
int grades[];
...
void bubbleUp(int[] a, int from)
{
 int i = from;
 while (i < a.length) {

 }
}
Proving

– array indices are within bounds
– the element in a[from] is smaller than those stored after ‘from’
– property sufficient to prove correctness of bubble sort

How can we automate verification?

Important algorithmic questions:
– verification condition generation: compute formulas

expressing program correctness
• Hoare logic, weakest precondition, strongest postcondition

– theorem proving: prove verification conditions
• proof search, counterexample search
• decision procedures

– loop invariant inference
• predicate abstraction
• abstract interpretation and data-flow analysis
• pointer analysis, typestate

– reasoning about numerical computation
– pre-condition and post-condition inference
– ranking error reports and warnings
– finding error causes from counterexample traces

Spec Sharp: the Movie

• See webcasts by Mike Barnett
minutes 8 to 22

