CS156: The Calculus of Computation

Zohar Manna Autumn 2008

Chapter 7: Quantified Linear Arithmetic

Page 1 of 40

Quantifier Elimination (QE)

Algorithm for elimination of all quantifiers of formula F until quantifier-free formula (qff) G that is equivalent to F remains Note: Could be enough if F is equisatisfiable to G, that is F is satisfiable iff G is satisfiable

A theory T admits quantifier elimination iff there is an algorithm that given Σ -formula F returns a quantifier-free Σ -formula G that is T-equivalent to F.

Example: $\exists x. \ 2x = y$

For $\Sigma_{\mathbb{O}}$ -formula

 $F: \exists x. \ 2x = y$,

quantifier-free $T_{\mathbb Q}$ -equivalent $\Sigma_{\mathbb Q}$ -formula is

 $G: \top$

For $\Sigma_{\mathbb{Z}}$ -formula

 $F: \exists x. \ 2x = y$

there is no quantifier-free $T_{\mathbb{Z}}$ -equivalent $\Sigma_{\mathbb{Z}}$ -formula.

Let $\widehat{T_{\mathbb{Z}}}$ be $T_{\mathbb{Z}}$ with divisibility predicates |.

For $\widehat{\Sigma_{\mathbb{Z}}}\text{-}\mathsf{formula}$

 $F:\ \exists x.\ 2x=y,$ a quantifier-free $\widehat{T}_{\mathbb{Z}}$ -equivalent $\widehat{\Sigma}_{\mathbb{Z}}$ -formula is

G: 2 | y.

About QE Algorithm

In developing a QE algorithm for theory T, we need only consider formulae of the form

∃*x*. *F*

for quantifier-free F.

Example: For Σ -formula

$$G_1$$
: $\exists x. \ \forall y. \ \underbrace{\exists z. \ F_1[x,y,z]}_{F_2[x,y]}$

$$G_2$$
: $\exists x. \forall y. F_2[x,y]$

$$G_3$$
: $\exists x. \neg \underbrace{\exists y. \neg F_2[x,y]}_{F_3[x]}$

$$G_4$$
 : $\underbrace{\exists x. \ \neg F_3[x]}_{F_4}$
 G_5 : F_4

$$G_5$$
: F_4

Quantifier Elimination for $T_{\mathbb{Z}}$

$$\Sigma_{\mathbb{Z}}:\; \{\ldots,-2,-1,0,\; 1,\; 2,\; \ldots,-3\cdot,-2\cdot,2\cdot,\; 3\cdot,\; \ldots,\; +,\; -,\; =,\; <\}$$

Lemma:

Given quantifier-free $\Sigma_{\mathbb{Z}}$ -formula F[y] s.t. free $(F[y]) = \{y\}$. S represents the set of integers

$$S: \{n \in \mathbb{Z} : F[n] \text{ is } T_{\mathbb{Z}}\text{-valid}\}$$
.

Either $S \cap \mathbb{Z}^+$ or $\mathbb{Z}^+ \setminus S$ is finite.

Note: \mathbb{Z}^+ is the set of positive integers.

Example: $\Sigma_{\mathbb{Z}}$ -formula $F[y]: \exists x. \ 2x = y$

S: even integers

 $S \cap \mathbb{Z}^+$: positive even integers — infinite

 $\mathbb{Z}^+ \setminus S$: positive odd integers — infinite

Therefore, by the lemma, there is no quantifier-free $T_{\mathbb{Z}}$ -formula that is $T_{\mathbb{Z}}$ -equivalent to F[y].

Thus, $T_{\mathbb{Z}}$ does not admit QE.

Page 5 of 40

Augmented theory $\widehat{T}_{\mathbb{Z}}$

 $\widehat{\Sigma_{\mathbb{Z}}} \mathpunct{:} \Sigma_{\mathbb{Z}}$ with countable number of unary $\underline{\text{divisibility predicates}}$ $k \mid \cdot \quad \text{for } k \in \mathbb{Z}^+$

Intended interpretations:

 $k \mid x$ holds iff k divides x without any remainder

Example:

$$x > 1 \land y > 1 \land 2 \mid x + y$$

is satisfiable (choose x = 2, y = 2).

$$\neg (2 \mid x) \land 4 \mid x$$

is not satisfiable.

Axioms of $\widehat{T}_{\mathbb{Z}}$: axioms of $T_{\mathbb{Z}}$ with additional countable set of axioms

$$\forall x. \ k \mid x \leftrightarrow \exists y. \ x = ky \quad \text{for } k \in \mathbb{Z}^+$$

$\widehat{T_{\mathbb{Z}}}$ admits QE (Cooper's method)

Algorithm: Given $\widehat{\Sigma_{\mathbb{Z}}}$ -formula

$$\exists x. \ F[x]$$
,

where F is quantifier-free, construct quantifier-free $\widehat{\Sigma}_{\mathbb{Z}}$ -formula that is equivalent to $\exists x. \ F[x]$.

- 1. Put F[x] into Negation Normal Form (NNF).
- 2. Normalize literals: s < t, k|t, or $\neg(k|t)$.
- 3. Put x in s < t on one side: hx < t or s < hx.
- 4. Replace hx with x' without a factor.
- 5. Replace F[x'] by $\bigvee F[j]$ for finitely many j.

Page 7 of 40

Cooper's Method: Step 1

Put F[x] in Negation Normal Form (NNF) $F_1[x]$, so that $\exists x. F_1[x]$

- ▶ has negations only in literals (only ∧, ∨)
- ▶ is $\widehat{T}_{\mathbb{Z}}$ -equivalent to $\exists x. \ F[x]$

Example:

$$\exists x. \ \neg (x - 6 < z - x \ \land \ 4 \mid 5x + 1 \ \rightarrow \ 3x < y)$$

is equivalent to

$$\exists x. \ x - 6 < z - x \ \land \ 4 \mid 5x + 1 \ \land \ \neg (3x < y)$$

Note:

$$\neg (A \land B \rightarrow C) \Leftrightarrow (A \land B \land \neg C)$$

Cooper's Method: Step 2

Replace (left to right)

$$s = t \Leftrightarrow s < t+1 \land t < s+1$$

 $\neg(s = t) \Leftrightarrow s < t \lor t < s$
 $\neg(s < t) \Leftrightarrow t < s+1$

The output $\exists x. F_2[x]$ contains only literals of form

$$s < t$$
, $k \mid t$, or $\neg(k \mid t)$,

where s, t are $\widehat{T}_{\mathbb{Z}}$ -terms and $k \in \mathbb{Z}^+$.

Example:

$$\neg(x < y) \land \neg(x = y + 3)$$

$$\downarrow \qquad \qquad \downarrow$$

$$y < x + 1 \land (x < y + 3 \lor y + 3 < x)$$

Page 9 of 40

Cooper's Method: Step 3

Collect terms containing x so that literals have the form

$$hx < t$$
, $t < hx$, $k \mid hx + t$, or $\neg(k \mid hx + t)$,

where t is a term (does not contain x) and $h, k \in \mathbb{Z}^+$. The output is the formula $\exists x. \ F_3[x]$, which is $\widehat{T}_{\mathbb{Z}}$ -equivalent to $\exists x. \ F[x]$.

Example:

$$x + x + y < z + 3z + 2y - 4x$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$6x < 4z + y \qquad \qquad 5|7x - t|$$

Cooper's Method: Step 4 I

Let

$$\delta' = \text{lcm}\{h : h \text{ is a coefficient of } x \text{ in } F_3[x]\}\ ,$$

where lcm is the least common multiple. Multiply atoms in $F_3[x]$ by constants so that δ' is the coefficient of x everywhere:

$$hx < t \Leftrightarrow \delta'x < h't$$
 where $h'h = \delta'$
 $t < hx \Leftrightarrow h't < \delta'x$ where $h'h = \delta'$
 $k \mid hx + t \Leftrightarrow h'k \mid \delta'x + h't$ where $h'h = \delta'$
 $\neg(k \mid hx + t) \Leftrightarrow \neg(h'k \mid \delta'x + h't)$ where $h'h = \delta'$

The result $\exists x. F_3'[x]$, in which all occurrences of x in $F_3'[x]$ are in terms $\delta' x$.

Replace $\delta'x$ terms in F'_3 with a fresh variable x' to form

$$F_3''$$
 : $F_3\{\delta'x\mapsto x'\}$ Page 11 of 40

Cooper's Method: Step 4 II

Finally, construct

$$\exists x'. \ \underbrace{F_3''[x'] \land \delta' \mid x'}_{F_4[x']}$$

 $\exists x'. F_4[x']$ is equivalent to $\exists x. F[x]$ and each literal of $F_4[x']$ has one of the forms:

- (A) x' < t
- (B) t < x'
- (C) $k \mid x' + t$
- (D) $\neg (k \mid x' + t)$

where t is a term that does not contain x, and $k \in \mathbb{Z}^+$.

Cooper's Method: Step 4 III

Example: $\widehat{\mathcal{T}}_{\mathbb{Z}}$ -formula

$$\exists x. \ \underbrace{3x+1 > y \ \land \ 2x-6 < z \ \land \ 4 \mid 5x+1}_{F[x]}$$

After step 3:

$$\exists x. \ \underbrace{2x < z + 6 \ \land \ y - 1 < 3x \ \land \ 4 \mid 5x + 1}_{F_3[x]}$$

Collecting coefficients of x (step 4):

$$\delta' = \text{lcm}(2, 3, 5) = 30$$

Multiply when necessary:

$$\exists x. \ 30x < 15z + 90 \ \land \ 10y - 10 < 30x \ \land \ 24 \ | \ 30x + 6$$
Page 13 of 40

Cooper's Method: Step 4 IV

Multiply when necessary:

$$\exists x. \ 30x < 15z + 90 \ \land \ 10y - 10 < 30x \ \land \ 24 \mid 30x + 6$$

Replacing 30x with fresh x' and adding divisibility conjunct:

$$\exists x'. \ \underbrace{x' < 15z + 90 \ \land \ 10y - 10 < x' \ \land \ 24 \mid x' + 6 \ \land \ 30 \mid x'}_{F_4[x']}$$

 $\exists x'. \ F_4[x']$ is equivalent to $\exists x. \ F[x]$.

Cooper's Method: Step 5

Construct left infinite projection $F_{-\infty}[x']$ of $F_4[x']$ by

- (A) replacing literals x' < t by \top
- (B) replacing literals t < x' by \bot

<u>Idea</u>: very small numbers satisfy (A) literals but not (B) literals

Let

$$\delta = \operatorname{lcm} \left\{ \begin{array}{l} k \text{ of (C) literals } k \mid x' + t \\ k \text{ of (D) literals } \neg (k \mid x' + t) \end{array} \right\}$$

and B be the set of terms t appearing in (B) literals of $F_4[x']$.

Construct

$$F_5: \bigvee_{j=1}^{\delta} F_{-\infty}[j] \vee \bigvee_{j=1}^{\delta} \bigvee_{t \in B} F_4[t+j].$$

 F_5 is quantifier-free and $\widehat{T}_{\mathbb{Z}}$ -equivalent to $\exists x. F[x]$.

Page 15 of 40

Intuition of Step 5 I

Property (Periodicity)

if $m \mid \delta$

then $m \mid n$ iff $m \mid n + \lambda \delta$ for all $\lambda \in \mathbb{Z}$

That is, $m \mid \cdot$ cannot distinguish between $m \mid n$ and $m \mid n + \lambda \delta$.

By the choice of δ (lcm of the k's) — no | literal in F_5 can distinguish between n and $n + \lambda \delta$, for any $\lambda \in \mathbb{Z}$.

$$F_5: \bigvee_{j=1}^{\delta} F_{-\infty}[j] \vee \bigvee_{j=1}^{\delta} \bigvee_{t \in B} F_4[t+j]$$

Intuition of Step 5 II

▶ left disjunct $\bigvee_{j=1}^{\delta} F_{-\infty}[j]$:

Contains only | literals

Asserts: no least $n \in \mathbb{Z}$ s.t. $F_4[n]$.

For if there exists n satisfying $F_{-\infty}$,

then every $n - \lambda \delta$, for $\lambda \in \mathbb{Z}^+$, also satisfies $F_{-\infty}$

▶ right disjunct $\bigvee_{j=1}^{\delta} \bigvee_{t \in B} F_4[t+j]$:

Asserts: There is least $n \in \mathbb{Z}$ s.t. $F_4[n]$.

For let $t^* = \{ \text{largest } t \mid t < x' \text{ in (B)} \}.$

If $n \in \mathbb{Z}$ is s.t. $F_4[n]$, then

$$\exists j (1 \leq j \leq \delta). \ t^* + j \leq n \land F_4[t^* + j]$$

In other words,

if there is a solution,

then one must appear in δ interval to the right of t^*

Page 17 of 40

Example of Step 5 I

$$\exists x. \ \underbrace{3x + 1 > y \ \land \ 2x - 6 < z \ \land \ 4 \mid 5x + 1}_{F[x]} \\ \Downarrow$$

$$\exists x'. \ \underline{x' < 15z + 90 \ \land \ 10y - 10 < x' \ \land \ 24 \mid x' + 6 \ \land \ 30 \mid x'}_{F_4[x']}$$

By step 5,

$$F_{-\infty}[x']$$
: $\top \wedge \bot \wedge 24 \mid x' + 6 \wedge 30 \mid x'$,

which simplifies to \perp .

Example of Step 5 II

Compute

$$\delta = \text{lcm}\{24, 30\} = 120$$
 and $B = \{10y - 10\}$.

Then replacing x' by 10y - 10 + j in $F_4[x']$ produces

$$F_5: \bigvee_{j=1}^{120} \left[\begin{array}{c} 10y - 10 + j < 15z + 90 \ \land \ 10y - 10 < 10y - 10 + j \\ \land \ 24 \mid 10y - 10 + j + 6 \ \land \ 30 \mid 10y - 10 + j \end{array} \right]$$

which simplifies to

$$F_{5}: \bigvee_{j=1}^{120} \left[\begin{array}{ccc} 10y+j < 15z+100 & \land & 0 \checkmark j \\ & \land & 24 \mid 10y+j-4 & \land & 30 \mid 10y-10+j \end{array} \right] .$$

 F_5 is quantifier-free and $\widehat{T}_{\mathbb{Z}}$ -equivalent to $\exists x. \ F[x]$.

Page 19 of 40

Cooper's Method: Example I

$$\exists x. \ (3x+1 < 10 \ \lor \ 7x-6 > 7) \ \land \ 2 \mid x$$

Isolate x terms

$$\exists x. (3x < 9 \lor 13 < 7x) \land 2 \mid x$$
,

SO

$$\delta' = \operatorname{lcm}\{3,7\} = 21 \ .$$

After multiplying coefficients by proper constants,

$$\exists x. (21x < 63 \lor 39 < 21x) \land 42 \mid 21x$$
,

we replace 21x by x':

$$\exists x'. \ \underbrace{(x' < 63 \ \lor \ 39 < x') \ \land \ 42 \ | \ x' \ \land \ 21 \ | \ x'}_{F_4[x']}.$$

Page 20 of 40

Cooper's Method: Example II

Then

$$F_{-\infty}[x']: (\top \vee \bot) \wedge 42 \mid x' \wedge 21 \mid x'$$

or, simplifying,

$$F_{-\infty}[x']$$
: 42 | $x' \wedge 21 | x'$.

Finally,

$$\delta = \text{Icm}\{21, 42\} = 42 \text{ and } B = \{39\}$$
,

so F_5 :

$$\bigvee_{j=1}^{42} (42 \mid j \land 21 \mid j) \lor \bigvee_{j=1}^{42} ((39+j < 63 \lor 39 < 39+j) \land 42 \mid 39+j \land 21 \mid 39+j) .$$

Since 42 | 42 and 21 | 42, the left main disjunct simplifies to \top , so that F_5 is $\widehat{T}_{\mathbb{Z}}$ -equivalent to \top . Thus, $\exists x. \ F[x]$ is $\widehat{T}_{\mathbb{Z}}$ -valid.

Page 21 of 40

Cooper's Method: Example I

$$\exists x. \ \underbrace{2x = y}_{F[x]}$$

Rewriting

$$\exists x. \ \underbrace{2x < y + 1 \ \land \ y - 1 < 2x}_{F_3[x]}$$

Then

$$\delta' = \operatorname{lcm}\{2, 2\} = 2 ,$$

so by Step 4

$$\exists x'. \ \underbrace{x' < y + 1 \ \land \ y - 1 < x' \ \land \ 2 \mid x'}_{F_4[x']}$$

 $F_{-\infty}$ produces \perp .

Cooper's Method: Example II

However,

$$\delta = \operatorname{lcm}\{2\} = 2 \quad \text{and} \quad B = \{y - 1\} \ ,$$

SO

$$F_5: \bigvee_{j=1}^2 (y-1+j < y+1 \ \land \ y-1 < y-1+j \ \land \ 2 \mid y-1+j)$$

Simplifying,

$$F_5: \bigvee_{j=1}^2 (j < 2 \land 0 < j \land 2 \mid y-1+j)$$

and then

$$F_5: 2 | y$$
,

which is quantifier-free and $\widehat{T}_{\mathbb{Z}}$ -equivalent to $\exists x$, F[x].

Improvement: Symmetric Elimination

In step 5, if there are fewer

(A) literals
$$x' < t$$

than

(B) literals
$$t < x'$$
,

construct the right infinite projection $F_{+\infty}[x']$ from $F_4[x']$ by replacing

(A) literal
$$x' < t$$
 by \bot

than

(B) literal
$$t < x'$$
 by \top

Then right elimination.

$$F_5: \bigvee_{j=1}^{\delta} F_{+\infty}[-j] \vee \bigvee_{j=1}^{\delta} \bigvee_{t \in A} F_4[t-j].$$

Improvement: Eliminating Blocks of Quantifiers I

Given

$$\exists x_1. \cdots \exists x_n. F[x_1, \ldots, x_n]$$

where F quantifier-free.

Eliminating x_n (left elimination) produces

$$G_1: \exists x_1. \cdots \exists x_{n-1}.$$

$$\bigvee_{\substack{j=1 \ \delta}}^{\delta} F_{-\infty}[x_1, \dots, x_{n-1}, j] \lor$$

$$\bigvee_{\substack{j=1 \ t \in B}}^{\delta} V_{+}[x_1, \dots, x_{n-1}, t+j]$$

which is equivalent to

$$G_{2}: \bigvee_{\substack{j=1\\ \delta}}^{\delta} \exists x_{1}. \cdots \exists x_{n-1}. F_{-\infty}[x_{1}, \dots, x_{n-1}, j] \lor \\ \bigvee_{\substack{j=1\\ j=1}}^{\delta} \bigvee_{t \in B} \exists x_{1}. \cdots \exists x_{n-1}. F_{4}[x_{1}, \dots, x_{n-1}, t+j] \\ \bigvee_{\substack{j=1\\ \beta \in B}} \exists x_{1}. \cdots \exists x_{n-1}. F_{4}[x_{1}, \dots, x_{n-1}, t+j] \\ \bigvee_{\substack{j=1\\ \beta \in B}} \exists x_{1}. \cdots \exists x_{n-1}. F_{4}[x_{1}, \dots, x_{n-1}, t+j] \\ \bigvee_{\substack{j=1\\ \beta \in B}} \exists x_{1}. \cdots \exists x_{n-1}. F_{4}[x_{1}, \dots, x_{n-1}, t+j] \\ \bigvee_{\substack{j=1\\ \beta \in B}} \exists x_{1}. \cdots \exists x_{n-1}. F_{4}[x_{1}, \dots, x_{n-1}, t+j] \\ \bigvee_{\substack{j=1\\ \beta \in B}} \exists x_{1}. \cdots \exists x_{n-1}. F_{4}[x_{1}, \dots, x_{n-1}, t+j] \\ \bigvee_{\substack{j=1\\ \beta \in B}} \exists x_{1}. \cdots \exists x_{n-1}. F_{4}[x_{1}, \dots, x_{n-1}, t+j] \\ \bigvee_{\substack{j=1\\ \beta \in B}} \exists x_{1}. \cdots \exists x_{n-1}. F_{4}[x_{1}, \dots, x_{n-1}, t+j] \\ \bigvee_{\substack{j=1\\ \beta \in B}} \exists x_{1}. \cdots \exists x_{n-1}. F_{4}[x_{1}, \dots, x_{n-1}, t+j] \\ \bigvee_{\substack{j=1\\ \beta \in B}} \exists x_{1}. \cdots \exists x_{n-1}. F_{4}[x_{1}, \dots, x_{n-1}, t+j] \\ \bigvee_{\substack{j=1\\ \beta \in B}} \exists x_{1}. \cdots \exists x_{n-1}. F_{4}[x_{1}, \dots, x_{n-1}, t+j] \\ \bigvee_{\substack{j=1\\ \beta \in B}} \exists x_{1}. \cdots \exists x_{n-1}. F_{4}[x_{1}, \dots, x_{n-1}, t+j] \\ \bigvee_{\substack{j=1\\ \beta \in B}} \exists x_{1}. \cdots \exists x_{n-1}. F_{4}[x_{1}, \dots, x_{n-1}, t+j] \\ \bigvee_{\substack{j=1\\ \beta \in B}} \exists x_{1}. \cdots \exists x_{n-1}. F_{4}[x_{1}, \dots, x_{n-1}, t+j] \\ \bigvee_{\substack{j=1\\ \beta \in B}} \exists x_{1}. \cdots \exists x_{n-1}. F_{4}[x_{1}, \dots, x_{n-1}, t+j] \\ \bigvee_{\substack{j=1\\ \beta \in B}} \exists x_{1}. \cdots \exists x_{n-1}. F_{4}[x_{1}, \dots, x_{n-1}, t+j] \\ \bigvee_{\substack{j=1\\ \beta \in B}} \exists x_{1}. \cdots \exists x_{n-1}. F_{4}[x_{1}, \dots, x_{n-1}, t+j] \\ \bigvee_{\substack{j=1\\ \beta \in B}} \exists x_{1}. \cdots \exists x_{n-1}. F_{4}[x_{1}, \dots, x_{n-1}, t+j] \\ \bigvee_{\substack{j=1\\ \beta \in B}} \exists x_{1}. \cdots \exists x_{n-1}. F_{4}[x_{1}, \dots, x_{n-1}, t+j] \\ \bigvee_{\substack{j=1\\ \beta \in B}} \exists x_{1}. \cdots \exists x_{n-1}. F_{4}[x_{1}, \dots, x_{n-1}, t+j] \\ \bigvee_{\substack{j=1\\ \beta \in B}} \exists x_{1}. \cdots \exists x_{n-1}. F_{4}[x_{1}, \dots, x_{n-1}, t+j] \\ \bigvee_{\substack{j=1\\ \beta \in B}} \exists x_{1}. \cdots \exists x_{n-1}. F_{4}[x_{1}, \dots, x_{n-1}, t+j] \\ \bigvee_{\substack{j=1\\ \beta \in B}} \exists x_{1}. \cdots \exists x_{n-1}. F_{4}[x_{1}, \dots, x_{n-1}, t+j] \\ \bigvee_{\substack{j=1\\ \beta \in B}} \exists x_{1}. \cdots \exists x_{n-1}. F_{4}[x_{1}, \dots, x_{n-1}, t+j] \\ \bigvee_{\substack{j=1\\ \beta \in B}} \exists x_{1}. \cdots \exists x_{n-1}. \cdots \exists x_{n-1}. F_{4}[x_{1}, \dots, x_{n-1}, t+j] \\ \bigvee_{\substack{j=1\\ \beta \in B}} \exists x_{1}. \cdots \exists x_{n-1}. \cdots \exists x_{n$$

Improvement: Eliminating Blocks of Quantifiers II

Treat j as a free variable and examine only 1+|B| formulae

- $ightharpoonup \exists x_1. \cdots \exists x_{n-1}. \ F_{-\infty}[x_1, \ldots, x_{n-1}, j]$
- $ightharpoonup \exists x_1. \cdots \exists x_{n-1}. \ F_4[x_1,\ldots,x_{n-1},t+j] \ \text{for each} \ t \in B$

Example I

$$F: \ \exists y. \ \exists x. \ x < -2 \ \land \ 1 - 5y < x \ \land \ 1 + y < 13x$$
 Since $\delta' = \mathsf{lcm}\{1, 13\} = 13$

$$\exists y. \ \exists x. \ 13x < -26 \ \land \ 13 - 65y < 13x \ \land \ 1 + y < 13x$$

Then

$$\exists y. \ \exists x'. \ x' < -26 \ \land \ 13 - 65y < x' \ \land \ 1 + y < x' \ \land \ 13 \mid x'$$

There is one (A) literal $x' < \dots$ and two (B) literals $\dots < x'$, we use right elimination.

$$F_{+\infty} = \bot \qquad \delta = \{13\} = 13 \qquad A = \{-26\}$$

$$F': \exists y. \bigvee_{j=1}^{13} \begin{bmatrix} -26 - j < -26 & \land & 13 - 65y < -26 - j \\ \land & 1 + y < -26 - j & \land & 13 & | & -26 - j \end{bmatrix}$$
Page 27 of 40

Example II

Commute

$$G[j]: \bigvee_{j=1}^{13} \underbrace{\exists y. \ j > 0 \ \land \ 39 + j < 65y \ \land \ y < -27 - j \ \land \ 13 \mid \ -26 - j}_{H[j]}$$

Treating j as free variable (and removing j > 0), apply QE to

$$H[j]: \exists y. 39 + j < 65y \land y < -27 - j \land 13 \mid -26 - j$$

Simplify...

$$H'[j]: \bigvee_{k=1}^{65} (k < -1794 - 66j \land 13 \mid -26 - j \land 65 \mid 39 + j + k)$$

Replace H[j] with H'[j] in G[j]

Example III

$$F'': \bigvee_{j=1}^{13} \bigvee_{k=1}^{65} (k < -1794 - 66j \land 13 \mid -26 - j \land 65 \mid 39 + j + k)$$

$$\uparrow \qquad \qquad \uparrow$$

$$j = 13 \qquad \qquad k = 13$$

simplified to

$$13 < -1794 - 66 \cdot 13$$

 \perp

This qff formula is $\widehat{T}_{\mathbb{Z}}$ -equivalent to F.

Page 29 of

Quantifier Elimination over Rationals

$$\Sigma_{\mathbb{Q}}:\ \{0,\ 1,\ +,\ -,\ =,\ \geq\}$$

Recall: we use > instead of \ge , as

$$x \ge y \Leftrightarrow x > y \lor x = y \qquad x > y \Leftrightarrow x \ge y \land \neg(x = y)$$
.

Ferrante & Rackoff's Method

Given a $\Sigma_{\mathbb{Q}}$ -formula $\exists x. \ F[x]$, where F[x] is quantifier-free, generate quantifier-free formula F_4 (four steps) s.t.

$$F_4$$
 is $\Sigma_{\mathbb{Q}}$ -equivalent to $\exists x. \ F[x]$

by

- 1. putting F[x] in NNF,
- 2. replacing negated literals,
- 3. solving literals such that x appears isolated on one side, and
- 4. taking finite disjunction $\bigvee_t F[t]$.

Ferrante & Rackoff's Method: Steps 1 and 2

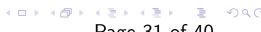
Step 1: Put F[x] in NNF. The result is $\exists x. F_1[x]$.

Step 2: Replace literals (left to right)

$$\neg (s < t) \Leftrightarrow t < s \lor t = s$$

 $\neg (s = t) \Leftrightarrow t < s \lor t > s$

The result $\exists x. F_2[x]$ does not contain negations.



Page 31 of 40

Ferrante & Rackoff's Method: Step 3

Solve for x in each atom of $F_2[x]$, e.g.,

$$t_1 < cx + t_2$$
 \Rightarrow $\frac{t_1 - t_2}{c} < x$

where $c \in \mathbb{Z} - \{0\}$.

All atoms in the result $\exists x. F_3[x]$ have form

- (A) x < t
- (B) t < x
- (C) x = t

where t is a term that does not contain x.

Ferrante & Rackoff's Method: Step 4 I

Construct from $F_3[x]$

- ▶ left infinite projection $F_{-\infty}$ by replacing
 - (A) atoms x < t by \top
 - (B) atoms t < x by \perp
 - (C) atoms x = t by \perp
- ▶ right infinite projection $F_{+\infty}$ by replacing
 - (A) atoms x < t by \perp
 - (B) atoms t < x by \top
 - (C) atoms x = t by \perp

Let S be the set of t terms from (A), (B), (C) atoms. Construct the final

$$F_4: F_{-\infty} \vee F_{+\infty} \vee \bigvee_{s,t \in S} F_3 \left[\frac{s+t}{2} \right] ,$$

which is $T_{\mathbb{Q}}$ -equivalent to $\exists x. F[x]$.

Page 33 of 40

Ferrante & Rackoff's Method: Step 4 II

- ▶ $F_{-\infty}$ captures the case when small $x \in \mathbb{Q}$ satisfy $F_3[x]$
- ▶ $F_{+\infty}$ captures the case when large $x \in \mathbb{Q}$ satisfy $F_3[x]$
- ▶ last disjunct: for $s, t \in S$ if $s \equiv t$, check whether $s \in S$ satisfies $F_3[s]$ if $s \not\equiv t$, in any $T_{\mathbb{Q}}$ -interpretation,
 - ▶ |S|-1 pairs $s,t \in S$ are adjacent. For each such pair, (s,t) is an interval in which no other $s' \in S$ lies.
 - ▶ Since $\frac{s+t}{2}$ represents the whole interval (s, t), simply check $F_3[\frac{s+t}{2}]$.

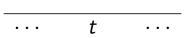
Ferrante & Rackoff's Method: Intuition

Step 4 says that four cases are possible:

1. There is a left open interval s.t. all elements satisfy F(x).

2. There is a right open interval s.t. all elements satisfy F(x).

3. Some term t satisfies F(x).



4. There is an open interval between two s, t terms such that every element satisfies F(x).

$$\frac{(\longleftrightarrow)}{\cdots s \uparrow t \cdots}$$

$$\frac{s+t}{2}$$

Page 35 of 40

Correctness of Step 4 I

Theorem

Let

$$F_4: F_{-\infty} \vee F_{+\infty} \vee \bigvee_{s,t \in S} F_3 \left[\frac{s+t}{2} \right] ,$$

be the formula constructed from $\exists x. F_3[x]$ as in Step 4. Then $\exists x. F_3[x] \Leftrightarrow F_4$.

Proof:

 \leftarrow If F_4 is true, then $F_{-\infty}$, F_{∞} or $F_3[\frac{s+t}{2}]$ is true.

If $F_3[\frac{s+t}{2}]$ is true, then obviously $\exists x. F_3[x]$ is true.

If $F_{-\infty}$ is true, choose some small x, x < t for all $t \in S$. Then $F_3[x]$ is true.

If $F_{+\infty}$ is true, choose some big x, x > t for all $t \in S$. Then $F_3[x]$ is true.

Correctness of Step 4 II

 \Rightarrow If $I \models \exists x. F_3[x]$ then there is value v such that

$$I \models F_3[v].$$

If $v < \alpha_I[t]$ for all $t \in S$, then $I \models F_{-\infty}$.

If $v > \alpha_I[t]$ for all $t \in S$, then $I \models F_{+\infty}$.

If $v = \alpha_I[t]$ for some $t \in S$, then $I \models F[\frac{t+t}{2}]$.

Otherwise choose largest $s \in S$ with $\alpha_I[s] < v$ and smallest $t \in S$ with $\alpha_I[t] > v$.

Since no atom of F_3 can distinguish between values in interval (s,t),

$$I \models F_3[v]$$
 iff $I \models F_3\left\lceil \frac{s+t}{2}\right\rceil$.

Hence, $I \models F\left[\frac{s+t}{2}\right]$. In all cases $I \models F_4$.

Page 37 of 40

Ferrante & Rackoff's Method: Example I

 $\Sigma_{\mathbb{O}}$ -formula

$$\exists x. \ \underbrace{3x+1 < 10 \ \land \ 7x-6 > 7}_{F[x]}$$

Solving for *x*

$$\exists x. \ \underbrace{x < 3 \ \land \ x > \frac{13}{7}}_{F_3[x]}$$

Step 4:
$$x > \frac{13}{7}$$
 in (B) \Rightarrow $F_{-\infty} = \bot$ $x < 3$ in (A) \Rightarrow $F_{+\infty} = \bot$

$$F_4: \bigvee_{s,t \in S} \underbrace{\left(\frac{s+t}{2} < 3 \land \frac{s+t}{2} > \frac{13}{7}\right)}_{F_3\left[\frac{s+t}{2}\right]}$$

Ferrante & Rackoff's Method: Example II

$$S = \{3, \frac{13}{7}\} \Rightarrow$$

$$F_3\left[\frac{3+3}{2}\right] = \bot \qquad F_3\left[\frac{\frac{13}{7} + \frac{13}{7}}{2}\right] = \bot$$

$$F_3\left[\frac{\frac{13}{7}+3}{2}\right]: \frac{\frac{13}{7}+3}{2} < 3 \land \frac{\frac{13}{7}+3}{2} > \frac{13}{7} = \top$$

$$F_4: \quad \bot \lor \cdots \lor \bot \lor \top = \top$$

Thus, F_4 : \top is $T_{\mathbb{Q}}$ -equivalent to $\exists x. F[x]$,

so $\exists x. \ F[x]$ is $T_{\mathbb{Q}}$ -valid.

Page 39 of 40

Example

$$\exists x. \ \underbrace{2x > y \ \land \ 3x < z}_{F[x]}$$

Solving for *x*

$$\exists x. \ \underbrace{x > \frac{y}{2} \ \land \ x < \frac{z}{3}}_{F_3[x]}$$

Step 4: $F_{-\infty} = \bot$, $F_{+\infty} = \bot$, $F_3[\frac{y}{2}] = \bot$ and $F_3[\frac{z}{3}] = \bot$.

$$F_4: \frac{\frac{y}{2} + \frac{z}{3}}{2} > \frac{y}{2} \wedge \frac{\frac{y}{2} + \frac{z}{3}}{2} < \frac{z}{3}$$

which simplifies to:

$$F_4: 2z > 3y$$

 F_4 is $T_{\mathbb{Q}}$ -equivalent to $\exists x. F[x]$.