CS156: The Calculus of

Computation

Zohar Manna
Autumn 2008

Chapter 7: Quantified Linear Arithmetic

Page 1 of 40
Quantifier Elimination (QE)

Algorithm for elimination of all quantifiers of formula F until
quantifier-free formula (gff) G that is equivalent to F remains

Note: Could be enough if F is equisatisfiable to G, that is F is
satisfiable iff G is satisfiable

A theory T admits quantifier elimination iff

there is an algorithm that given >-formula F returns

a quantifier-free 2-formula G that is T-equivalent to F.
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Example: dx. 2x =y

For 2 g-formula

F: dx. 2x =y,
quantifier-free Tg-equivalent > g-formula is
G: T

For > 7-formula

F: dx. 2x =y,
there is no quantifier-free Ty-equivalent X -formula.

Let 7’2 be Ty with divisibility predicates |.
For > 7-formula

F . dx. 2x =Y, .
a quantifier-free Ty-equivalent ¥ z-formula is
G: 2]y.
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About QE Algorithm

In developing a QE algorithm for theory T, we need only consider
formulae of the form

dx. F
for quantifier-free F.

Example: For >X-formula

G1 : dx.Vy. 3z. Fi[x,y, Z]

F2[X7y]
Gy : dx. Vy. Rx,y]
Gz : dx.—~3y. = FRx,y]

Flx]

Gy : dx. 2F3[x]
F
4

G5ZF4

Gs is quantifier-free and T-equivalent to Gy
Page 4 of 40



Quantifier Elimination for T
Y70 {oo,=2,-1,0, 1,2, ..., =322 3, ..., 4+, — = <}

Lemma:

Given quantifier-free Xz-formula Fly] s.t. free(F[y]) = {v}.
S represents the set of integers

S: {n€Z : F[n]is Tz-valid} .

Either SNZ™* or ZT \ S is finite.
Note: Z* is the set of positive integers.

Example: ¥z-formula  Fly]: dx. 2x =y
S: even integers
SNZ": positive even integers — infinite
Z1\ S: positive odd integers — infinite
Therefore, by the lemma, there is no quantifier-free Tz-formula
that is Tz-equivalent to Fly].

Thus, Tz does not admit QE.
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Augmented theory 7’2

f\Z: > 7 with countable number of unary divisibility predicates
k|- forkeZ"

Intended interpretations:

k | x holds iff k divides x without any remainder

Example:
x>1ANy>1AN2|x+y

is satisfiable (choose x = 2,y = 2).
-2 x) AN 4| x

is not satisfiable.

Axioms of Tz: axioms of Tz with additional countable set of
axioms

Vx. k| x < Jy.x=ky forkeZ"
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Tz admits QE (Cooper's method)

Algorithm: Given f\z—formula
dx. F[x],

where F is quantifier-free, construct quantifier-free 2 7-formula
that is equivalent to 3dx. F[x].

1. Put F[x] into Negation Normal Form (NNF).
Normalize literals: s < t, k|t, or —=(k|t).

Put x in s < t on one side: hx < t or s < hx.
Replace hx with x" without a factor.

Replace F[x'] by \/ F[j] for finitely many j.

ok WD
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Cooper’'s Method: Step 1
Put F[x] in Negation Normal Form (NNF) Fi[x], so that dx. Fi[x]

» has negations only in literals (only A, V)

> is Tz-equivalent to Ix. Fx]

Example:
dx. a(x—6<z—x AN4|5x+1 — 3x<y)
Is equivalent to

Idx. x—6<z—x A4 |5x+1 A -(Bx<y)

~(AANB— C)<= (ANBA-C)
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Cooper’'s Method: Step 2
Replace (left to right)

s=t & s<t+1ANt<s+1
—(s=t) & s<tVit<s
(s<t) & t<s+1

The output dx. Fy[x]| contains only literals of form
s<t, k|t, or —(k]|t),
where s, t are Ty-terms and k € ZT.

Example:

(x<y) A ax=y+3)
U
y<x+1A(x<y+3Vy+3<x)
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Cooper's Method: Step 3

Collect terms containing x so that literals have the form
hx <t, t<hx, k|hx+t, or —(k]|hx+1t),

where t is a term (does not contain x) and h, k € Z*. The output
is the formula 3x. F3[x], which is Tz-equivalent to dx. F[x].

Example:
X+x+y<z+3z+4+2y—4x 5| —7x+t
Y Y
b6x <4z+y 5|7x — t
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Cooper’'s Method: Step 4 |

Let
6 =lem{h : his a coefficient of x in F3[x]} ,

where Icm is the least common multiple. Multiply atoms in F3[x]
by constants so that ¢’ is the coefficient of x everywhere:

hx <t < §x<ht where Hh=1¢

t< hx < hWt<x where Hh=1¢

k| hx+t < hk|dx+ht where h'h=¢
(k| hx+t) & —(hk|dx+Ht) where h'h=1¢

The result 3x. F5[x], in which all occurrences of x in F3[x] are in
terms ¢'x.

Replace ¢’x terms in F5 with a fresh variable x" to form
F{  F{d'x— x'}
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Cooper’'s Method: Step 4 |l

Finally, construct
I F[XT A6 | X

Falx']

dx’.F4[x'] is equivalent to Ix. F[x] and each literal of F4[x’] has
one of the forms:

(A) X' <t
(B) t <X
(C) k| x +t
(D) ~(k | X' +1)

where t is a term that does not contain x, and k € Z™.
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Cooper’'s Method: Step 4 ||

Example: @—formula

dx. 3x+1>y A2x—6<z A4 |5x+1

Flx]

After step 3:

dx. 2x <z4+6 AN y—1<3x AN 4|5x+1

ol
Collecting coefficients of x (step 4):
6 =lem(2,3,5) = 30
Multiply when necessary:
dx. 30x < 152490 A 10y —10 < 30x A 24 | 30x+6
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Cooper’'s Method: Step 4 IV

Multiply when necessary:
dx. 30x < 15z4+90 A 10y —10 < 30x A 24 | 30x+6
Replacing 30x with fresh x” and adding divisibility conjunct:

Ix'. X' <15z+90 A 10y —10<x’ A 24| x"+6 A 30| X

Falx']

dx’. F4[x’] is equivalent to dx. F[x].
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Cooper's Method: Step 5

Construct left infinite projection F_..[x'] of F4[x’] by
(A) replacing literals x" < t by T
(B) replacing literals t < x’ by L

Idea: very small numbers satisfy (A) literals but not (B) literals

Let

k of (C) literals k | X' 4+t
0 = lcm _
k of (D) literals =(k | x’ + t)

and B be the set of terms t appearing in (B) literals of F4[x].

Construct

\/ Fooli] V \/ \/ Falt +J] -

j=1teB
Fs is quantifier-free and Tz-equivalent to 3x. F[x].
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Intuition of Step 5 |

Property (Periodicity)
if m|o
then m | niff m| n+ A6 for all A € Z

That is, m |- cannot distinguish between m | n .and m | n+ \d.

By the choice of § (lcm of the k’s) — no | literal in F5 can
distinguish between n and n+ A\J, for any A\ € Z.

\/ F-oli] V \/ \/ Falt +J]

j=1teB
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Intuition of Step 5 Il
> left disjunct \/J‘-S:1 F_[j] :

Contains only | literals
Asserts: no least n € Z s.t. F4[n].

For if there exists n satisfying F_,
then every n — \J, for A € Z*, also satisfies F_

> right disjunct \/9_; \/,cg Falt +] :
Asserts: There is least n € Z s.t. F4[n].

For let t* = {largest t | t < x’ in (B)}.
If n€ Zis s.t. F4]n], then

Fj(1<j<O). t"+7<n A Fyft"+]]

In other words,
if there is a solution,
then one must appear in ¢ interval to the right of t*
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Example of Step 5 |

dx. 3x+1>y A2x—6<z A 4|5x+1
FIx]
Y
Ix'. x' <15z+90 A 10y —10<x" A 24| x"+6 A 30| X

F4‘[:<’]

By step 5,
FooofX]: TANLA2|X+6 A30]|X,

which simplifies to L.
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Example of Step 5 Il

Compute
5 =lcm{24,30} =120 and B = {10y — 10} .
Then replacing x” by 10y — 10 + j in F4[x] produces

120 [ 10y — 10+, < 1524+90 A 10y—10<10y—10—|—j]

Fs :
> j\:/l AN 24110y —10+,+6 A 30| 10y — 10+

which simplifies to

120

F5:\/

j=1

10y +5 <15z +100 N O0<7
A 24|10y +j—4 A 30|10y — 10+

Fs is quantifier-free and Tz-equivalent to 3x. Fx].
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Cooper's Method: Example |

Ix. B3x+1<10 V7x—6>7) AN2]|x

FIx

Isolate x terms
dx. Bx <9 VvV 13<7x) A 2| x,

SO
§ =lem{3,7} =21 .

After multiplying coefficients by proper constants,
dx. (21x < 63 V 39 < 21x) A 42| 21x,

we replace 21x by x’:

Ix. (X' <63 V39<x) A 42X A21 X .

F4[X/]
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Cooper's Method: Example |l

Then
FooolX]: (T V L) A42|xX A21|X,
or, simplifying,
F ooo[x]: 42| x" N 21| X" .
Finally,
0 =lecm{21,42} =42 and B = {39},
so Fg :

42

\(42]j An2L]j) v
j=1
42

\V((39+, <63V 39<39+)) A 42|39+ A 21]39+)).
j=1
Since 42 | 42 and 21 | 42, the left main disjunct simplifies to T, so

that Fs is Tz-equivalent to T. Thus, dx. F[x] is Tz-valid.
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Cooper's Method: Example |

dx. 2x =y
——
Flx]
Rewriting
dx. 2x<y+1 AN y—1<2x
Flx]
Then
§ =lem{2,2} =2,
so by Step 4

X X <y+1Ay—1<x N2|X

Falx']

F_~ produces L.
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Cooper's Method: Example |l

However,
d=Ilecm{2} =2 and B={y-—-1},
o)
2
Fs: \/(y—14+j<y+1Ay-1<y—14jA2|y—1+))
j=1
Simplifying,
2
Fs: \/(<2A0<jA2y—1+))
j=1
and then

F5: 2|.y7

which is quantifier-free and Tz-equivalent to Jx. Flx].
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Improvement: Symmetric Elimination

In step 5, if there are fewer
(A) literals x’ < t

than
(B) literals t < x’,

construct the right infinite projection F, . [x'] from F4[x’] by
replacing
(A) literal X’ < t by L

than
(B) literal t < x" by T

Then right elimination.

]

)
Fs : \/F+oo[—j] v \/ V Falt—J].

j=1tcA
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Improvement: Eliminating Blocks of Quantifiers |
Given
Ix1. - 3Ixp. Flx, ..., Xp)

where F quantifier-free.
Eliminating x, (left elimination) produces

)
Gy 3xg. ---3Ixp_1. \/F_oo[xl,...,xn_l,j] V
j=1

)
\/ \/ F4[X17° -y Xn—1, t—l_.j]

j=1tcB

which is equivalent to

)
Go : \/Ele. <o dxp_q. F_OO[Xl,...,Xn_l,j] V
j=1

)
\/ \/ dxq. - - dxn_1. F4[X1, ceeyXp—1,t —I—_j]
j=1teB
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Improvement: Eliminating Blocks of Quantifiers Il
Treat j as a free variable and examine only 1 4 |B| formulae
> dxy. -+ dxn_1. F—oo[X17 e ,Xn_l,j]
> Ixq. ---3xp_1. Falx1, ..., xp—1,t + j] for each t € B
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Example |

F:dy. Ix. x<-2AN1-by<x A1l4+y<13x
Since ¢’ = lem{1,13} = 13

dy. dx. 13x < =26 A 13 —65y < 13x A 14y < 13x
Then
dy. Ix'. X' < =26 A 13—-65y <x' A 1+y<x A 13| X

There is one (A) literal x’ < ... and two (B) literals ... < x’, we
use right elimination.

Fio=L1 6={13}=13 A={-26}

oo {; —26—j < —26 A 13— 65y < —26 — j
' y'j:1 Aldy<—26— A 13| —26—
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Example |

Commute

13
G[j] : \/\3y.j>0/\39+j<65y/\y<—27—j/\ 13| —26—

7

j=1 HLj)

Treating j as free variable (and removing j > 0), apply QE to
H[l: 3y. 39+ <65y A y<-—27T—j A 13| —26—

Simplify. ..

65
H'j]: \/ (k< —1794—66j A 13| —26— A 65|39+ + k)
k=1

Replace H[j] with H'[j] in G[j]
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Example 1ll

13 65
F": \/ \/ (k< —1794 —66j A13 | —26 —j A65 | 39+ + k)
j=1k=1
1 T
simplified to

13 < —1794 — 66 - 13

L

This qff formula is E—equivalent to F.

Page 29 of 40

Quantifier Elimination over Rationals

ZQ: {07 ]-) +7 Ty T Z}
Recall: we use > instead of >, as
X2y & x>y V x=y X>y & x>y AN o(x=y).
Ferrante & Rackoff's Method

Given a Xg-formula Ix. F[x], where F[x] is quantifier-free,
generate quantifier-free formula F4 (four steps) s.t.

F4 is Xp-equivalent to 3x. F[x]

by

putting F[x] in NNF,

replacing negated literals,

solving literals such that x appears isolated on one side, and
taking finite disjunction \/, F[t].

= =
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Ferrante & Rackoff’'s Method: Steps 1 and 2
Step 1: Put F[x] in NNF. The result is Ix. F1[x].

Step 2: Replace literals (left to right)

—(s<t) & t<sVt=s
—(s=t) & t<sV t>s

The result dx. F,[x] does not contain negations.

Ferrante & Rackoff’'s Method: Step 3

Solve for x in each atom of F;[x], e.g.,

t1 — b
C

h <cx—+ b =

where ¢ € Z — {0}.

All atoms in the result Ix. F3[x] have form
(A) x<t
(B) t<x
(C) x=t

where t is a term that does not contain x.
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Ferrante & Rackoff’'s Method: Step 4 |

Construct from F3[x]
» left infinite projection F_., by replacing
(A) atoms x < t by T
(B) atoms t < x by L
(C) atoms x =t by L
» right infinite projection Fy., by replacing
(A) atoms x < t by L

(B) atoms t < x by T
(C) atoms x =t by L

Let S be the set of t terms from (A), (B), (C) atoms.
Construct the final

S+t
Fi: Fooo V Fioo V \/F3[ 5 ]
s,teS

which is Tg-equivalent to Ix. F[x].
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Ferrante & Rackoff's Method: Step 4 Il

» F_.o captures the case when small x € QQ satisfy F3[x]
> F. . captures the case when large x € Q satisfy F3[x|

» last disjunct: for s,t € S
if s = t, check whether s € S satisfies F3][s]
if s £ t, in any Tg-interpretation,
» |S| — 1 pairs s, t € S are adjacent. For each such pair, (s,t) is

an interval in which no other s’ € S lies.

> Since £t represents the whole interval (s, t),
simply check F3[*Ft] .
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Ferrante & Rackoff's Method: Intuition

Step 4 says that four cases are possible:
1. There is a left open interval s.t. all elements satisfy F(x).

—)

2. There is a right open interval s.t. all elements satisfy F(x).

(—

3. Some term t satisfies F(x).

t

4. There is an open interval between two s, t terms such that
every element satisfies F(x).
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Correctness of Step 4 |

Theorem
Let

S+t
Fi: Fooo V Fioo V \/F3[ > ]
s,teS

be the formula constructed from 3x. F3[x] as in Step 4. Then
dx. R3[x] & F4.

Proof:

< If F4is true, then F_o, Foo or F3[5H] is true.
If F3[=£%] is true, then obviously 3x. F3[x] is true.
If F_ is true, choose some small x,x < t forall t € S.
Then F3[x] is true.
If Fi oo is true, choose some big x,x > t for all t € S.
Then F3[x] is true.
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Correctness of Step 4 |l

= If | = dx. F3[x] then there is value v such that

I = F3lv].

If v<at] forall t €S, then | = F_.
If v > qft] forall t € S, then | = Fi.
If v.= qt] for some t € S, then | = F[5HE].

Otherwise choose largest s € S with ay[s] < v and smallest
t € S with oft] > v.

Since no atom of F3 can distinguish between values in interval

(s,t),

I = RN e R [”t] |

2

Hence, | |= F[55]. In all cases | |= Fa.
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Ferrante & Rackoff’'s Method: Example |

2 p-formula
dx. §x+1<10 A 7x—6>7j
FIx]

Solving for x

1
Elx.x<3/\x>73

\ 7

Flx]

Stepd: x>Lin(B) = F.o=1
x<3in(A) = Fin=1

S+t s+t 13
Fs: 3N —
‘ \/( 2 ° 2 >7>

S,tGS\

~~

Fa3[<£]
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Ferrante & Rackoff's Method: Example Il
S={3L =

3+ 3 B
F3[—+ ]:L F| t—L| =1
2 2
13 13 13
B3| B3 B3 13
=2 7 7 g
3172 <3N T

Fao: LV---VLILVT =T
Thus, F4: T is Tg-equivalent to Ix. F[x],

so dx. F[x] is Tg-valid.
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Example

Ix. 2x >y AN 3x <z

Flx]

Solving for x

y Z
X, x> = A x < =
X. X 2 X 3}

Flx]

Step4: F. oo = 1, Fioo = 1, F3[%] = 1 and F3[§] = 1.

A

Yy + Z y Y + Z z
Fp: 2—3 Z N 23 =
U S > <3
which simplifies to:
Fa: 2z > 3y

F4 is Tg-equivalent to 3x. F[x].
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