
Introduction
Analysing the control flow graph

Study case
Conclusion

Analysis of Assembly Execution Time

Nicolas Boichat, Eric Bisolfati

May 28, 2009

Nicolas Boichat, Eric Bisolfati Analysis of Assembly Execution Time

Introduction
Analysing the control flow graph

Study case
Conclusion

Outline

1 Introduction

2 Analysing the control flow graph

3 Study case

4 Conclusion

Nicolas Boichat, Eric Bisolfati Analysis of Assembly Execution Time

Introduction
Analysing the control flow graph

Study case
Conclusion

Assembly execution time

Assume this trivial snippet of code:

int mult(int a, int b) {
int i, sum = 0;
for (i = 0; i < b; i++)
sum += a;

return sum;
}

In this example:

The time spent in the for loop depends on b.

If it is a cryptographic function → time will leak
information.

Nicolas Boichat, Eric Bisolfati Analysis of Assembly Execution Time

Introduction
Analysing the control flow graph

Study case
Conclusion

Leak detection

Can we find a way to detect these leaks?

We analyse assembly code, it has 2 main advantages:

1 Execution time depends on the assembly code only.

2 We know how much time each instruction lasts.

Nicolas Boichat, Eric Bisolfati Analysis of Assembly Execution Time

Introduction
Analysing the control flow graph

Study case
Conclusion

Simplifying the problem

x86 assembly is complex.

We used a softcore CPU on the FPGA4U: Nios II/e.

Simple architecture, similar to microcontrollers:

No cache, no pipelining.
Deterministic execution time.

Nicolas Boichat, Eric Bisolfati Analysis of Assembly Execution Time

Introduction
Analysing the control flow graph

Study case
Conclusion

Disassembling
Finding data, control and time dependencies
The Post-dominator algorithm
Computing the “Traces”

Intruction set

Nicely encoded instruction set.

First step → write a disassembler.

Figure: Format of an I-type instruction.

Nicolas Boichat, Eric Bisolfati Analysis of Assembly Execution Time

Introduction
Analysing the control flow graph

Study case
Conclusion

Disassembling
Finding data, control and time dependencies
The Post-dominator algorithm
Computing the “Traces”

Control flow graph

From the disassembled code, we can generate a control flow
graph.

Figure: A control flow graph.

Nicolas Boichat, Eric Bisolfati Analysis of Assembly Execution Time

Introduction
Analysing the control flow graph

Study case
Conclusion

Disassembling
Finding data, control and time dependencies
The Post-dominator algorithm
Computing the “Traces”

Data dependencies

We keep a map for each instruction, indicating register
dependencies.

x : add r2, r4, r5 -- deps: r2 -> (r4,r5)
x+4 : add r3, r2, r6 -- deps: r2 -> (r4,r5);

r3 -> (r4,r5,r6)

The dependencies are forwarded in the control graph.

Nicolas Boichat, Eric Bisolfati Analysis of Assembly Execution Time

Introduction
Analysing the control flow graph

Study case
Conclusion

Disassembling
Finding data, control and time dependencies
The Post-dominator algorithm
Computing the “Traces”

Worklist algorithm

We start with a worklist with the first node in it.

Then we repeat the following:

1 Pick an element of the worklist.

2 Merge dependencies from predecessors.

3 Analyse current instruction.

4 If dependencies have changed → add successors to the
worklist.

Nicolas Boichat, Eric Bisolfati Analysis of Assembly Execution Time

Introduction
Analysing the control flow graph

Study case
Conclusion

Disassembling
Finding data, control and time dependencies
The Post-dominator algorithm
Computing the “Traces”

Convergence

We are working in a lattice:

Dependencies are a list of sets.

Easy to define a partial order on it.

Our update function is monotonic (we only add dependencies,
never remove).

→ Tarski’s fixed point theorem guarantees that we will
converge eventually.

Nicolas Boichat, Eric Bisolfati Analysis of Assembly Execution Time

Introduction
Analysing the control flow graph

Study case
Conclusion

Disassembling
Finding data, control and time dependencies
The Post-dominator algorithm
Computing the “Traces”

Control and time dependencies

Consider the following example (r2 depends on r5):

→ The execution time will depend on r5.
→ The value of r8 will depend on r5.

Nicolas Boichat, Eric Bisolfati Analysis of Assembly Execution Time

Introduction
Analysing the control flow graph

Study case
Conclusion

Disassembling
Finding data, control and time dependencies
The Post-dominator algorithm
Computing the “Traces”

Time and control dependencies

To find whether a branch introduces time or control
dependency, we need to find the merging point.

Nicolas Boichat, Eric Bisolfati Analysis of Assembly Execution Time

Introduction
Analysing the control flow graph

Study case
Conclusion

Disassembling
Finding data, control and time dependencies
The Post-dominator algorithm
Computing the “Traces”

Post dominators

Find the immediate post-dominator of the branch instruction,
i.e. the first instruction that will be executed whether the
condition is true or false (→ the merging point).

Well-known algorithms exist to compute those (ex: Tarjan’s
algorithm).

Nicolas Boichat, Eric Bisolfati Analysis of Assembly Execution Time

Introduction
Analysing the control flow graph

Study case
Conclusion

Disassembling
Finding data, control and time dependencies
The Post-dominator algorithm
Computing the “Traces”

Control flow dependencies

All operations results are tainted by the branch condition, until
we reach a post-dominator.

Nicolas Boichat, Eric Bisolfati Analysis of Assembly Execution Time

Introduction
Analysing the control flow graph

Study case
Conclusion

Disassembling
Finding data, control and time dependencies
The Post-dominator algorithm
Computing the “Traces”

Time dependency

Time is recorded in both branches.

If 2 branches merge with a different time, we add a time
dependency on the branch condition.

Nicolas Boichat, Eric Bisolfati Analysis of Assembly Execution Time

Introduction
Analysing the control flow graph

Study case
Conclusion

Disassembling
Finding data, control and time dependencies
The Post-dominator algorithm
Computing the “Traces”

Function calls

Function calls are handled

We need to manage the stack as well

Very simple symbolic execution to know the stack pointer.

Nicolas Boichat, Eric Bisolfati Analysis of Assembly Execution Time

Introduction
Analysing the control flow graph

Study case
Conclusion

Unsafe version
Safe version
Experimental verification

Study case - Multiplication in Gallois field

Multiplication in Gallois field:

/* Multiply two numbers in the GF(2^8) finite field defined

* by the polynomial x^8 + x^4 + x^3 + x + 1 */

uint8_t gmul(uint8_t a, uint8_t b) {

uint8_t p = 0;

uint8_t counter;

uint8_t hi_bit_set;

for(counter = 0; counter < 8; counter++) {

if((b & 1) == 1)

p ^= a;

hi_bit_set = (a & 0x80);

a <<= 1;

if(hi_bit_set == 0x80)

a ^= 0x1b; /* x^8 + x^4 + x^3 + x + 1 */

b >>= 1;

}

return p;

}

Nicolas Boichat, Eric Bisolfati Analysis of Assembly Execution Time

Introduction
Analysing the control flow graph

Study case
Conclusion

Unsafe version
Safe version
Experimental verification

Unsafe version

Now, consider b contains some sensitive information (e.g. the
key being used).

for(counter=0; counter < 8; counter++) {
if((b & 1) == 1)
p ^= a;

...
}

Our tool reports a time dependency on b.

Nicolas Boichat, Eric Bisolfati Analysis of Assembly Execution Time

Introduction
Analysing the control flow graph

Study case
Conclusion

Unsafe version
Safe version
Experimental verification

Safe version

Let’s fix that by adding some nops:

for(counter=0; counter < 8; counter++) {
if((b & 1) == 1) {
p ^= a;

} else {
asm volatile("nop");
asm volatile("nop");

}
...

}

Our tool reports no time dependency on b.

Nicolas Boichat, Eric Bisolfati Analysis of Assembly Execution Time

Introduction
Analysing the control flow graph

Study case
Conclusion

Unsafe version
Safe version
Experimental verification

Experimental verification

We can test both versions on an FPGA4U.

Measure the execution time as a function of b.

Nicolas Boichat, Eric Bisolfati Analysis of Assembly Execution Time

Introduction
Analysing the control flow graph

Study case
Conclusion

Unsafe version
Safe version
Experimental verification

Experimental verification

740

750

760

770

780

790

959

0 50 100 150 200 250

E
xe

cu
tio

n
tim

e
(c

yc
le

s)

Parameter b

Safe version
Unsafe version

1286432

Nicolas Boichat, Eric Bisolfati Analysis of Assembly Execution Time

Introduction
Analysing the control flow graph

Study case
Conclusion

Future work
Questions

Experimental verification

In this case, our tool provides correct results.

Nicolas Boichat, Eric Bisolfati Analysis of Assembly Execution Time

Introduction
Analysing the control flow graph

Study case
Conclusion

Future work
Questions

Future work

Analyse memory operations.

Handle recursive function calls.

Analysis of more complex programs.

Analysis of pipelined processors.

Nicolas Boichat, Eric Bisolfati Analysis of Assembly Execution Time

Introduction
Analysing the control flow graph

Study case
Conclusion

Future work
Questions

Thanks for your attention.

Questions ?

Nicolas Boichat, Eric Bisolfati Analysis of Assembly Execution Time

Introduction
Analysing the control flow graph

Study case
Conclusion

Future work
Questions

Backup

Backup

Nicolas Boichat, Eric Bisolfati Analysis of Assembly Execution Time

Introduction
Analysing the control flow graph

Study case
Conclusion

Future work
Questions

Lattice definition

Registers:
S = {r1, ...r31}

Dependencies:
(dr1, dr2, ...dr31), d∗ ∈ 2S

Lattice:
(dr1, ...dr31) v (d ′r1, ...d

′
r31)↔

∧
i∈S di ⊆ d ′i

Nicolas Boichat, Eric Bisolfati Analysis of Assembly Execution Time

	Introduction
	Analysing the control flow graph
	Disassembling
	Finding data, control and time dependencies
	The Post-dominator algorithm
	Computing the ``Traces''

	Study case
	Unsafe version
	Safe version
	Experimental verification

	Conclusion
	Future work
	Questions
	

