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Presburger arithmetic has enjoyed a revival of 
interest in the last few years. The well-known de- 
cision procedure of Presburger [6] for a first- 
order theory of integer addition was improved by 
Cooper [2] who applied it within a program veri- 
fier. Subsequent attention is being given subdo- 
mains of Presburger arithmetic (PA) for the purpose 
of program verification (e.g. Shostak [7] and 
Suzuki and Jefferson [8] who concern themselves 
with extending universal PA by the addition of 
limited classes of funtions). On a less pragmatic 
level, attention has been given to the complexity 
of the decision problem for truth in PA. Fischer 
and Rabin [4] give a lower bound by establishing 
that every nondeterministic Turing machine that de- 

cides PA requires at least 2 2cn time to decide the 
truth of a PA formula of length n, for almost all 
n. Oppen [5] showns that the Cooper version of the 
Presburger algorithm (the Cooper-Presburger algo- 
rithm) yields a deterministic time bound of 

222cn lg n 

for deciding the truth of PA formulas of length n, 
for sufficiently large n and a suitable c > 0. 
Ferrante and Rackoff [3] show that the space re- 
quirements for a suitable deterministic decision 
procedure for PA is one exponent lower than Oppen's 
time bound. Given our present knowledge of various 
complexity trade-offs these upper bounds appear 
sharp. 

This paper concerns both the complexity as- 
pects of PA and the pragmatics of improving 
algorithms for dealing with restricted subcases of 
PA for uses such as program verification. We im- 
prove the Cooper-Presburger decision procedure and 
show that the improved version permits us to obtain 
time and space upper bounds for PA classes re- 
stricted to a bounded number of alternations of 
quantifiers. The improvement is one exponent less 
than the upper bounds for the decision problem for 
full PA. The pragmatists not interested in com- 
plexity bounds can read the results as substantia- 
tion of the intuitive feeling that the improvement 
to the Cooper-Presburger algorithm is a real, 
rather than ineffectual, improvement. (It can be 
easily shown that the bounds obtained here are not 
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achievable using the Cooper-Presburger procedure). 
The restriction of permitting only a fixed 

number of quantifiers is a natural one. Mathemati- 
cians have always found that statements become 
significantly more difficult to understand with 
each alternation of quantifiers. (Formal hierar- 
chies such as the arithmetic hierarchy support 
this.) Undoubtedly as a consequence of this ob- 
served increase in complexity, we rarely, if ever, 
deal in formulas with more than a few alternations 
of quantifiers, while we are relatively casual 
about the introduction of quantifiers of the same 
kind. Our results reflect this: the restricted 
classes limit the number of alternations but not 
the total number of quantifiers. 

Presburger Arithmetic 

We take Presburger Arithmetic (PA) to be the 
first-order theory of linear inequalities over the 
integers. Specifically, the language of PA is a 
first-order language over the non-logical alphabet 
0,i,+,-,~, using the following atomic symbols: 

b,-b; one binary 
string b for each 
non-negative integer 

constant symbols, 

xb; one binary 
string b for each 
non-negative integer 

variables, 

+ function symbol, 

predicate symbol. 

Terms have the form alXb I +...+anxb + 
n an+l' 

for ne0, where the a. are constant symbols and xb. 
1 1 

are variables.(We do not formalize the limited 
concatenation function used here.) If an a. is of 

i 
the form -b, we optionally employ parentheses. 
Typical terms are 0 and (-l)x0 + (101xll + (-10119. 
(Had we employed decimal notation instead of bina- 
ry notation, our results would change in very 
minor ways only.) 

Atomic formulas have the form tlSt 2 where t I 

and t 2 are terms. We also include the boolean 

values TRUE and FALSE as atomic formulas. The set 
LpA of formulas over this language is defined in- 

ductively from these atomic formulas in the usual 
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way, using connectives ~, A , V and quantifiers 
~and 3- (Of course, connectives ~ and z can be 
added as primitives; we prefer to consider them as 
definable functions.) 

The intended interpretation of the formula is 
as suggested by the notation, with the domain of 
interpretation the set of all integers. We denote 
by PA the set of true formulas in the set LpA of 

formulas defined above. 
The Cooper-Presburger algorithm takes two re~ 

lations definable in PA as primitive (in addition 
to the basic ~ relation) and we do likewise, The 
relations are "k divides t" and "k does not divide 
t", written klt and k~t respectively, where k is a 
positive integer (technically, the binary repre- 
sentation for the integer) and t is a term. We 
define klt as ~x(t=kx) where tl=t 2 denotes 

(tl~t 2) A (t2~tl). k~t is defined as ~(klt). We 

also adopt the shorthand tl-t 2 for tl+(-t2). The 

use of the defined relations = and < in stating 
the input formula is also possible without affect- 
ing our results; we choose to exclude their use 
for simplicity. 

Other formulations of Peano arithmetic are 
common. Often the domain of the interpretation is 
the non-negative integers; this is achievable here 
by adding 0~x to the input formula and forbidding 
the negation function. Usually the term ax, where 
a is the binary representation of an integer k and 
x is a variable, is not permitted; rather the 
equivlent term x+x+...+x (k times) is used. This 
alternative is significantly different because ax 
has length approximately log k (the log function 
is of base two throughout) whereas kx denotes a 
length k formula. However, it is possible to ex- 
press kx by an 0(log k) formula in a language dis- 
allowing terms ax. We illustrate the idea by a 
formula that expresses y=llx: 

3w(y=w+w+x A ~y(w=y+y+x A y=x+x)) 

(It is important that variable reuse occur so that 
only a fixed number of variables are needed for 
all kx formulas; see Fischer and Rabin [4].) Thus 
our results apply to formulations of PA excluding 
terms of the form ax. 

The Modified Presburger Algorithm 

As previously stated, the algorithm we give 
here is an improvement of Cooper's version of the 
Presburger algorithm, itself a definite improve- 
ment over the original formulation. The algo- 
rithm decides the truth of formulas in PA present- 
ed in prenex normal form (all quantifiers left- 
most) by the process of the elimination of quan- 
tifiers, proceeding from the innermost quantifier 
outward. By this we mean that an equivalent for- 
mula is found that does not contain the quantified 
variable being eliminated. When all quantifiers 
are eliminated, the formula is variable-free and 
can be checked rapidly for truth. Thus we need 
give only the process to eliminate each quantifier, 

We assume that the formula is of the form 
3xF(x) or VxF(x) with F(x) quantifier-free, and fur- 
ther assume that all "like terms" are collected in 
atomic formulas, e.g. replace x-4N2x-2 by -2Nx. The 
letters a,b,c and d represent terms not containing 

x; ~,~ and e are positive integers and j is a non- 
negative integer. The expression (b+j)/ex indi- 
cates that term b+j replaces ex at every occur- 
rence of ex in the formula; however, if the number 
of occurrences of x in a term is not a multiple of 
~, both sides of the relation are multiplied by 
and the replacement is made. 

We now give the modified Cooper-Presburger 
algorithm. 

Step i. If the given formula is VxF(x), replace 
VxF(x) by ~xNF(x). 

Step 2. Move all negation symbols that are to the 
right of every quantifier inward as far 
as possible (using de Morgan's laws) and 
adjust atoms so as to have only the fol- 
lowing forms as atoms (in particular, re- 

place ~(tl~t2) by t2+lStl): 

(i) exKa; 

(ii) b_<ex; 

(iii) 61(~x4c); 

(iv) e ~ (ax+d). 

The resultant formula is ~xF'(x). 

Step 3. 

(1) 

Step 4. 

(2) 

We define F_=(x) as the formula F(x) with 

all type (i) atoms of Step 2 replaced by 
TRUE and all type (ii) atoms of Step 2 
replace by FALSE. Replace 3xF' (x) by 

~jF_o~(j) vV~j[F'((b+j) c~x) A O-<j A 
b 

A ~I (b+j)] 

Let o be the least common multiple of all 
and e in atoms ~It and e ~t containing 

the variable j, Replace the formula ob- 
tained at Step 3 by 

owl o-i 
~/ Fib(j)V V V[F'((b+j)/mx) A 

j-0 b j=0 

A ~I (b+j)]. 

End of the procedure. 

In lines (i) and (2) above the disjunction V 
b 

is taken over all terms b in atoms of type (ii) of 
Step 2. 

Here, as for the Cooper-Presburger procedure, 
there is a dual form 

o-i o-i 
(3) ~/ F'(-j) V V V [F'((a-jl/mx) A 

co 

j=0 a j=0 

A ml (a-j)] 

where F (x) is as F_=(x) with TRUE and FALSE inter- 

changed. In implementation (3) should be used in 
place of (2) whenever the atoms of type (i) are 
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fewer in number than the atoms of type (ii). For 
simplicity of argument we will assume we eliminate 
the quantified variable x via (2) only; it is 
easily seen that a selection of (2) or (3) does 
not effect our results. 

The distinction between the algorithm pre- 
sented in Cooper [2] and the algorithm presented 
here is merely that we choose to normalize the co~ 
efficients of x in F(x) Only after an atom b~c~x 
has been selected to generate the replacement b+j 
for ~x throughout F(x). By such a postponement we 
do not need to find the least common multiple @ of 
all the coefficients of x in F(x), an event of ex- 
plosive potential on the magnitude of ~ if there 
exist many atoms of type b~x (and ~x~a) all with 
relatively prime coefficients of x. We need only 
demand that ~l(b+j) rather than that @ I(b+j). This 
trick gains one nothing if the different e's sub- 
sequently are all multiplied together as apparently 
occurs at Step 4. However, in processing a se- 
quence of eliminations of 3's only, the quantifiers 
can be imported inside the disjunctions created by 
preceding quantifier elimination, thus making it 
unnecessary to multiply all the coefficients to- 
gether simply because they occur also as ~'s in 
61t atoms somewhere in the processed formula. 
Clearly, the need to eliminate a ~ quantifier fol- 
lowing a string of type~...~upsets this since 
the negative symbol imported after conversion to 
~ leaves the 3 facing a conjunction of formulas. 

Thus the alternation of quantifiers is where we 
take our lumps, with strong consequence to the size 
of our constants, an undesirable situation as we 
shall see. 

Since the modification we make simply alters 
the timing of the normalization of coefficients of 
x in effect, the justification of our modification 
closely follows the justification for the Cooper- 
Presburger algorithm given in Cooper [2], so is 
not given here. However, the consequence of this 
modification is to provide results not otherwise 
obtainable. We consider these results now. 

Bounds on Constants Size 

Let LpA(m), ma0, denote the set of all closed 

formulas of LpA in prenex normal form with no more 

than m alternations of quantifiers. Let PA(m) me0, 
be the set of all formulas of LpA(m ) true under 

the intended interpretation. 
Our goal is to obtain space and time bounds 

on the (worst-case) computation effort to determine 
of formulas of LpA(m) if they are in PA(m). The 

first step in this direction is to obtain an upper 
bound on the magnitude of the coefficients of vari- 
ables and constant subterms that can occur in a 
formula after all quantifier elimination has oc- 
curred. We then follow the method of Ferrante and 
Rackoff [3] and use these bounds to determine 
bounds on variable substitution which leads to the 
desired space bound. 

If for integers j and k we have ]Jl ~ k we 
will say that j is limited by k. 

In the theorem that follows, the m=0 case is 
of little interest since better results are known; 
see e.g. Borosh and Treybig [i]. 

Theorem If a formula of length n in PA(m), m~0, is 
processed by the modified Cooper-Presburger algo- 

rithm, then in the resultant formula 

a) 

b) 

the largest coefficient is limited by 

2 n 
2n(2 n) 

the largest least cormnon multiple o (from 
Step 4) is limited by 

c) 

m+2 
cn 

2 2 ; and 

the largest integer encountered is limited 
by 

m+3 
2 2cn 

for some c>O and all n>4. 

Proof. Processing a formula by the algorithm 
given earlier means iterative elimination of 
quantifiers QlXl , ..., QpXp, in this order, from 

QpXp ... QlXlF(Xl ..... Xp), leaving a variable-free 

formula. Here each Qi is either .~ or V • We ob- 

tain bounds on the appropriate constants at each 
iteration and then obtain our desired result. Let 
~k denote the magnitude of the largest coefficient 

of any variable in the formula after the elimina- 
tion of k quantifiers. Coefficients are altered 
as a result of Step 3 only; they are altered by 
the substitution of b+j for ~x, with b and ~ de- 
termined by the term bN~x. To execute the substi- 
tution, the terms of the receiving inequality or 
divisibility relation are multiplied by ~(or i), 
the substitution for ~x made, and like elements 
collected. Because receiving relations have only 
one occurrence of a ~x term, at most one new oc- 
currence of each variable is introduced upon sub- 
stitution, so at most two like terms are combined 
upon collecting terms. Thus, 

~k+l ~ 2~ . 

This holds regardless of alternations of quanti- 
fiers. From Step 3 we observe that the ~ and e 
constants also are bounded by ~k after k quanti- 

fiers have been eliminated. 

If ~^N2 n then we see that 
u 2 n 

~n~2n(2 n) 

Two inequalities of form ~xNa or of form b~x 
are coefficient distinct iff there is at least one 
variable with different coefficients in the two 
inequalities. Thus two inequalities not coeffi- 
cient distinct differ only in the additive con- 

stant. Let d~ denote the number of coefficient 
J 

distinct inequalities that exist after i alterna- 
tions of eliminated quantifiers and j eliminations 
of quantifiers after the last alternation. Let 

q=d~, the intial number of coefficient distinct u 
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inequalities. It is the number of coefficient 
distinct inequalities rather than the total number 
of inequalities that determines the growth rate of 
o and consequently the growth rate of the additive 
constants in the linear terms. Let 4 denote the 
maximum number of quantifiers between alternations. 
Between alternations of quantifiers we effectively 
have a string of existential quantifiers (the ne- 
gations between universal quantifiers cancel out) 
and no negation symbol is imported to alter the 
the disjunctions introduced by successive elimina~ 
tion. This allows the ~x to be imported inside 
all the disjunctions, so that each3x has as its 
scope a formula containing no more inequalities 
than the formula that exists immediately following 
the previous alternation. We now determine the 

d o i' i~i~4. 

0 
d O = q, by definition; 

then 

0 <q2 
d I - . 

This follows because Step 3 generates at most 
q disjunctions of form~jG, where G contains at 

2 
most q inequalities. Thus q coefficient distinct 
inequalities might exist at this stage. Step 4 
generates no new coefficient distinct inequalitie~ 

Repeating this argument, we get 

0 < 4+1 
d 4 - q 

When an alternation occurs a negation symbol 
appears that must be moved inward. Since the 
then cannot be imported, we must view the string 
to the right of the 3 as a single entity and begin 
as if at the beginning but with a larger formula. 
Thus, 

d~ < q4+l 

1 < (dll)2 d I - 

and 

d41 _< (dll)4+1 q(£+l) 2 2 
= , = d I . 

Repeating this, we finally obtain 

d 4 ~ (d~) 4+I = q(4+l) m+l 
m 

We now want a bound for J at each quantifier 
elimination step. Our modification of the 
Presburger algorithm pays off here because each 
and e is bounded by ~k" We can bound the number 

of distinct ~'s and e's by the suitable d~. It 
J 

suffices to bound o uniformly, so in the following 

computation we bound q by n, ~0 by 2 n, and the 

number of quantifier removals also by n, where n 
is the input string length. 

no. of distinct coef.ineq. 
Max o ~ (max. coef. size) 

m -<[ ~n]d4 <[2n(2n)2n] n(4+l)m+l 

m+2 

<22cn , for some c > 0 and all n -> 2. 

To estimate the largest ~integer encountered in 
the formula after k quantifiers have been removed 
we must estimate the additive constant and the co- 
efficients. During a substitution an existing 
additive constant can be multiplied by a coeffi- 
cient and added to the constant from the substitu- 
tion term. If S k bounds the additive constants 

after k eliminations, then 

Sk+l ~2~kSk + ~k+l 

bounds the additive constants after k+l elimina- 
tions. If also ~k ~ Sk then S k bounds the addi- 

tive constants and the coefficients after k elimi- 
nation and thus bounds all integers encountered. 
We note that 

S k = 2 2cknm+2 

satisfies the recurrence equation above, specifi- 
cally 

~c(k+l)n m+2 ~ ~k 22cknm+2+22cnm+2 
2 z <212K(2n) z ] 

for all n > 4, for some c > 0. 

Finally, we determine Sn, a bound on all inte- 

gers encountered after the elimination of all 
quantifiers. Since Sn is S k for k=n, we have 

m+3 
2 2cn 

S ~  | 
n 

Space and Time Bounds 

In order to get the desired space bound and 
the related time bound for the determination of 
PA(m) we use the bound of the previous section to 
determine an upper bound on the range of the quan- 
tified variables, so that the unbounded quantifiers 
can be replaced by bounded quantifiers. To deter- 
mine if a formula is in PA(m) it then is sufficient 
to sequentially test (at worst) all possible vari- 
able substitutions, in each instance checking a 
variable-free formula. The space required is the 
space needed to write out the longest formula, a 
function of the size of the integers replacing the 
variables. The time needed to execute this enu- 
meration is then bounded in the traditional way. 

We prove two theorems needed for our result. 
We let Qx denote either 3x or Vx, and let QxSp 
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denote either 3xsp or Vxsp, where 3xNp indicates 
"there exists an x limited by p" and V xNp denotes 
"for all x limited by p". The two theorems are va- 
riations of theorems of Ferrante and Rackoff [3]. 

Theorem. If QxF(x, Xl, .... x k) is a formula of 

length n whose universal or existential closure 
is in LpA(m) and if integers nl,...,n k are bounded 

by w, then QxF(x,n I ..... n k) is true iff 

~(c+l)n m+3 

(Qx~(k.w+l)2 = )F(x,n I ..... n k) 

is true for some c>0 and all n>4. 

P~opf. We make use of the bounds established in 
the previous section; in fact, the constant c may 
be taken to be the value obtained there. We as- 
sume first that the quantifier Qx is 3x. 

If ~xF(x,n I ..... nk) is false then 

(~xNp)F(x,n I ..... n k) is false for any p>0 we 

choose. 
If 3xF(x,nl,...,nk) is true then we must es- 

tablish that ~x~p)F(x,n I .... ,n k) is true for the 

value p stated in the theorem. 
Let F' be the formula obtained by removal of 

the quantifiers of F using the quantifier elimina- 
tion procedure given earlier. Using earlier nota- 
tion, we note that the largest coefficient of F' is 
limited by Yk' in turn bounded by ~n" The largest 

constant in F' is bounded by S . Because of the 
n 

truth-preservation property of the quantifier- 
elimination procedure, we know for all x that 
F(X,nl,...n k) iff F'(x,n I ..... nk) , so we may seek 

the bound for (3x~p)F'(x,n I ..... nk). But 

~xF'(X,nl,...,n k) implies by the validity of the 

quantifier elimination process that either 

F' (j,n I ..... nk) or F'( (b+j)/=, n I ..... nk) with b 

and ~ determined by some atom b~x in F' and ONjSo, 
where a is the l.c.m, of certain ~'s and e's 
in F'. (Recall that one purpose of variable j is 
to make (b+j)/~ an integer.) Since ~i we bound 
(b+j)/~ by b+j. The term b is of the form 

k 
~ aix i + e with coefficients a i limited by ~n 

j=l 
and constant e limited by S . Thus, using results 

n 

from the previous theorem we have 

max (b+j) -< k. ~n W+Sn+°max 

m+3 m+2 
_< k.2n(2n) 2n w+2 2cn +2 2cn 

N(kw+l)22(c+l)nm+3 
=p. 

For this limit p we know there is an x limited by 
p such that F'(X,nl,...,nk) is true if 

3xF'(X,nl,...,nk) unless the latter holds because 

FJ~(J,nl,...,nk) holds. But the truth of 

FJ~(j,n I ..... nk) means that F'(x,n I ..... nk) is true 

for any x smaller than all values a/~ from atoms 
~xNa and all b/~ from atoms bN~x such that appro- 
priate divisibility and non-divisibility conditions 
are satisfied. Such an x is limited by the same 
bound as computed above because the a terms have 
the same bounds as the b terms. That is, 

I rain (a-j) 1 -<k- ~n" W+Sn+°max = bound [max (b+j) ]. 

Finally, we observe that if Qx is Vx the same 
bound for the quantifier holds because if 
VxF(x,nl,...,nk) is false then we can show by the 

above argument that there exists an x 0 limited by 

p such that ~F(x0,n I ..... nk). | 

Theorem. If P is a formula QlXl...QrXrF(Xl,...,Xr) 

of length n in LpA(m) where F is quantifier-free 

then P is true (i.e. in PA(m)) 

iff 
' 2 (c+l) nm+3 (c+2)n m+3 

(QlXl<-2 ) (Q2x2<-2 )... 

2(c+r)nm+3 

(QrXrN2 ) F (x I ..... x r) 

is true for some c>0 and all n>4. 

Proof. By the previous theorem, 

22(e+l)nm+3 

IXll ~ 

We now determine a bound for x~+ I assuming that for 

all jNi, 

22(c+j)nm+3 
Ixjl ~ 

We then have 

IXi+l I N (i.w+l)22(c+l)nm+3 

(i.22(c+i)nm+3+l)22(c+l)nm+3 

(c+(i+l))n m+3 
22 for n>4, 
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for some c>0 ( indeed the constant of the pre- 
vious theorems). The theorem follows. | 

The algorithm to determine of a formula in 
LpA(m) if it is in PA(m) is simply to try all pos~ 

sible instantiations of integers for variables up 
to the limit known for a minimal solution if such 
exists. Each proposed instantiation is quite 
easily evaluated. The total space required is 
clearly less than double the formula length when 
instantiated because the checking computations are 
local events. Because the truth evaluation of 
each instantiated linear inequality, divisibility 
and non-divisibility is a small polynomial in the 
length of the atom, the non-deterministic time 
agrees with the space bound except for an adjust- 
ment in the coefficient of the exponent. The time 
a deterministic machine needs to run such a com- 
putation has a bound of f.2 m ~  if f is the maxi- 
mum time between memory alterations. These facts, 
plus the fact that at most n variables can appear 
in the formula and each integer needs space the 
log of its value, yields the theorem we seek. 

Theorem. The membership in PA(m) (i.e. truth) of 
a formula in LpA(m ) of length n can be ascertained 

by a deterministic machine within space 

and within time 

2dn m+4 

m+4 
22en 

for appropriate d>0 and e>O for n>4. 
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