
23

Set Constraints with Projections

WITOLD CHARATONIK AND LESZEK PACHOLSKI

University of Wrocław, Wrocław, Poland

Abstract. Set constraints form a constraint system where variables range over the domain of sets
of trees. They give a natural formalism for many problems in program analysis. Syntactically, set
constraints are conjunctions of inclusions between expressions built over variables, constructors
(constants and function symbols from a given signature) and a choice of set operators that defines
the specific class of set constraints. In this article, we are interested in the class of set constraints
with projections, which is the class with all Boolean operators (union, intersection and complement)
and projections that in program analysis directly correspond to type destructors. We prove that the
problem of existence of a solution of a system of set constraints with projections is in NEXPTIME,
and thus that it is NEXPTIME-complete.

Categories and Subject Descriptors: F.1.1 [Computation by Abstract Devices]: Models of Com-
putation—automata; F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnumerical
Algorithms and Problems—computations on discrete structures; F.3.2 [Logics and Meanings of
Programs]: Semantics of Programming Languages—Program analysis; F.4.3 [Mathematical Logic
and Formal Languages]: Formal Languages—Decision problems

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Computational complexity, program analysis, set constraints

ACM Reference Format:
Charatonik, W., and Pacholski, L. 2010. Set constraints with projections. J. ACM 57, 4, Article 23,
(April 2010), 37 pages.
DOI = 10.1145/1734213.1734217 http://doi.acm.org/10.1145/1734213.1734217

1. Introduction

Set constraints form a constraint system where variables range over the domain of
sets of trees. They give a natural formalism for many problems in program anal-
ysis, type inference, order-sorted unification, and constraint logic programming,
but they are best known as a tool for a particular kind of static analysis called
set-based [Heintze 1992; Heintze and Jaffar 1994; Aiken 1999]. Set-based analysis

This research was partially supported by Polish Ministry of Science and Education grant 3 T11C
042 30
Authors’ address: W. Charatonik and L. Pacholski, Institute of Computer Science, University
of Wrocław, Joliot-Curie 15, 50-383 Wrocław, Poland, e-mail: wch@ii.uni.wroc.pl; pacholski@
cs.uni.wroc.pl.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along with
the full citation. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute
to lists, or to use any component of this work in other works requires prior specific permission and/or
a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701,
New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2010 ACM 0004-5411/2010/04-ART23 $10.00
DOI 10.1145/1734213.1734217 http://doi.acm.org/10.1145/1734213.1734217

Journal of the ACM, Vol. 57, No. 4, Article 23, Publication date: April 2010.

23:2 W. CHARATONIK AND L. PACHOLSKI

is divided into two steps: the generation of set constraints from the syntax of a
given program and the resolution of the constraints, that is, the computation of a
particular solution (e.g., the least one). The computed solution gives then informa-
tion about possible values computed by the program or assumed by variables, and
can be further used, for example, in checking the type consistency or possibility of
optimization.

Syntactically, set constraints are conjunctions of inclusions between expressions
built over variables, constructors (constants and function symbols from a given sig-
nature) and a choice of set operators that defines the specific class of set constraints.
In this article, we are interested in the satisfiability problem for set constraints with
projections, that is, in the question whether given system of set constraints has a
solution. The class of set constraints we consider is a very natural one: we have
all boolean operators (union, intersection and complement) and projections that in
program analysis directly correspond to type destructors.

1.1. HISTORY OF SET CONSTRAINTS. The history of set constraints and set-
based program analysis goes back to Reynolds [1969]. He was the first to derive
recursively defined sets as approximations of runtime values from first-order func-
tional programs and to simplify these definitions by a sort of set-constraint solving
algorithm. Essentially, his algorithm solves (in cubic time) the satisfiability ques-
tion for the very limited case of atomic set constraints, where except constructors
there are no set operators at all.

The first general results concerning the decidability of set constraints were
obtained by Heintze and Jaffar [1990a], who studied the so-called definite set
constraints. The name of the class comes from the fact that satisfiable constraints
in this class always have the least solution. Definite set constraints are of the
form exp1 ⊆ exp2 where exp2 is restricted to constants, variables and function
symbols, and exp1 does not contain the complement symbol, but may contain
projections. This class is used for the set-based analysis of logic programs [Heintze
and Jaffar 1990b]. Later, Charatonik and Podelski [2002] showed that definite set
constraints are equivalent to the class of set constraints with intersection where
the only operators forming expressions are constructors and intersection, and that
the satisfiability problem for these classes is DEXPTIME-complete. The complexity
characterization continues to hold for negative set constraints with intersection,
where also negated inclusions are allowed. In Charatonik and Podelski [1998] the
same authors introduced the class of co-definite set constraints, and showed that
its satisfiability problem is also DEXPTIME-complete. This is a natural subclass of
set constraints which, when satisfiable, have the greatest solution. Both classes of
definite and co-definite set constraints are motivated by the analysis of programs
with the semantics defined by respectively least or greatest fixed points. Both these
classes are further investigated by Talbot et al. [2000], where the syntax is extended
by a new operation called membership expression. This extension allows to capture
both classes of the definite and co-definite constraints while preserving their main
properties: existence of the least or greatest solutions and DEXPTIME-completeness
of the satisfiability problem.

Two years after the formulation of the satisfiability question by Heintze and
Jaffar, Aiken and Wimmers [1992] proved decidability for the class of positive
set constraints. This is a very natural class of constraints defined by choosing the
boolean set operators (i.e., intersection, union and complement, but not projection).

Journal of the ACM, Vol. 57, No. 4, Article 23, Publication date: April 2010.

Set Constraints with Projections 23:3

For several years (until the publication of the conference version of Charatonik and
Podelski [2002] in 1997) this class was considered to be incomparable with definite
set constraints because of the missing projection operator. The algorithm of Aiken
and Wimmers worked in NEXPTIME, and their decidability proof was followed by
other proofs of the same result: Gilleron et al. [1993a, 1999] gave a proof based on
automata theoretic techniques and Bachmair et al. [1993] gave a proof using the
decision procedure for the first order theory of monadic predicates, providing also
NEXPTIME-completeness of the problem. In Aiken et al. [1993], yet another algo-
rithm has been presented and a detailed analysis of the complexity of positive set
constrains depending on the number of constructors of given arity has been given.

There were several attempts to solve the problem with all Boolean operators and
projections. The first partial solution was given by Heintze and Jaffar [1994] in
their paper about definite set constraints. The second partial solution (for negative
occurrences of projections in positive set constraints) was given by Bachmair et al.
[1993]. In the same paper, the authors observed that using projections one can
encode negated inclusions (we repeat this reduction in the next chapter). Following
this idea, several papers [Gilleron et al. 1993b; Aiken et al. 1995; Stefansson 1994;
Charatonik and Pacholski 1994a; Gilleron et al. 1999] gave the decidability of
the satisfiability problem for constraints with negated inclusions. The full solution
was given by Charatonik and Pacholski [1994b]. This was done by applying the
techniques developed in Charatonik and Pacholski [1994a] to the idea of Bachmair,
Ganzinger and Waldmann. In this article, we give another proof based on automata
that run on DAG representations of (sets of) trees.

Set constraints were also studied from the logical and topological point of view
[Kozen 1993, 1995; Cheng and Kozen 1996; Charatonik and Podelski 1996], and
also in domains different from the Herbrand universe [Heintze 1993; McAllester
et al. 1996; Charatonik 1998a; Goubault-Larrecq 2002], over infinite trees [Chara-
tonik and Podelski 1998; Rychlikowski and Truderung 2004], with additional
set operators [Bachmair et al. 1993; Charatonik and Pacholski 1994a; Talbot
et al. 2000], with restricted set operators [Charatonik and Podelski 1998, 2002;
Charatonik et al. 2000; Charatonik and Talbot 2002] and over nonempty sets [Müller
et al. 1997; Charatonik and Podelski 1996, 2002]. It turns out that nonempty-
set constraints have interesting algorithmic properties [Müller et al. 1997], and
enjoy a fundamental property of independence for set constraints with intersec-
tion [Charatonik and Podelski 1996; Müller et al. 1999; Charatonik and Podelski
2002]. Kozen [1994, 1998] explored the use of set constraints in constraint logic
programming. Uribe [1992] used set constraints in order-sorted languages. The
first-order theory of set constraints is undecidable. This has been established in
Seynhaeve et al. [1997, 2001], and improved in Charatonik [1998b]. The strongest
known results, that is, undecidability of the ∃∀∀-fragment, has been given in
Talbot [2000].

1.2. EXAMPLE PROGRAM ANALYSIS. Set constraints were successfully applied
in program analysis. Below, we give a very simple example of such an application.
More examples can be found in tutorials [Heintze and Jaffar 1994; Aiken 1999]. Of
course, for efficiency reasons, existing toolkits for constraint-based program anal-
yses, such as Kodumal and Aiken [2005], implement constraint-solving algorithms
specialized for restricted classes of constraints. In particular, constraints below can
be solved with methods much simpler then these presented in this article.

Journal of the ACM, Vol. 57, No. 4, Article 23, Publication date: April 2010.

23:4 W. CHARATONIK AND L. PACHOLSKI

Consider a simple imperative program for list reversal

y:=nil
A: while (x�=nil) do
B: y:=cons(head(x),y)

x:=tail(x) C:
done D:

where nil and cons are list constructors and head and tail are list destructors.
We are interested in four program points: entry to the loop (A:), entry to the body
of the loop (B:), and exits from the loop body and from the loop (C: and D:,
respectively). For each of these program points and each variable in the program
we introduce a set variable denoting the set of values assumed by the given variable
(i.e., its type) at the given program point. The following constraints can be inferred
from this program.

YA ⊇ nil
YB ⊇ YA ∪ YC X B ⊇ X A ∩ nil
YC ⊇ cons(cons−1(X B), YB) XC ⊇ cons−2(X B)
YD ⊇ YA ∪ YC X D ⊇ (X A ∩ nil) ∪ (XC ∩ nil)

Here cons−1 and cons−2 are projections to the first and the second argument,
respectively, of a set of lists, that correspond to head and tail operations. The least
solution of these constraints assigns empty sets to set variables X A, X B, XC , X D,
which indicates a problem with uninitialized program variable x. If we supply the
analysis with the information that at the program point A the variable x can be any
list, then the least solution provides the information that at the program point B the
program variable x is a nonempty list, and at point D it is the empty list.

1.3. OUR CONTRIBUTION. The main contribution of this article is the proof
that the satisfiability problem for sets constraints with projections is decidable in
NEXPTIME. Besides giving this proof we introduce a new technique of pumping
in the context of directed acyclic graphs; we believe that this technique is of
independent interest and can find other applications.

This article is an extended and revised version of Charatonik and Pacholski
[1994a, 1994b]. There are two main changes when compared with the conference
versions. First, we have replaced the monadic class used in Charatonik and Pa-
cholski [1994a], and tree set automata used in Charatonik and Pacholski [1994b]
by automata on directed acyclic graphs, which seem to be best suited to study
the satisfiability problem of set constraints. Then, we have completely revised the
combinatorial part. We hope that this part of the proof is now comprehensible. We
are sorry, but we were unable to make it easy.

The article is organized as follows. In Section 3, we introduce the notions of
automata to be used later. In Section 4, we translate the satisfiability problems for
some classes of set constraints into the non-emptiness problems for corresponding
classes of automata. In Section 5, we study the nonemptiness problem for these
classes of automata, and we prove that this problem is in NP for all of these classes.
The proofs in Section 5 are complete except of Lemma 5.15, whose proof is given
in Section 6.

Journal of the ACM, Vol. 57, No. 4, Article 23, Publication date: April 2010.

Set Constraints with Projections 23:5

2. Preliminaries

2.1. SYNTAX AND SEMANTICS OF SET CONSTRAINTS. A signature is a finite set
� of function symbols, each of which has assigned arity (the number of arguments).
Symbols of arity 0 are called constants. The set T� of all ground terms over �
is called the Herbrand universe and is defined as the least set containing constant
symbols in � and closed under the application of function symbols in �, which
means that whenever t1, . . . , tn ∈ T� and f ∈ � is an n-ary function symbol, then
f (t1, . . . , tn) ∈ T� .

Syntactically, positive and negative set constraints are inclusions of the form
E ⊆ E ′ and E �⊆ E ′ where the expressions E and E ′ are given by the grammar

E ::= X | ⊥ | E ∩ E | E | f (E, . . . , E)

where X stands for a variable from a given set, and f is a function symbol from
a given signature �. A system of set constraints is a finite conjunction of such
constraints; we will often identify such conjunction with the set of its conjuncts. In
the case of set constraints with projections we allow also expressions of the form
f −i (E), where i is a number between 1 and the arity of f . We will sometimes use

 and E1 ∪ E2 as an abbreviation for ⊥ and E1 ∩ E2, respectively. We will also

identify E with E .
Semantically, the variables range over subsets of the Herbrand universe T� . The

symbol ⊥ denotes the empty set; the Boolean connectives are interpreted in the
usual way, and function symbols operate on sets as follows:

f (S1, . . . , Sn) = { f (t1, . . . , tn) | t1 ∈ S1, . . . , tn ∈ Sn}
and

f −i (S) = {ti | ∃t1 . . . ∃ti−1∃ti+1 . . . ∃tn : f (t1, . . . , tn) ∈ S}.
Note that in the case of n = 0, if c is a function symbol of arity 0, the set expression
c denotes the set {c}.

Now, let us recall the notion of a solution of a system of set constraints SC . Let
Var denotes the set of set variables that appear in SC ,and let σ : Var → 2T� be an
assignment of subsets of T� to variables in Var. Then σ extends in a unique way
to a function from expressions to subsets of T� , which abusing the notation we
also denote by σ . This extension is defined as follows: σ (⊥) = ∅, σ (E1 ∩ E2) =
σ (E1) ∩ σ (E2), σ (E) = T� \ σ (E),

σ (f (E1, ..., Ek)) = f (σ (E1), ..., σ (Ek))

and

σ (f −i (E)) = f −i (σ (E))

An assignment σ : Var → 2T� is solution of (SC) if σ (E) ⊆ σ (E ′), for each
positive constraint E ⊆ E ′ in SC and σ (E) �⊆ σ (E ′), for each negative constraint
E �⊆ E ′ in SC .

A system SC of set constraints is satisfiable if there exists an assignment of
subsets of T� to the variables satisfying all the constraints in SC .

In the presence of projections, negative set constraints can be expressed using
the positive ones, so here it suffices to consider only positive set constraints:

Journal of the ACM, Vol. 57, No. 4, Article 23, Publication date: April 2010.

23:6 W. CHARATONIK AND L. PACHOLSKI

The constraint a ⊆ f −1(f (a, E)) is equivalent to E �⊆ ⊥ and, more generally,
a ⊆ f −1(f (a, E1 ∩ E2)) is equivalent to E1 �⊆ E2. In the following, by positive
set constraints, we mean constraints without projections and without negative
constraints; by positive and negative set constraints, we mean constraints without
projections, and by set constraints with projections we mean constraints without
negative constraints.

2.2. REDUCTION TO THE BINARY CASE. To simplify some reasonings in Section
6, we shall assume that the signature does not contain symbols of arity greater
than two. The following lemma shows that we do not loose generality with this
assumption. Note that this reduction works for all classes of constraints considered
in this article.

LEMMA 2.1. The problem whether a system of set constraints with projec-
tions has a solution can be reduced (in polynomial time) to such a problem over
vocabularies containing no function symbols of arity greater then two.

PROOF. Let SC be a system of set constraints over a signature � that contains
symbols of arity greater than two. Let �′ be a signature containing all constants
and all unary symbols from �, and n − 1 binary function symbols f1, . . . fn−1 for
each n-ary function symbol f ∈ � with n ≥ 3. For each term t ∈ T� we define
its representation t ′ ∈ T�′ as follows. Constants are represented by themselves
i.e. c′ = c for all constant symbols c ∈ �. We put g(t)′ = g(t ′) for all unary
symbols g, and finally f (t1, . . . , tn)′ = f1(t ′

1, f2(t ′
2, . . . fn−1(t ′

n−1, t ′
n) . . .), for all

n-ary symbols f ∈ �.
Now, we shall construct a system SC ′ of set constraints over the signature �′.

First, to make sure that we work only with terms representing original terms,
we replace each occurrence of by a new variable X, add a constraint X =⋃

f ∈� f (X, . . . , X), and add a constraint X ⊆ X for each variable X occurring
in SC . Then, we replace each occurrence of an expression f (E1, . . . , En) (including
f (X, . . . , X)) by f1(E1, f2(E2, . . . fn−1(En−1, En) . . .) and each occurrence of
a projection f −i (E) by the expression f −1

i (f −2
i−1(. . . f −2

1 (E) . . .)).
Now, it is easy to see that the system so obtained has a solution if and only

if the original one has. For one direction, if σ is a solution of SC then defining
σ ′(X) = {t ′ | t ∈ σ (X)} we obtain a solution of SC ′. Conversely, if σ ′ is a solution
of SC ′ then for each variable X , since σ ′(X) ⊆ σ ′(X), we have that σ ′(X)
contains only terms that are representations of terms in T� and thus defining
σ (X) = {t | t ′ ∈ σ ′(X)} we obtain a solution of SC .

2.3. THE MAIN RESULT. The main contribution of this article is a decision
procedure for solving systems of set constraints with projections. An instance of
the problem is a conjunction of inclusions

E1 ⊆ E ′
1 ∧ · · · ∧ En ⊆ E ′

n

where the expressions E j and E ′
j , for j = 1, . . . , n, are given by the grammar

E ::= X | ⊥ | E ∩ E | E | f (E, . . . , E) | f −i (E).

The following theorem is proved at the end of Chapter 5. Together with NEXPTIME-
hardness proved in Bachmair et al. [1993] it gives NEXPTIME-completeness of the
problem.

Journal of the ACM, Vol. 57, No. 4, Article 23, Publication date: April 2010.

Set Constraints with Projections 23:7

THEOREM 2.2. The satisfiability problem for set constraints with projections
is decidable in NEXPTIME.

3. Automata for Set Constraints

In this Section, we introduce automata theoretic tools that provide for a translation
of the problem of finding solutions to set constraints to the problem of finding
accepting runs of automata. To fix the terminology, we recall some standard defi-
nitions.

Definition 3.1 (DAG). Let G = 〈V, E〉 be a directed acyclic graph.

—If u, v ∈ V and there is an edge from v to u (i.e., if 〈v, u〉 ∈ E , then we call v a
predecessor of u, and u a successor of v .

—G = 〈V, E〉 is ordered if for each v ∈ V the set of edges outgoing from v is
linearly ordered.

—If u is a successor of v and there are i −1 edges outgoing from v that are smaller
than 〈v, u〉 in the linear ordering of edges outgoing from v , then we call u the
i th successor of v .

—A subgraph G ′ = 〈V ′, E ′〉 of G is closed if, for every node v of G ′, G ′ contains
all successors of v in G.

—A root in G is any node without predecessors; a leaf is any node without
successors.

Definition 3.2 (t-dag).

(1) A DAG representation of a set of ground terms (s-dag in short) over a signature
� is a labeled directed acyclic ordered graph G = 〈V, E, l〉 such that
—l : V → �,
—if a node v is labeled with a function symbol of arity n, then there are exactly

n edges outgoing from v in the graph, and
—G does not contain two different isomorphic closed labeled subgraphs.

(2) A representation of a term (t-dag in short) is an s-dag with exactly one root.

To obtain a DAG representation of a set of ground terms, it is enough to take the
usual tree representation and to identify every two isomorphic subtrees.

Definition 3.3. The term t(v) represented by the node v ∈ V of a s-dag
G = 〈V, E, l〉 is defined inductively as follows.

—if v is a leaf, then t(v) is the constant symbol l(v),
—if v has successors v1, . . . , vn (in this order) and l(v) = f , then t(v) is the term

f (t(v1), . . . , t(vn)).

The set of terms represented by G is the set {t(v) | v ∈ V }. If G is a t-dag , then
the term represented by G is the term represented by the root of G.

DAG representations of terms have been used in the study of unification (see,
e.g., Paterson and Wegman [1978]). The last condition in the definition of an s-dag
above is known as maximal sharing of structure. The assumption that an s-dag is
ordered is needed to assure that the t-dags representing f (a, b) and f (b, a) are

Journal of the ACM, Vol. 57, No. 4, Article 23, Publication date: April 2010.

23:8 W. CHARATONIK AND L. PACHOLSKI

FIG. 1. A t-dag representing the term g(f (a, f (a, a)), f (a, a), f (f (a, a), a)) and a graph not being
a t-dag.

not isomorphic. Note that we consider isomorphisms of labeled graphs, that is, the
isomorphisms preserving labelings.

The representation of a set T of terms is the smallest s-dag G such that, for every
term t ∈ T , there exists a node v in G such that the closed subgraph of G rooted at
v is the t-dag representing t . In the following, we will often refer to the s-dag G�

representing the Herbrand universe T�: this is the graph 〈T�, E, l〉 where for every
term t of the form f (t1, . . . , tn) the edge relation E contains 〈t, t1〉, . . . , 〈t, tn〉 (in
this order) and l(t) = f . Note that s-dags may be infinite and not connected. Note
that every t-dag has exactly one root while s-dags may have an arbitrary number of
roots (including zero - in which case the s-dag is either empty or infinite). Moreover,
each t-dag represents the set of its subterms.

Figure 1 gives an example of a t-dag, and a graph which is not a t-dag because
it contains two isomorphic copies of the graph representing f (f (a, a), f (a, a)).

Definition 3.4 (Automaton).

(1) An automaton is a tuple 〈�, Q, �〉 where � is a finite signature, Q is a finite
set of states, and � is a set of transitions of the form f (q1, . . . , qn) → q with
q, q1, . . . , qn ∈ Q, f ∈ �, and n being the arity of f .

(2) An automaton is called complete if for each f ∈ � and each sequence
q1, . . . , qn where n is the arity of f , there exists q ∈ Q such that
f (q1, . . . , qn) → q belongs to �.

(3) An automaton is called deterministic if for all f and q1, . . . , qn there exists at
most one q with f (q1, . . . , qn) → q ∈ �, and nondeterministic otherwise.

Definition 3.5 (Run). A run of an automaton 〈�, Q, �〉 on a given s-dag G is
a mapping ρ from the set of nodes of G to the set of states Q such that for each
node v and each f ∈ �, if v is labeled with f and v1, . . . , vn are the successors of
v , then � contains a transition f (ρ(v1), . . . , ρ(vn)) → ρ(v).

Definition 3.6 (t-dag Automaton).

(1) A t-dag automaton is a tuple 〈�, Q, �, F〉 such that 〈�, Q, �〉 is an automaton
and F ⊆ Q is the set of final states.

(2) A run ρ on a t-dag G is successful if ρ(v) ∈ F , where v is the root of G.
(3) An automaton A accepts a t-dag G if there exists a successful run of A on G.

Journal of the ACM, Vol. 57, No. 4, Article 23, Publication date: April 2010.

Set Constraints with Projections 23:9

The main and only difference between tree and t-dag representations of terms
is that if a term has several appearances of a subterm, then in the t-dag (s-dag)
representation all these appearances are represented by the same element, while in
the tree representation each appearance is represented by a distinct copy of the same
tree. This has, however, consequences for respective automata. Tree automata may
assign different states to different trees representing different appearances of the
same subterm, which is not possible for t-dags. As a consequence t-dag automata
accept less terms than tree automata.

Example 3.7. As a tree automaton, the automaton 〈{a, f (·, ·)}, {q1, q2, q},
a → q1, a → q2, f (q1, q2) → q}, {q}〉 accepts f (a, a) but as a t-dag automaton
it does not accept any t-dag representation of any tree.

The following definition of a request is motivated by application of automata to
solving set constraints with projections. Consider an inclusion X ⊆ f −2(Y). For
all solutions σ and all terms t ∈ σ (X) there must exist a term s (a witness for t
and projection f −2(Y)) such that f (s, t) ∈ σ (Y). Intuitively, an automaton while
processing t sends a request for existence of such a witness; this request should be
granted while processing f (s, t).

Definition 3.8 (Request). Let 〈�, Q, �〉 be an automaton and ρ a run on an
s-dag G.

(1) A triple 〈 f, i, R〉 is a request if f is a function symbol in � of arity n ≥ 2,
i ∈ {1, . . . , n}, and R ⊆ Q. We denote the set of requests by R.

(2) We say that the request 〈 f, i, R〉 at a node t in G is granted by a node u in G
if u is labeled with the symbol f , ρ(u) ∈ R and t is the i th successor of u.

Definition 3.9 (Automaton with Projections). An automaton with projections
is a tuple 〈�, Q, �, π〉 where

(1) 〈�, Q, �〉 is an automaton
(2) π : Q → 2R is a function assigning a set of requests to each state of Q.

Example 3.10. Consider the automaton 〈{a, b, f (·, ·)}, {q1, q2}, {a →
q1, b → q1, f (q1, q1) → q2}, π〉 where π (q1) = {〈 f, 2, {q2}〉}, and a run of
this automaton on the s-dag representing the set { f (a, a), f (a, b)}. The request
〈 f, 2, {q2}〉 is granted at node a by the node f (a, a) and at node b by the node
f (a, b). On the other hand, if we restrict the run to the t-dag representing f (a, b)
then the same request at the node b is granted by the node f (a, b), but it is not
granted at the node a.

Note that since the granting node is a predecessor, no request can be granted at
any root of a s-dag.

Definition 3.11 (Faithful Run). Let G be an s-dag with set of nodes V and let
Vr be a (possibly empty) set of roots of G. We say that a run ρ of an automaton
A = 〈�, Q, �, π〉 on the s-dag G is faithful up to Vr with respect to π if for each
node t ∈ V − Vr and each request in π (ρ(t)), this request is granted at the node t .
We say that ρ is faithful if it is faithful up to the empty set.

Journal of the ACM, Vol. 57, No. 4, Article 23, Publication date: April 2010.

23:10 W. CHARATONIK AND L. PACHOLSKI

Example 3.12. Consider the automaton and the run from Example 3.10. If we
have π (q2) = ∅, then this run is faithful. However, if we add any request to π (q2),
then this run becomes only faithful up to { f (a, a), f (a, b)}.

4. Solving Set Constraints

The basic idea how to define an automaton representing a given system SC of set
constraints is quite simple. Automata run on the s-dag representation G� of the
Herbrand universe. If σ is a solution of SC , then σ assigns to each expression E
a subset σ (E) of the Herbrand universe. A run of an automaton on the Herbrand
universe assigns to each element t a state which represents a collection of expres-
sions E such that t ∈ σ (E). Since the number of relevant expressions is finite,
the number of states is finite. Intuitively, a state ϕ is assigned to the t-dags that
represent ground terms belonging to the intersection of all sets σ (E) where E ∈ ϕ.

For a given system SC = ∧
i∈I Ei ⊆ E ′

i ∧ ∧
j∈J E j �⊆ E ′

j of set constraints,
by E(SC), we mean the smallest set containing the expressions Ei , E ′

i , E j , E ′
j for

all i ∈ I and j ∈ J and closed under subexpressions and complementation. For
example, if SC consists of the constraint f (X , Y) ⊆ g(∩ X), then

E(SC) = { f (X , Y), X, Y, g(∩ X), ∩ X, }
∪ { f (X , Y), X , Y , g(∩ X), ∩ X , ⊥}.

Definition 4.1 (Automaton Coresponding to SC). Let SC be a system of set
constraints. A(SC) = 〈�, Q, �〉 is the automaton corresponding to SC if

(1) Q is the set of all subsets q of E(SC) such that
—⊥ /∈ q,
—E ∈ q iff E /∈ q,
—if (E1 ∩ E2) ∈ E(SC), then (E1 ∩ E2) ∈ q iff E1, E2 ∈ q, and
—if E ⊆ E ′ ∈ SC and E ∈ q, then E ′ ∈ q.
and

(2) � is the set of transitions of the form f (q1, . . . , qn) → q such that
— f ∈ �, the arity of f is n ≥ 0, and q1, . . . , qn, q ∈ Q,
—q does not contain any expression of the form g(E ′

1, . . . , E ′
m) with g �= f ,

and
—if f (E1, . . . , En) ∈ E(SC), then f (E1, . . . , En) ∈ q iff Ei ∈ qi for all

i = 1, . . . , n.

As we will see in the next section, the runs of the automaton A(SC) correspond
to solutions of SC . In this correspondence, the definition of states of A(SC) is
used to make sure that the solutions σ satisfy the input constraints and σ (⊥) = ∅,
σ (E1 ∩ E2) = σ (E1) ∩ σ (E2) and σ (E) = T (�) \ σ (E), while the definition of
transitions is used to make sure that σ (f (E1, ..., Ek)) = f (σ (E1), ..., σ (Ek)).

Example 4.2. Consider the system of set constraints {nil ⊆
list, cons(, list) ⊆ list} where � = {nil, cons(·, ·)} and list is the only
set variable. Then E(SC) = {, ⊥, nil, nil, cons(, list), cons(, list), list, list},

Journal of the ACM, Vol. 57, No. 4, Article 23, Publication date: April 2010.

Set Constraints with Projections 23:11

the set of states of the automaton A(SC) is {q1, q2, q3, q4, q5} where

q1 = {, nil, cons(, list), list},
q2 = {, nil, cons(, list), list},
q3 = {, nil, cons(, list), list},
q4 = {, nil, cons(, list), list},
q5 = {, nil, cons(, list), list},

and the set of transitions � consists of 20 transitions cons(q, q ′) → q4 for all
q ∈ {q1, q2, q3, q4, q5} and q ′ ∈ {q2, q3, q4, q5} and one transition nil → q3. Note
that the states q1, q2, q5 are not reachable as there is no transition leading there,
and they may be removed.

The automatonA(SC) may be nondeterministic as the following example shows.

Example 4.3. Let � = {nil, cons(·, ·)} and let SC consists of just one con-
straint X ⊆ Y . Then, the states of the automaton are Q = {{X, Y }, {X , Y }, {X , Y }}.
The transition relation contains nil → q and cons(q1, q2) → q for all q, q1, q2 ∈
Q.

The construction given above is a slight reformulation of a definition given
in Gilleron et al. [1993a, 1993b], and has been influenced by monadic formulas
of Bachmair et al. [1993], and by hypergraphs of Aiken et al. [1995].

4.1. POSITIVE SET CONSTRAINTS. An automaton 〈�, Q, �〉 is a subautomaton
of 〈�, Q′, �′〉 if Q ⊆ Q′ and � ⊆ �′; if the two automata come together with
sets of final states F and F ′, respectively (that is, if they are t-dag automata), then
we also require F ⊆ F ′.

For any run ρ of the automaton defined above and any expression E ∈ E(SC),
we define

[[E]]ρ = {t ∈ T� | E ∈ ρ(t)}.
THEOREM 4.4. Let SC be a system of positive set constraints, A(SC) be the

automaton corresponding to SC, and G� be the s-dag representing the Herbrand
universe. The following conditions are equivalent

(1) SC is satisfiable
(2) there exists a run of A(SC) on the s-dag G�

(3) the automaton A(SC) has a complete sub-automaton

PROOF. We start with the implication (1 ⇒ 2). Assume that σ is a solution of
SC . For any node t of G� define ρ(t) = {E ∈ E(SC) | t ∈ σ (E)} ∪ {E | E ∈
E(SC), t �∈ σ (E)}. Note that ρ(t) satisfies the conditions defined in point 1 of
Definition 4.1 and thus ρ(t) is a state of A(SC). Moreover, if t is labeled with
a function symbol f of arity n, then t = f (t1, . . . , tn) for some terms t1, . . . , tn
and then for any expression f (E1, . . . , En) ∈ E(SC) the definition of σ implies
that t ∈ σ (f (E1, . . . , En)) iff ti ∈ σ (Ei) for all i = 1, . . . , n, which means that
f (ρ(t1), . . . , ρ(tn)) → ρ(t) is a transition of A(SC). Hence ρ is a run of A(SC)
on G� .

For the implication (2 ⇒ 3) assume that ρ is a run of A(SC) on G� and define
A to be a subautomaton of A(SC) restricted to the set of states {ρ(t) | t ∈ T�}.

Journal of the ACM, Vol. 57, No. 4, Article 23, Publication date: April 2010.

23:12 W. CHARATONIK AND L. PACHOLSKI

Obviously A is complete: if f ∈ � and q1, . . . , qn are states of A then there
exist terms t1, . . . , tn such that ρ(t1) = q1, . . . , ρ(tn) = qn . Then f (q1, . . . , qn) →
ρ(f (t1, . . . , tn)) is a transition of A.

We finish the proof with the implication (3 ⇒ 1). Assume that A = 〈�, Q, �〉
is a minimal complete subautomaton of A(SC), that is, that for any f ∈ � and any
sequence of states of A (where n is the arity of f) there is exactly one state q such
that f (q1, . . . , qn) is a transition of A (which is also a transition of A(SC)). By
induction on terms we define a run ρ on G�: for f (t1, . . . , tn) ∈ T� , ρ(f (t1, . . . , tn))
is the state q such that f (ρ(t1), . . . , ρ(tn)) → q ∈ �. Next we define a valuation:
σ (X) = [[X]]ρ for all variables X . An easy induction on structure of expressions
(using Definition 4.1 and the definition of the extension of a valuation to expressions
from Chapter 2) shows that σ (E) = [[E]]ρ for all E ∈ E(SC). Here we show only
the induction step for f (E1, . . . , En), which is the most interesting one.

Assume that t ∈ σ (f (E1, . . . , En)). Then, by the definition of σ , we have that
t = f (t1, . . . , tn) and t1 ∈ σ (E1), . . . , tn ∈ σ (En). By induction hypothesis we
have t1 ∈ [[E1]]ρ, . . . , tn ∈ [[En]]ρ , therefore E1 ∈ ρ(t1), . . . , En ∈ ρ(tn). By
the completeness of the automaton and the definition of � there is a transition
f (ρ(t1), . . . , ρ(tn)) → q such that q = ρ(f (t1, . . . , tn)) and f (E1, . . . , En) ∈ q.
Hence, t ∈ [[f (E1, . . . , En)]]ρ . Conversely, assume that t ∈ [[f (E1, . . . , En)]]ρ .
Then, there exists a state q such that ρ(t) = q and f (E1, . . . , En) ∈ q. By the
definition of � the state q is reachable only with transitions starting with the
symbol f , so we have t = f (t1, . . . , tn) and for all i = 1, . . . , n, ρ(ti) = qi
such that Ei ∈ qi . Hence ti ∈ [[Ei]]ρ . By induction hypothesis we have ti ∈
σ (Ei), which implies t ∈ σ (f (E1, . . . , En)) and ends the proof of the equality
σ (f (E1, . . . , En)) = [[f (E1, . . . , En)]]ρ .

Finally, the last condition of point 1 of Definition 4.1 gives that [[E]]ρ ⊆ [[E ′]]ρ
for all E ⊆ E ′ ∈ SC , which means that σ is a solution of SC .

Relations to the Other Approaches. A t-dag automaton can be seen as a hyper-
graph, where states correspond to nodes, and transitions correspond to hyperedges
of the hypergraph. Up to minor details, the construction of the t-dag automaton
corresponding to a system of set constraints coincides with the corresponding con-
struction of the hypergraph corresponding to the same system of set constraints
in Aiken et al. [1993, 1995]. Under this correspondence, the equivalence between
conditions 1 and 3 in Theorem 4.4 coincides with Theorem 1 in Aiken et al. [1993]
and Theorem 3 in Aiken et al. [1995].

A t-dag automaton is essentially equivalent to a tree set automaton as defined
in Gilleron et al. [1993a, 1993b]. The equivalence between conditions 1 and 2
directly corresponds to Theorem 15 in Gilleron et al. [1993a], the equivalence
between 2 and 3 to Theorem 4 in Gilleron et al. [1993a].

Bachmair et al. [1993] prove that a system SC of positive set constraints is
satisfiable iff the corresponding monadic formula �(SC) is satisfiable. The formula
�(SC) is built using predicates named PE for E ∈ E(SC). Roughly, one obtains
this formula by taking the conjunction of all conditions from Definition 4.1 where
every occurrence of E ∈ q is replaced by PE (q). Additionally, one has to add the
quantifiers ∀q in Condition 1 of Definition 4.1 and ∀q1 · · · qn∃q in Condition 2
of Definition 4.1. Now a complete sub-automaton A′ of A can be seen as the
model of this formula: states of the automaton are elements of the model and
the interpretation of predicates are given by: PE (q) holds iff E occurs in q. The

Journal of the ACM, Vol. 57, No. 4, Article 23, Publication date: April 2010.

Set Constraints with Projections 23:13

transitions f (q1, . . . , qn) → q give the interpretation of the Skolem functions
for the formula in the model (i.e., the assignment of such element q that makes
the formula true for a given instance of elements q1, . . . , qn). The subautomaton
must be complete to ensure that f is defined for all elements of the model. Thus,
the theorem reducing satisfiability of set constraints to satisfiability of monadic
formulas can be seen as the equivalence between conditions 1 and 3, together with
a standard result on monadic logic (see Ackermann [1954, page 34]) saying that a
monadic formula with predicates from a given set P is satisfiable iff it has a model
consisting of elements of 2P .

4.2. POSITIVE AND NEGATIVE SET CONSTRAINTS. First, note that a system of set
constraints with n negative constraints can be reduced to an equivalent system with
one negative constraint only. Simply note that E �⊆ E ′ is equivalent to E ∩ E ′ �⊆ ⊥
and replace E1 �⊆ E ′

1, . . . , En �⊆ E ′
n with

f (E1 ∩ E ′
1, . . . , f (En−1 ∩ E ′

n−1, En ∩ E ′
n) · · ·) �⊆ ⊥,

where f is a binary function symbol in �.
Let SC be a system of set constraints with one negative constraint E �⊆ ⊥.

Define the set of final states of the automaton corresponding to SC as

F = {q ∈ Q | E occurs positively in q}.
THEOREM 4.5. Let A = 〈�, Q, �, F〉 be the automaton corresponding to SC

as defined above. The following conditions are equivalent

(1) SC is satisfiable
(2) There exists a complete sub-automaton A′ of the automaton A and a finite

t-dag G accepted by A′

PROOF. It is enough to note that in the proof of Theorem 4.4 above, the corre-
spondence between a run of the automaton and a solution of set constraint is such
that a final state is reachable iff the set assigned to E is nonempty.

Again there are strong relations between this theorem and the main theorems
in the three papers showing decidability of the satisfiability problem for negative
set constraints [Aiken et al. 1995; Charatonik and Pacholski 1994a; Gilleron et al.
1993b]. In Aiken et al. [1995], satisfiability for negative set constraints is reduced
to another problem (Problem 4 in Aiken et al. [1995]), which translates (if SC
contains one negative constraint) directly to the emptiness problem for a closed
sub-automaton. The relation with Gilleron et al. [1993b] is also direct, since the
satisfiability problem is there reduced to the emptiness problem of the correspond-
ing tree set automaton. In case of Charatonik and Pacholski [1994a], the emptiness
problem is reduced to existence of a model of the corresponding formula (which
translates to a complete sub-automaton) satisfying some property (essentially, ex-
istence of an accepted t-dag). Moreover, the technique we used here for testing
emptiness is the same as in Charatonik and Pacholski [1994a].

4.3. SET CONSTRAINTS WITH PROJECTIONS. Let SC be a system of set
constraints with projections. We shall define an automaton with projections
A(SC) = 〈�, Q, �, π〉 corresponding to SC . The construction is an extension of
Definition 4.1.

Journal of the ACM, Vol. 57, No. 4, Article 23, Publication date: April 2010.

23:14 W. CHARATONIK AND L. PACHOLSKI

Since we will have to reason interchangeably about s-dags and sets of terms, we
will identify every node in an s-dag with the term it represents.

Definition 4.6 (Automaton Corresponding to SC). Let SC be a system of set
constraints with projections and let E(SC) denote the set of subexpressions of SC .
By A(SC), we denote the automaton 〈�, Q, �, π〉, where �, Q, �, π are defined
below.

(1) Q ⊆ 2E(SC) is the family of subsets of E(SC) that satisfy Condition 1 of
Definition 4.1

(2) � is the set of transitions of the form f (q1, . . . , qn) → q that satisfy Condition 2
of Definition 4.1 in conjunction with
—if E ∈ q and f −i (E) ∈ E(SC), then f −i (E) ∈ qi

(3) π (q) = {〈 f, i, R〉 | ∃E . f −i (E) ∈ q, R = {q ′ | E ∈ q ′}}.
LEMMA 4.7. Let A(SC) be the automaton corresponding to a system SC of

set constraints with projections, and let ρ be any run of this automaton on G� .
Then, for each expression f −i (E) occurring in E(SC) we have

f −i ([[E]]ρ) ⊆ [[f −i (E)]]ρ. (1)

Moreover, for unary symbols f ∈ � we have

f −1([[E]]ρ) = [[f −1(E)]]ρ. (2)

PROOF. Assume that t ∈ f −i ([[E]]ρ) and let n be the arity of f . By
the definition of the semantics of projection there exist a sequence of terms
t1, . . . , ti−1, ti+1, . . . , tn such that f (t1, . . . , ti−1, t, ti+1, . . . , tn) ∈ [[E]]ρ . From
the definition of [[E]]ρ we obtain that E occurs in ρ(f (t1, . . . , ti−1, t, ti+1, . . . , tn));
by the definition of ρ, f (ρ(t1), . . . , ρ(t), . . . , ρ(tn)) → ρ(f (t1, . . . , ti−1, t, ti+1,
n . . . , tn)) ∈ �; by the definition of �, f −i (E) occurs in ρ(t). Hence, t ∈
[[f −1(E)]]ρ which proves the inclusion (1).

For the equality (2), note that t ∈ f −1([[E]]ρ) if and only if f (t) ∈ [[E]]ρ , which,
by the definition of �, is equivalent to t ∈ [[f −1(E)]]ρ .

Several authors [Bachmair et al. 1993; Charatonik and Podelski 2002] noticed
that the algorithms for solving positive set constraints can be easily extended to set
constraints with projections occurring only on the left-hand side of inclusions as
well as constraints with projections for unary function symbols; a simple explana-
tion is that f −i (E) ⊆ E ′ is equivalent to E∩ f (, . . . ,) ⊆ f (, . . . , E ′, . . . ,).
In our setting this is done by the syntactic restrictions on transitions in � in the
definition of the automaton corresponding to SC (see item 2 in Definition 4.6).
This is why requests are not used in the proof of Lemma 4.7 above. The difficulty
in solving constraints with projections is to determine whether there exists a run
such that [[f −i (E)]]ρ ⊆ f −i ([[E]]ρ) for n-ary symbols f ∈ �, which we reduce to
the question of existence of a faithful run, and in the proof of correctness of this
reduction we exploit requests from item 3 of Definition 4.6. This corresponds to
projections occurring on the right-hand side of inclusions.

THEOREM 4.8. A system SC of set constraints with projections has a solution
if and only if A(SC) admits a faithful run on the s-dag G� .

Journal of the ACM, Vol. 57, No. 4, Article 23, Publication date: April 2010.

Set Constraints with Projections 23:15

PROOF. The correspondence between solutions of SC and faithful runs of
A(SC) is the same as in the proof of Theorem 4.4 in Section 4.1. To see that
the run ρ corresponding to a solution σ is faithful, consider any node t in G�

and any request 〈 f, i, R〉 ∈ π (ρ(t)). By the definition of the automaton, there
exists an expression E such that f −i (E) ∈ ρ(t), and R = {ψ | E ∈ ψ}. Since
t ∈ σ (f −i (E)), there exist nodes t1, . . . , ti−1, ti+1, . . . , tn , where n is the arity of
f , such that u = f (t1, . . . , ti−1, t, ti+1, . . . , tn) ∈ σ (E). Then, t is the i th successor
of u where ρ(u) ∈ R, hence the request is granted.

Conversely, to see that the valuation σ corresponding to a faithful run ρ is a
solution of SC , we have to show the sets σ (f −i (E)) are properly defined, that is,
that for each expression E such that f −i (E) ∈ E(SC) we have

f −i ([[E]]ρ) = [[f −i (E)]]ρ. (3)

In the case of unary function symbols f , the equality (3) follows from the equal-
ity (2) in Lemma 4.7. For the function symbols of greater arity, the inclusion ⊆ is
just inclusion (1) in Lemma 4.7.

To prove the ⊇ part of the equality (3), assume that t ∈ [[f −i (E)]]ρ . Then,
by the definition of [[f −i (E)]]ρ we have f −i (E) ∈ ρ(t). By the definition of π ,
there is a request 〈 f, i, {ψ | E ∈ ψ}〉 ∈ π (ρ(t)). Since the run ρ is faithful,
this request is granted at t , that is, there exists a predecessor s of t of the form
s = f (t1, . . . , ti−1, t, ti+1, . . . , tn) such that ρ(s) ∈ {ψ | E ∈ ψ}. This implies that
E ∈ ρ(s) which means that s ∈ [[E]]ρ . Since s = f (t1, . . . , ti−1, t, ti+1, . . . , tn),
we have t ∈ f −i ([[E]]ρ).

5. Emptiness Problem for t-dag Automata

In this Section, we prove that the emptiness problem for t-dag automata, that is, the
problem of answering the question whether there exists a t-dag accepted by a given
automaton, is decidable in NP. We use here a sort of pumping lemma technique; the
main idea comes from Charatonik and Pacholski [1994a]. We present it as natural
extension of the analogous proof for tree automata. One can prove NP-completeness
of the problem by a rather easy encoding of the SAT problem.

5.1. INTUITION: TREE AUTOMATA. To make the understanding of our ap-
proach easier, we first show our view on the emptiness problem for bottom-
up tree automata. We show that if the language recognized by an automaton
A = 〈�, Q, �, F〉 is nonempty, then there is a tree of depth at most |Q|, ac-
cepted by A.

Consider a tree t accepted by A, and a path of maximal length in this tree. If
this path is longer then |Q|, there must be a state in |Q| assigned to two different
nodes v and v ′ in t , and one can remove all nodes between v and v ′. One should
not, however, forget here about the paths to other states that are needed to reach
the final state and do not lie on the chosen path. The formalization of this method
leads to the following notion of a skeleton of a run of an automaton on a tree. For
the sake of simplicity, we identify here a tree with its graph representation, and a
node in this graph with a tree rooted at this node.

If f (q1, . . . , qn) → q is a transition of A, then we say that this transition uses
states q1, . . . , qn and produces the state q. When a run of an automaton is fixed and
assigns a state q to a node v then we say that v produces q. A node representing

Journal of the ACM, Vol. 57, No. 4, Article 23, Publication date: April 2010.

23:16 W. CHARATONIK AND L. PACHOLSKI

FIG. 2. An accepted tree, a skeleton and the tree reconstructed from the skeleton. Underlined states
indicate the position of the leftmost maximal strict subterm.

a term t is below a node representing a term t ′ if the depth of t is smaller than the
depth of t ′. In the definition below, a maximal strict subterm of a term v is a strict
subterm of v with maximal depth among all strict subterms of v .

Definition 5.1. A skeleton of a run ρ of a tree automaton A on a tree t is a
subgraph G of t such that

—G contains the root of t , and
—for each node v in G, the leftmost maximal strict subterm of v is in G, and
—each node v in G is labeled with the transition used by A to reach v and the

position of the maximal strict subterm of v , and
—if a state q is used in a transition labeling a node v , then it is produced by a

transition labeling some other node below v .

If any path in a skeleton contains twice the same state, we can remove the
appropriate part of the path, just as one does it in the pumping lemma for string
automata. It is easy to see how one can reconstruct from a skeleton a (possibly
different from the initial one) tree accepted by the automaton.

Example 5.2. Consider an automaton A with signature � = {a, b, g(·),
f (·, ·)}, states Q = {q0, q1, q2, q}, final states F = {q}, and transitions

� = {a → q0, b → q0, g(q0) → q0, g(q1) → q1,
f (q0, q0) → q1, f (q0, q0) → q2, f (q1, q2) → q}.

Figure 2 an example of a tree accepted by A, a skeleton of a run of A on this tree
and the tree induced from this skeleton. Figure 3 shows the “pumped-out” skeleton
and the accepted tree induced by this skeleton.

This method does not work for t-dag automata. The reason is that the skeleton
may contain two nodes with the same left-hand sides of the labeling transitions, the
same paths below them, but different right-hand sides of the transitions (like the
nodes labeled f (q0, q0) → q1 and f (q0, q0) → q2 on Figures 2 and 3). Such two
nodes induce the same tree and thus must be identified in a DAG representation.

Journal of the ACM, Vol. 57, No. 4, Article 23, Publication date: April 2010.

Set Constraints with Projections 23:17

FIG. 3. An pumped-out skeleton and a smaller accepted tree.

On the other hand, they must be different in order to produce two different states
in the run. To overcome this problem we extend the skeleton in order to obtain
different graphs that are induced in such nodes. In case of trees, in both nodes
labeled with a transitions starting with f (q0, q0), we used the same tree, with the
smallest possible depth, producing the state q0. In case of t-dags, we will use two
different t-dags (the least and the second least in some order) producing q0, which
we note q0[1] and q0[2]. The technical problem here is to make sure that we have
enough nodes producing given state and to estimate the size of the skeleton.

5.2. NOTATIONS. A leaf in an s-dag G is a node without successors, labeled
with a constant symbol. The depth of a node v in G is the length of the longest
path leading from v to a leaf in G. The depth of a t-dag is the depth of its root.
We say that a node v lies below a node v ′ if the depth of v is smaller than the
depth of v ′. We fix some linear order ≺ on nodes of the s-dag G� representing the
Herbrand universe T� that extends the “lies below” partial order, and we use the
same notation ≺ for the restriction of ≺ to the nodes of any s-dag G.

The main successor of a node v in G is the biggest according to ≺ successor of
v . The main path for v in G is the sequence v0, v1, . . . , vk of nodes in G such that
v0 = v , for all 0 ≤ i < k, vi+1 is the main successor of vi , and vk is a leaf. Note
that the length of the main path for v coincides with the depth of v . The position of
the main successor of v is the number identifying this node in the ordered sequence
of successors of v , and is called the main position. If the main successor occurs
more than once in this sequence, then the main position is the smallest (leftmost)
position.

States occurring on the left-hand side of the arrow in a transition are called
used by this transition; the state on the right-hand side is called produced by this
transition. We say that a state q accepts a sub-t-dag rooted at a node v (equivalently,
that the node v produces the state q) for a given run ρ if ρ(v) = q.

A pointer is a pair (q, i), where q is a state and i is a number. We write q[i] instead
of (q, i). For a given s-dag G and a run ρ, we say that the pointer q[i] points to the i-
th (according to the order ≺) node producing the state q. A transition with pointers is
an expression of the form f (q1[i1], . . . , qk−1[ik−1], qk, qk+1[ik+1], . . . , qn[in]) →
q. We say that such a transition is compatible with the transition f (q1, . . . , qn) → q
and the kth position.

For a given node v , its kth successor vk and a transition with pointers τ =
f (q1[i1], . . . , qk, . . . , qn[in]) → q, we will often follow the pointers to access the
nodes they point to. To do this, we introduce the notion of dereference of τ with
respect to v , which is the sequence 〈 f, v1, . . . , vn〉 where for j �= k the pointer q j [i j]
points to v j . If v is a leaf, then the dereference of a transition a → q wrt. v is 〈a〉.

Journal of the ACM, Vol. 57, No. 4, Article 23, Publication date: April 2010.

23:18 W. CHARATONIK AND L. PACHOLSKI

FIG. 4. A t-dag and a skeleton.

Definition 5.3 (Skeleton). A skeleton of a run ρ of an automaton A on an s-dag
G is a subgraph G ′ of G such that

(1) G ′ contains all roots of G, and
(2) each node of G ′ that is not a leaf in G has exactly one successor in G ′, and
(3) each node v in G ′ is labeled with a transition with pointers, compatible with

the transition used by A to reach v and the position of the successor of v in G ′,
and

(4) if a pointer q[i] is used in a transition labeling a node v then q[i] points to
some node v ′ such that there is no path from v ′ to v in G ′, and

(5) G ′ does not contain two different nodes v, v ′ labeled with respectively τ, τ ′
such that the dereference of τ with respect to v is the same as dereference of
τ ′ with respect to v ′.

The width of a skeleton G ′ is the maximal number of nodes of the same depth
in G ′.

Note that a skeleton of a given run is not uniquely defined—there may be more
than one transition with pointers that is compatible with a given transition. In the
following, we will be interested in skeletons that induce small graphs, so we want
to use as small as possible numbers in pointers.

Example 5.4. Figure 4 shows an example of a t-dag G accepted by the automa-
ton from Example 5.2 (this time we view it as a t-dag automaton) and a skeleton
of a successful run on G. The skeleton has width 2 and is built only of solid edges;
the dotted edges represent pointers which are not included in the skeleton. Item 5.3
in Definition 5.3 is a requirement that the graph consisting of both solid and dot-
ted edges is acyclic. Item 5.3 of this definition requires that the corresponding
t-dag (formalized in Definition 5.5 below) does not contain different isomorphic
subgraphs. Note that a skeleton does not need to be a connected graph (the node
labeled b → q0 is isolated).

Definition 5.5 (Induced Graph). A graph induced from a skeleton S is a di-
rected graph G such that

Journal of the ACM, Vol. 57, No. 4, Article 23, Publication date: April 2010.

Set Constraints with Projections 23:19

FIG. 5. A pumped-out skeleton and the induced t-dag .

—the set of nodes in G is the same as the set of nodes in S, and
—if a node v is labeled with f (q1[i1], . . . , qk, . . . , qn[in]) → q in S, then

—v is labeled with f in G, and
—the kth successor of v in G is the successor of v in S, and
—for j = 1, . . . , k − 1, k + 1, . . . , n, the j th successor of v in G is the i j -th

node (according to the ordering ≺) of S producing the state q j .

Figure 5 shows an example of a graph induced from a skeleton.

LEMMA 5.6. A graph induced from a skeleton is a s-dag.

PROOF. Let G be a graph induced from a skeleton S. By condition 4 in Defini-
tion 5.3, the induced graph is always acyclic.

To prove that G is a s-dag , we have to show that it does not contain two closed
isomorphic subgraphs. If G violates this condition, then there exist two different
nodes v, v ′ in G such that the subgraphs of G rooted at these nodes are isomorphic.
Assume that v and v ′ are nodes of minimal depth with this property. Then, they are
labeled in G with the same function symbol, and their respective successors are
isomorphic (and thus equal, since v and v ′ are of minimal depth). This means that
the dereferences of the labels of v and v ′ in S wrt. these nodes are equal, which
violates the condition 5.3 from Definition 5.3 and leads to contradiction.

5.3. EMPTINESS. Let us fix an automaton A = 〈�, Q, �, F〉, a t-dag G and
a successful run ρ of A on G. To avoid unnecessary technical details, we assume
here that � does not contain symbols of arity greater than 2. The extension to
arbitrary function symbols is straightforward and presented in Charatonik [1999],
in particular the bounds from Theorem 5.7 and Claim 5.10 remain the same.

THEOREM 5.7. If an automatonA = 〈�, Q, �, F〉 accepts a t-dag , then there
exists another t-dag with at most 2|Q|3 nodes, accepted by A.

Let ρ be a successful run of A on a t-dag G. The idea of the proof is quite
simple: first we prove that there exists a skeleton of ρ. If this skeleton is too big,
then we “pump it out”. We obtain the other t-dag as the graph induced from the
pumped-out skeleton. Figures 4 and 5 give an example of this procedure. Figure 4
shows an example of a t-dag accepted by the automaton from Example 5.2 (this
time as an automaton over t-dags, not trees) and a skeleton of a successful run ρ on

Journal of the ACM, Vol. 57, No. 4, Article 23, Publication date: April 2010.

23:20 W. CHARATONIK AND L. PACHOLSKI

this t-dag. Figure 5 shows the same skeleton after pumping it out, and the induced
t-dag, accepted by the same automaton.

Construction of the skeleton S. We define S as the smallest graph satisfying the
conditions

—S contains the root of G,
—for each node v in S, the main successor of v in G is in S,
—for each fork of degree m and color q (see Definition 5.8 below) the nodes

pointed by q[1], . . . , q[m] are in S, and
—S is labeled according to the fork labeling below.

Note that this is a fixed point construction: we start with the root of G and
successively add main successors and pointed nodes; the fixed point is reached in
finite number of steps because S is a subgraph of G.

A fork of degree m ≥ 1 in a skeleton S is a subgraph of S consisting of a node
and its m different predecessors such that the left-hand sides of the corresponding
transitions of the automaton (i.e., the transitions compatible with the labels) and
the positions of the main successor are the same for all predecessors. The color of
the fork is the state used on the left-hand side of the transitions, but not on the main
position. On Figure 4, there is one fork of degree 2 and color q0 (the color used in
pointers q0[1] and q0[2]).

Definition 5.8 (Fork, Fork Labeling). We say that 〈v, v1, . . . , vm〉 is a fork of
degree m ≥ 1 and color q ′ in a skeleton S of a run ρ on a t-dag G if v1, . . . , vm are
predecessors of v in S with the following properties:

—v1 ≺ . . . ≺ vm , and
—for each i = 1, . . . , m, v is the main successor of vi , and
—the main position for v1, . . . , vm is the same
—all nodes vi , for i = 1, . . . , m are labeled in G with the same binary func-

tion symbol f , and have two successors 〈v, v ′
i 〉 (if the main position is 1) or

respectively, 〈v ′
i , v〉 (if the main position is 2), and

—all nodes v ′
i , for i = 1, . . . , m, produce the same state q ′, that is, ρ(v ′

1) = · · · =
ρ(v ′

m) = q ′

The fork labeling is that the predecessor vi is labeled with f (q, q ′[i]) → ρ(vi)
(respectively, f (q ′[i], q) → ρ(vi)), where q is the state produced by v .

CLAIM 5.9. S is a skeleton.

PROOF. We have to prove that pointers do not introduce cycles and that there are
no two nodes with the same dereferences (the last two conditions in Definition 5.3).
For the first of them, note that in the definition of S a pointer q ′[i] used in a label
of vi points to the i th (according to the order ≺) node producing the state q ′. This
node precedes (or is equal to) the node v ′

i which lies below vi . Therefore, the node
pointed by q ′[i] lies strictly below vi ; since all edges in S go downwards, there is
no path from this node to vi .

For the second condition, suppose that there is a pair v1, v2 of nodes with the same
dereferences. Since the main successors of v1 and v2 are the maximal according
to ≺ nodes in these dereferences, v1 and v2 must have the same main successor

Journal of the ACM, Vol. 57, No. 4, Article 23, Publication date: April 2010.

Set Constraints with Projections 23:21

v . If the main successor occurs on the same position, then we have a fork and by
construction the labels used at v1 and v2 in S are different and the dereferences
cannot be equal. So v occurs on two different positions in the two dereferences.
But then the considered dereference is 〈 f, v, v〉 and the nodes v1 and v2 are labeled
in S with transitions of the form f (q1, q2[i]) → q and f (q1[j], q2) → q ′. Suppose
v2 is labeled with the second one. By the definition of the main position, the first
successor of v2 strictly precedes the node v in the ordering ≺. Hence, also the
node pointed by q1[j] strictly precedes v and thus it is different from v , which is a
contradiction.

A node v in S is called a milestone if it is the root of G or there exist a pointer
q[i] used in a label in S, pointing to v . The index of a milestone pointed by a
pointer q[i] is the number i ; the index of the root is 1. For example, on Figure 4, we
have four milestones: the root and the three nodes on ends of dotted edges. Three
of them have index 1 and one (the one labeled b → q0) has index 2.

CLAIM 5.10. S contains at most |Q|2 milestones.

PROOF. First, note that each node in S is either a milestone of index 1 (this
includes the root of G), or a milestone of index greater than 1, or lies on a main
path for some milestone.

To obtain different labels for all predecessors in a fork of degree m, we need at
most m milestones producing given state. Therefore, a fork of degree m requires at
most m − 1 milestones of index greater than 1.

Observe that all predecessors of a fork are nodes at the same depth, so the number
of such nodes is bounded by the width of S. Therefore, the degree of a fork cannot
exceed the width of S.

Now starting at the root of S and moving towards the leaves observe the number
of nodes at the same depth. There are at most |Q| milestones of index 1 (one per
state). Hence, for each d there are at most |Q| nodes of depth d lying on main paths
for milestones of index 1. A milestone of index greater than 1 is introduced only
to satisfy the condition of the fork labeling for some fork. A fork of degree m at
depth d gives exactly one successor of m nodes of depth d + 1 in S, and thus it
decreases the width of S at depth d and below by m − 1; on the other hand it may
introduce at most m − 1 milestones of index greater than 1 (and below them the
nodes on main paths for them) at depth d or below, and thus it may increase the
width of S at depth d or below by at most m − 1. Hence, the width at each depth
is bounded by |Q|.

Since the degree of every fork is bounded by the width of S (which is bounded
by |Q|), each fork requires at most |Q|−1 milestones of index greater than 1. Thus
the maximal index of a milestone does not exceed |Q| and there are at most |Q|2
milestones.

A node that is neither milestone nor have more than one predecessor in S is
called ordinary. Ordinary nodes have only one predecessor in the graph induced
from S, which is already present in S. This is why we do not get the problem of
“hanging edges” in the pumping lemma.

CLAIM 5.11 (PUMPING LEMMA). Let the skeleton S contain a path v0 → v1 →
· · · → vm such that

Journal of the ACM, Vol. 57, No. 4, Article 23, Publication date: April 2010.

23:22 W. CHARATONIK AND L. PACHOLSKI

—the states produced by v1 and vm are the same, and

—all the nodes v1, . . . , vm are ordinary.

If S′ is a graph obtained from S by removing the nodes v1, . . . , vm−1 and defining
vm as the successor of v0, then the graph induced from S′ is a t-dag accepted by
the automaton A.

PROOF. We have to show that G ′ is a t-dag and that A accepts it. The latter
thing is quite simple: the mapping assigning to each node of G ′ the state produced
by this node in S′ is a successful run. Hence, it is enough to show that G ′ is a t-dag.

Suppose G ′ contains two different closed isomorphic subgraphs G ′
1 and G ′

2. If
none of them contain the node vm , then both G ′

1 and G ′
2 are closed subgraphs of

G, which contradicts the fact that G is a t-dag. Suppose G ′
1 contains vm . Then,

G ′
2 contains an isomorphic copy of the subgraph rooted at vm , which must be a

subgraph of G (the differences between G and G ′ start on the level above vm).
Since the only closed subgraph of G isomorphic to the subgraph rooted at vm is the
subgraph rooted at vm , G ′

2 also contains vm . Hence the difference between G ′
1 and

G ′
2 must occur somewhere above vm . Since vm is a node with only one predecessor

v0 in S′ (and thus in G ′, too), both G ′
1 and G ′

2 contain v0. Now let G1 and G2 be
the two graphs obtained from G ′

1 and G ′
2 by replacing the edge v0 → vm with the

path v0 → v1 → · · · → vm together with all induced edges Now the isomorphism
between G ′

1 and G ′
2 can be extended to an isomorphism between G1 and G2, which

contradicts the fact that G is a t-dag.

PROOF OF THEOREM 5.7. By repeated applications of the procedure above, we
can construct a t-dag H accepted by the automaton A such that the skeleton SH
constructed for H does not contain any path whose nodes are ordinary and two of
them produce the same state. Thus, every path consisting of ordinary nodes has the
length bounded by |Q|. Every maximal path of this form has a unique predecessor,
which is not ordinary.

Now we estimate the number of non-ordinary nodes in S. It is bounded by the
number of milestones plus the number of nodes with more than one predecessor in
SH . The nodes with more than one predecessor are nodes in SH with indegree (the
number of incoming edges) greater than their outdegree (the number of outgoing
edges). On the other hand, the only nodes with outdegree greater than indegree are
the roots of SH (i.e., the nodes without predecessors in SH), which are milestones.
Since in every directed graph the sum of indegrees of all nodes equals to the sum of
outdegrees of all nodes, the number of nodes that have more than one predecessor
in SH is bounded by the number of milestones. Therefore, there are at most 2|Q|2
nodes which are not ordinary.

Finally, the number of nodes in SH (equal to the number of nodes in H) is
bounded by the number of nonordinary nodes times the maximal length of a path
of ordinary nodes, which is bounded by 2|Q|3.

COROLLARY 5.12. The emptiness problem for t-dag automata is decidable in
NP.

PROOF. This is a direct consequence of Theorem 5.7: it is enough to guess a
t-dag of size at most 2|Q|3 where Q is the set of states, and a successful run of the
automaton on this t-dag.

Journal of the ACM, Vol. 57, No. 4, Article 23, Publication date: April 2010.

Set Constraints with Projections 23:23

The emptiness problem for t-dag automata is NP-complete. The lower bound
is proved in Charatonik [1999]; we do not present it here because it has no direct
consequences in solving set constraints.

5.4. AUTOMATA WITH PROJECTIONS: EMPTINESS. From now on, to simplify
notations, we assume that all function symbols occurring in requests 〈 f, i, R〉 are
binary (and thus i ∈ {1, 2}). In light of Lemma 2.1, Theorem 4.8, and Lemma 4.7,
this restriction does not influence the correctness of the satisfiability test for set
constraints.

Recall that, in Theorem 4.8, we reduced the problem of satisfiability of set
constraints with projections to the problem of existence of a faithful run of some
automaton on the (infinite) graph representing Herbrand universe. Below, we show
that such infinite run can be reconstructed from a finite piece of information that
we call a germ.

Definition 5.13 (Germ). A germ for an automaton A = 〈�, Q, �, π〉 is a
tuple 〈G, ρ〉 such that

—G is a finite s-dag with the set V of nodes and Vr ⊆ V of roots, and
—ρ is a faithful up to Vr run of A on G, and
—A restricted to the states in ρ(V − Vr) is complete, and
—ρ(V − Vr) = ρ(V).

LEMMA 5.14. If there exists a germ for the automaton A, then A admits a
faithful run on the s-dag representation G� of the Herbrand universe.

PROOF. Let 〈G, ρ〉 be a germ for the automaton A. For each state q ∈
ρ(V − Vr) we fix a term tq represented by a node in V − Vr such that ρ(tq) = q
(recall that we identify nodes with the terms they represent). For each state
q ∈ ρ(V − Vr) and each request 〈 f, i, R〉 ∈ π (q) we fix a term wq, f,i,R (a witness
for the term tq and the request 〈 f, i, R〉) such that ρ(f (tq, wq, f,i,R)) ∈ R (if i = 1;
otherwise, if i = 2, we require ρ(f (wq, f,i,R, tq)) ∈ R). Now we inductively define
an extension of ρ to a faithful run. The idea is to reuse the chosen witnesses to
grant all requests, and to proceed in any fixed way with all other terms.

Since constant and unary symbols do not contribute to faithfulness of a run, we
can use any transition from � to pass across these symbols. Suppose that ρ(t) is
defined (otherwise consider strict subterms of t first) and f is a binary symbol in
�. Now we define ρ on all terms of the form f (t, t ′) and f (t ′, t), where t ′ is a term
such that ρ(t ′) is already defined but ρ(f (t, t ′)) (or, respectively, ρ(f (t ′, t))) is not
yet defined. We do it as follows.

—for t ′ = wρ(t), f,1,R we put ρ(f (t, t ′)) = ρ(f (tρ(t), t ′))
—for t ′ = wρ(t), f,2,R and t �= wρ(t),, f,1,R we put ρ(f (t ′, t)) = ρ(f (t ′, tρ(t)))
—for all other terms t ′, we put ρ(f (t, t ′)) = ρ(f (tρ(t), tρ(t ′))) and ρ(f (t ′, t)) =

ρ(f (tρ(t ′), tρ(t))).

To see that ρ is a faithful run on G� , note that for all terms t ∈ T� −(V − Vr) and
any request 〈 f, i, R〉 ∈ π (ρ(t)), there exists a term t ′, namely t ′ = f (t, wρ(t), f,i,R)
or respectively t ′ = f (wρ(t), f,i,R, t), such that ρ(t ′) ∈ R and t is the i th successor of
t ′. For t ∈ V − Vr , the definition of a germ implies that the requests are granted.

Journal of the ACM, Vol. 57, No. 4, Article 23, Publication date: April 2010.

23:24 W. CHARATONIK AND L. PACHOLSKI

LEMMA 5.15. If A admits a faithful run, then there exists a germ for A con-
taining O(|Q|5 · P3) nodes, where P is the number of requests occurring in π (Q).

PROOF. This technical lemma is proved in Section 6. The proof is a refinement
of the proof of Theorem 5.7.

Now we are ready to prove the main result.

PROOF OF THEOREM 2.2. In light of Theorem 4.8 and Lemmas 4.7, 5.14,
and 5.15, it is enough to guess a germ for the automaton corresponding to the
input system of set constraints. The size of the germ is polynomial in the size of
the automaton, which is exponential in the size of the input system.

6. Proof of Lemma 5.15

We assume that the automaton A and its faithful run ρ on G� are fixed.

6.1. NOTATIONS. The general idea of the proof is first to construct a big enough
skeleton without labels, second to label it in a consistent way, and third to make the
skeleton small enough by pumping it out. Then, such a skeleton induces a desired
germ.

By a color of a term t , we mean the state ρ(t) of the automaton A. Note that, in
Definition 5.8, the notion of a fork does not depend on the labeling of the skeleton,
so it may be applied to graphs without such labeling.

Definition 6.1 (Naked Skeleton). A naked skeleton S(T) (of the run ρ of the
automaton A) generated by a finite set T of terms is the smallest graph such that

—S(T) is a subgraph of the s-dag G representing T
—S(T) contains all the roots of G
—for each node v in S(T), the main successor of v in G is in S(T), and there is an

edge connecting v with its main successor
—for each fork of color q and degree m, S(T) contains the m nodes pointed by

q[1], . . . , q[m].

Terms in the set T together with milestones of index 1 are called generators of
S(T). All nodes representing terms in T are declared to be milestones.

The main difference between a naked skeleton and a skeleton defined in Chapter 5
is that naked skeleton is not labeled with transitions.

In a fork 〈t, f (t, s1), . . . , f (t, sm)〉 (or, respectively, 〈t, f (s1, t), . . . , f (sm, t)〉),
the terms s1, . . . , sm are called used by this fork (we do not call t used). Sometimes,
slightly abusing the notation, we will call the node t itself a fork. Note that in such
a case the color of the fork (which is the color of the nodes si) is usually different
from the color of the node t . By maxfork(c, S), we denote the maximal degree of
a fork of color c in a naked skeleton S.

We call a node t a small milestone in S if t is pointed by a pointer c[i] with
i ≤ maxfork(c, S). In Section 5, all milestones except the root were small. A big
milestone is a node that is declared to be a milestone and is not small.

Color c is called saturated in a naked skeleton S if all nodes of color c are nodes
in S and are milestones.

Journal of the ACM, Vol. 57, No. 4, Article 23, Publication date: April 2010.

Set Constraints with Projections 23:25

Let us fix a function ω assigning to every term t a set of representa-
tives of all witnesses for the requests in π (ρ(t)). That is, if π (ρ(t)) =
{〈 f1, i1, R1〉, . . . , 〈 fk, ik, Rk〉} then ω(t) = {s1, . . . , sk} such that for all j =
1, . . . , k we have ρ(f j (t, s j)) ∈ R j or ρ(f j (s j , t)) ∈ R j depending on whether
i j is 1 or 2. Note that the witnesses s j do exist since ρ is a faithful run; there may be
many different witnesses for the term t and the request 〈 f j , i j , R j 〉, and we choose
just one representative (it can be, for example, the least witness in accordance with
the ordering ≺).

Let K = 7, K1 = (|Q| + 1) · (|Q| + P) + (|Q| + P + 2) · (1 + P) and

N = max

(
2K 2 · P · (|Q| + 1) · (|Q| + P) + K · |Q|, K1 · 4K 2 + P · 2K

K − 6

)
,

where P is the number of requests occurring in π (Q) (which, in terms of set
constraints, is the number of projections expressions occurring in the initial system)
be fixed. We assume here that P ≥ 1. The numbers K , K1 and N are chosen in
such a way that K , K1 are constants and N is big enough to make some inequalities
of the form c1 · N 2 ≤ c2 · N impossible, where c1 and c2 are some constants that
will appear in the construction below. Note that N is bounded by a polynomial in
P, |Q|.

Observation 6.2. If P and |Q| range over natural numbers and N is defined
as above, then N ∈ O(P2 · |Q|2).

We say that a witness s is busy in S if the color ρ(s) is saturated in S and s ∈ ω(t)
for at least N

K milestones t . We say that a milestone s is often used in S if it is used
by at least N

K different forks of the same color; otherwise, it is seldom used. We say
that a milestone is busy if it is often used or it is a busy witness.

A fork 〈t, f (t, s1), . . . , f (t, sm)〉 (or, respectively, 〈t, f (s1, t), . . . , f (sm, t)〉) of
color c is called tight in a naked skeleton S if its degree is greater or equal to

|{s ∈ S | ρ(s) = c, s ≺ t}| − N

2
.

Intuitively, a fork of degree m is tight if there is ≤ m + N
2 terms that could replace

the terms s1, . . . , sm in their role of the terms used by the fork.

6.1.1. Some Properties of Naked Skeletons. Recall that a width of a skeleton S
is the maximal number of nodes of the same depth in S.

LEMMA 6.3. The maximum degree of a fork in a naked skeleton is bounded by
the width of this skeleton.

PROOF. A fork of degree m has m predecessors, and all of them are at the same
depth.

LEMMA 6.4. The width of a naked skeleton S(T) is bounded by |T | + |Q|.
PROOF. The reasoning here is the same as in Claim 5.10 in Section 5.
First note that each node in S(T) is either a generator, or a milestone of index

greater than 1, or lies on a main path for some milestone.
To obtain in S(T) the nodes pointed by q[1], . . . , q[m] for a fork of degree m

and color q, we need at most m milestones producing given color. Therefore a fork
of degree m requires at most m − 1 milestones of index greater than 1.

Journal of the ACM, Vol. 57, No. 4, Article 23, Publication date: April 2010.

23:26 W. CHARATONIK AND L. PACHOLSKI

There are at most |Q| + |T | generators. Hence, for each d, there are at most |Q|
nodes of depth d lying on main paths for generators. To estimate the width of S,
note that a milestone of index greater than 1 is introduced only to satisfy the last
condition of Definition 6.1.

A fork of degree m at depth d gives exactly one successor of m nodes of depth
d + 1 in S, and thus it decreases the width of S at depth d and below by m − 1; on
the other hand, it may introduce at most m − 1 milestones of index greater than 1
(and below them the nodes on main paths for them) at depth d or below, and thus
it may increase the width of S at depth d or below by at most m − 1. Hence, the
width at each depth is bounded by the number of generators.

LEMMA 6.5. The number of milestones in a naked skeleton S(T) is bounded
by |Q| · width(S(T)) + |T |.

PROOF. Since the degree of every fork is bounded by the width of S(T), each
fork requires at most width(S(T)) small milestones of a given color. Thus, the
number of small milestones in S(T) is bounded by |Q| · width(S(T)). All big
milestones are members of T .

LEMMA 6.6. If s is a small milestone in S(T), then the sets S(T), S(T \ {s})
and S(T ∪ {s}) are equal.

PROOF. If s is a small milestone of color c, then s is pointed by a pointer
c[i] for some i ≤ maxfork(c, S(T)). Consider a fork 〈t, f (t, s1), . . . , f (t, sn)〉 (or
respectively 〈t, f (s1, t), . . . , f (sn, t)〉) of color c with maximal degree, that is, with
n = maxfork(c, S(T)). By the definition of the fork, the terms s1, . . . , si are all of
the same color and are smaller than t in the ordering ≺, therefore they are on the
same depth as t or below t . Moreover, s is smaller or equal to si in the ordering
≺, hence it is also at the same depth or below t , so for sure it is below the terms
f (t, s1), . . . , f (t, sn) (or, respectively f (s1, t), . . . , f (sn, t)). Therefore, all these
terms, being above s, are in S(T \ {s}). Now the last item of Definition 6.1 implies
that s is in S(T \ {s}) so neither adding it to the set of generators nor removing it
from this set changes the final skeleton.

6.2. CONSTRUCTION OF A NAKED SKELETON S. In this section, we construct in
an iterative way a naked skeleton S. For all i ∈ N we define the set Ti and the naked
skeleton Si = S(Ti) generated by Ti , such that Si ⊆ Si+1. Then, S is a fixpoint of
this construction. We say that a color c is reachable in ρ if there exist t such that
ρ(t) = c.

Let T0 be the set consisting of (at most) N · |Q| terms, namely for every reachable
color c ∈ Q the first (in accordance with the ordering ≺) N terms colored by c.

For i ≥ 0, let Si = S(Ti). Let

T ′
i = Ti −{t | t is a small milestone in Si }∪

⋃
{ω(t) | t is a busy milestone in Si },

Finally, let Ti+1 be the union of T ′
i with so many minimal (not occurring

in Si) terms of each color that Ti+1 contains at least N elements of each
color (or the color becomes saturated in S(Ti+1)). More precisely, for each
reachable color c, if there are at least maxfork(c, Si) + N terms of color c
then we add (if they are not there already) to Ti+1 all the terms pointed by
c[maxfork(c, Si) + 1], . . . , c[maxfork(c, Si) + N]; otherwise, we add to Ti+1 all
terms of color c.

Journal of the ACM, Vol. 57, No. 4, Article 23, Publication date: April 2010.

Set Constraints with Projections 23:27

To prove that this construction reaches a fixpoint and to estimate its size, we will
need a couple of properties that we prove by induction on i .

CLAIM 6.7. The number of elements in Ti is bounded by N · (|Q| + P) − |Q|.
CLAIM 6.8. The width of Si is bounded by N · (|Q| + P).

CLAIM 6.9. The number of milestones in Si is bounded by N · (|Q|+1) · (|Q|+
P).

CLAIM 6.10. ∑
v

(deg(v) − 1) ≤ N · (|Q| + 1) · (|Q| + P).

where v ranges over all forks in Si .

CLAIM 6.11. The number of often used milestones in Si is bounded by N
K .

CLAIM 6.12. The number of busy witnesses is bounded by N
K .

6.2.1. Proof of Claims 6.7–6.12. We first prove the induction basis, which is
Claim 6.7 for i = 0. Then, in the induction step, we prove that Claim 6.7 implies
Claims 6.8–6.12, and these claims together imply Claim 6.7 with i + 1 substituted
for i .

Induction Basis. The size of T0 is bounded by N · |Q|, which is less than
N · (|Q| + P) − |Q| since N · P > |Q|.

Induction Step. Suppose that |Ti | ≤ N · (|Q| + P) − |Q|.
PROOF OF CLAIM 6.8. This claim is a direct consequence of Claim 6.7 and

Lemma 6.4.

PROOF OF CLAIM 6.9. By Lemma 6.5 and Claim 6.8, the number of milestones
in Si is bounded by |Q| · N · (|Q| + P) + N · (|Q| + P) − |Q| which is less than
N · (|Q| + 1) · (|Q| + P).

PROOF OF CLAIM 6.10. Recall that a fork of degree m in Si at depth d gives
exactly one successor of m nodes at depth d +1 in Si , it “consumes” m −1 paths in
Si . Thus, the sum

∑
v (deg(v) − 1) is bounded by the number of roots in Si . Since

every root in a naked skeleton is a milestone, the claim follows from Claim 6.9

PROOF OF CLAIM 6.11. First, note that the number of uses of terms in forks is
bounded by the sum of degrees of these forks. Then, from Claim 6.10 and the
observation that the number of forks of degree at least 2 is also bounded by the
number of roots in Si , we have∑

v

deg(v) ≤ 2N · (|Q| + 1) · (|Q| + P)

where v ranges over forks of degree at least 2.
To estimate the number of often-used milestones, suppose that this number

exceeds N
K . Since there are at most |Q| milestones of index 1, there are at least

N
K − |Q| often used milestones of index greater then 1. Every such milestone is
used in at least N

K forks of degree at least 2. Therefore, the number of uses of terms

Journal of the ACM, Vol. 57, No. 4, Article 23, Publication date: April 2010.

23:28 W. CHARATONIK AND L. PACHOLSKI

in forks exceeds (N
K − |Q|) · N

K , which should be bounded by the sum of degrees
of forks given above. We have chosen N big enough to make (N

K − |Q|) · N
K ≤

2N · (|Q| + 1) · (|Q| + P) a contradiction

PROOF OF CLAIM 6.12. Consider the set

{〈w, t〉 | w ∈ ω(t), t is a milestone}.
Since |ω(t)| ≤ P , the cardinality of this set is bounded by P times the number of
milestones in Si (bounded by N · (|Q| + 1) · (|Q| + P)). On the other hand, if we
denote by B the number of busy witnesses, then this set has at least B times N

K

elements. Therefore, B · N
K ≤ P · N · (|Q| + 1) · (|Q| + P) and

B ≤ P · N · (|Q|+ 1) · (|Q|+ P) · K

N
≤ K 2 · P · (|Q| + 1) · (|Q| + P)

K
<

N

K
.

PROOF OF CLAIM 6.7. The set Ti+1 contains at most |Q| · N elements plus all
the elements in

⋃{ω(t) | t is a busy milestone in Si }. By Claims 6.11 and 6.12,
there are at most 2N

K busy milestones in Si . Therefore, |Ti+1| ≤ |Q| · N + P · 2N
K ≤

N · (|Q| + P) − K−2
K · P · N < N · (|Q| + P) − |Q| since N > K · |Q| and K > 3

and P ≥ 1.

PROPOSITION 6.13. There exists an index i such that Si = Si+1 = S.

PROOF. Let Mi for i > 0 be the set of small milestones in Si−1. By Lemma 6.6,
we have that Si = S(Mi ∪ Ti). Observe that for all i > 0, the set Mi ∪ Ti is a
subset of Mi+1 ∪ Ti+1. By Claims 6.9 and 6.7, the size of Mi ∪ Ti is bounded, so
the construction must reach a fixed point before the size of Mi ∪ Ti reaches its
bound.

6.3. PROPERTIES OF THE NAKED SKELETON S.

LEMMA 6.14. Let S be the naked skeleton constructed above. Then

(1) For every color c in S, either c is saturated or all nodes pointed by c[1], . . .,
c[maxfork(c, S) + N] are milestones in S,

(2) for every busy milestone t, every member of the set ω(t) is a milestone in S,
(3) for every color c the number of milestones of color c is bounded by the number

maxfork(c, S) + N + 2N
K ,

(4) for every nonsaturated color d, there are at least maxfork(d, S) + N − 2N
K

nonbusy milestones of color d

PROOF. Let T be the set Ti such that S = S(Ti). For the proof of 1, sup-
pose that c is not saturated. Then the nodes pointed by c[1], . . . , c[maxfork
(c, S)] are small milestones and the nodes pointed by c[maxfork(c, S) +
1], . . . , c[maxfork(c, S) + N] are members of T and are declared to be mile-
stones. Point 2 follows from the observation that members of ω(t) are in T and
thus are declared to be milestones. For point 3, every milestone of color c is ei-
ther pointed by c[i] for some i ≤ maxfork(c, S) + N or is a busy milestone; the
number of busy milestones by Claims 6.11 and 6.12, is bounded by 2N

K . The last
point also follows directly from point 6.14 and the bound on the number of busy
milestones.

Journal of the ACM, Vol. 57, No. 4, Article 23, Publication date: April 2010.

Set Constraints with Projections 23:29

LEMMA 6.15. Let C be the set of all milestones of a given color c, and let K1
be the constant defined in Section 6.1. Then∑

v∈C

(deg(v) + P) ≤ K1 · N .

PROOF. From Lemma 6.14 (point 3), Lemma 6.3, and Claim 6.8, we know that

|C | ≤ N · (|Q| + P) + N + 2N

K
.

From Claim 6.10, we know∑
v∈C

(deg(v) − 1) ≤ N · (|Q| + 1) · (|Q| + P).

Therefore∑
v∈C (deg(v) + P)

≤ ∑
v∈C (deg(v) − 1) + (P + 1) · |C |

≤ N · (|Q| + 1) · (|Q| + P) + (P + 1) · (N · (|Q| + P) + N + 2N
K)

≤ K1 · N

LEMMA 6.16. Let 〈t, t1, . . . , tm〉 be a tight fork of color c in S. Then, every
node s of color c such that s ≺ t is a milestone.

PROOF. If the color c is saturated, then every node of color c is a milestone
and there is nothing to be proved. So suppose c is not saturated. By Lemma 6.14
(point 1), all minimal N + maxfork(c, S) nodes of color c are milestones. By the
definition of a tight fork, the number n of nodes of color c preceding t in the
ordering ≺ is bounded by

n ≤ m + N/2 ≤ maxfork(c, S) + N/2 ≤ maxfork(c, S) + N ,

hence, every such node is a milestone.

6.4. A LITTLE BIT OF COMBINATORICS ON BIPARTITE GRAPHS. For the labeling
construction in the next section, we will need some combinatorics on bipartite
graphs. The finite sets C = {c1, . . .} and D = {d1, . . .} are sets of all nonbusy
milestones of color c and d respectively. We will also assume that the color d is
not saturated and that f is a fixed function symbol in our signature.

Consider a directed bipartite graph 〈C, D, E〉 with the two sets of nodes C and
D and the edge relation E ⊆ C × D ∪ D × C . Both edges 〈ci , d j 〉 and 〈d j , ci 〉
in E represent the term f (t, s) where t, s are respectively terms represented by the
nodes ci and d j in the s-dag representation of the set T (in a symmetric context
both these edges represent f (s, t)). Imagine that all edges in E are labeled with
some color, intuitively it should be the color of the term represented by the edge:
ρ(f (t, s)). We will say that there is a conflict in the graph if there exists a pair of
edges 〈ci , d j 〉 and 〈d j , ci 〉 in E labeled with two different colors.

In the rest of this section, we will prove that in some case (the precise definition of
this case will be given in the next section) it is possible to define the graph 〈C, D, E〉
in such a way that every node has a desired outdegree (which is necessary to induce
the labeling of the skeleton from the graph) and there are no conflicts in the graph.

The intuition behind the proof is very simple: we need only linearly many in
N edges in the graph while there is quadratically many possible edges, so there

Journal of the ACM, Vol. 57, No. 4, Article 23, Publication date: April 2010.

23:30 W. CHARATONIK AND L. PACHOLSKI

is enough room to avoid conflicts. The details are however more complicated, we
present them below.

For a given edge relation E ⊆ C × D ∪ D × C , we define indeg(v, E) =
|{u | 〈u, v〉 ∈ E}| and outdeg(v, E) = |{u | 〈v, u〉 ∈ E}|. By indeg(D, E), we
mean max{indeg(v, E) | v ∈ D}.

PROPOSITION 6.17. Let 〈C, D, E0, A, m, p〉 be such that

—C and D are the sets of non-busy nodes of color c and d, respectively
—|D| ≥ maxfork(d, S) + N − 2N

K
—E0 ⊆ C × D ∪ D × C
—indeg(D, E0) ≤ 2N

K

— A : C → 2D is a function assigning to every member of C a set of preferred
nodes in D

—m : C → N and p : C → N are functions assigning numbers to elements of C
such that
—

∑
v∈C m(v) + p(v) ≤ K1 · N

—for all v ∈ C, m(v) ≤ maxfork(d, S)
—for all v ∈ C, p(v) ≤ P

—for all v ∈ C, outdeg(v, E0) = m(v) or outdeg(v, E0) = 0
—for all v ∈ C, if outdeg(v, E0) = m(v) then A(v) ⊇ {u | 〈v, u〉 ∈ E0},
—for all v ∈ C, if outdeg(v, E0) = 0 then |A(v)| ≥ m(v) + N

2 − N
K .

Then there exists E ⊇ E0 such that

—indeg(D, E) ≤ indeg(D, E0) + N
K

—for all v in C, outdeg(v, E) = m(v) + p(v)
—for all v in C, v is connected with at least m(v) preferred nodes:

|{u : 〈v, u〉 ∈ E} ∩ A(v)| ≥ m(v),

no conflicts are created in E: if 〈u, v〉 �∈ E0 then either 〈u, v〉 �∈ E or 〈v, u〉 �∈ E

PROOF. We construct iteratively for i = 1, . . . , |C | the edge relation by adding
to Ei−1 edges outgoing from the node ci . Then we define E = E|C |.

To define Ei , we first take the m(ci) nodes (if outdegree of ci in E0 is 0; otherwise,
we skip this step) with the smallest indegree from the set A(ci)−{v | 〈v, ci 〉 ∈ E0}.
Then, we take p(ci) nodes with the smallest indegree from D − {v | 〈v, ci 〉 ∈
E0} that were not chosen in the first step. Finally, we connect ci to all chosen
nodes.

In the first step, due to the conditions on the function A and indeg(D, E0), we
have choice of at least m(ci)+ N

2 − N
K − 2N

K elements. In the second step, due to the
condition on the cardinality of D, we still have choice of at least N − 2N

K elements,
which, by the definition of N , is more than P and thus more than p(ci). Hence Ei
is well defined.

By construction, all conditions required by the proposition, except
indeg(D, E) ≤ indeg(D, E0)+ N

K , are trivially satisfied. To see the inequality above,
suppose that there exists a node v ∈ D such that indeg(v, E) > indeg(D, E0) + N

K .
While choosing v to be connected to some node in C , we left at least N

2 − N
K − 2N

K −P
elements with indegree at least indeg(D, E0)+ N

K which is more than N
K . Therefore,

Journal of the ACM, Vol. 57, No. 4, Article 23, Publication date: April 2010.

Set Constraints with Projections 23:31

the number of edges in E exceeds N
K · (N

2 − N
K − 2N

K − P) which is impossible since
the number of edges is bounded by K1 · N : the second argument of the function
max in the definition of N was chosen to make this inequality a contradiction.

6.5. CONSTRUCTION OF A PRE-GERM. In this section, we extend the naked
skeleton from Section 6.2 by defining a labeling that will allow us reconstructing
a faithful run of the automaton.

Definition 6.18 (Pre-Germ). A pre-germ G is a naked skeleton with additional
labeling

(1) every node v in G is labeled with a transition with pointers, such that G is a
skeleton according to Definition 5.3,

(2) for every node v in G and every request 〈 f, 1, R〉 ∈ π (ρ(v)), v is labeled with
f (∗, q[i]) : q ′ for some q, q ′ and i such that q ′ ∈ R, and

(3) for every node v in G and every projection expression 〈 f, 2, R〉 ∈ π (ρ(v)), v
is labeled with f (q[i], ∗) : q ′ for some q, q ′ and i such that q ′ ∈ R.

We refer to labels in point (1) as to transition labels and to labels in points (2)
and (3) as request labels.

Definition 6.19 (Consistent Labeling).

(1) We say that a labeling in a pre-germ G is locally consistent if for every node
t in G, if t is labeled f (∗, d[i]) : q and some predecessor of t is labeled
f (c, d[i]) → q ′ (respectively, if t is labeled f (d[i], ∗) : q and its predecessor
labeled f (d[i], c) → q ′), then q = q ′.

(2) The labeling of G is globally consistent if for all pairs s, t of nodes, if
—s has a predecessor labeled f (c, d[i]) → q or s is labeled f (∗, d[i]) : q,
—d[i] points to t ,
—t has a predecessor labeled f (c[j], d) → q ′ or t is labeled f (c[j], ∗) : q ′,

and
—c[j] points to s
then q = q ′.

(3) We call a pre-germ G consistent if its labeling is both locally and globally
consistent.

Now we start constructing a consistent labeling of the naked skeleton S defined
in Section 6.2. Every transition label for a node t is of the form f (c, d[i]) → ρ(t)
or f (d[i], c) → ρ(t) where f is the function symbol occurring in the node t in the
s-dag representing the Herbrand universe, and c is the color of the main successor
of t . In particular, there are labels a → ρ(a) for all leaves a in S.

Now, for every node t in S we define the transition labels of the form f (. . .) → c
for all predecessors of t and the request labels of the form f (. . .) : c for t . We do
it depending on the type of the node t and the color d.

Case 1. t is busy or d is saturated. Let t be a node, with ρ(t) = c. If t a busy
milestone, or it is a fork of color d (note that every node that is not a root is a fork of
degree ≥ 1) with d being saturated, or some of the nodes in ω(t) are of such color, we
induce the labels from the original run: The predecessor f (t, s), (or respectively,

Journal of the ACM, Vol. 57, No. 4, Article 23, Publication date: April 2010.

23:32 W. CHARATONIK AND L. PACHOLSKI

f (s, t)) (note that every node in S is also a node in the s-dag G� representing
the Herbrand universe) where ρ(s) = d is labeled f (c, d[j]) → ρ(f (t, s)) (or
respectively, f (d[j], c) → ρ(f (s, t))), where d[j] is a pointer pointing to s.
Similarly, for a request 〈 f, i, R〉 ∈ π (c), if the witness s for t and this request is of
saturated color d, then t is labeled f (∗, d[j]) : ρ(f (t, s)) or f (d[j], ∗) : ρ(f (s, t))
where d[j] is the pointer pointing to s.

Case 2. t is not a milestone, d is not saturated. For colors that are not saturated,
the labeling is easier: in a fork 〈t, f (t, s1), . . . , f (t, sm)〉 of color d the predecessor
f (t, s j) is labeled f (c, d[j]) → ρ(f (t, s j)) (in a fork where t is the right successor
it is done symmetrically). If ω(t) contains k terms w1, . . . , wk of color d (we repeat
this for all such colors d), then t is labeled with the k labels f (∗, d[maxfork(c, S)+
j]) : ρ(f (t, w j)) (or symmetrically if the respective request is 〈 f, 2, R〉). Note that
in a color that is not saturated we have N big milestones; since N > P , we can use
milestones pointed by d[maxfork(c, S) + j] with j ≤ P .

Case 3. t is a nonbusy milestone, d not saturated. Let ρ(t) = c. We define
the labeling for all non-busy milestones of color c at the same time, and if c
is not saturated, we define also the labeling for nonbusy milestones of color d.
The labeling is constructed for each kind of fork separately, where the kind of a
fork 〈t, f (t, s1), . . . , f (t, sm)〉 is the tuple 〈 f, left, ρ(s1)〉 and the kind of a fork
〈t, f (s1, t), . . . , f (sm, t)〉 is the tuple 〈 f, right, ρ(s1)〉.

Let us fix the kind 〈 f, left, d〉 of a fork that we process; the construction in case
of 〈 f, right, d〉 is symmetric. We will define all labels of the form f (c, d[j]) → q
and f (∗, d[j]) : q for (the respective predecessors of) nodes of color c. If c is
not saturated, we process at the same time forks of type 〈 f, right, c〉 in the other
color, that is we define labels f (c[i], d) → q and f (c[i], d) : q for (the respective
predecessors of) nodes of color d.

The transition labels for tight forks are induced from the original run. Note
that all nodes s1, . . . , sm that occur in a tight fork 〈t, f (t, s1), . . . , f (t, sm)〉 are
milestones by Lemma 6.16, so we can use pointers to them in the label of t . If c is
not saturated, we induce also transition labels for tight forks of kind 〈 f, right, c〉 in
color d (if c is saturated, then all labels for forks of this type are already induced
from the original run by Case 1 above).

Let C = {c1, . . .} and D = {d1, . . .} be all non-busy milestones in colors
c and d respectively. Define E0 as the set of edges 〈ci , d j 〉 such that the label
f (c, d[· · ·]) → · · · is already defined for some predecessor of ci where d[· · ·] is
the pointer to d j , plus the set of edges 〈d j , ci 〉 such that some predecessor of d j is
already labeled f (c[· · ·], d) → · · · where c[· · ·] is the pointer to ci , plus (if c is
saturated) the set of edges 〈d j , ci 〉 such that d j is labeled f (c[· · ·], d) : · · · where
c[· · ·] is the pointer to ci . Let A(ci) = {d j | d j ≺ ci }. Let m(ci) be the degree of
the fork 〈ci , f (ci , . . .), . . .〉, let p(ci) = |{s ∈ ω(ci) | ρ(s) = d}|.

It is easy to see that 〈C, D, E0, A, m, p〉 satisfy the assumptions of Proposi-
tion 6.17: the bound on the cardinality of D follows from Lemma 6.14 (point 4);
the bound on indeg(D) follows from the definition of non-busy milestone; the
bound on

∑
v∈C m(v) + p(v) from Lemma 6.15. The last two conditions follow

from the observation that outgoing edges in E0 are defined only for tight forks; for
non-tight forks the number of elements in A(ci) is at least m(ci) + m

2 minus the
number of busy milestones (which are not in D).

Journal of the ACM, Vol. 57, No. 4, Article 23, Publication date: April 2010.

Set Constraints with Projections 23:33

Let E1 be the outcome of Proposition 6.17 applied on 〈C, D, E0, A, m, p〉.
If c is not saturated, then let A′(d j) = {ci | ci ≺ d j }. Let m ′(d j) be the degree of

the fork 〈d j , f (. . . , d j), . . .〉, let p′(d j) = |{s ∈ ω(d j) | ρ(s) = c}|. Then, it is easy
to see that 〈D, C, E1, A′, m ′, p′〉 also satisfies the assumptions of Proposition 6.17.
Let E2 be the outcome of Proposition 6.17 applied on 〈D, C, E1, A′, m ′, p′〉.

Let E be E1 (if c is saturated) or E2 (if c is not saturated). Then E induces a la-
beling of the respective nodes in S: For a fork ci , v1, . . . , vm of the kind 〈 f, left, d〉
the node v j is labeled with f (c, d[j ′]) → ρ(v j) where j ′ is the index of the
j th smallest with respect to ≺ successor of ci in E . Moreover, ci is labeled with
f (∗, d[k ′]) : ρ(f (ci , t)) where t is the kth element of ω(ci) of color d and k ′ is the
index of the (m + k)-th smallest with respect to ≺ successor of ci in E . Finally, if
c is not saturated, we induce in the same way the labeling for forks d j , v1, . . . , vm
of the kind 〈 f, right, c〉 and nodes d j having witnesses of color c in the
set ω(d j).

This ends the construction of the labeling of S.

6.6. PROPERTIES OF THE CONSTRUCTED PRE-GERM.

PROPOSITION 6.20. Let G be the labeled naked skeleton as constructed above.
Then G is a consistent pre-germ.

PROOF. First, we show that G is a skeleton according to Definition 5.3. In
the construction above, every node is labeled with a transition label compatible
with the corresponding transition of the automaton. Every pointer points to some
milestone, which is a node in G. Moreover, every pointer used in a (transition)
label of a node v points to a node v ′ that lies below v; thus by the same argument
as in Section 5, the graph induced from G is an s-dag.

To finish the proof, we have to show that the labeling of G is consistent. Suppose
that the labeling is inconsistent. In accordance with Definition 6.19, there must exist
two nodes t and s and a function symbol f such that the labeling of G induces two
different colors q and q ′ of the node representing f (s, t). Since there exist pointers
c[i] and d[j] pointing respectively to s and t , both s and t must be milestones.
Hence, we can exclude Case 2 of the construction. If both s and t are busy or their
colors ρ(s), ρ(t) are saturated (Case 1 in the construction), the labels are induced
from the original run and then q = q ′ = ρ(f (s, t)), and there is no inconsistency.
Therefore, for at least one of s and t , the labels must be constructed by Case 3 of the
construction. But also here no inconsistencies are possible due to the construction
from Section 6.4: the last condition of Proposition 6.17 (“no conflicts are created”)
avoids these inconsistencies.

Recall that an ordinary node is a node that is neither a milestone nor have more
than one predecessor.

PROPOSITION 6.21 (PUMPING LEMMA). Suppose that a consistent pre-germ G
contains a path v0 → v1 → · · · → vm such that

—the colors of v1 and vm are the same, and
—all the nodes v1, . . . , vm are ordinary.

Let G ′ be a graph obtained from G by

—removing the nodes v1, . . . , vm−1,

Journal of the ACM, Vol. 57, No. 4, Article 23, Publication date: April 2010.

23:34 W. CHARATONIK AND L. PACHOLSKI

—defining vm as the successor of v0, and
—copying all request labels of v1 to vm.

Then G ′ is a consistent pre-germ.

PROOF. First, observe that G ′ is consistent: Indeed, local consistency follows
from the fact that for all nodes t and their predecessor t ′ in G ′, the request labels
of t and transition label of t ′ coincide with respective labels of some node and its
predecessor in G; global consistency is a condition concerning request labels of
milestones and transition labels of predecessors of milestones, and pumping does
not change these labels at all.

Now, to prove the proposition it is enough to show that after pumping G ′ remains
a skeleton. To do this, we have to prove two things: that the induced graph is acyclic,
and that it does not contain two isomorphic subgraphs.

Since G is a skeleton, we have that for every node v , every pointer of the form
q[i] used in the transition label of v points to a node v ′ such that there is no path
from v ′ to v in G. Now, by removing the nodes v1, . . . , vm−1, we do not create
new paths, so after pumping there is still no path from v ′ to v in G ′ and thus the
graph induced from G ′ is acyclic. The proof that this graph does not contain two
isomorphic subgraphs follows the lines of the proof of Claim 5.11 in Section 5.

COROLLARY 6.22. There exists a consistent pre-germ of size at most |Q| ·2N ·
(|Q| + 1) · (|Q| + P).

PROOF. The proof follows the lines of the proof of Theorem 5.7 in Section 6.2,
having in mind Claim 6.9.

6.7. CONSTRUCTION OF A GERM. For a node t labeled with a request label
of the form f (∗, d[j]) : q or f (d[j], ∗) : q, the image of this label is the node
representing the term f (t, s) (respectively, f (s, t)) such that the pointer d[j] points
to the node representing s. By the definition of consistency, if an image of such a
request label is a node in a consistent pre-germ G, then this node is of color q. The
only problem here is that this image need not be a node in G, in which case we
simply add it.

LEMMA 6.23. Let G ′ be a consistent pre-germ as constructed above. Let G ′′
be the graph obtained from G ′ by adding (if they were not yet in G ′) for all nodes
t and all their request labels f (∗, d[j]) : q or f (d[j], ∗) : q their images, as the
predecessors of t labeled with respectively f (ρ(t), d[j]) → q or f (d[j], ρ(t)) →
q. Finally, let G be the graph induced from G ′′ and let ρ ′ be the mapping assigning
to every node t in G the right-hand side of the transition label labeling the node t.
Then, 〈G, ρ ′〉 is a germ.

PROOF. First, observe that by the consistency of G ′, the mapping ρ ′ is well-
defined. Let V be the set of nodes of G and Vr be the set of nodes that are in G ′′
but not in G ′; by construction Vr ⊆ V , and every node in Vr is a root in G.

The faithfulness up to Vr of the run ρ ′ on G follows from the fact that for any
node t ∈ V − Vr (i.e., for any node t in G ′) and any request in π (ρ ′(t)), the request
is granted by the image of the respective label.

The completeness of the automaton A restricted to ρ ′(V − Vr) follows from the
completeness of A restricted to states reachable in ρ (which follows from the fact
that ρ is a run on the whole s-dag G�) and an observation that by the construction

Journal of the ACM, Vol. 57, No. 4, Article 23, Publication date: April 2010.

Set Constraints with Projections 23:35

of the naked skeleton in Section 6.2, V − Vr contains nodes of all reachable colors.
This last observation implies also the last condition in the definition of a germ,
namely that ρ ′(V − Vr) = ρ ′(V).

PROOF OF LEMMA 5.15. By Corollary 6.22 there exists a pre-germ G ′ of size at
most |Q| · 2N · (|Q| + 1) · (|Q| + P). Since every node in G ′ is labeled with at
most P request labels, the germ G constructed in Lemma 6.23 is of size at most P
times bigger. In the light of Observation 6.2, the size of G is in O(P3 · |Q|5).

REFERENCES

ACKERMANN, W. 1954. Solvable Cases of the Decision Problem. North-Holland, Amsterdam, The
Netherlands.

AIKEN, A. 1999. Introduction to set constraint-based program analysis. Sci. Comput. Prog. 35, 2, 79–111.
AIKEN, A., KOZEN, D., VARDI, M., AND WIMMERS, E. L. 1993. The complexity of set constraints. In

Proceedings of the Symposium on Computer Science Logic’93. Lecture Notes in Computer Science, vol.
832. Springer-Verlag, Berlin, Germany, 1–17.

AIKEN, A., KOZEN, D., AND WIMMERS, E. L. 1995. Decidability of systems of set constraints with
negative constraints. Information and Computation 122, 30–44. (Preliminary version: Technical Report
93-1362, Computer Science Department, Cornell University, June 1993).

AIKEN, A., AND WIMMERS, E. L. 1992. Solving systems of set constraints (extended abstract). In
Proceedings of the 7th Seventh Annual IEEE Symposium on Logic in Computer Science. IEEE Computer
Society Press, Los Alamitos, CA, 329–340.

BACHMAIR, L., GANZINGER, H., AND WALDMANN, U. 1993. Set constraints are the monadic class. In
Proceedings of the 8th Annual IEEE Symposium on Logic in Computer Science. IEEE Computer Society
Press, Los Alamitos, CA, 75–83.

CHARATONIK, W. 1998a. Set constraints in some equational theories. Inf. Computat. 142, 40–75.
CHARATONIK, W. 1998b. An undecidable fragment of the theory of set constraints. Inf. Proc. Lett. 68, 3,

147–151.
CHARATONIK, W. 1999. Automata on DAG representations of finite trees. Tech. Rep. MPI-I-1999-2-001,

Max-Planck-Institut für Informatik. www.ii.uni.wroc.pl/∼wch/papers/dag.ps.
CHARATONIK, W., AND PACHOLSKI, L. 1994a. Negative set constraints with equality. In Proceedings of

the 9th Annual IEEE Symposium on Logic in Computer Science. IEEE Computer Society Press, Los
Alamitos, CA, 128–136.

CHARATONIK, W., AND PACHOLSKI, L. 1994b. Set constraints with projections are in NEXPTIME. In
Proceedings of the 35th Symposium on Foundations of Computer Science. IEEE Computer Society Press,
Los Alamitos, CA, 642–653.

CHARATONIK, W., AND PODELSKI, A. 1996. The independence property of a class of set constraints. In
Proceedings of the Conference on Principles and Practice of Constraint Programming. Lecture Notes
in Computer Science, vol. 1118. Springer-Verlag, Berlin, Germany, 76–90.

CHARATONIK, W., AND PODELSKI, A. 1998. Co-definite set constraints. In Proceedings of the 9th Inter-
national Conference on Rewriting Techniques and Applications. Lecture Notes in Computer Science,
vol. 1379. Springer-Verlag, Berlin, Germany, 211–225.

CHARATONIK, W., AND PODELSKI, A. 2002. Set constraints with intersection. Inf. Computat. 179, 2,
213–229. (Extended abstract appeared in proceedings of LICS’97.)

CHARATONIK, W., PODELSKI, A., AND TALBOT, J.-M. 2000. Paths vs. trees in set-based program analysis.
In Proceedings of the 27th Annual ACM Symposium on Principles of Programming Languages. ACM,
New York, 330–338.

CHARATONIK, W., AND TALBOT, J.-M. 2002. Atomic set constraints with projection. In Rewriting Tech-
niques and Applications. 13th International Conference (RTA 2002). Lecture Notes in Computer Science,
vol. 2378. Springer-Verlag, Berlin, Germany, 311–325.

CHENG, A., AND KOZEN, D. 1996. A complete Gentzen-style axiomatization for set constraints. In Annual
International Colloquium on Automata, Languages and Programming. Lecture Notes in Computer
Science, vol. 1099. Springer-Verlag, Berlin, Germany, 134–145.

GILLERON, R., TISON, S., AND TOMMASI, M. 1993a. Solving systems of set constraints using tree
automata. In Proceedings of the 10th Annual Symposium on Theoretical Aspects of Computer Science.
Lecture Notes in Computer Science, vol. 665. Springer-Verlag, Berlin, Germany, 505–514.

Journal of the ACM, Vol. 57, No. 4, Article 23, Publication date: April 2010.

23:36 W. CHARATONIK AND L. PACHOLSKI

GILLERON, R., TISON, S., AND TOMMASI, M. 1993b. Solving systems of set constraints with negated
subset relationships. In Proceedings of the 34th Symposium on Foundations of Computer Science. IEEE
Computer Society Press, Los Alamitos, CA, 372–380.

GILLERON, R., TISON, S., AND TOMMASI, M. 1999. Set constraints and automata. Inf. Computat. 149, 1,
1–41.

GOUBAULT-LARRECQ, J. 2002. Higher-order positive set constraints. In Proceedings of the 16th Annual
Conference of the European Association for Computer Science Logic. Lecture Notes in Computer
Science, vol. 2471. Springer-Verlag, Berlin, Germany, 473–489.

HEINTZE, N. 1992. Set based program analysis. Ph.D. dissertation, School of Computer Science,
Carnegie Mellon Univ. Pittsburgh, PA.

HEINTZE, N. 1993. Set based analysis of arithmetic. Tech. Rep. CS–93–221, School of Computer
Science, Carnegie Mellon Univ.

HEINTZE, N., AND JAFFAR, J. 1990a. A decision procedure for a class of set constraints. In Proceedings
of the 5th Annual IEEE Symposium on Logic in Computer Science. IEEE Computer Society Press, Los
Alamitos, CA, 42–51.

HEINTZE, N., AND JAFFAR, J. 1990b. A finite presentation theorem for approximating logic programs.
In Proceedings of the 17th Annual ACM Symposium on Principles of Programming Languages. ACM,
New York, 197–209.

HEINTZE, N., AND JAFFAR, J. 1994. Set constraints and set-based analysis. In Proceedings of the Workshop
on Principles and Practice of Constraint Programming. Lecture Notes in Computer Science, vol. 874.
Springer-Verlag, Berlin, Germany, 281–298.

KODUMAL, J., AND AIKEN, A. 2005. Banshee: A scalable constraint-based analysis toolkit. In Proceed-
ings of the 12th International Static Analysis Symposium (SAS). Lecture Notes in Computer Science,
vol. 3672. Springer-Verlag, Berlin, Germany, 218–234.

KOZEN, D. 1993. Logical aspects of set constraints. In Proceedings of the 1993 Conference on Computer
Science Logic. Lecture Notes in Computer Science, vol. 832. Springer-Verlin, Berlin, Germany, 175–188.

KOZEN, D. 1994. Set constraints and logic programming (abstract). In Proceedingss of the 1st Interna-
tional Conference Constraints in Computational Logics. Lecture Notes in Computer Science, vol. 845.
Springer, Berlin, Germany, 302–303.

KOZEN, D. 1995. Rational spaces and set constraints. In TAPSOFT: Proceedings of the 6th International
Joint Conference on Theory and Practice of Software Development. Lecture Notes in Computer Science,
vol. 915. Springer-Verlag, Berlin, Germany, 42–61.

KOZEN, D. 1998. Set constraints and logic programming. Inf. Computat. 142, 1, 2–25.
MCALLESTER, D. A., GIVAN, R., WITTY, C., AND KOZEN, D. 1996. Tarskian set constraints. In Proceed-

ings of the 11th Annual IEEE Symposium on Logic in Computer Science. IEEE Computer Society Press,
Los Alamitos, CA, 138–147.

MÜLLER, M., NIEHREN, J., AND PODELSKI, A. 1997. Ordering constraints over feature trees. In Proceed-
ings of the 3rd International Conference on Principles and Practice of Constraint Programming (CP97).
Lecture Notes in Computer Science, vol. 1330. Springer, Berlin, Germany, 297–311.

MÜLLER, M., NIEHREN, J., AND TALBOT, J.-M. 1999. Entailment of atomic set constraints is PSPACE-
complete. In 14th Annual IEEE Symposium on Logic in Computer Science (LICS). IEEE Computer
Society Press, Los Alamitos, CA, 285–294.

PATERSON, M. S., AND WEGMAN, M. N. 1978. Linear unification. Journal of Computer and System
Sciences 16, 158–167.

REYNOLDS, J. C. 1969. Automatic computation of data set definitions. Information Processing 68,
456–461.

RYCHLIKOWSKI, P., AND TRUDERUNG, T. 2004. Set constraints on regular trees. In Computer Science
Logic. Lecture Notes in Computer Science, vol. 3210. Springer-Verlag, Berlin, Germany, 458–472.

SEYNHAEVE, F., TISON, S., TOMMASI, M., AND TREINEN, R. 2001. Grid structures and undecidable
constraint theories. Theoret. Comput. Sci. 258, 453–490.

SEYNHAEVE, F., TOMMASI, M., AND TREINEN, R. 1997. Grid structures and undecidable constraint
theories. In Proceedings of the 9th International Joint Conference on Theory and Practice of Software
Development. Lecture Notes in Computer Science, vol. 1214. Springer-Verlag, Berlin, Germany, 357–
368.

STEFANSSON, K. 1994. Systems of set constraints with negative constraints are NEXPTIME-complete.
In Proceedings of the 9th Annual IEEE Symposium on Logic in Computer Science. IEEE Computer
Society Press, Los Alamitos, CA, 137–141.

Journal of the ACM, Vol. 57, No. 4, Article 23, Publication date: April 2010.

Set Constraints with Projections 23:37

TALBOT, J.-M. 2000. The ∃∀2 fragment of the first-order theory of atomic set constraints is �0
1-hard. Inf.

Proc. Lett. 74, 27–33.
TALBOT, J.-M., DEVIENNE, P., AND TISON, S. 2000. Generalized definite set constraints. Constraints:

Int. J. 5, 1-2, 161–202.
URIBE, T. E. 1992. Sorted unification using set constraints. In Proceedings of the 11th International

Conference on Automated Deduction. Lecture Notes in Artificial Intelligence, vol. 607. Springer-Verlag,
Berlin, Germany, 163–177.

RECEIVED MAY 2006; REVISED AUGUST 2009 AND JANUARY 2010; ACCEPTED FEBRUARY 2010

Journal of the ACM, Vol. 57, No. 4, Article 23, Publication date: April 2010.

