Exercises 2

First-order logic

Reminder:
Propositional formulas are expressions built from

- constants true and false
- propositional variables, such as $p, q, p_{1}, q_{1}, \ldots$
- logical operators ($\wedge, \vee, \neg, \rightarrow, \leftrightarrow)$

On top of propositional operations, first-order logic adds:

- constructs to represent the structure of propositions:
- equality ($=$)
- predicate symbols (P, Q, \ldots)
- function symbols (f, g, \ldots)
- first-order variables (x, y, \ldots) denoting entities in some domain D
- quantifiers forall (\forall), exists (\exists)

Normal Forms:

- Negation Normal Form (NNF) only allows the logical connectives \neg, \wedge, \vee, where \neg is only applied to atomic formulas.
- Conjunctive Normal Form (CNF): $\bigwedge_{i} \bigvee_{j} A$ (A: atomic formula)
- Disjunctive Normal Form (DNF): $\bigvee_{i} \bigwedge_{j} A$ (A: atomic formula)

A FOL interpretation is a pair D_{I}, α_{I}, consisting of a domain D_{I} and an asignment α_{I}. These define a mapping from

- variable symbols to values from D_{I}
- function symbols to functions within the domain $f_{I}: D_{I}^{n} \rightarrow D_{I}$
- predicate symbols to predicates within the domain $p_{I}: D_{I}^{n} \rightarrow\{$ true, false $\}$

Problem 1: Dreadbury mansion

Consider the following:

1. Someone who lives in Dreadbury Mansion killed Aunt Agatha.
2. Agatha, the butler, and Charles live in Dreadbury Mansion, and are the only people who live therein.
3. A killer always hates his victim, and is never richer than his victim.
4. Charles hates no one that Aunt Agatha hates.
5. Agatha hates everyone except the butler.
6. The butler hates everyone not richer than Aunt Agatha.
7. The butler hates everyone Aunt Agatha hates.
8. No one hates everyone.
9. Agatha is not the butler.

Who killed Aunt Agatha?

Formalize these statements in first-order logic, by defining the variables, predicate and function symbols first.

Problem 2: Interpretations ${ }^{1}$

Consider the formula

$$
\forall x, y \cdot(A(x) \wedge B(x, y)) \rightarrow A(y)
$$

Determine, whether it is valid, satisfiable or unsatisfiable under the following interpretations.
(i) The domain of the natural numbers, where A is interpreted as even, and B is interpreted as equals.
(ii) The domain of the natural numbers, where A is interpreted as even, and B is interpreted as is an integer divisor of.
(iii) The domain of the natural numbers, where A is interpreted as even, and B is interpreted as is an integer multiple of.
(iv) The domain of the Booleans, true,false, where A is interpreted as negation, and B is interpreted as xor.

[^0]
Problem 3: Normal forms

A formula is in prenex normal form (PNF) if all of its quantifiers appear at the beginning of the formula ${ }^{2}$:

$$
Q_{1} x_{1} \ldots Q_{n} x_{n} . F
$$

and F is quantifier free. Every FOL formula F can be transformed into an equivalent formula F in PNF. To compute an equivalent PNF F' of F,

1. Convert F into NNF formula F_{1}.
2. When multiple quantified variables have the same name, rename them to fresh variables, resulting in F_{2}.
3. Remove all quantifiers from F_{2} to produce quantifier-free formula F_{3}.
4. Add the quantifiers before F_{3},

$$
F_{4}: Q_{1} x_{1} \ldots Q_{n} x_{n} . F_{3}
$$

where the Q_{i} are the quantifiers such that if Q_{j} is in the scope of Q_{i} in F_{1}, then $i<j . F_{4}$ is equivalent to F .

Apply this procedure to
(i) $\forall x . \neg(\exists y \cdot p(x, y) \wedge p(x, z)) \vee \exists y \cdot p(x, y)$
(ii) $\forall w . \neg(\exists x, y \cdot \forall z \cdot p(x, z) \rightarrow q(y, z)) \wedge \exists z \cdot p(w, z)$

Problem 4: Partial functions and Relation composition

Given two partial functions r_{1} and r_{2}, show that $r=r_{1} \circ r_{2}$ is also a partial function.

Problem 5: Monotonicity

Let $E\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ be a relation composed of relations r_{i} with an arbitrary combination of relation composition and union, e.g. one possible expression could be $\left(r_{1} \circ r_{2}\right) \cup r_{3}$. Show that this operation is monotone, that is show that for any i

$$
r_{i} \subseteq r_{i}^{\prime} \quad \rightarrow \quad E\left(r_{1}, r_{2}, \ldots, r_{i}, \ldots, r_{n}\right) \subseteq E\left(r_{1}, r_{2}, \ldots, r_{i}^{\prime}, \ldots, r_{n}\right)
$$

[^1]
[^0]: ${ }^{1}$ Adapted from Exercises for First-Order Logic, Ian Barland, John Greiner, Fuching Chi, http://cnx.org/content/m12353/latest/.

[^1]: ${ }^{2}$ Definition from Calculus of Computation, A.R.Bradley and Zohar Manna, 2007

