
Homework2

By Giuliano Losa

March 5, 2011

Contents

1 Agatha was murdered in the Dreadbury Mansion. Whodunit? 1

2 Formalization and solution of problem 5 from exercises 2 2

3 Homework 2, Problem 4. Formalization of Problem 3 from Homework 3. 4

1 Agatha was murdered in the Dreadbury Mansion. Who-
dunit?

theory Agatha
imports Main
begin

typedecl Person

consts
Agatha :: Person
Charles :: Person
butler :: Person
livesInMansion :: Person ⇒ bool
killed :: Person ⇒ Person ⇒ bool
hates :: Person ⇒ Person ⇒ bool
richer :: Person ⇒ Person ⇒ bool

definition f1 :: bool
where f1 ≡ ∃ x . livesInMansion x ∧ killed x Agatha

definition f2 :: bool
where f2 ≡ livesInMansion Agatha ∧ livesInMansion butler ∧ livesInMansion Charles

∧ (∀ x . x 6= Agatha ∧ x 6= butler ∧ x 6= Charles −→ ¬ livesInMansion x)
definition f3 :: bool

where f3 ≡ ∀ x y . killed x y −→ (hates x y ∧ ¬ richer x y)
definition f4 :: bool

where f4 ≡ ∀ x . hates Agatha x −→ ¬ hates Charles x
definition f5 :: bool

where f5 ≡ ∀ x . x 6= butler −→ hates Agatha x
definition f6 :: bool

where f6 ≡ ∀ x . (¬ richer x Agatha) −→ hates butler x
definition f7 :: bool

where f7 ≡ ∀ x . hates Agatha x −→ hates butler x
definition f8 :: bool

1

where f8 ≡ ∀ x . ¬ (∀ y . hates x y)
definition f9 :: bool

where f9 ≡ Agatha 6= butler

declare
f1-def [simp] f2-def [simp] f3-def [simp] f4-def [simp] f5-def [simp] f6-def [simp] f7-def [simp] f8-def

[simp] f9-def [simp]
— here we declare the definition of the facts to be simplification rules. This will cause the simplifier to

rewrite the facts (for example f1) with their definition.

lemma Agatha-commited-suicide:
assumes f1 and f2 and f3 and f4 and f5 and f6 and f7 and f8 and f9
shows killed Agatha Agatha
using 〈f1 〉 〈f2 〉 〈f3 〉 〈f4 〉 〈f5 〉 〈f6 〉 〈f7 〉 〈f8 〉 〈f9 〉 by (simp, metis)

— simp rewrites the the facts according to their definition, then metis proves the goal

lemma Agatha-commited-suicide2 :
— a more detailed proof
assumes f1 and f2 and f3 and f4 and f5 and f6 and f7 and f8 and f9
shows killed Agatha Agatha

proof −
have not-charles:¬ killed Charles Agatha
proof −

have ¬ hates Charles Agatha
proof −

from 〈f5 〉 and 〈f9 〉 have hates Agatha Agatha by auto
with 〈f4 〉 show ?thesis by auto

— ”with” stands for ”from ‘hates Agatha Agatha‘”
qed
with 〈f3 〉 show ¬ killed Charles Agatha by auto

— ”with” stands for ”from ‘¬ hates Charles Agatha‘”
qed
have not-butler :¬ killed butler Agatha using 〈f3 〉 〈f5 〉 〈f6 〉 〈f7 〉 〈f8 〉 by force

— The facts used were suggested by sledgehammer.
from not-charles and not-butler and 〈f1 〉 and 〈f2 〉 show killed Agatha Agatha by force

qed

end

2 Formalization and solution of problem 5 from exercises 2

theory Exercises2Pb5
imports Main
begin

In this example we make use of proof contexts. A proof contexts is a part of a proof delimited
by curly brackets.

Inside a proof context on may fix some variables with the command ”fix” (like in ”fix x y”), one
may assume some arbitrary facts with the ”assume” command (like in ”assume ¬ killed Charles
Agatha”. We may then prove several facts with the ”have” command.

Upon closing the block, we will have proved that taking the fixed variables to be arbitrary and

2

assuming what was assumed in the block, we can conclude that the fact proved in the last line
of the block holds. See the examples in the file!.

Blocks are usefull to avoid considering what is the exact goal that isabelle wants you to prove.
When starting a proof (with the ”proof -” command), you may ignore what isabelle displays
in the goals window and instead open a new proof block. In this new block you may prove
what you think is to be proved. After closing the proof block, you may reconcile what you
proved with what isabelle wanted you to prove by using the ”auto” proof method. Again, see
the examples in the file!

typedecl Variable
type-synonym ′a relation = (′a × ′a) set

datatype relationalExpr =
Relation Variable
|Union relationalExpr relationalExpr
|Comp relationalExpr relationalExpr

primrec semantics :: relationalExpr ⇒ (Variable ⇒ ′a relation) ⇒ ′a relation
— The semantics of a relational expression under an interpretation of its variables
where
semantics (Relation rv) f = f rv
|semantics (Union e1 e2) f = (semantics e1 f) ∪ (semantics e2 f)
|semantics (Comp e1 e2) f = (semantics e1 f) O (semantics e2 f)

theorem monotonic:
— f ′ = f (rv := r ′) says that if x 6= rv then f ′ x = f x else f ′ x = r ′

assumes a1 :f ′ = f (rv := r ′) and a2 :f rv ⊆ r ′

shows semantics E f ⊆ semantics E f ′

proof (induct E)
— Each case of the induction is separated by the next keyword
— There are three cases: one for Relation rv, one for Union e1 e2, and one for Comp e1 e2
— We start with the based case
fix r
show semantics (Relation r) f ⊆ semantics (Relation r) f ′

proof (cases rv = r)
assume f1 :rv = r
from f1 have f2 :f r ⊆ r ′ using a2 by auto
from f2 have f3 :semantics (Relation r) f ⊆ r ′ by auto
from a1 and f1 have f4 :semantics (Relation r) f ′ = r ′ by auto
from f3 and f4 show ?thesis by auto

next
assume f1 :rv 6= r
have f2 :semantics (Relation r) f = f r by auto
from f1 and a1 have f3 :semantics (Relation r) f ′ = f r by auto
from f2 and f3 show ?thesis by auto

qed
next

— Inductive step, case Union e1 e2
fix e1 e2
assume ih1 :semantics e1 f ⊆ semantics e1 f ′

and ih2 :semantics e2 f ⊆ semantics e2 f ′

have f1 :semantics (Union e1 e2) f = semantics e1 f ∪ semantics e2 f by auto
have f2 :semantics (Union e1 e2) f ′ = semantics e1 f ′ ∪ semantics e2 f ′ by auto
show semantics (Union e1 e2) f ⊆ semantics (Union e1 e2) f ′

proof −

3

— The opening curly bracket on the next line opens a new context where we may assume and prove
whatever we like. When closing the context (with a matching curly bracket), we may use what we proved
inside the context as an assumption.

{ fix x y
assume f3 :(x , y) ∈ semantics (Union e1 e2) f
from f1 and f3 have f4 :(x , y) ∈ semantics e1 f ∨ (x , y) ∈ semantics e2 f by auto
from f4 and ih1 and ih2 have f5 :(x , y) ∈ semantics e1 f ′ ∨ (x , y) ∈ semantics e2 f ′ by auto
from f2 and f5 have (x , y) ∈ semantics (Union e1 e2) f ′ by auto

}

On the line above we closed the context. We proved the statement
∧

x y . (x , y) ∈ semantics (Union
e1 e2) f =⇒ (x , y) ∈ semantics (Union e1 e2) f ′

thus ?thesis by auto
— ”thus” stands for from

∧
x y . (x , y) ∈ semantics (Union e1 e2) f =⇒ (x , y) ∈ semantics

(Union e1 e2) f ′. ”?thesis” represents our goal
qed

next
— Inductive step, Comp e1 e2

fix e1 e2
assume ih1 :semantics e1 f ⊆ semantics e1 f ′ and ih2 :semantics e2 f ⊆ semantics e2 f ′

have f1 :semantics (Comp e1 e2) f = semantics e1 f O semantics e2 f by auto
have f2 :semantics (Comp e1 e2) f ′ = semantics e1 f ′ O semantics e2 f ′ by auto
show semantics (Comp e1 e2) f ⊆ semantics (Comp e1 e2) f ′

proof −
— As above, we open a new context
{ fix x y

assume f3 :(x , y) ∈ semantics (Comp e1 e2) f
from f1 and f3 obtain z where f4 :(x , z) ∈ semantics e1 f ∧ (z , y) ∈ semantics e2 f by auto
from f4 and ih1 and ih2 have f5 :(x , z) ∈ semantics e1 f ′ ∧ (z , y) ∈ semantics e2 f ′ by auto
from f5 have (x , y) ∈ semantics (Comp e1 e2) f ′ by auto

}

On the line above we close the context. We proved the statment
∧

x y . (x , y) ∈ semantics (Comp e1
e2) f =⇒ (x , y) ∈ semantics (Comp e1 e2) f ′

thus ?thesis by auto
— As before, thus represents the fact we proved in the immediately preceding proof context

qed
qed

end

3 Homework 2, Problem 4. Formalization of Problem 3 from
Homework 3.

theory Homework2Pb3Sorry
imports Main
begin

typedecl Stmt
type-synonym ′a relation = (′a × ′a) set

datatype ′a GuardedCmdExpr =

4

Statement Stmt
|SeqComp ′a GuardedCmdExpr ′a GuardedCmdExpr
|IfThenElse ′a set ′a GuardedCmdExpr ′a GuardedCmdExpr

primrec semantics :: ′a GuardedCmdExpr ⇒ (Stmt ⇒ ′a relation) ⇒ ′a relation
— O is relation composition
— Id-on P is the diagonal relation on set P. Its definition can be found by searching for Id-on-def.
— (− P) is the complement of P
where
semantics (Statement s) f = f s
|semantics (SeqComp s1 s2) f = semantics s1 f O semantics s2 f
|semantics (IfThenElse P s1 s2) f = (Id-on P O semantics s1 f) ∪ (Id-on (− P) O semantics s2 f)

This file is continued is the provided skeleton. Your task is to complete the skeleton. You are
not allowed to use the ”sorry” or ”axioms” command. Your proof should look like the ones
in this file. You may also use sledgehammer, using the command ”sledgehammer [provers=”e
spass”]”

end

5

	Agatha was murdered in the Dreadbury Mansion. Whodunit?
	Formalization and solution of problem 5 from exercises 2
	Homework 2, Problem 4. Formalization of Problem 3 from Homework 3.

