

Linear types :
A « simple » way to derive safety properties of programs

Software Analysis and Verification
30 avril 2009

Intuition : Using types to represent properties

function addition(x, y)
{

assume(« x is integer »);
assume(« y is integer »);
z = x + y;
assert(« z is integer »);

}

function addition(int x, int y)
{

int z = x + y;
}

Intuition : Using types to represent properties

@postcondition(return_value == x)
function invariant(Objet x)
{

// Computations
...

return x;
}

function invariant(const Objet x)
{

// Computations
...

return x;
}

Remainders about typing

Typing judgement :

Γ ├ t : T

« under the assumptions Γ, t has type T »

Typing rules :

J1 J2
J

« if the typing judgement J1 and J2 hold, then J also hold »

Remainders about typing

Example of rules :

Example of typing derivation :

x : T, Γ ├ x : T
Γ ├ t1 : int Γ ├ t2 : int

Γ ├ t2 + t2 : int

x : int, y : int ├ x : int x : int, y : int ├ y : int

x : int, y : int ├ x + y : int

Why linear types?

Let us go back to the const example ...

// postcondition(o.data == return_value.data);
const Objet* invariant(const Objet* o, Objet* x)
{

function1(o);
function2(o, x);

return o;
}

The C compiler accepts this program. Can we assert that the postcondition holds?

Answer 1 : No, we are in C, so much evil things can be done (including unsafe
casts) that there is no way that we can assert anything.

Well... Then, assuming that no unsafe C operation is performed in the program, can
we assert that the postcondition holds?

Answer 2 : We still can't. For example, invariant could be called like this :

Objet o;
invariant(&o, &o);

Why linear types?

Modelling state changes [1] (in functional languages):

let workon = function x0 ->
 let x1 = concat x0 'h' in
 let x2 = concat x1 'e' in
 let x3 = concat x2 'l' in
 let x4 = concat x3 'l' in
 let x5 = concat x4 'o' in
 x5

« x0, x1, x2 … x5 » are successive instances of the same variable that sees his state
updated :

We can say that the value of x0 is « neither lost nor duplicated »

References :

[1] Linear Types may change the world, by P. Wadler

Why linear types?

But what if things get most complex?

Let's consider a function where we have a variable x of type 'File'. We
want the following properties to hold :

- At the end of the function, we still have access to a variable referring
to this file and only to one. (non-duplication, non-destruction)

- If during the function, we perform an operation on a file, we want the
file that is available at the end of the function to reflect the operation
that we performed (no temporary duplication, operations are always
performed on the live object).

Linear types : simple version

Idea : Each variable must be used once and exactly once.

type Tree = Leaf of int | Node of Tree * Tree

let join = function (x:Tree, y:Tree) -> Node (x, y)

Valid

Linear types : simple version

Typing rules for basic lambda calculus :

A, x : T ├ x : T x : T ├ x : T A, x : T ├ x : T

A├ t1 : T → U A├ t2 : T

A├ t1 t2 : U

A├ t1 : T → U B├ t2 : TA├ t1 : T → U A├ t2 : T

A, B├ t1 t2 : U

A, x : T├ t : U

A├ (λx : U. t) : T → U
unchanged

Linear types : simple version

But in case of branching, a single variable may appear more than once ...

type Bool = True | False
type Tree = Leaf of int | Node of int * Tree * Tree

let join = function (x:Tree, y:Tree) -> case x of
 Leaf i → Node (Leaf i, y)
| Node (i, u, v) → Node(i, join(u, y), v)

Valid

Linear types : simple version

Typing rules for composed types :

A├ t : T
A, x : T1├ t1 : U
A, x : T2├ t2 : U

 A├ case t of C1 x → t1
 C2 x → t2 : U

for T = T1 * T2 :

A├ t1 : T1 A├ t2 : T2

A├ (t1, t2) : T

A├ t1 : T1 B├ t2 : T2

A,B├ (t1, t2) : T

for T = C1 T1 | C2 T2 :

A├ t : T
B, x : T1├ t1 : U
B, x : T2├ t2 : U

A,B├ case t of C1 x → t1
 C2 x → t2 : U

Guarantees of linear types

So, what guarantees does linear types provide to the
programmer?

1. Non-aliasing : If a variable x is of a linear type T, then x is the
only reference to this object.

2. Memory management : if an allocated object x is given to a
function f that returns an object y, then x is not leaked : it must be
accessible through y.

Guarantees of linear types

But we can do even better!

Remember the problem we had with the const example?

Now imagine ...

// postcondition(o.data == return_value.data);
const Objet* invariant(const non-aliased Objet* o, Objet* x)
{

function1(o);
function2(o, x);

return o;
}

Now the postcondition would hold!

Guarantees of linear types

In the same way, we can embed additional state information in types.

[2] presents an interesting extension of programming language that is especially
useful when using linear types : a function may change its parameter types.

Imagine that we have two types : opened file and closed file.

Now let's consider these three functions:
- open : (f : closed file → opened file)
- read : (f : opened file → opened file)
- close : (f : opened file → closed file)

References :

[2] Typestate : A programming language concept for enhancing software reliability
by R.E. Storm and S. Yemini

Guarantees of linear types

open : (f : file [closed → opened])
read : (f : file [opened])
close : (f : file [opened → closed])

function amivalid(closed file f1, closed file f2)
{
 open(f1); // f1: opened, f2: closed
 read(f1); // f1: opened, f2: closed
 open(f2); // f1: opened, f2: opened
 close(f1); // f1: closed, f2: opened
 read(f2); // f1: closed, f2: opened
 close(f2); // f1: closed, f2: closed
}

For this extension to have a meaning, we must guarantee non-aliasing of f1 and f2
=> linear types.

The End?

So is that all?

Unfortunately, no...

Because it is impossible to use linear types!

Problems of linear types

- Conceived for functionnal programs with no mutable
references

- Cannot be used together with non-linear types (!)

- No support of multiple read access.

Problems of linear types

Problem : Conceived for functionnal programs with no mutable variable

Fortunately, we can interpret an imperative program as a succession of
environnement changes :

function(int x, int y)
{

y = y+1;
x = y;
return x;

}

can be interpreted as :

function(int x0, int y0)
{

let (x1, y1) = (x0, y0+1) in
let (x2, y2) = (y1, y1) in
x2;

}

Problems of linear types

Problem : Conceived for functionnal programs with no mutable variable

Fortunately, we can interpret an imperative program as a succession of
environnement changes :

And if we have :

class Obj {Obj1 l1, Obj2 l2}

function(Obj x, Obj2 y)
{

x.l2 = y;
return x;

}

can be interpreted as :

function(Obj x0, Obj2 y0)
{

case x0 of Obj(x0l1, x0l2) →
let (x1l1, x1l2, y1) =

(x0l1, y0, y0) in
Obj(x1l1, x1l2)

}

Problems of linear types

Problem: Cannot be used together with non-linear types (!)

This is the main problem that is discussed in [3].

To quickly see the problem, let's consider that we use both linear types and non-
linear types, that both have their own distinct rules. Then, let's look at the
following program :

 linear class File { … }
 non-linear class NLFile { File f }

 function evil(File a)
 {

 NLFile nl1 = new NLFile(a);
 NLFile nl2 = nl1; // legit, NLFile non-linear
 woops(nl1.f, nl2.f); // illegal duplication of a

 }

References :

[3] Adoption and Focus : Practical linear types for imperative programming
by M. Fähdrich and R. DeLine

Problems of linear types

Problem: Cannot be used together with non-linear types (!)

It is though possible to use non-linear types with linear types. [1] proposed
additionnal typing rules to allow such a mix, but it enforced two rules :

- linear types may contain both linear and non-linear subtypes

- non-linear types may contain only non-linear types

References :

[1] Linear Types may change the world, by P. Wadler

This restriction is not acceptable in practice !

Adoption and Focus : General Idea

References :

[3] Adoption and Focus : Practical linear types for imperative programming
by M. Fähdrich and R. DeLine

We now present the system proposed in [3], which aims is to allow linear references in
non-linear containers.

The main idea is to avoid making separating rules for linear types and non-linear types,
but instead :

- Treat at the origin all types as non-linear.

- Track the possible aliasing status of variables.

- When required, turn a non-aliased variable into a linear type.

Adoption and Focus : General Idea

To explain how this abstraction of a linear type work, we will look at the following code :

class Dictionnary
{

Map<Name, Cell> index_by_name;
Map<BirthDate, Cell> index_by_birthdate;

}

class Cell
{

linear Array<int> content;
}

function allocate() : Cell
{

let cell = new Cell;
cell.content = new Array(10);
return cell;

}

The idea : The lifetime of cells is binded to the dictionnary. If we look at only one
dictionnary cell at a time, we should be fine.

Adoption and Focus : General Idea

function safe(linear Dictionnary dct, linear Dictionnary dct2,
 Name n)

{
Cell cell = dct.lookup(n);
Cell cell2 = dct2.lookup(n);
// Here cell and cell2 refer to different objects.
...

}

The idea : The lifetime of cells is binded to the dictionnary. If we look at only one
dictionnary cell at a time, we should be fine.

This is what we will do : when we want to associate a linear type to a non-linear
one, we have to provide a « scope », which must be of a linear type. Then,
access to the « adopted » linear type will require a « key » associated to the
scope, and only one linear objet to the scope can be accessed at the same time.

Restricting scope and access

To perform this access control, we need a mechanism that tells us :

- what are the « scopes » of the variable

- if a variable of the same scope as already been opened or not.

To do this, we will use capabilities as in [4]. The idea is to change the typing
statements to :

References :

[4] Typed memory management in a calculus of capabilities, by K. Crary, D. Walker
and G. Morisett

Γ ; C ├ t : T ; C'

where C are the input capabilities
and C' the output capabilities

Restricting scope and access

First, we define new types :

1. x : tr(a) means « x is unique and locked. You need the capability a to access
it, and if you don't have the capability, i will not even tell you the real type of x»

2. x : a ▹ t means « x is protected by a. You can access non-linear components
of t freely, but, you will need to use a capability relating to a to access linear
components ».

Capabilities are of the form : « a → h » where a is an identifier and h is a heap type
(an object stored on the heap).

 This capability means : « you can access variables of type tr(a) and this variable is
of type h ».

Restricting scope and access

So how does these capabilities emulate linearity?

let's assume we have a variable x of type tr(a) and that the capability {a → h} is
present. Then, x behaves « almost » as a linear type :

- x can be aliased, but by doing so you keep the type tr(a) so such aliases can be
determined at compile-time : if two variables have the same type tr(a), then they refer
to the same object.

- x can be destroyed if the capability disappears {a → h}. Although, if the post
condition of the method requires the capability to present, it means x cannot be
consumed.

function linear(x : tr(a))
 pre { a → h }
 post { a → h }
{

...
}

Adoption

New syntaxic construct :

let x = adopt e1 by e2

e1 and e2 must both have a linear type. This expression binds e1 to e2 in the
sense that e1 is now restrained to the scope of e2.

Let's look at the typing rule :

Γ ; C ├ e1 : tr(a1) ; C1
Γ ; C1 ├ e2 : tr(a2) ; C2, {a1 → h}

a2 is available in C2

Γ ; C ├ adopt e1:h by e2 : a2 ▹ h ; C2

Adoption

We will now go back to our example :

class Dictionnary
{

Map<Name, Cell> index_by_name;
Map<BirthDate, Cell> index_by_birthdate;

}

class Cell
{

linear Array<int> content;
}

function allocate(dct : tr(ad)) : ad▹Cell
pre { ad → Dict }
post { ad → Dict }

{
let cell = new Cell;
let arr = new Array(10);
cell.content = arr;
let cell2 = adopt cell by dct;
return cell2;

}

Adoption

function allocate(dct : tr(ad)) : ad▹Cell
pre { ad → Dict }
post { ad → Dict }

{
let cell /* : tr(a1) */ = new Cell;
// capabilities : {ad → Dict, a1 → Cell}
let arr /* : tr(a2) */ = new Array(10);
// capabilities : {ad → Dict, a1 → Cell, a2 → Array<int>}
cell.content = arr;
// capabilities : {ad → Dict, a1 → Cell}
let cell2 /* : ad ▹ Cell */ = adopt cell by dct;
// capabilities : {ad → Dict}
return cell;

}

Let's look at what really happens :

Focus

Now that we can store linear types in non-linear ones, let's look at how we
access such linear types that are « unsafely » stored.

New syntaxic construct :

let x = focus e1 in e2

the result of e1 should be a non-linear object with usually linear components.
The focus allows x to become a linear alias of this result during e2. The idea is
that we will ensure that x is really linear in e2 by :

- forbidding access to every object that may be an alias of x or of one of its
component

- requiring that x is still alive at the end of e2.

Γ ; C ├ e1 : a1 ▹ h ; {a1 → h?}, C1
a2 is fresh

Γ, x: tr(a2) ; C1, {a2 → h} ├ e2 : T ; C2, {a2 → h}

Γ ; C ├ let x = focus e1 in e2 : T ; {a1 → h?}, C2

Focus

class Dictionnary
{

Map<Name, Cell> index_by_name;
Map<BirthDate, Cell> index_by_birthdate;

}

class Cell
{

linear Array<int> content;
}

function resize(cell : ad▹Cell, size : int) : Unit
pre { ad → Dict }
post { ad → Dict }

{
let newa = new Array(size);
let fcell = focus cell in
{

let olda = fcell.content;
copy(olda, newa);
fcell.content = newa;
free(olda);

}
}

Back to linear types in imperative programming

function resize(cell : ad▹Cell, size : int) : Unit
pre { ad → Dict }
post { ad → Dict }

{
let newa = new Array(size);
let fcell = focus cell in
{

let olda = fcell.content;
copy(olda, newa);
fcell.content = newa;
free(olda);

}
}

Side question : Are 'copy' and 'free' legitimate, knowing that olda and newa are of
linear types inside the focus scope?

Copy : Yes. We copy the internal of the array only, not the array itself, and
the internal of the array are of non-linear type.

Free : No! Destroying the array breaks the survivability of linear objets that we
required.

… but we will make an exception !

Focus

function resize(cell : ad▹Cell, size : int) : Unit
pre { ad → Dict }
post { ad → Dict }

{
let newa /* tr(a1) */ = new Array(size);
// capabilities : { ad → Dict, a1 → Array<int> }
let fcell /* tr(a2) */ = focus cell in {

// capabilities : { a1 → Array<int>, a2 → Cell }
let olda /* tr(a3) */ = fcell.content;
// capabilities : { a1 → Array<int>, a3 → Array<int>,
 a2 → {content = tr(a3)} }
copy(olda, newa);
// capabilities : { a1 → Array<int>, a3 → Array<int>,
 a2 → {content = tr(a3)} }
fcell.content = newa;
// capabilities : { a1 → Array<int>, a3 → Array<int>,
 a2 → {content = tr(a1)} }
// rebuilding cell...
// capabilities : { a2 → Cell, a3 → Array<int> }
free(olda);
// capabilities : { a2 → Cell }

}
// capabilities : { ad → Dict }

}

Adoption and Focus : Summing up

Methodology :

- Linear types can be stored in any classes

- Possible alias analysis is performed in the whole program

- We can only access linear components of a class if there is no possible aliasing of
them in the scope.

- We can emulate the « disparition » of a variable by removing the capability

What do we gain :

- We have all guarantees of linearity for the linear object fields, including the fact that
these fields are all eventually free'd.

- We can share such linear objects among the program without violating any
guarantee.

That's all.

References :

[1] Linear Types may change the world, by P. Wadler

[2] Typestate : A programming language concept for enhancing software reliability
by R.E. Storm and S. Yemini

[3] Adoption and Focus : Practical linear types for imperative programming
by M. Fähdrich and R. DeLine

[4] Typed memory management in a calculus of capabilities, by K. Crary, D. Walker
and G. Morisett

Questions?

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38

