
CSL Technical Report SRI-CSL-01-02 (Rev. 2) • August, 2003

The SAL Language Manual

Leonardo de Moura
Sam Owre
N. Shankar

This report was developed and is maintained by SRI International. SRI’s part of
the SAL project is funded by DARPA/AFRL contract numbers F30602-96-C-0204
and F33615-00-C-3043.

Computer Science Laboratory • 333 Ravenswood Ave. • Menlo Park, CA 94025 • (650) 326-6200 • Facsimile: (650) 859-2844

Abstract

SAL stands for Symbolic Analysis Laboratory. It is a framework for combining different tools
for abstraction, program analysis, theorem proving, and model checking toward the calculation of
properties (symbolic analysis) of transition systems. A key part of the SAL framework is a language
for describing transition systems. This language serves as a specification language and as the target
for translators that extract the transition system description for popular programming languages
such as Esterel, Java, and Statecharts. The language also serves as a common source for driving
different analysis tools through translators from the SAL language to the input format for the tools,
and from the output of these tools back to the SAL language.

The SAL language was originally designed in collaboration with David Dill of Stanford University
and Thomas Henzinger of the University of California at Berkeley. The version presented here is
the one currently accepted by the tools developed at SRI.

Contents

Contents i

1 Introduction 1

2 A Simple Example: An N-bit Adder 3

3 The Expression Language 5

3.1 Types . 6

3.2 Expressions . 8

4 The Transition Language 11

4.1 Definitions . 11

4.2 Guarded Commands . 13

5 The Module Language 15

5.1 Base Modules . 17

5.2 State Variable Manipulation . 18

5.3 Module Composition . 18

5.4 Module Declarations . 19

6 SAL Contexts 21

6.1 Context Parameters . 22

6.2 Constant Declarations . 22

6.3 Context Declarations . 22

6.4 Assertion Declarations . 23

7 Another SAL Example: Mutual Exclusion 25

i

ii CONTENTS

8 Future Work 27

8.1 SAL as an Intermediate Language . 27

8.2 A SAL Prelude . 27

8.2.1 Libraries, Importings, and Logics . 28

8.3 Conversions . 29

8.4 Empty Types . 29

8.5 Recursive Function Termination . 29

8.6 State-Dependent Types . 30

Bibliography 31

Index 33

Draft

Chapter 1

Introduction

SAL stands for Symbolic Analysis Laboratory. It is a framework for combining different tools
for abstraction, program analysis, theorem proving, and model checking toward the calculation of
properties (symbolic analysis) of transition systems. A key part of the SAL framework is a language
for describing transition systems. This language serves as a specification language and as the target
for translators that extract the transition system description for popular programming languages
such as Esterel, Java, and Statecharts. The language also serves as a common source for driving
different analysis tools through translators from the SAL language to the input format for the tools,
and from the output of these tools back to the SAL language.

The basic high-level requirements on the SAL language are

1. Generality: It should be possible to effectively capture the transition semantics of a wide
variety of source languages.

2. Minimality: The language should not have redundant or extraneous features that add
complexity to the analysis. The language must capture transition system behavior without
any complicated control structures.

3. Semantic Regularity: The semantics of the language ought to be standard and straight-
forward so that it is easy to verify the correctness of the various translations with respect
to linear and branching time semantics. The semantics should be definable in a formal logic
such as PVS.

4. Language Modularity: The language should be parametric with respect to orthogonal
features such as the type/expression sublanguage, the transition sublanguage, and the module
sublanguage.

5. Compositionality: The language must have a way of defining transition system modules
that can be composed in a meaningful way. Properties of systems composed from modules
can then be derived from the individual module properties.

• Synchronous composition: In this form of composition, modules react to inputs
synchronously or in zero time, as with combinational circuitry in hardware. In order
to achieve semantic hygiene, causal loops arising in such synchronous interactions have
to be eliminated. The constraints on the language for the elimination of causal loops
should not be so onerous as to rule out sensible specifications.

1

2 Introduction

• Asynchronous composition: Modules that are driven by independent clocks are mod-
eled by means of interleaving the atomic transitions of the individual modules.

We present the SAL language in stages consisting of the type system, the expression language,
the transition language, modules, synchronous and asynchronous composition of modules, and the
specification of systems. The language is largely modular in these choices in the sense that many
of the language choices can be independently modified without affecting the other choices. The
language is presented in terms of its concrete or presentation syntax but only the internal or abstract
syntax is really important for tool interaction.

The SAL language is not that different from the input languages used by various other verification
tools such as SMV [3], Murphi [4], Mocha [1], and SPIN [2]. Like these languages, SAL describes
transition systems in terms of initialization and transition commands. These can be given by
variable-wise definitions in the style of SMV or as guarded commands in the style of Murphi.

Draft

Chapter 2

A Simple Example: An N-bit Adder

An N -bit ripple-carry adder module is specified from a one-bit adder module by composing a base
one-bit adder module with the synchronous multicomposition of N −1 one-bit adder modules. The
one-bit adder takes three inputs: the two input bits a and b and the carry-in bit cin, and returns
two outputs: the sum bit sum and the carry-out bit cout. See Figure 2.1. The N-bit adder takes
three inputs: the two input bit-vectors A and B and the carry-in bit carryin, and returns two
outputs: the sum vector S and the carry-out vector C. See Figure 2.2.

The adder module is definitional, as is usual for a purely combinational circuit description. This
means there are no guarded commands, and the adders are synchronously composed.

Note that the requirement that types be nonempty means that the N-bit adder cannot be used to
model a 1-bit adder. We plan on allowing empty types in the future, see Section 8.4.

adder: CONTEXT =
BEGIN
onebitadder: MODULE =
BEGIN
INPUT cin, a, b: BOOLEAN
OUTPUT cout, sum: BOOLEAN
DEFINITION

sum = (a XOR b) XOR cin ;
cout = (a AND b) OR (a AND cin) OR (b AND cin)

END;

Nbitadder [N : {n: NATURAL | n > 1}] : MODULE =
WITH INPUT A, B : ARRAY [0 .. N-1] OF BOOLEAN, carryin: BOOLEAN;

OUTPUT S, C : ARRAY [0 .. N-1] OF BOOLEAN
RENAME a TO A[0], b TO B[0], cin TO carryin,

sum TO S[0], cout TO C[0] IN
onebitadder
||
(|| (i : [1 .. N-1]):

(RENAME a TO A[i], b TO B[i], cin TO C[i-1],
sum TO S[i], cout TO C[i] IN

onebitadder));
END

3

4 A Simple Example: An N-bit Adder

a

b

cin

sum

cout
adder

Figure 2.1: Module adder

adder

adder

S[0]

C[0]
B[0]

A[0]

carryin

S[1]

C[1]
A[1]

B[1]

C[0]

adder

S[N]

C[N]

C[N−1]

A[N]

B[N]

Figure 2.2: Module Nbitadder

Draft

Chapter 3

The Expression Language

The conventions used in presenting the SAL grammar are that tokens are given in teletype font,
[optional] indicates that optional is optional, {category}+

, indicates one or more occurrences of
the syntactic category category separated by commas, and {category}∗, indicates zero or more
repetitions of category separated by commas. Separators other than comma can be used so that a
transition given by a set of named guarded commands separated by the choice operator [] can be
written as {NamedCommands}+

[]. Nonterminals are written in italics.

The SAL language needs to be liberal in order to accommodate translations from other source
languages. For this reason, identifiers include a large number of operators. The special symbols
are parentheses ((,)), brackets ([,]), braces ({, }), the percent sign (%), comma (,), period (.),
colon (:), semi-colon (;), single quote (’), exclamation point (!), hash (#), question mark (?), and
underscore (_). Tokens can be separated by WhiteSpace, which consists of spaces, tabs, carriage
returns, and line feeds.

SpecialSymbol := (|) | [|] | { | } | % | , | . | ; | : | ’ | ! | # | ? | _
Letter := a | . . . | z | A | . . . | Z
Digit := 0 | . . . | 9

Identifier := Letter {Letter | Digit | ? | _}∗
| {Opchar}+

Numeral := {Digit}+

An Opchar is any character that is not a Letter, Digit, SpecialSymbol, or WhiteSpace. For example,
f1_3 and +-+ are identifiers, but a+-1 is three tokens: two identifiers (a and +-), and a numeral.

The grammar is case-sensitive. The reserved words must be in upper case. The reserved words are:

AND, ARRAY, BEGIN, BOOLEAN, CLAIM, CONTEXT, DATATYPE, DEFINITION, ELSE, ELSIF,
END, ENDIF, EXISTS, FALSE, FORALL, GLOBAL, IF, IN, INITIALIZATION, INPUT, INTEGER,
LAMBDA, LEMMA, LET, LOCAL, MODULE, NATURAL, NOT, NZINTEGER, NZREAL, OBLIGATION,
OF, OR, OUTPUT, REAL, RENAME, THEN, THEOREM, TO, TRANSITION, TRUE, TYPE, WITH, XOR.

Comments in SAL are preceded by the % symbol and terminated by an end-of-line.

5

6 The Expression Language

3.1 Types1

The SAL language supports the built-in basic types for booleans, natural numbers, integers, and
reals. New basic types may be introduced using uninterpreted type declarations. Types may be
used in type constructions to create subtype, subrange, array, function, tuple, and record types.
Function, tuple, and record types may be dependent. In addition to uninterpreted type declarations,
that introduce a name without a defining form, type declarations may be used to introduce names
for existing types, as well as scalars and datatypes. The grammar for types is given by

TypeDef := Type
| ScalarType
| DataType

Type := BasicType
| Name
| Subrange
| SubType
| ArrayType
| TupleType
| FunctionType
| RecordType
| StateType

BasicType := BOOLEAN | REAL | INTEGER | NZINTEGER | NATURAL | NZREAL
Name := Identifier

QualifiedName := Identifier[{ActualParameters}]!Identifier
Subrange := [Bound .. Bound]
SubType := { Identifier : Type | Expression }

Bound := Unbounded |Expression
Unbounded :=
ArrayType := ARRAY IndexType OF Type
IndexType := INTEGER |Subrange |ScalarTypeName

ScalarTypeName := Name
TupleType := [VarType , {VarType}+

,]
FunctionType := [VarType -> Type]

VarType := [Identifier :] Type
RecordType := [# {Identifier : Type}+

, #]
StateType := Module . STATE

ScalarType := {{Identifier}+
, }

DataType := DATATYPE Constructors END
Constructors := {Identifier[(Accessors)]}+

,
Accessors := {Identifier : Type}+

,

A TypeDef is a type expression that can occur as the body of a type declaration, whereas a Type is
more restrictive and circumscribes the types that can be used within an expression or a transition
system module. Two types are equivalent if they are identical modulo the renaming of bound
variables, the rearrangement of record labels, the equality of subtype predicates, and the unfolding
of the definitions of defined types that are not scalar types or datatypes. Equivalence for types
that are defined to be uninterpreted, scalar types, and datatypes is just name equivalence. Name
equivalence is not a simple concept because compound names consist of the context name, actual

1SAL types are very similar to PVS types, both syntactically and semantically. See the PVS Language Refer-
ence [5].

Draft

3.1 Types 7

parameters, and the identifier. Two names are equivalent if they agree on the context name, and
the identifier, and the actual parameters, which are either types or expressions, are equivalent.
Types in SAL (as in PVS) are modeled as sets, and two types are equivalent when every element
of one is an element of the other. Thus the dependent types

[# a: INTEGER, b: {x: INTEGER | x < a} #]
[# b: INTEGER, a: {x: INTEGER | b < x} #]

are equivalent, and similarly for tuples. One way to see this equivalence is to note that each is
equivalent to the type

{r: [# a: INTEGER, b: INTEGER #] | r‘b < r‘a}

Note that in an array type, the index type must either be INTEGER, a subrange, or a scalar type.
SAL has a higher-order type system since it contains function types between arbitrary domain and
range types. SAL types need not be finite, and the REAL and INTEGER types, for example, are
infinite. The REAL type is the mathematical reals, not a floating point representation. Arrays with
infinite index and range types are also admissible.

There are a fixed set of subtyping relations among the types that naturally corresponds to a subset
relation between the denotations of these types. The subrange type [a .. b] is an abbreviation
for {x: INTEGER | a <= x AND x <= b}, [a ..] is an abbreviation for {x: INTEGER | a <=
x}, and [.. b] is an abbreviation for {x: INTEGER | x <= b}. The type NATURAL is merely
an abbreviation for {x: INTEGER | 0 <= x}. Any subrange is a subtype of a larger subrange. It
is also a subtype of INTEGER. An array (function) type A is a subtype of another array (function)
type B if the index types are identical, and the range type of A is a subtype of the range type of B.
Similarly, a record type A is a subtype of another record type B if every element of A is an element
of B, which means the label sets must be the same, though as described in type equivalence, the
corresponding types do not have to be in the subtype relation.

A StateType is a record type representing the state of the specified module. This is described in
more detail below.

All types must be checked to be nonempty through the possible generation of proof obligations
entailing nonemptiness.

Recursive datatypes can be used to define list and tree-like types. The datatype is specified by a
list of constructor operations, each with a list of accessor operations. For example, the list type of
integers is constructed as

intlist: TYPE = DATATYPE
cons(car : INTEGER, cdr : intlist),
nil

END

Recognizers are automatically generated by appending a ? to the corresponding constructor. Thus
cons? and nil? are recognizers for intlist. These may be used in definitions. For example,
length may be defined recursively2 as

2This will lead to proof obligations showing that the function is total, i.e., terminating.

Draft

8 The Expression Language

length: [intlist -> NATURAL] =
LAMBDA (lst: intlist):

IF nil?(lst) THEN 0 ELSE 1 + length(cdr(lst)) ENDIF

3.2 Expressions

Expressions in the SAL language have to be type-correct with respect to the types in the type
language. The expressions consist of constants, variables, applications with Boolean, arithmetic,
and bit-vector operations, and array, function, tuple, and record selection and updates. Conditional
(if-then-else) expressions are also part of the expression language.

Expression := NameExpr
| QualifiedNameExpr
| NextVariable
| Numeral
| Application
| InfixApplication
| ArraySelection
| RecordSelection
| TupleSelection
| UpdateExpression
| LambdaAbstraction
| QuantifiedExpression
| LetExpression
| SetExpression
| ArrayLiteral
| RecordLiteral
| TupleLiteral
| Conditional
| (Expression)
| StatePred

Draft

3.2 Expressions 9

NameExpr := Name
QualifiedNameExpr := QualifiedName

NextVariable := Identifier ’
Application := Function Argument

Function := Expression
Argument := ({Expression}+

,)
InfixApplication := Expression Identifier Expression
ArraySelection := Expression[Expression]

RecordSelection := Expression.Identifier
TupleSelection := Expression.Numeral

UpdateExpression := Expression WITH Update
Update := UpdatePosition := Expression

UpdatePosition := {Argument | [Expression] | .Identifier | .Numeral}+

LambdaAbstraction := LAMBDA (VarDecls) : Expression
VarDecls := {VarDecl}+

,
VarDecl := {Identifier}+

, : Type
QuantifiedExpression := Quantifier (VarDecls) : Expression

Quantifier := FORALL | EXISTS
LetExpression := LET LetDeclarations IN Expression

LetDeclarations := {Identifier : Type = Expression}+
,

SetExpression := SetListExpression |SetPredExpression
SetPredExpression := { Identifier : Type | Expression }
SetListExpression | { {Expression}+

, }
ArrayLiteral := [[IndexVarDecl] Expression]

IndexVarDecl := Identifier : IndexType
RecordLiteral := (# {RecordEntry}+

, #)
RecordEntry := Identifier := Expression
TupleLiteral := Argument
Conditional := IF Expression ThenRest

ThenRest := THEN Expression
[ElsIf]
ELSE Expression ENDIF

ElsIf := ELSIF Expression ThenRest
StatePred := Module . (INIT | TRANS)

The unary operators include boolean negation NOT, and integer minus -.

The binary operators include

• Polymorphic equality = and disequality /=. Note that since subtypes are semantically the
same as subsets, equality and disequality are defined on the maximal supertype of a type.

• Boolean operations of conjunction AND, disjunction OR, implication =>, equivalence <=>, and
exclusive-or XOR

• Real arithmetic operations of addition +, subtraction -, multiplication *, division /, and the
comparison operators <, <=, >, >=. Note that the divisor type of division is restricted to
NZREAL and the type rules generate a proof obligation if the divisor is not known to be nonzero.
The integer arithmetic operations of DIV and MOD are included in the binary operations. Both
require nonzero integers, i.e., NZINTEGER, in the divisor position and they satisfy the equation

a = b ∗ (a DIV b) + (a MOD b)

Draft

10 The Expression Language

Although the parser allows any Identifier as an infix operator, it is clearly useful to have a standard
operator precedence so that expressions such as y + 1 = x AND A are not parsed nonsensically, e.g.,
as y + (1 = (x AND A)). The precedence is as follows, from lowest to highest:

<=>
=>

OR, XOR
AND
=, /=

>, >=, <, <=
OtherIdentifier

+, -
*, /

<=>, OR, XOR, AND, +, infix -, *, and / are all left-associative, => is right-associative, and the rest
are non-associative.

The LetExpression is parallel, to get the sequential form use nested LETs, e.g.,

LET a = f(b) IN
LET b = f(a) IN e

The proof obligations generated during typechecking are called type correctness conditions (TCCs).
In addition to operations with subtype domains such as division, the sources of TCCs include
expressions of subrange types, recursive datatypes, recursive definitions, and type nonemptiness.

An expression without NextVariables is called a current expression and is represented by the nonter-
minal CExpression. We will not define its grammar but it essentially corresponds to the grammar
for Expression with the occurrences of NextVariable removed.

SAL expressions contain two kinds of variables: logical variables and state variables. The state
variables are either current variables or NextVariables. SAL types and expressions are given a
semantics with respect to a model M that fixes the meanings of types, constants, and operators,
an assignment ρ of values to the free logical variables, and an assignment of values to the current
variables x and the NextVariables x′ by a pair of states 〈r, s〉. The meaning of expression e with
respect to model M, assignment ρ, and a pair of states 〈r, s〉, is given by M[[e]]ρ〈r,s〉. If variable
x has type A, then the interpretation of x in state s, s(x), must be an element of M[[A]]. If x is
a variable in the state type, then M[[x]]〈r,s〉 = r(x), and M[[x′]]〈r,s〉 = s(x). The interpretation of
types and operators are the standard ones. When expression e does not contain any NextVariables,
we write the meaning of e as M[[e]]r.

The StatePred expressions provide access to the initialization predicate and transition relations for
a given module M . In particular, M.INIT is of type [M.STATE -> BOOLEAN] and M.TRANS is of
type [M.STATE, M.STATE -> BOOLEAN].

Draft

Chapter 4

The Transition Language

A transition system module consists of a state type, an invariant definition on this state type, an
initialization condition on this state type, and a binary transition relation of a specific form on the
state type. The state type is defined by four pairwise disjoint sets of input, output, global, and local
variables. The input and global variables are the observed variables of a module and the output,
global, and local variables are the controlled variables of the module. The language constructs for
defining modules from transition systems are treated in Chapter 5.

The transition rules are constraints on the current and next states of the transition. The current
variables are written as X whereas the next state variables are written as X’.

4.1 Definitions

Definitions are the basic constructs used to build up the invariants, initializations, and transitions of
a module. Definitions are used to specify the trajectory of variables in a computation by providing
constraints on the controlled variables in a transition system. For variables ranging over aggregate
data structures like records or arrays, it is possible to define each component separately. For
example,

x’ = x + 1

simply increments the state variable x, where x’ is the newstate of the variable,

y’[i] = 3

sets the new state of the array y to be 3 at index i, and to remain unchanged on all other indices,
and

z.foo.1[0] = y

constrains state variable z, which is a record whose foo component is a tuple, whose first component
in turn is an array of the same type as y.

The left-hand side of a definition is given by the nonterminal Lhs.

11

12 The Transition Language

Lhs := Identifier [’] {Access}∗
Access := ArrayAccess |RecordAccess |TupleAccess

ArrayAccess := [Expression]
RecordAccess := . Identifier
TupleAccess := . Numeral

Simple definitions are of the form

SimpleDefinition := Lhs RhsDefinition
RhsDefinition := RhsExpression |RhsSelection
RhsExpression := = Expression

RhsSelection := IN Expression

For an RhsExpression, the Lhs is simply assigned the corresponding value. For an RhsSelection,
the Lhs is assigned any value satisfying the expression, which must be a predicate (a boolean-valued
LambdaAbstraction or a SetExpression). This predicate must be satisfiable; an invariant obligation
is generated if it cannot be determined to be nonempty.

Note that in an Access, all unspecified components are unchanged, thus x’[i].name = Ed is equiv-
alent to x’ = x WITH [i].name := Ed. If the given transition has multiple assignments to x, they
must all be collected to get the equivalent form, for example, the assignments

x’[0].name = Ed;
x’[1].name = Al

are equivalent to x’ = x WITH [0].name = Ed WITH [1].name = Al.

There are other restrictions on the Access. Within a given DEFINITION, INITIALIZATION, or
TRANSITION section of a module the Lhs accesses must all be unique. Thus the assignments

x’[3] = 0;
x’[f(3)] = 0

will generate a proof obligation that 3 /= f(3). Note that it does not matter that these are really
the same assignments if they are equal, the obligation will still be generated.

A transition equation in the TRANSITION section defines a NextVariable on the left-hand side in
terms of an expression that can contain NextVariable occurrences. A SimpleDefinition can occur
in the TRANSITION section of a transition system. An array index expression on the left-hand side
must not contain any state variables.

Definitions := {Definition}+
;

Definition := SimpleDefinition |ForallDefinition
ForallDefinition := (FORALL (VarDecls): Definitions)

In a transition system module, a controlled variable must be defined exactly once. It is easy to
write definitions that admit causal cycles such as:

X = NOT Y;
Y = X

Draft

4.2 Guarded Commands 13

Such causal loops can lead to contradictory or meaningless definitions and have to be ruled out.
One way to avoid causal loops is by means of an ordering on the variables so that the right-hand
side of a definition can contain only those variables that are lower in the ordering. However, such
a restriction would rule out natural definitions where variables can depend on each other without
triggering a causal loop, for example

X = IF A THEN NOT Y ELSE C ENDIF
Y = IF A THEN B ELSE X ENDIF

Here there is no causal loop since X depends on Y only when A holds, and Y depends on X only
when NOT A holds. A dependency analysis generates a Boolean formula indicating the governing
conditions GC(X, Y) under which a variable X immediately depends on another variable Y. The
governing conditions are required to be current expressions. For example, GC(X, Y) for the above
definitions of X yields A. If there is no assignment defining X in terms of Y then GC(X, Y) is false.
Then GC*(X, Y) yields the governing conditions under which a variable X could indirectly depend on
a variable Y. For example, if X depends on a variable Z that in turn depends on Y, then GC*(X, Y)
is just GC(X, Y) ∨ (GC(X, Z) ∧ GC(Z, Y)). Thus, in the above definitions of X and Y, GC*(X, X)
is A ∧ ¬A. The dependency conditions can be used to generate the conditions CX under which a
variable X could depend on itself. For such dependency loops to be avoided, the condition CX must
be shown to be invariantly false in the transition system. In the above example, CX would be
the obviously unreachable assertion A ∧ ¬A. The dependency analysis (causality checks) generate
proof obligations to this effect. A similar dependency analysis can be carried out for initialization
definitions and transition definitions.

4.2 Guarded Commands

Definitions are convenient for specifying the values taken on by those controlled variables whose
transitions can be independently specified in a simple equational form. Definitions have some
drawbacks. For variables whose definitions follow a similar case structure, this case structure
has to be repeated in each of the definitions. For such controlled variables, it is convenient to
specify their initialization and transitions in terms of guarded commands. Each guarded command
consists of a guard formula and an assignment part. The guard is a boolean expression in the current
controlled (local, global, and output) variables and current and next state input variables. The
assignment part is a list of equalities between a left-hand side next state variable and a right-hand
side expression in current and next state variables.

GuardedCommand := Guard --> Assignments
Guard := Expression

Assignments := {SimpleDefinition}∗; [;]

Note that both the initializations and transitions may be specified by guarded assignments. No
variable that is defined in the Lhs of a definition can be assigned in either a guarded initialization or
transition. The initializations must not contain next state variables, whereas the transitions must
have next state variables on the left-hand side of assignments, and may have next state variables
on the right-hand side. The well-formedness checks on the guarded transitions are that the guard
must not contain controlled next state variables, i.e., X’ for some controlled variable X, since these

Draft

14 The Transition Language

variables are only assigned values in the assignment part. The assignments in the assignment part
must ensure that no controlled variable is assigned more than once.

The causality checks and proof obligations corresponding to a guarded initialization or transition
are similar to those for definitions. The primary difference is that current conjuncts in the guard
can be conjoined to the the conditions when the proof obligations are generated. For example, if
there is a guarded command of the form g --> Assignments where the dependency analysis on
the combination of the Assignments and the definitions yields the conditions for a causal loop on
variable X as CX , then the conjunction g ∧ CX must be shown to be unreachable.

Note that the initialization and transition sections may contain simple definitions and/or guarded
commands. The model of execution is that when the module gets activated, one guarded transition
is chosen so that the guard formula holds in the current (and possibly next input) state, and
the transition is the conjunction of the associated guarded transition with all the definitions of the
transition section(s). If no guard is satisfied, the module may deadlock. A synchronously composed
system is deadlocked if any of its component modules is. An asynchronously composed system is
only deadlocked if all its components are. If you want to ensure a given module does not deadlock,
just make sure that there is always some guard of the module that hlods true (the ELSE clause is
useful for this).

Draft

Chapter 5

The Module Language

A module is a self-contained specification of a transition system in SAL. Modules can be inde-
pendently analyzed for properties and composed synchronously or asynchronously. Here is a fairly
simple module declaration.

m : MODULE =
BEGIN
INPUT temp: INTEGER
LOCAL high: BOOLEAN, ctr: NATURAL
OUTPUT danger: BOOLEAN
DEFINITION high = i > 100
INITIALIZATION ctr = 0; danger = FALSE
TRANSITION [ctr > 3 --> danger’ = danger OR high

[] ctr <= 3 AND high --> ctr’ = ctr + 1
[] ELSE --> ctr’ = 0
]

END

Here m is a BaseModule, that is intended to monitor the temperature and indicate a problem if the
temperature stays high for too long. It declares the input variable temp, local variables high and
ctr, and output variable danger. Initially danger is FALSE and ctr is 0, and when this module is
activated it sets danger to TRUE if temp exceeds 100 more than 3 times in a row.

Once base modules are declared, they may be composed synchronously or asynchronously to yield
new modules. The grammar for module expressions is given below. The grammars for Definitions
and GuardedCommand are described in the previous chapter, but are repeated here for convenience.

15

16 The Module Language

Module := BaseModule
| ModuleInstance
| SynchronousComposition
| AsynchronousComposition
| MultiSynchronous
| MultiAsynchronous
| Hiding
| NewOutput
| Renaming
| WithModule
| ObserveModule
| (Module)

BaseModule := BEGIN BaseDeclarations END
BaseDeclarations := {BaseDeclaration}∗
BaseDeclaration := InputDecl

| OutputDecl
| GlobalDecl
| LocalDecl
| DefDecl
| InitDecl
| TransDecl

InputDecl := INPUT VarDecls
OutputDecl := OUTPUT VarDecls
GlobalDecl := GLOBAL VarDecls
LocalDecl := LOCAL VarDecls
DefDecl := DEFINITION Definitions
InitDecl := INITIALIZATION {DefinitionOrCommand}+

; [;]
TransDecl := TRANSITION {DefinitionOrCommand}+

; [;]

DefinitionOrCommand := Definition
| [SomeCommands]

Definitions := {Definition}+
;

Definition := SimpleDefinition |ForallDefinition
ForallDefinition := (FORALL (VarDecls): Definitions)

SimpleDefinition := Lhs RhsDefinition
Lhs := Identifier [’] {Access}∗

Access := ArrayAccess |RecordAccess |TupleAccess
ArrayAccess := [Expression]

RecordAccess := . Identifier
TupleAccess := . Numeral

RhsDefinition := RhsExpression |RhsSelection
RhsExpression := = Expression

RhsSelection := IN Expression
SomeCommands := {SomeCommand}+

[] [[]ElseCommand]
SomeCommand := NamedCommand |MultiCommand

NamedCommand := [Identifier :] GuardedCommand
GuardedCommand := Guard --> Assignments

Guard := Expression
Assignments := {SimpleDefinition}∗; [;]

MultiCommand := ([] (VarDecls): SomeCommand)
ElseCommand := [Identifier :] ELSE --> Assignments

Draft

5.1 Base Modules 17

ModuleInstance := {ModuleName |QualifiedModuleName} Name[[{Expression}+
,]]

ModuleName := Name
QualifiedModuleName := QualifiedName

SynchronousComposition := Module ||Module
AsynchronousComposition := Module []Module

MultiSynchronous := (|| (Identifier : IndexType): Module)
MultiAsynchronous := ([] (Identifier : IndexType): Module)

Hiding := LOCAL {Identifier}+
, IN Module

NewOutput := OUTPUT {Identifier}+
, IN Module

Renaming := RENAME Renames IN Module
Renames := {Lhs TO Lhs}+

,
WithModule := WITH NewVarDecls Module

NewVarDecls := {InputDecl |OutputDecl |GlobalDecl}+
;

ObserveModule := OBSERVE Module WITH Module

5.1 Base Modules

A BaseModule identifies the pairwise distinct sets of input, output, global, and local variables. This
characterizes the state of the module.

As described below, base modules also may consist of several sections. Note that the grammar
allows variables and sections to be given in any order, and there may, for example, be 3 distinct
TRANSITION sections. In every case, it is the same as if there was a prescribed order, with each
class of variable and section being the union of the individual declarations.

DEFINITION section. Definitions appearing in the DEFINITION section(s) are treated as invariants
for the system. When composed with other modules, the definitions remain true even during
the transitions of the other modules. For this reason, proof obligations may be generated for a
composition where definition sections are involved. This section is usually used to define controlled
variables whose values ultimately depend on the inputs, for example, a boolean variable that
becomes true when the temperature goes above a specified value.

Definition sections must be used with care, especially when modeling asynchronous systems, as this
means that in some sense the execution of a module on a remote machine can still be seen locally.

INITIALIZATION section. The INITIALIZATION section(s) constrain the possible initial values
for the local, global, and output declarations. Input variables may not be initialized. The
INITIALIZATION section(s) determine a state predicate that holds of the initial state of the base
module.

Definitions and guarded commands appearing in the INITIALIZATION section must not contain
any NextVariable occurrences, i.e., both sides of the defining equation must be current expressions.
Guards may refer to any variables, this acts as a form of postcondition when controlled variables
are involved. This is like backtracking: operationally a guarded initialization is selected, the as-
signments made, and if the assignments violate the guard the assignments are undone and a new
guarded initialization is selected.

Draft

18 The Module Language

TRANSITION section. The TRANSITION section(s) constrain the possible next states for the local,
global, and output declarations. As this is generally defined relative to the previous state of the
module, the transition section(s) determine a state relation. Input variables may not appear on the
Lhs of any assignments. Guards may refer to any variables, even NextVariables. As with guarded
initial transitions, guards involving NextVariables have to be evaluated after the assignments have
been made, and if they are false the assignments must be undone and a new guarded transition
selected.

5.2 State Variable Manipulation

Output and global variables can be made local by the LOCAL construct. Global variables can be
made output by the OUTPUT construct. In order to avoid name clashes, variables in a module can
be renamed using the RENAME construct. When the renaming variable is an identifier, its type
can be easily inferred from the renamed variable. New state variables used for renaming can be
introduced using the WITH construct for INPUT, OUTPUT, and GLOBAL declarations. These newly
declared variables can be used in the RENAME construct to rename the variables in a given module.
The renaming should be consistent so that the input variables can be renamed only by input
variables, output variables only by output variables, and global variables only by output or global
variables. The types of the renamed and the renaming variable should also match.

5.3 Module Composition

Modules can be combined by either synchronous or asynchronous composition.

Let module Mi consists of input variables Ii, output variables Oi, global variables Gi, and lo-
cal variables Li. The module M1||M2 and M1[]M2 respectively represent the synchronous and
asynchronous composition of M1 and M2.

Variables with the same identifier are treated as identical, and it is an error to compose modules
that assign different types to the same identifier. The syntactic constraints on both synchronous
and asynchronous composition are that the output variable sets must be disjoint from the global
and output variables of the other module (O1

⋂
(O2

⋃
G2) = ∅, (O1

⋃
G1)

⋂
O2 = ∅), the local

variables must be disjoint from the other variables (L
⋂

(I
⋃

O
⋃

G) = ∅), but need not be disjoint
from each other.

The input variables I, the output variables O, global variables G, and the local variables L of
M1||M2 and M1[]M2 are given by

I = (I1

⋃
I2)− (O

⋃
G)

O = (O1

⋃
O2)

G = (G1

⋃
G2)

L = (L1

⋃
L2)

The semantics of synchronous composition is that the module M1||M2 consists of initializations that
are the combination of initializations from the two modules, and the transitions are the combinations
of the individual transitions of the two modules. The definitions of M1||M2 are simply the union

Draft

5.4 Module Declarations 19

of the definitions in M1 and M2. The initializations of M1||M2 are the pairwise combination of
the initializations in M1 and M2. Two guarded initializations are combined by conjoining the
guards and by taking the union of the assignments. Let g1,i --> a1,i be an initialization from
M1 and g2,j --> a2,j be an initialization from M2. The guard g1,i might contain output variables
of M2, and similarly, guard g2,j might contain output variables of M1. For the combination to
be sensible, only at most one of these guards, say g1,i, is allowed to contain output variables of
the other module. If we take a2,j as the union of the assignments in a2,j with the initialization
definitions of M2, then we can repeatedly apply a2,j as a substitution. It should then be the case
that the repeated application a2,j

∗(g1,i) converges. The combination of the two initializations is
then a2,j

∗(g1,i) ∧ g2,j --> a1,i;a2,j . The resulting combination might not be sensible since the
conjunction of the guards could be inconsistent. The combination of the assignments a1,i;a2,j

might also be causally inconsistent and proof obligations have to be generated to ensure that such
combinations do not occur. The dependency analysis in the case of synchronous composition is
similar to that for a single module with the restriction that only cycles involving variables from
both modules need be considered.

The consistency and dependency analysis for combinations of guarded transitions in a synchronous
composition is similar to that for guarded initializations. In this manner, the synchronous com-
position M1||M2 of two modules M1 and M2 can be expressed as a single module combining the
definitions, initializations, and transitions from the individual modules. If there are n1 guarded com-
mands in M1 and n2 in M2, the composition M1||M2 could have up to n1 ∗n2 guarded commands.
Thus it is not always feasible to expand out the module corresponding to such a composition. The
expectation is that this will rarely be necessary since the modules can be individually analyzed and
the properties composed.

The semantics of asynchronous composition of two modules is given by the conjunction of the
initializations and the interleaving of the transitions of the two modules. For this purpose, the
definitions in M1 and M2 must first be eliminated by including them in the guarded initializations
and transitions. The module corresponding to M1[]M2 is obtained by combining the initializations
as in synchronous composition and taking the union of the transition definitions and the guarded
transitions. The combination of initializations can generate proof obligations but there are no new
proof obligations arising from the union of the module transitions.

The form of composition in SAL supports a compositional analysis in the sense that any module
properties expressed in linear-time temporal logic or in the more expressive universal fragment of
CTL* are preserved through composition. A similar claim holds for asynchronous composition with
respect to stuttering invariant properties where a stuttering step is one where the local and output
variables of the module remain unchanged.

The causality analysis for synchronous multicompositions is carried out inductively by unfolding
the multicomposition into a composition of a single module and a smaller multicomposition.

5.4 Module Declarations

It is good pragmatics to name a module. This name can be used to index the local variables so that
they need not be renamed during composition. Also, the properties of the module can be indexed
on the name for quick look-up. Parametric modules allow the use of logical (state-independent)
and type parameterization in the definition of modules. A parametric module is defined as

Draft

20 The Module Language

ModuleDeclaration := Identifier[[VarDecls]] : MODULE = Module

Parametric modules allow modules to be defined with some open parameters that can be instanti-
ated when the module is used.

Draft

Chapter 6

SAL Contexts

The language so far can describe transition system modules but has no way of declaring new types
or constants or asserting properties of these modules. The SAL context language provides the
framework for declaring types, constants, modules, and module properties. Below we present the
syntax for contexts containing declarations for constants, types, modules, assertions, and other
(imported) contexts. SAL contexts are read from left to right, top to bottom, and an entity must
be declared before it is referenced.1

There is no name overloading in SAL. An unqualified name always refers to the local context.
Qualified names must provide both the context and the parameters. Because of this, explicit
importings are not needed.2

Context := Identifier [{Parameters}] : CONTEXT = ContextBody
Parameters := [TypeDecls] ; {VarDecls}∗,
TypeDecls := {Identifier}+

, : TYPE
ContextBody := BEGIN Declarations END
Declarations := {Declaration ;}+

Declaration := ConstantDeclaration
| TypeDeclaration
| AssertionDeclaration
| ContextDeclaration
| ModuleDeclaration

ConstantDeclaration := Identifier [(VarDecls)] : Type [= Expression]
TypeDeclaration := Identifier : TYPE [= TypeDef]

AssertionDeclaration := Identifier : AssertionForm = AssertionExpression
AssertionForm := OBLIGATION | CLAIM | LEMMA | THEOREM

ContextDeclaration := Identifier : CONTEXT = Identifier{ActualParameters}
ActualParameters := {Type}∗, ; {Expression}∗,

1For those readers familiar with PVS, a SAL context is very similar to a PVS theory, but with different sets of
allowable declarations.

2We are considering adding IMPORTINGs for convenience in the concrete language, but the parser should always
be able to generate fully qualified names in the abstract syntax. See Section 8.2.1

21

22 SAL Contexts

6.1 Context Parameters

Context parameters allow for generic contexts that may be used from other contexts with different
instances. Thus a context may be parameterized by a positive integer N that gives the number of
processes, and a modelchecker may instantiate this to 6, in order to make it finite.

Within the given context, parameter types are treated as uninterpreted types, and parameter
variables are treated as uninterpreted constants. Note that distinct type parameters are treated as
distinct types, although they may be instantiated to the same type.

6.2 Constant Declarations

The simplest constant declaration provides an uninterpreted constant, e.g.,

c: INTEGER

Note that because all types must be nonempty, no proof obligation will be generated for the
constant, though there may be one generated for the type.

Constant declarations may also provide a definition:

n: INTEGER = 3
f: [INTEGER -> [INTEGER -> INTEGER]] =

LAMBDA (x: INTEGER): LAMBDA (y: INTEGER): x + n * y

A defining form may be used, which is usually more readable:

f(x: INTEGER): [INTEGER -> INTEGER]] =
LAMBDA (y: INTEGER): x + n * y

Although higher-order functions are supported, only the top-level LAMBDA may be turned into a
defining form. This is not much of an inconvenience, since higher-order functions are not often
needed in transition system specifications.

Constant declarations may also be recursive. This is implicit, and the system must be able to
determine the measure in order to generate the proper termination obligation:3

fact(n: NATURAL): NATURAL =
IF n = 0 THEN 1 ELSE n * fact(n - 1)

6.3 Context Declarations

A ContextDeclaration provides an abbreviation, e.g., instead of writing

lem: LEMMA mycontext{int; 13}!f(3) = mycontext{int; 13}!f(4)
3As discussed in Section 8.5, this will probably change in the future.

Draft

6.4 Assertion Declarations 23

One would write

mc: CONTEXT = mycontext{int; 13}
lem: mc!f(3) = mc!f(4)

6.4 Assertion Declarations

Assertion expressions allow properties to be stated. In the simplest case these are just boolean-
valued expressions, which are thus just logical formulas. The ModuleModels form allows properties
of modules to be stated. Note that the syntax says nothing about the possible temporal operators;
this is defined in a separate context. A ModuleImplements assertion MC IMPLEMENTS MA, says
that any possible behavior of MC is also a behavior of MA. This allow refinement and abstraction
relations to be specified.

AssertionExpression := ModuleAssertion |PropositionalAssertion |QuantifiedAssertion |Expression
ModuleAssertion := ModuleModels |ModuleImplements

ModuleModels := Module |- Expression
ModuleImplements := Module IMPLEMENTS Module

PropositionalAssertion := PropOp (AssertionExpression , AssertionExpression)
| NOT (AssertionExpression)

QuantifiedAssertion := Quantifier (VarDecls) : AssertionExpression
PropOp := AND | OR | => | <=>

Draft

24

Chapter 7

Another SAL Example: Mutual
Exclusion

We show another example SAL specification: a variant of Peterson’s mutual exclusion algorithm [6].
Here the state of the process module consists of the controlled variables corresponding to its own
program counter pc1 and boolean variable x1, and the observed variables are the corresponding pc2
and x2 of the other process. Initially process is sleeping. The process module is parameterized
with a boolean tval argument.

The system is then the asynchronous composition of two processes, where the variables of the
process[TRUE] have been renamed in order to make them compatible with process[FALSE], i.e.,
the outputs of one are wired to the inputs of the other.

The main property of this algorithm is assertion mutex, which asserts the safety property that in
system, it is always true that the two processes are not both in their critical sections. The
assertion language used here is LTL. G represents the henceforth modality and F represents eventu-
ally. Other properties are given, for example livenessbug1 states the liveness property that it is
always possible for process[FALSE] to reach its critical section. This property is false, because
there is no fairness built-in to SAL, so process[TRUE] can simply run forever. The same is true
for livenessbug2. The other liveness properties bring in fairness constraints explicitly, and are
provable.

peterson: CONTEXT =
BEGIN

PC: TYPE = {sleeping, trying, critical};

process [tval : BOOLEAN]: MODULE =
BEGIN

INPUT pc2 : PC
INPUT x2 : BOOLEAN
OUTPUT pc1 : PC
OUTPUT x1 : BOOLEAN
INITIALIZATION pc1 = sleeping
TRANSITION
[

25

26 Another SAL Example: Mutual Exclusion

wakening:
pc1 = sleeping --> pc1’ = trying; x1’ = x2 = tval

[]
entering_critical:

pc1 = trying AND (pc2 = sleeping OR x1 = (x2 /= tval))
--> pc1’ = critical

[]
leaving_critical:

pc1 = critical --> pc1’ = sleeping; x1’ = x2 = tval
]

END;

system: MODULE =
process[FALSE]
[]
RENAME pc2 TO pc1, pc1 TO pc2,

x2 TO x1, x1 TO x2
IN process[TRUE];

mutex: THEOREM system |- G(NOT(pc1 = critical AND pc2 = critical));

invalid: THEOREM system |- G(NOT(pc1 = trying AND pc2 = critical));

livenessbug1: THEOREM system |- G(F(pc1 = critical));

livenessbug2: THEOREM system |- G(F(pc2 = critical));

liveness1: THEOREM system |- G(pc2 = trying => F(pc2 = critical));

liveness2: THEOREM system |- G(pc1 = trying => F(pc1 = critical));

liveness3: THEOREM system |- G(F(pc1 = trying)) => G(F(pc1 = critical));

liveness4: THEOREM system |- G(F(pc2 = trying)) => G(F(pc2 = critical));

END

Note: the assertions in the THEOREMS are not technically type correct, because the LTL operators
G and F are not defined locally. They are built-in to the SALENV tools descibed in http://
sal.csl.sri.com/salenv.html. To make this valid would require defining a LTL context, then
including the context name (along with the parameters) in the references to G and F. In addition,
G and F technically operate on path formulas, so giving them a type that allows them to operate
on boolean formulas is a problem. Sections 8.2.1 and 8.3 address these issues.

Draft

http://sal.csl.sri.com/salenv.html
http://sal.csl.sri.com/salenv.html

Chapter 8

Future Work

This language manual and SAL itself are a work in progress.

8.1 SAL as an Intermediate Language

SAL was originally intended to be an intermediate language, but as work progressed it became clear
that many users were going to use the language directly, not as an internal representation for some
front end. In addition, the desire to create a SAL tool bus, and to keep it language independent,
led to the decision to create an abstract syntax in XML, and treat that as the intermediate form.
XML was chosen because it is widely used, extensible, and most popular programming languages
have direct support for reading and representing XML datas structures.

We have thus defined an abstract syntax in XML by a document type description (DTD), available
at http://sal.csl.sri.com/documentation.html. The SAL parser (http://sal.csl.sri.com/
salparser.html) simply reads the concrete syntax and generates an XML file that satisfies the
SAL DTD. The separation of the abstract and concrete syntax has many benefits, in that the
concrete language may be extended in various ways for convenience, yet map to a more restricted
set of data structures, which means that tools do not need to be modified everytime something is
added to the concrete language. In addition, users may create their own concrete languages, as
long as there is a mapping to the SAL XML abstract syntax.

A general rule followed by the SAL parser is that any transformations done by the parser in creating
the abstract structures must, in principle, be invertible. In other words, it should be possible to
prettyprint the abstract syntax and get back the original form, ignoring whitespace.

8.2 A SAL Prelude

The language described here has many built-ins, such as INTEGER, AND, +, etc. In principle, these
could be defined in a separate context, and imported. This would make the language cumbersome,
so instead they were built-in. In our opinion a better choice would be to define these in a prelude,
that is automatically imported and provides types, constants, and lemmas. For example, various
logics such as CTL, CTL*, and LTL can be defined in the prelude, and even given semantics.

27

http://sal.csl.sri.com/documentation.html
http://sal.csl.sri.com/salparser.html
http://sal.csl.sri.com/salparser.html

28 Future Work

The main advantage of a prelude is that it separates the core language from entities built on the
core language. This means that changes to the language can be kept to a minimum, while still
allowing new types and constants to be treated as if they were built-in. This is simlar to the
separation of the core language of C from its numerous libraries.

Any given SAL tool should be able to read the prelude, and build a symbol table, so it should not
be difficult to support.

8.2.1 Libraries, Importings, and Logics

The language defined here may only refer to names outside the context using the fully qualified
name. This is helped somewhat with ContextDeclarations, but if a large hierarchy is built up, even
this will lead to specifications that are difficult to write and to read. In moving away from the view
that this is solely an intermediate language, we feel that the addition of libraries, importings, and
logics would be useful, at least in the concrete language.

A library is really just an extension of the idea of a prelude, and allows sets of contexts to be
defined in a separate directory, and packaged for broad use and distribution, as with PVS libraries.

Importing a context instance allows the names from that context to be used without a qualifier.
There would be restrictions: name conflicts will not be allowed, even if the entities are not com-
parable. If a referenced name has an associated declaration both in the current context and an
imported one, the local one always is used. If a referenced name is common to two separate contexts
(including different instances of the same context), then it is an error, and the name must be fully
qualified.

Importing a logic is similar, but the idea here is that a logic may be parameterized with the
transition system defined by a module, and many instances may be needed for multiple module
expressions. A logic declaration would be similar to an importing, but the information needed to
instantiate it is derived from the module assertions, for example, a CTL context could be defined,

ctl{state: TYPE;
init: [state -> BOOLEAN],
trans: [[state, state] -> BOOLEAN]} : CONTEXT =

...

this can then be used as follows:

LOGIC ctl
asafety: LEMMA async_bak |- AG(NOT (pc1 = l3 AND pc2 = l3));

rather than the error prone and unreadable expanded form:

asafety: LEMMA
async_bak |- ctl{async_bak.STATE;async_bak.INIT,async_bak.TRANS}!

AG(NOT (pc1 = l3 AND pc2 = l3));

This would address the problem with the peterson specification described in Chapter 7.

Draft

8.3 Conversions 29

Note that in principle a parser for the concrete language can parse the imported contexts, produce
name conflict errors, and generate XML files that do not have any importings. This kind of
tranformation means that the abstract syntax can be kept minimal, while allowing the concrete
syntax to be much more convenient and readable.

8.3 Conversions

The preceding section described a CTL formula. In CTL, AG is a predicate transformer, of type
[[STATE -> BOOLEAN] -> [STATE -> BOOLEAN]]. But of course NOT and AND are BOOLEAN oper-
ators, so there is a mismatch. PVS provides a mechanism, called lambda conversion, that is very
effective in lifting such operators, in this case the result would be as follows:

AG(LAMBDA (s: STATE): NOT (pc1(s) = l3 AND pc2(s) = l3))

Of course, if SAL was only intended for CTL, this could simply be built-in, but SAL is intended to
be logic-independent. For LTL, the formulas are path formulas, not state formulas. In fact, LTL
often treats state formulas as path formulas. So a more comprehensive treatment is needed, and
conversions look like a reasonable approach.

8.4 Empty Types

As discussed in the adder example in Chapter 2, the restriction to nonempty types can actually get
in the way of succinct specifications. In the adder case, there is no real problem with having the
empty type, it simply means that the onebitadder is composed with a module that always skips.
Thus in a MultiSynchronous composition if the index type is empty, the result is a module with no
state variables that always skips. If it is a MultiAsynchronous composition, the result is an empty
module with no transitions (i.e., it is deadlocked). PVS allows empty types, and there is no logical
difficulty. One must, of course, be careful with applying logical rules, in particular those involving
quantifiers. For example, one can usually ignore quantifiers whose bound variables do not occur
in the underlying expression, but if empty types are allowed, this is unsound. Thus FORALL (x:
T): FALSE could naively be reduced to FALSE, but if the type T is empty it is actually vacuously
TRUE. Also allowing a type to be nonempty means that the declaration of a constant may entail a
nonemptiness obligation on the type.

8.5 Recursive Function Termination

In PVS, recursive functions must include a measure, and optionally a well-founded ordering. In
earlier discussions of SAL it was thought that functions would be simple enough that the typechecker
would always be able to figure out the measure, but this is clearly not true; even the usual definition
for GCD requires a measure on the difference of the arguments, and it is not at all clear how a
typechecker would be able to determine this. In the future we plan to allow a measure and ordering
to be optionall provided by the user.

Draft

30 Future Work

8.6 State-Dependent Types

Types in SAL are static, but there are situations where having a type that depends on the state
is more expressive. In effect, it means that the type can change as the system progresses. The
typechecker would generate proof obligations that in every reachable state all state variables satisfy
their types. State-dependent types might be useful, for example, in modeling adjustable arrays,
where an array may change size dynamically, but it is preferable to prove that a runtime arrays-
bound check is not necessary.

Draft

Bibliography

[1] R. Alur, T. A. Henzinger, F. Y. C. Mang, S. Qadeer an d S. K. Rajamani, and S. Tasiran.
MOCHA: Modularity in model checking. In Alan J. Hu and Moshe Y. Vardi, editors, 98,
volume 1427, pages 521–525. Vancouver, Canada, June 1998. 2

[2] G. J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall, 1991. 2

[3] Kenneth L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, Boston, MA,
1993. 2

[4] Ralph Melton and David L. Dill. Murφ Annotated Reference Manual. Computer Science De-
partment, Stanford University, Stanford, CA, March 1993. 2

[5] S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS Language Reference,
September 1999. 6

[6] G. L. Peterson. Myths about the mutual exclusion problem. Information Processing Letters,
12(3):115–116, June 1981. 25

31

32

Index

*, 9
+, 9
-, 9
/, 9
/=, 9
<, 9
<=, 9
<=>, 9
=, 9
=>, 9
>, 9
>=, 9
%, 5

Access, 12, 16
Accessors, 6
ActualParameters, 21
adder example, 3
addition, 9
AND, 9
Application, 9
Argument, 9
arithmetic operators, 9
ArrayAccess, 12, 16
ArrayLiteral, 9
ArraySelection, 9
ArrayType, 6
assertion declaration, 23
AssertionDeclaration, 21
AssertionExpression, 23
AssertionForm, 21
assignment, 13
Assignments, 13, 16
asynchronous composition, 18–19
AsynchronousComposition, 17

base module, 17–18
BaseDeclaration, 16
BaseDeclarations, 16
BaseModule, 15, 16
BasicType, 6
Bound, 6

causal cycles, 12

causality check, 14
causality checks, 13
CExpression, 10
comments, 5
composition

asynchronous, 18–19
module, 18–19
synchronous, 18–19

compositional analysis, 19
concstructor, 7
Conditional, 9
conjunction, 9
ConstantDeclaration, 21
Constructors, 6
Context, 21
context, 21–23
context declaration, 22
context parameters, 22
ContextBody, 21
ContextDeclaration, 21, 28
controlled variable, 11
conversions, 29
current expression, 10

DataType, 6
deadlock, 14
Declaration, 21
Declarations, 21
DefDecl, 16
Definition, 12, 16
DEFINITION section, 17
DefinitionOrCommand, 16
Definitions, 12, 16
definitions, 11–13
dependency analysis, 13, 19
Digit, 5
disequality, 9
disjunction, 9
DIV, 9
division, 9

ELSE, 14
ElseCommand, 16
ElsIf, 9

33

34 INDEX

equality, 9
equivalence, 9
exclusive-or, 9
Expression, 8
expressions, 8–10

ForallDefinition, 12, 16
Function, 9
FunctionType, 6

generic context, 22
global variable, 11
GlobalDecl, 16
governing conditions (GC), 13
Guard, 13, 16
guard, 13
guarded commands, 13–14
GuardedCommand, 13, 16

Hiding, 17
higher-order functions, 22

Identifier, 5, 10
implication, 9
importing, 28
IndexType, 6
IndexVarDecl, 9
InfixApplication, 9
InitDecl, 16
initialization condition, 11
INITIALIZATION section, 17
input variable, 11
InputDecl, 16
intermediate language, 27
invariant definition, 11
invariant obligation, 12

LambdaAbstraction, 9
LetDeclarations, 9
LetExpression, 9, 10
Letter, 5
Lhs, 12, 16
libraries, 28
library, 28
LOCAL construct, 18
local variable, 11
LocalDecl, 16
logic, 28
logical variable, 10
logics, 28

minus, 9
Mocha, 2
MOD, 9
model, 10

Module, 16
module, 15–20
module, 11
module composition, 18–19
module declaration, 19
module name, 19
ModuleAssertion, 23
ModuleDeclaration, 20
ModuleImplements, 23
ModuleInstance, 17
ModuleModels, 23
ModuleName, 17
MultiAsynchronous, 17
MultiCommand, 16
multiplication, 9
MultiSynchronous, 17
Murphi, 2

Name, 6
name

overloaded, 21
qualified, 21
unqualified, 21

name equivalence, 6
NamedCommand, 16
NameExpr, 9
negation, 9
NewOutput, 17
NewVarDecls, 17
next state variable, 11
NextVariable, 9, 10
NOT, 9
Numeral, 5

obligation
invariant, 12

observed variable, 11
ObserveModule, 17
Opchar, 5
operator associativity, 10
operator precedence, 10
OR, 9
OUTPUT construct, 18
output variable, 11
OutputDecl, 16
overloaded name, 21

Parameters, 21
parametric module, 19
precedence, 10
prelude, 27
proof obligation, 9, 13, 14, 19, 22
proof obligations, 10
PropOp, 23

Draft

INDEX 35

PropositionalAssertion, 23
PVS, 6

qualified name, 21
QualifiedModuleName, 17
QualifiedName, 6
QualifiedNameExpr, 9
QuantifiedAssertion, 23
QuantifiedExpression, 9
Quantifier, 9

recognizer, 7
RecordAccess, 12, 16
RecordEntry, 9
RecordLiteral, 9
RecordSelection, 9
RecordType, 6
recursive datatype, 7
recursive function, 29
recursive functions, 22
RENAME construct, 18
Renames, 17
Renaming, 17
reserved words, 5
RhsDefinition, 12, 16
RhsExpression, 12, 16
RhsSelection, 12, 16

ScalarType, 6
ScalarTypeName, 6
semantics, 10
SetExpression, 9
SetListExpression, 9
SetPredExpression, 9
SimpleDefinition, 12, 16
SMV, 2
SomeCommand, 16
SomeCommands, 16
special symbols, 5
SpecialSymbol, 5
SPIN, 2
state variable, 10
state-dependent type, 30
StatePred, 9, 10
StateType, 6
Subrange, 6
subtraction, 9
SubType, 6
Symbolic Analysis Laboratory (SAL), 1
synchronous composition, 18–19
SynchronousComposition, 17

TCC, 10
ThenRest, 9
TransDecl, 16

transition relation, 11
TRANSITION section, 17–18
TupleAccess, 12, 16
TupleLiteral, 9
TupleSelection, 9
TupleType, 6
Type, 6
type

array, 6
basic, 6
built-in, 6
dependent, 6
empty, 3, 29
equivalence, 6
function, 6
nonempty, 3, 7, 29
record, 6
subrange, 6
subtype, 6
tuple, 6
uninterpreted, 6

type correctness condition (TCC), 10
TypeDeclaration, 21
TypeDecls, 21
TypeDef, 6
types, 6–8

Unbounded, 6
unqualified name, 21
Update, 9
UpdateExpression, 9
UpdatePosition, 9

VarDecl, 9
VarDecls, 9
variable

controlled, 11
global, 11
input, 11
local, 11
logical, 10
next state, 11
observed, 11
output, 11
state, 10

VarType, 6

WITH construct, 18
WithModule, 17

XOR, 9

Draft

	Contents
	Introduction
	A Simple Example: An N-bit Adder
	The Expression Language
	TypesSAL types are very similar to PVS types, both syntactically and semantically. See the PVS Language Reference PVS:language.
	Expressions

	The Transition Language
	Definitions
	Guarded Commands

	The Module Language
	Base Modules
	State Variable Manipulation
	Module Composition
	Module Declarations

	SAL Contexts
	Context Parameters
	Constant Declarations
	Context Declarations
	Assertion Declarations

	Another SAL Example: Mutual Exclusion
	Future Work
	SAL as an Intermediate Language
	A SAL Prelude
	Libraries, Importings, and Logics

	Conversions
	Empty Types
	Recursive Function Termination
	State-Dependent Types

	Bibliography
	Index

