
Why would anyone care about this title?

Rémi Bonnet Philipp Haller

May 4, 2009

1 Introduction

The aim of this work is to provide an extension of the work presented in [1].
In this work, a typing system was proposed that used capabilities sets in order
to infer properties regarding the aliasing state of objects. Unfortunately, it
required specific constructs, namely the expose and localize statements, that
had to be explicitly written by the user.

We will present here an alternate set of typing rules, shown in table 2.6 on
page 5, that doesn’t require these specific constructs. We will prove in section 4
on page 9 that any program written in the previous style can be simplified into
a program that typecheck to the same value with the new rules. Section 7 on
page 15 will then present an algorithm that is able to find typing proofs with
these rules. Then we will show (what?)

2 Formalization

As in [1], we will consider that we have to typecheck a piece of code following the
grammar presented in 2 on the next page. We will highlight a few restrictions
of this syntax :

• There is no possibility of assignement to local variables, only to object
fields.

• ”while” and ”for” constructs have been left over. Such constructs can be
emulated by recursion, that we fully support.

Typechecking statements are written as Γ ; ∆ ` t : T ; ∆′ where Γ is the
context, ∆ is the set of capabilities provided to the instruction and ∆′ are the
capabilities left over.

2.1 Tracked types and guarded types

Stuff about types.

1

Table 1: Our simplified grammar
Expr := Variable

— ”let” Variable ”=” Expr ”in” Expr
— ”if” Expr ”then” Expr ”else” Expr
— ”{” Expr ”;” Expr ”;” ... ”;” Expr ”}”
— MethodIdentifier(Expr, Expr, ... Expr)
— Expr.FieldIdentifier
— Expr.FieldIdentifier ”=” Expr
— ”new” ClassIdentifier(Expr, Expr, ... Expr)

2.2 Capabilities

Stuff about capabilities.
We distinguish two kinds of capabilities :

• full capabilities, denoted ρ. An instruction with such a capability is able
to perform any (valid) operation on the variable.

• localized capabilitites, denoted ρ → δ. An instruction with such a capa-
bility can treat any variable of type ρ I C as a variable of type δ . C. As
a special case, we define ρ → ρ as equal to ρ

We will sometimes also refer to the ’null’ capability, that is always present
and has no effect.

To ensure that we distinguish correctly distinct capabilities, we define labels
for any new construct or method invocation. For one new construct at a specific
code position p, there is a single guard ρnew,p that will be the capability associ-
ated to the new object. In the same way, we define for every method invocation
at code position p an infinity of guards {ρm,p,i}i that will be used to map all
possible fresh guards returned by the method body.

2.3 Method signatures and annotations

The (uniqueness) semantics of a method are provided by the typing result of
the method body. Three specific things are of interest in such a type statement
:

• The existence of a typing statement means that the method body doesn’t
violate any aliasing protection described in 2.1 on the preceding page.

• The difference between ∆ and ∆′ tells us which variables have been con-
sumed by the method body.

• The type of T gives us the uniqueness status of the returned value.

We use annotations to the method header in order to get this method typing
statement. Three annotations are possible :

2

• @unique (stuff)

• @transient (stuff)

• @exposed (stuff)

... and also possible constraints on guards (equality between parameters
guard, freshness...)

From the typing statement of the method body, we will then get the method
type. This method type is of the form ∀∆∗. (∆, F) → (∆′,H). The vector F
contains the parameter types, which were described in Γ. ∆ and ∆′ corresponds
to the same sets in the typing statement with a specific change : if the typing
statement required a capability ρ that was the guard of no tracked parameters
(only of variables with types ρ . C – @exposed parameters), then the method
type doesn’t require this capability. We will explain this (seemingly arbitrary)
special case below. Finally, the set ∆∗ is the set of polymorphic guards : guards
that can be instantiated to any value for method application.

The validity of this type provided by the user can be checked by the typing
algorithm presented later. The typing algorithm may even find a more precise
type (for example, reduce the number of variables that are consumed). Al-
though, because of recursivity, we need the user to provide a valid type to start
from.

We also accept the possibility of ”built-in” methods, that are provided with
their signatures directly by the compiler. However, such methods must satisfy
the following properties (that hold for all method types built from a method
body) :

Properties 2.1 • If a method returns a tracked (resp. guarded) reference
with a polymorphic guard, then this method also required a tracked (resp.
guarded or tracked) reference of the same guard as parameter.

• If a method requires a capability ρ, then there is a tracked parameter with
this guard.

2.4 Polymorphism of method types

Now, the question is how a method with a given type can be applied to a
specific set of typed expressions. We have mentionned before that a method
type contains a set ∆∗ of polymorphic guards.

(stuff...)

2.5 Merging of capabilities

At the end of a branching construct like the if one, we have to determine a set
of capabilities that is in some sense the ”intersection” of the output capabilities
of the two branches.

Unfortunately, the simple intersection doesn’t work. For example, if ∆1 =
{ρ} and ∆2 = {ρ → δ}, then the resulting capability set must be ∆ = {ρ → δ},

3

as localized capabilities are intuitively restricted version of the full capabilities.
We will formalize this more precisely in section 3.1.

(stuff...)

2.6 Typing rules

We will now present in table 2.6 on the next page our typing rules. We can
distinguish three kind of rules.

• Rules prefixed by C- or S- are syntatic rules : they give the type of a
syntaxic construct from the types of the subexpressions.

• The rule T-LOC is the counterpart of the LOCALIZE rule of [1]. It allows to
start the localization of guard ρ into δ. As long as ρ → δ will be present in
the capabilities set, the rule W-LOC will allow to treat expressions of type
ρ I C as expressions of type δ . C

• Rules W-LOC and W-EXP are the exposition rules. A tracked reference
can always be turned into a simply guarded reference, either to its own
guard (with W-EXP) or to any guard δ such that the associated localization
capability is present (with W-LOC)

A few remarks must be written regarding rule S-INVK :

• We have explained before that the guard of @exposed parameters are not
required as input capabilities of the method type. The rule S-INVK ex-
plains why. If two different capabilities are required, then even if the
method type is polymorphic with respect to guards, two different capa-
bilities must be provided. @exposed parameters are less demanding : we
require the capability to be present for every parameter provided (this is
the Ti = ρi{I, .}Ci =⇒ ρi ∈ ∆i+1 premisce of rule S-INVK), but we
don’t require them to be distinct. This is due to lemma 4.1 on page 9
that explains that for method with @exposed annotations, those accept-
ing parameters with distinct guards also accept parameters with the same
guard.

• TO REWRITE.

Finally, we must note that these rules are not completely syntax directed,
so we will have to show some additional properties before being able to present
the actual typechecking algorithm, in section 7.

3 Generic properties of the type system

3.1 Order on capabilities sets

Definition 3.1 We will say that (T1,∆1) dominates (T2,∆2) and we write
(T2,∆2) � (T1,∆1) iff:

4

Table 2: Typing Rules

Γ ; ∆ ` t : ρ I C ; ∆′ ⊗ ρ

Γ ; ∆ ` t : δ . C ; ∆′ {ρ → δ}
(T-LOC)

Γ ; ∆ ` t : ρ I C ; ∆′ ρ → δ ∈ ∆′

Γ ; ∆ ` t : δ . C ; ∆′ (W-LOC)

Γ ; ∆ ` t : ρ I C ; ∆′

Γ ; ∆ ` x : ρ . C ; ∆′ (W-EXP)

∀i.Γ ; ∆i−1 ` ti : Ti,∆i

Γ ; ∆0 ` t1 ; t2 ; t3 ... tn : Tn,∆n
(C-SEQ)

Γ ; ∆0 ` t0 : bool,∆1

Γ ; ∆1 ` t1 : T,∆2

Γ ; ∆1 ` t2 : T,∆3

Γ ; ∆0 ` if t0 then t1 else t2 : T, gcd(∆2,∆3)
(C-IF)

Γ ; ∆0 ` t1 : T1,∆1

Γ ∪ {x : T1} ; ∆1 ` t2 : T2,∆2

Γ ; ∆0 ` let x = t1 in t2 : T2,∆2
(C-LET)

x : T ∈ Γ
Γ ; ∆ ` x : T ; ∆

(S-VAR)

Γ ; ∆ ` t : ρ . C ; ∆′ ⊗ ρ

fields(C) = l : D

Γ ; ∆ ` t.l : ρ . Di ; ∆′ ⊗ ρ
(S-SEL)

Γ ; ∆ ` t1 : ρ . C ; ∆′

l : D ∈ fields(C)
Γ ; ∆′ ` t2 : ρ . D ; ∆′′ ⊗ ρ

Γ ; ∆′ ` t1.l = t2 : ρ . D ; ∆′′ ⊗ ρ
(S-ASSIGN)

∀i ∈ {1..n}.Γ ; ∆i ` ti : ρi I Di;∆i+1 ⊗ ρi

fields(C) = l : D ρ = lnew

Γ ; ∆1 ` new C(t) : ρ I C ; ∆n+1 ⊗ ρ
(S-NEW)

∀i ∈ {1..n} .Γ ; ∆i ` ti : Ti ; ∆i+1

Ti = ρi{I, .}Ci =⇒ ρi ∈ ∆i+1

mtype(m) = ∀∆∗.
(
∆′, F

)
→ (∆′′, C)

σ = unify
(
T , F ,∆∗)

∆n+1 = σ∆′ ⊗∆r ∆′′′ = σ∆′′ ⊗∆r

Γ ; ∆ ` m
(
t
)
σC ; ∆′′′ (S-INVK)

5

• if T2 is tracked, then T1 is tracked with the same guard.

• if T2 = δ . C, then T1 = ρ I C and ρ → δ ∈ ∆1 ∨ ρ ∈ ∆1 ∨ δ = ρ

• ∀ρ ∈ ∆2. ρ ∈ ∆1

• ∀ρ → δ ∈ ∆2. ρ → δ ∈ ∆1 ∨ ρ ∈ ∆1

We will often compare only capabilities sets. To this aim, we also define
∆2 � ∆1 ⇔ (Unit,∆2) � ∆1.

This relation is an order where greater elements are in some sense more
precise typing results. The idea that greater elements are ”better” typing result
is provided by the following results :

Lemma 3.1 Let Γ ; ∆1 ` t : T1 ; ∆′
1 a valid typing statement. If there exists

∆2 � ∆1 then there exists (T2,∆′
2) � (T1,∆′

1) with respect to (Γ, ∅) such that
Γ ; ∆2 ` t : T2 ; ∆′

2 is valid.

Lemma 3.2 Let {S0, S1, S2} be three sequents of the form Si := Γi;∆i ` ti :
Ti,∆′

i. If :

• S1 is an immediate premisce of S0

• Γ1 = Γ2 and ∆1 = ∆2

• (T1,∆′
1) � (T2,∆′

2)

Then, there exists (Tf ,∆′
f) that dominates (T0,∆′

0) such that Γ0,∆0 ` t0 :
Tf ,∆f can be immediately proven from the same rule as S0 and with S2 as an
immediate premisce.

Lemma 3.3 (weakening of typing result) Let S := Γ ; ∆ ` t : T1 ; ∆1 be a
valid sequent. If (T1,∆1) dominates (T2,∆2), then there exists ∆′

2 dominating
∆2 and Γ ; ∆ ` t : T2 ; ∆′

2 is valid.

With this order, we can prove that for any two pairs of type and capability
set, there exists a greatest common dominated set. We will use this set as a
way to merge if branches.

Definition 3.2 We define gcd(∆1,∆2) as :

∀ρ. ρ ∈ gcd(∆1,∆2) ⇔ ρ ∈ ∆1 ∧ ρ ∈ ∆2

∀ρ, δ. ρ → δ ∈ gcd(∆1,∆2) ⇔
{

ρ ∈ ∆1 ∨ ρ → δ ∈ ∆1

ρ ∈ ∆2 ∨ ρ → δ ∈ ∆2

It is easy to show that this definition corresponds to the greatest common
dominated set.

6

3.2 Propagation of types and capabilities

Lemma 3.4 (inheritance and unicity of tracked type) If t is a non-terminal
term which fulfills S := Γ ; ∆1 ` t : ρ I C ; ∆′

2, then either ρ is a fresh
guard with respect to (Γ,∆) or there is a subterm of t that is shown to be of type
ρ I C ′ in the proof of S.

Moreover, ρ is unique : there is no ∆2,∆′
2, ρ2 6= ρ1 such that Γ;∆2 ` t :

ρ2 I C ′;∆′
2, is valid.

We will here simply state a few (easy) useful properties for future reference.

Properties 3.5 (propagation of localized capabilities) Let S := Γ ; ∆ ` t :
T ; ∆′ be a valid sequent. If ρ → δ ∈ ∆, then :

• ρ → δ ∈ ∆′

• For any sequent S2 := Γ2 ; ∆2 ` t : T ; ∆′
2 in the proof of S, ρ → δ ∈ ∆2

Properties 3.6 Let Γ ; ∆ ` t : T ; ∆′ be valid. Then for any ∆r with
∆r ∩∆ = ∅ :

Γ ; ∆⊗∆r ` t : T ; ∆′ ⊗∆r valid

3.3 Syntaxic equivalence

Lemma 3.7 (encoding of sequences) For any t1, t2, t3, T , Gamma, Delta,
Delta′, we have :

Γ ; ∆ ` t1 ; (t2 ; t3) : T ; ∆′ valid ⇔ Γ ; ∆ ` t1 ; t2 ; t3 : T ; ∆′ valid

Γ ; ∆ ` t1 ; t2 : T ; ∆′ valid ⇔ Γ ; ∆ ` let = t1 in t2 : T ; ∆′ valid

This result feels very natural : it means that, as in lambda-calculus, we can
encode any arbitrary sequence of instructions using only let constructs.

As we will see in next section, the erasure of EL programs leaves some
strange let construction that we may want to suppress. Actually, it also feels
natural that we should be able to replace a let construction assigning a variable
to another one by a straight substitution. Although this result seems intutive,
the typing proof for the two expressions can be quite different. Expecially, it is
possible in the first form to use a single instance of T-LOC to change the type of
the variable, while the second expression requires multiples instances of these
rules. Thus we will prove here this result :

Theorem 1 (let-suppression) If Γ;∆ ` letx = yint : T ;∆′ is valid in CT with
y ∈ V ar, then Γ;∆ ` [x := y]t : T ′;∆′′ is valid in CT with ∆′ � ∆′′.

proof : First, let us consider the proof of S0 := Γ ; ∆0 ` letx = yint : T ; ∆2.
Immediate premisces must be the two sequents S1 := Γ ; ∆0 ` y : T1 ; ∆1 and
S2 := Γ, x : T1 ; ∆1 ` t : T ; ∆2. We know that there exists such a proof of S0

such that S1 is proven from S-VAR with only rules T-LOC, W-LOC and W-EXP. As
at most one possible application of these rules is possible, we have four possible
cases:

7

• S1 is directly inducted from S-VAR, which means y : T1 ∈ Γ . Then if
we consider the proof of S2, at every place where the subterm x is typed,
then it is given the type T1 (from S-VAR). Thus, if we type [x := y]t under
(Γ,∆), then the exact same proof can be used with the subterms y getting
the type T1 directly from S-VAR.

• S1 is induced from W-EXP. Then we have T1 = ρ . C and y : ρ I C ∈ Γ.
Then, again, if we consider the proof of S2, at every place where x is
typed, then it is given the type ρ . C. Thus, if we type [x := y]t under
(Γ,∆), the same proof applies, where the subterms y are getting the type
T1 from S-EXP with the premisce y : ρ I C being obtained from S-VAR

• S1 is induced from W-LOC, which means we have T1 : δ.C and ρ → δ ∈ ∆1.
Then by the lemma 3.5 on the previous page, if we reuse the proof of S2,
the only work that is left to do is to prove the sequents Γs ; ∆s ` y :
T1 ; ∆′

s. Thanks to lemma 3.5 on the preceding page, we know that for
all these sequents, ρ → δ ∈ ∆s, which allows us to prove this sequent by
application of W-LOC

• S1 is induced from T-LOC. We can then notice that the typechecking state-
ment S1 := Γ ; ∆ ` y : δ . C ; ∆ ⊗ {ρ → δ} is dominated by the type-
checking statement S∗

1 := Γ ; ∆0 ` y : ρ I C ; ∆′ ⊗ ρ which is the direct
application of S-VAR. That means there is a proof of a dominated version
of S0 where the type of y is decided from S∗

1 (lemma 3.2), and thus that we
can use our previous demonstration in the case of S-VAR to show that there
exists (T ′,∆′′) dominating (T,∆′) such that Γ ; ∆ ` [x := y]t : T ′ ; ∆′′

holds. Thanks to lemma 3.3, we can even show that there exists ∆′′′ dom-
inating ∆′ such that Γ ; ∆ ` [x := y]t : T ; ∆′′′ holds, which concludes
the demonstration.

Interestingly, this shows that the suppression of trivial let constructions
doesn’t give exactly the same typing result (but always a dominating one).
This is due to the fact that x may not be present in t, and thus that we lose
opportunities to weaken our capability sets. However, if we force x to be present
in t, then we could show that we can get the exact same typing results.

We can get a similar (and easy-to-prove) result if the variable being defined
appears only once :

Lemma 3.8 (weak let-suppression) If x appears only once inside t2, then the
following two type judgements are equivalent :

• Γ ; ∆ ` [x := t1]t2 : T ; ∆′

• Γ ; ∆ ` letx = t1int2 : T ; ∆′

We will state a similar result for methods themselves.

Theorem 2 (method-substitution) Let m be a method with actuals {xi : Ti}i

and body body(m). Then, if {yi} are variables, we have the following two typing
judgements being equivalent :

8

1. Γ ; ∆ ` m(y1, y2, ...yn) : T ; ∆′

2. Γ ; ∆ ` [∀i. xi := yi]body(m) : T ; ∆′

4 Erasure of programs writen in EL style

In this section, we will attempt to show that any program that could typecheck
under the old system still typechecks. For conciseness, we will name EL the
type system of [1] and CT the one presented here.

Definition 4.1 If t is a term writen in EL grammar, we will define the erasure
of t, written t the term produced by removing all instances of expose and localize
according to the following rules :

• expose x = y in t → let x = y in t

• localize(t1, t2) → let z = t1 in (t2 ; z)

One of the major changes between EL and CT is that there is no real ’ex-
position’ : with rule W-EXP, we use same capability to refer both to the tracked
version of an object, and to its exposed version. So, before proving the real
result, we will show this interesting property of the CT system :

Lemma 4.1 Let ρ, δ be two guards and S := Γ ; ∆⊗ ρ⊗ δ ` t : T ; ∆′ ⊗ ρ⊗ δ
be valid under CT. Then, if all variables inside Γ with guard δ are not tracked,
then S′ := [δ := ρ]Γ ; ∆⊗ ρ ` t : [δ := ρ]T ; ∆′ ⊗ ρ is also valid under CT.

proof : By induction on the proof of S. The core of the proof is based on
the fact that if a method requires only a guarded type, then it only asks the
capabilities to be present and doesn’t care about duplication (see properties 2.1
on page 3)

Theorem 3 Let t be a term. If, under EL S := Γ ; ∆ ` t : T ; ∆′ is valid,
then S := Γ ; ∆ ` t : T ; ∆′′ is valid under CT with ∆′ ⊂ ∆′′.

proof : We will work on induction on the proof of S to build a proof of S

• case ASSIGN:

Under EL, Γ ; ∆ ` t1.l = t2 : ρ . D ; ∆′′ ⊗ ρ is valid, and thus all its
prerequisites also hold. By induction hypothesis, we have Γ ; ∆ ` t1 :
ρ . C ; ∆′ ⊗ ∆′

r and Γ ; ∆′ ` t2 : ρ . D ; ∆′′ ⊗ ∆′′
r . By lemma 3.6, we

have Γ ; ∆′ ⊗∆′
r ` t2 : ρ . D ; ∆′′ ⊗∆′

r ⊗∆′′
r valid, which means that

Γ ; ∆ ` t1.l = t2 : ρ . D ; ∆′ ⊗∆r is valid.

The exact same idea of demonstration works for SEL, NEW and INVK. The
case of VAR being immediate, we will move to the two interesting cases,
being EXPOSE and LOCALIZE

9

• case EXPOSE:

We have that Γ ; ∆ ` expose x = t1 in t2 : T ; ∆′′ ⊗ ρ is valid under EL.
Thus, the following statement hold under EL:

– Γ ; ∆ ` t1 : ρ I C ; ∆′ ⊗ ρ

– ρ′ fresh

– Γ, x : ρ′ . C ; ∆′ ⊗ ρ, ρ′ ` t2 : T ; ∆′′ ⊗ ρ, ρ′

By induction hypothesis, we get under CT :

– Γ ; ∆ ` t1 : ρ I C ; ∆′ ⊗ ρ⊗∆r1

– Γ, x : ρ′ . C ; ∆′ ⊗ ρ, ρ′ ` t2 : T ; ∆′′ ⊗∆r2 ⊗ ρ, ρ′

And with lemma 4.1 on the preceding page, we now have :

Γ, x : ρ . C ; ∆′ ⊗ ρ ` t2 : T ; ∆′′ ⊗ ρ

Which allows us to apply C-LET and with the help of lemma 3.6 we get :

Γ ; ∆ ` let x = t1 in t2 : T ; ∆′′ ⊗∆r1 ⊗∆r2 ⊗ ρ

That can be rewritten in :

Γ ; ∆ ` expose x = t1 in t2 : T ; ∆′′ ⊗ ρ⊗∆r

... which ends this induction case.

• case LOCALIZE

We have that Γ ; ∆ ` localize(t1, t2) : ρ2 .C ; ∆′′ under EL, which means
the following statement hold under EL :

– Γ ; ∆ ` t1 : ρ1 I C ; ∆′ ⊗ ρ1

– Γ ; ∆′ ` t2 : ρ2 . C ′ ; ∆′′

By induction hypothesis, their erasure counterparts are valid in CT :

– Γ ; ∆ ` t1 : ρ1 I C ; ∆′ ⊗ ρ1 ⊗∆r1

– Γ ; ∆′ ` t2 : ρ2 . C ′ ; ∆′′ ⊗∆r2

By T-LOC in CT, we then get :

Γ ; ∆ ` t1 : ρ2 . C ; ∆′ ⊗ ρ1 → ρ2 ⊗∆r1

As y2 is fresh, we can get through C-SEQ :

10

Γ, y2 : ρ2 . C ; ∆′ ` {t2; y2} : ρ2 . C ; ∆′′ ⊗ ρ1 → ρ2 ⊗∆r2

And by C-LET :

Γ ; ∆ ` let y2 = t1 in {t2; y2} : ρ2 . C ; ∆′′ ⊗∆r1 ⊗∆r2 ⊗ ρ1 → ρ2

... which concludes this case and achieves the demonstration.

5 Reducing CT to EL

In this section, we will show that the typing system CT provides the same
guarantees as EL. To do this, we will have to look at specific executions of CT
programs, leading us to introduce some rough program formalization.

5.1 From CT programs to terms

Definition 5.1 We define a program P as a collection of class and method
definitions : P = ({Ci}, {mi}).

An execution E of the program with parameters {xi} is the reduction of the
term m0(x1, x2, ...xn) according to the usual reduction rules where non-builtin
method calls are handled according to the theorem 2 on page 8.

After having defined the usual interpretation of all syntaxic constructs, we
define the semantics of a program as, for any possible execution, the final value
returned by the program and the sequence of memory states that the program
goes in, where memory is defined as the space for only objects (and not for any
local variables).

Definition 5.2 For a given program P, we define P∗ = ({Ci}, {mi,j,k}) the
program with an infinite number of methods where the mi,j,k are defined as
copies of the original mi where every call to a method mp inside body(mi,j,k) is
substitued by a call to mp,j+1,q where q is a unique index inside mi, j, k

It is easy to see that P and P∗ have exactly the same semantics. The interest
of P∗ is that during any execution of it, each physical term is only reduced once,
leading to this definition:

Definition 5.3 For an execution E of P, we denote P|E the restriction of P to
E, defined by recursively eliminating all if branches and methods that were not
visited during the execution.

P|E presents some interesting properties : it has no more if constructs, has
the same semantics and types as P for the execution E , and if E terminates,
then it is finite.

Interestingly enough, EL guarantees are only safety properties : they are
true if and only if they are true for every finite prefix of an execution chain [2].
Thus, we will only look at such traces.

11

Definition 5.4 We denote by P|E,p the program P restricted to E and truncated
to p the alteration of P|E where all method calls to mi,j,k with j > p are replaced
by calls to a merror,mtype(mi,j,k) methods that have the same type as mi,j,k but
that have undefined behaviour.

Now, by theorem 2 on page 8, we know that we can replace such a program
by a single term, with the same semantics and the same type.

Thus, for any finite prefix of an execution chain of a program, we can exhibit
a term, with no if constructs, that typechecks to the same value as the return
value of m0 and that exhibits the same behavior as the original program during
the first p (with p arbitrary large) method calls.

Now, we have a term with only let constructs and atomic operations (field
assignement, field selection, new object and merror). Thanks to lemma 3.8 on
page 8, if this term has p free variables {xi}1≤i≤p, we can easily turn this term
into the following normal form (administrative normal form, as described in [3]),
which has same type and semantics :

let xp+1 = fp+1(xkp+1,1 , xkp+1,2 , ..., xk1,qp+1
)

in let xp+2 = fp+2(xkP+2,1 , xkp+2,2 , ..., xk2,qp+2
)

...
in let xn−1 = fp+2(xkn−1,1 , xkn−1,2 , ..., xk2,qn−1

)

in fn(xkn,1 , xkn,2 , ..., xkn,qn
)

5.2 Enriching EL

Unfortunately, the standard EL syntax as described in [1] is not sufficient for
CT terms to be translated to it. That’s why we need to propose two extensions.

¡description of fixed-size tuples and multi-let¿
It is quite apparent that such an extension of EL doesn’t violate any of the

announced guarantees. We will skip here the demonstration, moving to the next
extension:

Definition 5.5 For every guard δ and class C, we define the method castδ.C

of type ∀{ρ}.(∅, {x : ρ I C}) → (∅, δ . C)
We denote as ELC the EL type system that admits these methods as built-ins

while giving them the semantics of identity.

Of course, a program that typechecks under ELC doesn’t provide the guar-
antees of EL any more, but we can relate the two systems thanks to this lemma
:

Lemma 5.1 If y is a variable, the following two terms have the same type and
semantics under EL(C):

• exposex = yint

• [x := castδ.C(x)]t

12

5.3 Adding back localize statements

Before having full-fledged EL(C) terms, we will define an intermediate form of
program :

Definition 5.6 Let CTWL be the system defined by :

• For the syntax, by the grammar of CT described in table 2 on page 2, with
the additionnal localize construct.

• For the type system, by the rules of CT, with T-LOC and W-LOC replaced
by the LOCALIZE of EL.

We say that t′ of CTWL is a standard localized form of t in CT if it can be
obtained by the applications of the following rewriting rule :

...
letxp = fp(xk1 ,xkq

)in
...

→

...
letxp = fp(xk1 , ...xkr

)in
letx′p = localize(xp, xq) with q < p
...

Lemma 5.2 Let t of CT be a term in administrative normal form. There exists
t′, that can be

5.4 Adding back expose statements

We still need a few additionnal notations before moving to the reduction proof:
¡definition of expose-prefix form¿
¡definition of CTWL¿
This allows us to state this result :

Lemma 5.3 Let t be a term of CT in the form of 5.1 on the previous page with
a Γ ; ∆ ` t : T ; ∆′ typing judgement. Then, there exists t′, a term of ELC in
expose-prefix form such that :

• t′ has the same type judgement and semantics than a term of EL.

• Γ ; ∆t′ : T ; ∆′′ with ∆′′ = {ρ ∈ ∆′} (Delta′ restrained to full capabilities)

proof: (...)
And we can now formulate our final result:

Theorem 4 Let P be a program of CT. If P typechecks, it fulfills the following
properties : ¡EL safety guarantees¿

13

Table 3: Weakened typing rules

∀i. Γ ` ti : Ti

Γ ` t1 ; t2 ; t3 ... tn : Tn
(CW-SEQ)

Γ ` t0 : bool Γ ` t1 : T Γ ` t2 : T

Γ ` if t0 then t1 else t2 : T
(CW-IF)

Γ ` t1 : T1 Γ ∪ {x : T1} ` t2 : T2

Γ ` let x = t1 in t2 : T2
(CW-LET)

x : T ∈ Γ
Γ ` x : T

(SW-VAR)

Γ ` t : C fields(C) = l : D

Γ ` t.l : Di
(SW-SEL)

Γ ` t1 : [ρ I]C
l : D ∈ fields(C)
Γ ` t2 : [ρ I]D
Γ ` t1.l = t2 : D

(SW-ASSIGN)

∀i ∈ {1..n}.Γ ` ti : ρi I Di

fields(C) = l : D

Γ ` new C(t) : ρ I C
(SW-NEW)

∀i ∈ {1..n}.Γ ` ti : Ti

mtype(m) = (∆, F) → (∆′, C)
σ = unify(T , erase.(F))
Γ ` m

(
t
)

: erase.(σC)
(SW-INVK)

14

6 Availablity analysis and probable types

Definition 6.1 We define the predicate MbA(t, Γ, ρ) as :

Mba(t, Γ, ρ) ⇔ ∀∆,∆′, T. Γ ; ∆ ` t : T ; ∆′ valid =⇒ ρ ∈ ∆ (1)

We wish to have an algorithm able to compute MbA. To perform this analy-
sis, we need to know if a subterm will be of a specific tracked type. Fortunately,
a tracked type can only be inherited from a subterm and the guard of such
a tracked type can not be affected by the present capabilities (see lemma 3.4
on page 7), so we can use a weakened set of rules that discard any information
about capabilities and non-tracked guards in order to know which variables may
be of a tracked type.

Such rules are presented in 6 on the previous page. They are fully syntax-
directed, so writing a typing algorithm is immediate. We present now a few
interesting properties of the types provided by this weakened system.

Definition 6.2 We say that T is a probable type of t under Γ iff Γ ` t : T
under the rules presented in table 6 on the preceding page

Properties 6.1 • If T is a probable tracked type of t under Γ, then :

∃∆,∆′. Γ ; ∆ ` t : T ; ∆′ valid or !∃∆,∆′, T ′. Γ ; ∆ ` t : T ′ ; ∆′ valid

• If T1 and T2 are two probably types of t, then they are equal if we consider
fresh guards are equivalent.

• If t has a type under the full rules with some input (Γ,∆), then it has a
probable type with Γ

Lemma 6.2 MbA(t, Γ, ρ) holds if and only if, for all subterms of t with a prob-
able type of ρ I C, this subterm is not used as a consumed argument of a method
call or an argument of a new call.

Given it is easy to get probable types of terms, we are now able to compute
MbA(t, Γ, ρ) for arbitrary parameters, which allows us to move to the presen-
tation of the algorithm.

7 Typing Algorithm

This algorithm is close to the Hindley-Milner standard type inference in that
it uses guard variables and builds a constraint set that has to be solved by
unification, yielding a substitution from guard variables to guards.

In this section, when we write that σ satisfies a constraint set C, we mean
that σ is an application from guard variables to guards that is a solution of C.

Given we use guard variables, we extend the definition of the greatest com-
mon dominated set thanks to the following definitions :

15

Definition 7.1 When considering capability sets with guard variables, we define
the capability ρ →

⋂
i χi that fulfills the following properties :

• σ(ρ →
⋂

i χi) = ρ → δ iff ∀i. σ(χi) = δ

• σ(ρ →
⋂

i χi) = null in other cases.

Definition 7.2 Let ∆1 and ∆2 be capability sets with guard variables. Then,
we define :

∆∗ = gcd(∆,∆′) ⇔
{
∀σ. σ(∆∗) � σ(∆1) ∧ σ(∆∗) � σ(∆2)
∀∆′. ∀σ. σ(∆∗) � σ(∆1) ∧ σ(∆∗) � σ(∆2) =⇒ ∆′ � ∆∗

(proof well-defineness?)

7.1 Specifications

• Inputs : Γ,∆,∆′, t. ∆′ may only contain pure capabilities.

• Outputs : T , ∆r and a constraint set C containing equations relating
guards and guard variables (guard variables may appear in both T and
∆r)

Properties

∀σ.

{
σ satisfies C
∆′ ⊂ ∆r

=⇒ Γ ; σ(∆) ` t : σ(T) ; σ(∆r) valid (P1)

∀T ∗,∆∗. Γ ; ∆ ` t : T ∗ ; ∆∗ valid =⇒ ∃σ.

{
(T ∗,∆∗) � (σ(T), σ(∆r))
σ satisfies C

(P2)

7.2 Preliminary notes

Here i explain stuff about reducing to method calls and function calls with only
variables.

7.3 Definition

Provided with t, Γ, ∆, ∆′, we branch on the syntax of t:

• Variables : t := ”x”

We immediately return (T,∆, ∅) where x : T ∈ Γ

• Let : t := ”let x = t1 in t2”

– We define ∆1 = ∆′ ∪ {ρ‖MbA(t2,Γ ∪ {x : probable type(t1)}, ρ}
– We recursively typecheck t1 with Γ, ∆ and ∆1 and get (T1,∆2, C1)

16

– We recursively typecheck t2 with Γ ∪ x : T1, ∆2 and ∆′ and get
(T2,∆3, C2)

– We return (T2,∆3, C1 ∪ C2)

• If : t := ”if (v) then t1 else t2”

1. We check v is of type bool. If not, we fail (we may return an unsolv-
able constraint set for example).

2. We recursively typecheck t1 with Γ, ∆ and ∆′ and get (T1,∆1, C1)

3. We recursively typecheck t2 with Γ, ∆ and ∆′ and get (T2,∆2, C2)

4. If T1 and T2 don’t share the same class type, we fail.

5. If T1 and T2 are equal, return (T1, gcd(∆1,∆2), C1 ∪ C2)

6. If T1 = ρ1 I C and T2 = ρ2 I C, with ρ1 6= ρ2, three subcases arise:

– If {ρ1, ρ2} ⊂ ∆′, fail.
– If ρ1 ∈ ∆′ and ρ2 /∈ ∆′, check that ρ2 is in ∆2 (else fail) then

return (ρ1 . C, gcd(∆1, (∆2 − ρ2)⊗ {ρ2 → ρ1}), C1 ∪ C2)
– If ρ1 /∈ ∆′ and ρ2 /∈ ∆′, check that ρ1 and ρ2 are respectively

in ∆1 and ∆2 (else fail), then take χk fresh guard variable and
return (χk . C, gcd((∆1 − ρ1) ⊗ {ρ1 → χk}, (∆2 − ρ2) ⊗ {ρ2 →
χk}), C1 ∪ C2)

7. If T1 = ρ I C and T2 = δ . C, with ρ 6= δ, two subcases arise:

– If ρ ∈ ∆′, check that ρ is in ∆1 (else fail), then return (δ .
C, gcd((∆1 − ρ)⊗ {ρ → δ},∆2), C1 ∪ C2)

– If ρ /∈ ∆′, fail.

8. If T1 = ρ I C and T2 = ρ . C, return (ρ . C, gcd(∆1,∆2), C1 ∪ C2)

9. If T1 = δ1 . C and T2 = δ2 . C with δ1 6= δ2, fail.

• Method Calls : m(x1, x2, ... xn)

1. Let Fi be the type requested by the method for the ith parameter.
Now, for all parameters, let us compare the type Ti of xi in Γ with Fi.
Four cases arise with which we infer the {T ′

i} types and iterately build
the set ∆∗ of the remaining capabilities (at the beginning (∆∗

0 = ∆)
:

– If Fi and Ti are of different class types, fail
– If Fi and Ti are both guarded or both tracked : T ′

i = Ti, ∆∗
i =

∆∗
i−1

– If Fi = δ.C, Ti = ρ I C and ρ ∈ ∆′ : T ′
i = ρ.C and ∆∗

i = ∆∗
i−1

– If Fi = δ . C, Ti = ρ I C and ρ /∈ ∆′ : take χk fresh guard
variable and set T ′

i = χk . C and ∆∗
i = ∆∗

i−1 − ρ (if ρ /∈ ∆∗
i−1,

fail)

17

2. Then we unify Fi and T ′
i . For every i and j such that guard1(Fi) =

guard(Fj), we add the constraint guard(T ′
i) = guard(T ′

j) to the set
C (starting empty)

3. Now, we consider the return type Fr of the method. If the guard α of
Fr doesn’t appear in any of the {Fi}, then we define Tr as [α := γ]Fr

where γ is a fresh guard. If it appears in some Fp, then we set Tr as
[α := guard(T ′

p)].

4. We can now return (Tr,∆∗
n, C)

7.4 Proof of correctness

By induction on the structure of t :

• The case of variables is immediate.

• Let : t := ”let x = t1 in t2”

1. Proof of P1
Let σ be a substitution satisfying C. As C = C1 ∪ C2, σ also satisfy
C1 and C2.
By induction hypothesis, we have:

Γ ; σ(∆) ` t1 : σ(T1) ; σ(∆2)
Γ ; σ(∆2) ` t2 : σ(T2) ; σ(∆3)

And by a direct application of C-LET, we get the conclusion.

• If : t := ”if (v) then t1 else t2”

1. Proof of P1
The algorithm already checked that v fulfilled : Γ ; ∆ ` v : bool ; ∆,
so we can move to the two other premisces.
We have the following two results by induction :

Γ ; σ(∆) ` t1 : σ(T1) ; σ(∆1)
Γ ; σ(∆) ` t2 : σ(T2) ; σ(∆2)

Now, let us consider the different possibilities that were described in
the algorithm :

– All cases of failure are immediate given we are proving a safety
property.

– T1 and T2 are equal : we can directly apply C-IF

1guard being the application that associates ρ to the types ρ I C and ρ . C

18

– T1 = ρ1 I C, T2 = ρ2 I C, ρ1 ∈ ∆′ and ρ2 /∈ ∆′ : we can apply
rule T-LOC to t2, yielding :

Γ ; ∆ ` t2 : ρ1 . C ; (∆2 − ρ2)⊗ {ρ2 → ρ1}

and then rule C-IF applies.
– T1 = ρ1 I C, T2 = ρ2 I C, ρ1 /∈ ∆′ and ρ2 /∈ ∆′ : we can apply

rule T-LOC to both t1 and t2, yielding :

Γ ; ∆ ` t1 : σ(χk) . C ; (∆2 − ρ1)⊗ {ρ1 → χk}
Γ ; ∆ ` t2 : σ(χk) . C ; (∆2 − ρ2)⊗ {ρ2 → χk}

and we can then apply again rule C-IF.
– T1 = ρ I C, T2 = δ . C and ρ ∈ ∆ : we can again apply T-LOC

to t2, followed by C-IF

– T1 = ρ I C and T2 = ρ . C : we can apply W-EXP on t1, then
C-IF

• Method Calls : m(x1, x2, ... xn)

1. Proof of P1

References

[1] Ph. Haller, M. Odersky : Capabilities for external uniqueness.

[2] B. Alpern, F. B. Schneider : Recognizing safety and liveness.

[3] C. Flanagan, A. Sabry, B. F. Duba, M. Felleisen : The essence of compiling
with continuations.

19

