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. . . 
void remove(x : Node) {

Node prev = null;
Node current = root;
while (current != null) {
if (current = x) ...
else if (current.data < ...
else if (current.data > ...

,,,,

proof of 
the claim
(PART 1)

counterexample 
to the claim
(PART 2)

x.next.prev = x

tree is sorted
properties

Java source code

Proofs and Counterexamples for Java

Program 
Verifier

Claim:
Program satisfies 

properties



PART 1: Proofs



Jahob Verifier and Case Studies



Data Structures and Their Properties

acyclicity: ~next+(x,x)

next

prev

next next

prev prev

root x.next.prev == x

rightleft graph is a tree

rightleft elements are sorted

next nextfirst

3
size

value of size field equals the 
number of stored objects

size = |{data(n). (root,n)∈next*}|



Data Structure Verification using Jahob
Verified  correctness of
- hash table
- association list
- array-based list
- lists with cursor elements
- priority heap

More information on our site
http://JavaVerification.org

An Integrated Proof Language for Imperative Programs
ACM Conf. Prog. Language Design and Implementation’09

Karen Zee Martin Rinard

MIT

Full Functional Verification of Linked Data Structures
ACM Conf. Prog. Language Design and Implementation’08

Joint work with:

http://javaverification.org/


Statically Enforcing Contracts
of Widely Used Libraries

Method Summary
void add(int index, Object element) 

Inserts the specified element at the specified position in this list.

boolean add(Object element) 
Appends the specified element to the end of this list.

ArrayList documentation from http://java.sun.com :

ArrayList verified contract from http://JavaVerification.org :

void add(int index, Object element) 
content = {(i,e). (i,e) : old content ∧ i < index} ∪ {(index,element)}

∪ {(i,e). (i-1,e) : old content ∧ index < i} 
boolean add(Object element) 

content = old content ∪ {(size,element)}

http://java.sun.com/j2se/1.4.2/docs/api/java/util/ArrayList.html#add%28int,%20java.lang.Object%29
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Object.html
http://java.sun.com/j2se/1.4.2/docs/api/java/util/ArrayList.html#add%28java.lang.Object%29
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Object.html
http://java.sun.com/
http://javaverification.org/
http://java.sun.com/j2se/1.4.2/docs/api/java/util/ArrayList.html#add%28int,%20java.lang.Object%29
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Object.html
http://java.sun.com/j2se/1.4.2/docs/api/java/util/ArrayList.html#add%28java.lang.Object%29
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Object.html


Jahob Verifier for Java
Specifications written in subset of Isabelle/HOL

• ghost and ‘dependent’ specification variables 
of HOL type (sets, relations, functions)

Jahob proves
– data structure preconditions, postconditions
– data structure invariants
– absence of run-time errors

We can make verification easier through:
1. decison procedures for expressive logics
2. manual proof decomposition techniques
3. techniques  that combine decision procedures



Example: Linked List
class List {
private List next;
private Object data;
private static List root;
private static int size;  

public static void addNew(Object x) {
List n1 = new List();
n1.next = root;
n1.data = x;
root = n1;
size = size + 1;

}
}

nextnext next

root

data data data data

x

invariant : size = |{data(n). next*(root,n)}|

size: 34
Is invariant preserved?



Verification Condition for Example

¬next0*(root0,n1) ∧ x ∉ {data0(n) | next0*(root0,n)} ∧
next=next0[n1:=root0] ∧ data=data0[n1:=x] 

|{data(n) . next*(n1,n)}| = 
|{data0(n) . next0*(root0,n)}| + 1

This VC belongs to an expressive logic
– transitive closure * (in lists, but also in trees)
– uninterpreted functions (data, data0)
– cardinality operator on sets | ... |

How to prove such complex formulas?

“The number of stored objects has increased by one.”



Jahob Verifier for Java
Specifications written in subset of Isabelle/HOL

• ghost and ‘dependent’ specification variables 
HOL type (sets, relations, functions)

Jahob proves
– data structure preconditions, postconditions
– data structure invariants
– absence of run-time errors

We can make verification easier through:
1. decison procedures for expressive logics
2. manual proof decomposition techniques
3. techniques  that combine decision procedures



Automated Provers in Jahob



Using FOL Provers in Jahob
Two main classes of provers targetted
1.SMT provers (Z3, CVC3, Yices)

using SMT-LIB interface
– good for arithmetic

2.TPTP provers (E, Vampire, SPASS)
using TPTP interface
– good for quantified formulas



Idea of FOL Translations
• Use quantifiers for set algebra operations
content = old content U {(elem,len)} 
ALL x::obj. ALL y::int.

content(x,y) =( old_content(x,y) \/ (x=elem /\ y=len))
• Eliminate lambda exprs, fun. updates, if-then
(icontent :: obj => (obj*int) set)   := 
% o::obj. if (o=this) then  this..icontent U {(elem,len)}

else o..icontent   
ALL o::obj. ALL x::obj. ALL y::int.

icontent(o,x,y) = ...



WS2S: Monadic 2nd Order Logic
Weak Monadic 2nd-order Logic of 2 Successors
In HOL, satisfiability of formulas of the form:

tree[f1,f2] & F(f1,f2,S,T)
where

- tree[f1,f2] means f1,f2 form a tree
F ::= x=f1(y) | x=f2(y) |x∈S | S⊆T | ∃S.F | F1 Æ F2 | ¬F 

- quantification is over finite sets of positions in tree
- transitive closure encoded using set quantification

Decision procedure
- recognize WS2S formula within HOL
- run the MONA tool (tree automata, BDDs)

f2f1

f2f1 f2f1



New Decision Procedures: BAPA
Boolean Algebra with Presburger Arithmetic

Essence of decidability: Feferman, Vaught 1959
Our results

– first implementation for BAPA (CADE’05)
– first, exact, complexity for full BAPA (JAR’06)
– first, exact, complexity for QFBAPA (CADE’07)

S ::= V  |  S1 ∪ S2 |  S1 Å S2 |  S1 \ S2
T ::= k  |  C  | T1 + T2 |  T1 – T2 | C·T | |S|
A ::= S1 = S2 |  S1 ⊆ S2 |  T1 = T2 |  T1 < T2
F ::= A |  F1 Æ F2 |  F1 Ç F2 | ¬F | ∃S.F | ∃k.F



Generalizations of BAPA

Decision Procedures for Multisets with Cardinality Constraints,
Verification, Model Checking, and Abstract Interpretation, 2008

Linear Arithmetic with Stars
Computer Aided Verification, 2008

Fractional Collections with Cardinality Bounds
Computer Science Logic, 2008

Recently: role of BAPA in combining logics

work with

Ruzica Piskac, 2nd year 
PhD student in LARA group

sets & multisets with cardinalities



Jahob Verifier for Java
Specifications written in subset of Isabelle/HOL

• ghost and ‘dependent’ specification variables 
HOL type (sets, relations, functions)

Jahob proves
– data structure preconditions, postconditions
– data structure invariants
– absence of run-time errors

We can make verification easier through:
1. decison procedures for expressive logics
2. manual proof decomposition techniques
3. techniques  that combine decision procedures



Manual Decomposition: 
Two Approaches

One option: use e.g. Isabelle to prove VC
Problem: users must map  VC Java code
Alternatives:

1) Make interactive provers that work with Java
– KeY
2) Programming-like constructs for verification
– languages with dependent types (functional)
– proof decomposition commands in Jahob

(hope: make it easy for programmers to use)



Proving Difficult VCs in Jahob

difficult vc

program

spec

proof script

vc gen Isabelle

easier vc

program

spec
vc gen automated 

provers

proof 
commands

Claim: proof commands fit well with programs

interactive proof on VC:

source code proofs:



Specification Variables
for Manual Proof Decomposition

for Combination of Provers, 
and for Specification



Specifying Linked List in Jahob

nodesnextnext nextroot

data data data data
content

Abstract the list with its content (data abstraction)



List.java Screenshot

public interface is simple
specs as verified comments

(a reason to focus on datastructures)



List n1 = new List();
n1.next = root;
n1.data = x;
root = n1;
size = size + 1;

//: nodes = nodes ∪ {n1}

Verification Condition for size

nodes
next

n1
next next

root

data data data data

x content

next0, data0, size0,
nodes0, content0

next, data, size, nodes, content
next=next0[n1:=root0] ∧ data=data0[n1:=x] ∧ … 

MONA: nodes = nodes0 ∪ {n1}
SPASS: content = content0 ∪ {x}
BAPA: |content| = |content0| + 1

∴ |{data(n) | (n1,n) ∈ next*} | = 
|{data0(n) | (root0,n) ∈ next0*}| + 1



Verifying the addNew Method

Verification steps
• generate verification condition (VC) in HOL stating
“The program satisfies its specification”

• split VC into a conjunction of smaller formulas Fi

• approximate each Fi with stronger F’i in HOL subset 
prove each F’i  conjunct w/ SPASS,MONA,BAPA

Jahob
List.java

SPASS

MONA

BAPA

F1 & F2 & F3

F1

F2

F3



Verifying the addNew Method

Jahob
List.java

SPASS

MONA

BAPA

F1 & F2 & F3

F1

F2

F3

decomposition was enabled by specification variables



finer-grained decomposition
Natural Deduction Commands

for Manual Proof Decomposition



Guarded Commands and wp
Verification condition generation (Jahob, Spec#):

programs,spec guarded commands VC

Guarded command c: wp(c,G):

assume F F G

assert F F /\ G

havoc x      x=* ALL x. G

c1 [] c2       if (*) c1 else c2 wp(c1,G) /\ wp(c2,G)



Assertions as Lemmas
Command note(F)

Meaning assert(F); assume(F)

soundness note(F) ≤ skip

wp(note F, G) F /\ (F G)

verification conditions F,  F G

• Useful and intuitive mechanism
• Programmers familiar with assertions



Constrained Choice for Quantifiers
Command fix x suchThat F {

c;
note(G)

}

Meaning

assert (∃x.F);
havoc(x);
assume(F);
c;
assert(G);
assume (∀ x.(F G))

1) non-deterministic change
havoc x suchThat F

2)  pick witness for ∃x.F in c

Buy one command
Get three uses

3)  prove universal assertion



Jahob Verifier for Java
Specifications written in subset of Isabelle/HOL

• ghost and ‘dependent’ specification variables 
HOL type (sets, relations, functions)

Jahob proves
– data structure preconditions, postconditions
– data structure invariants
– absence of run-time errors

We can make verification easier through:
1. decison procedures for expressive logics
2. manual proof decomposition techniques
3. techniques  that combine decision procedures



Combining Decision Procedures

• Widely studied problem
• At the heart of SMT provers
• In practice: disjoint theories (share only ‘=‘)
• Our generalization: decide quantifier-free 

combination of quantified formulas sharing 
set variables and set operations

• Recent EPFL technical report:
On Combining Theories with Shared Set Operations

http://lara.epfl.ch/~kuncak/papers/WiesETAL09CombiningTheorieswithSharedSetOperations.pdf


Formula Decomposition
Consider a formula

|{data(x) . next*(root,x)}|=k+1
Introduce fresh variables denoting sets:

A = {x. next*(root,x)} ∧
B = {y. ∃ x. data(x,y) ∧ x ∈ A} ∧
|B|=k+1

Conjuncts belong to decidable fragments
Claim: quantifier-free combination is decidable

1) WS2S
2) C2

3) BAPA



Combining Decidable Logics

Satisfiability problem expressed in HOL:
(all free symbols existentially quantified)

∃ next,data,k. ∃ root,A,B.
A = {x. next*(root,x)} ∧
B = {y. ∃ x. data(x,y) ∧ x ∈ A} ∧
|B|=k+1

We assume formulas share only:
- set variables (sets of uninterpreted elems)
- individual variables, as a special case - {x}

1) WS2S
2) C2

3) BAPA



Satisfiability problem expressed in HOL,
after moving fragment-specific quantifiers

∃ root,A,B. 
∃ next. A = {x. next*(root,x)} ∧
∃ data. B = {y. ∃ x. data(x,y) ∧ x ∈ A} ∧
∃ k. |B|=k+1

Extend decision procedures to 
projection procedures for WS2S,C2,BAPA
applies ∃ to all non-set variables

Combining Decidable Logics

FWS2S

FC2
FBAPA

: {root}⊆A 

: |B|≤|A|: 1 ≤ |B|

∃ root,A,B. {root}⊆A ∧|B|≤|A| ∧ 1 ≤ |B|

Conjunction of projections satisfiable so is original formula



Decision Procedure for Combination

1. Separate formula into WS2S, C2, BAPA parts
2. For each part, compute projection onto set vars
3. Check satisfiability of conjunction of projections
Def: Logic is BAPA-reducible iff there is an algorithm 

that computes BAPA formula eqiuvalent to 
existential quantification over non-set vars. 

Thm: WS2S, C2, EPR, BAPA are BAPA-reducible.
Proof: WS2S – Parikh image of tree language is PA

C2 – proof by Pratt-Hartmann reduces to PA
EPR – proof based on resolution

Details in technical report



Jahob Verifier for Java
Specifications written in subset of Isabelle/HOL

• ghost and ‘dependent’ specification variables 
HOL type (sets, relations, functions)

Jahob proves
– data structure preconditions, postconditions
– data structure invariants
– absence of run-time errors

We can make verification easier through:
1. decison procedures for expressive logics
2. manual proof decomposition techniques
3. techniques  that combine decision procedures



Summary: Jahob Verifier

Bohne 
Loop Invariant 

Inference

joint work with:
Thomas Wies

Andreas Podelski



Moving Forward: Rich Model Toolkit
Models for sw&hw (transition formulas)
Theorem proving and verification questions 

independent of the programming language
Applications to: Scala, Java, C
Goals

– common representation formats
– increase automation of verifiers, provers

• challenge  problems, run competitions
– inspire new verifiable language designs
– executing specifications, synthesis



PART 2: Counterexamples

Joint work with

Milos Gligoric Tihomir Gvero
Darko Marinov 

UIUC EPFL



. . . 
void remove(x : Node) {

Node prev = null;
Node current = root;
while (current != null) {
if (current = x) ...
else if (current.data < ...
else if (current.data > ...

,,,,

proof of 
the claim
(PART 1)

counterexample 
to the claim
(PART 2)

x.next.prev = x

tree is sorted
properties

Java source code

Proofs and Counterexamples for Java

Program 
Verifier

Claim:
Program satisfies 

properties



Adapting Our Proof Techniques to 
Generate Counterexamples?

Jahob was designed to generate proofs
Many approximations in one direction only:

– verification condition implies correctness claim
– approximated formula implies original one

Theorem provers give no counterexample
– FOL provers complete for proofs

• no complete FOL proof system for non-validity
(undecidability of FOL)

– or feature not implemented in prover



Possible Solutions
First approach: avoid approximation

– use decision procedures
– use complete combination methods
– keep track what was approximated, refine
– promising in long term

Second approach – rest of this talk
– systematic test-case generation
– end-to-end solution for counterexamples
– supports: loops, all computable invariants
– effective, widely and immediately applicable



Testing (with Runtime Checks)

Test Case Generation

Checking Hoare Triples
Program c with state (heap) h

havoc(h); arbitrary initial state

assume(P(h)); precondition

c; program
assert(Q(h)) postcondition

assume(size(h)<N); bound



Test Case Generation

Checking Hoare Triples
Program c with state (heap) h

havoc(h); arbitrary initial state

assume(P(h)); precondition

View test generation as systematic execution of 
(bounded-choice) guarded command language

x = getInt(0,N) means:
havoc(x); assume(0 < x <= N)

assume(size(h)<N); bound



Systematic Execution Example

assume(x1 < x2);

static void main(int N) {
x0 = getInt(0, N);
x1 = getInt(0, N);
x2 = getInt(0, N);
assume(x0 < x1);
assume(x1 < x2);

}

x0 = 0 x0 = 1

x0 = getInt(0, 1);

x1 = getInt(0, 1);

x1 = 0 x1 = 1

x2 = getInt(0, 1); x2 = getInt(0,1);

x2 = 0

assume(x0 < x1);
assume(x1 < x2);

…

assume(x0 < x1);
x2 = 1

…

N = 1



Delayed Execution (for Integers)

x0 = getInt(0,1);
x1 = getInt(0,1);
x2 = getInt(0,1);
assume(x0< x1);
assume(x1 < x2);

x0 = Susp(0,1);
force(x0);
x1 = Susp(0,1);
force(x1);
x2 = Susp(0,1);
force(x2);
assume(x0 < x1);
assume(x1 < x2);

eager evaluation

x0 = Susp(0,1);
x1 = Susp(0,1);
x2 = Susp(0,1);
force(x0);
force(x1);
assume(x0 < x1);
force(x2);
assume(x1 < x2);

delayed executionoriginal code



Linked Data Structure: Red-Black Tree
class TreeSet implements Set {
int size;
Node root;

static class Node {
Node left, right, parent;
boolean color;
int value; 

}

void add(int v) { ... }
void remove(int v) { ... }

}

2

31

3
size

Example Tree

Red-black tree invariants:
– treeness
– coloring
– ordering



Object Pools: Abstractly Choosing Objects
(avoids isomorphisms)

static void main(int N) {
TreeSet  t = new TreeSet(); 
t.initialize(N, N);
assume(t.isRBT()); 
int v = getInt(0, N);
t.remove(v); 
assert(t.isRBT());

}

void initialize(int maxSize, int maxKey) {
size = getInt(1, maxSize);
ObjectPool<Node> nodes = 

new ObjectPool<Node>(size);
root = nodes.getAny();
for (Node n : nodes) {

n.left = nodes.getAny();   
n.right = getAny();
n.parent = nodes.getAny();
n.color = getBoolean();
n.key = getInt(1, maxKey); 

} }

another way:
n= nodes.getNew()
(pick object distinct 
from previous ones)



Implementation

Implemented in Java Pathfinder from NASA
Explicit-state model checker working on bytecodes
Implemented delayed execution, object pools

Contribution incorporated by JPF developers



Delayed Choice is Essential for Efficiency

Eager Choice Delayed Choice
data structure N time [s] time [s]

RedBlackTree 7
8
9

9.96
65.67

449.17

3.24
13.85
64.24

DAG 3
4
5

5.68
out of mem

-

0.69
6.41

1,013.75
HeapArray 6

7
8

16.66
304.32

8,166.77

4.12
32.43

318.59
SortedList 6

7
8

5.94
900.67

1865.55

0.64
2.38
9.85



generator time [s] actual
bugs 
found

AnnotatedMethod 24.77 2
RefactoringGet 5.30 1
DeclaredMethodsReturn 8.22 1
RefactoringSet 5.33 1
StructureClass 10.34 4
DeclaredFieldTest 51.67 1
ClassCastMethod 47.57 1

Testing the Framework and Java Pathfinder



Conclusions
Jahob verifier

• specifications in subset of Isabelle/HOL
• applied to verify many data structures

Making verification easier through:
1. decison procedures for expressive logics
2. manual proof decomposition techniques
3. techniques  that combine decision procedures

Finding counterexamples using test generation
• delayed execution essential for performance
• found bugs in real code, incorporated into JPF
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