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Assembly execution time

Assume this trivial snippet of code:

int mult(int a, int b) {
int i, sum = 0;
for (i = 0; i < b; i++)
sum += a;

return sum;
}

In this example:

The time spent in the for loop depends on b.

If it is a cryptographic function → time will leak
information.
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Leak detection

Can we find a way to detect these leaks?

We analyse assembly code, it has 2 main advantages:

1 Execution time depends on the assembly code only.

2 We know how much time each instruction lasts.
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Simplifying the problem

x86 assembly is complex.

We used a softcore CPU on the FPGA4U: Nios II/e.

Simple architecture, similar to microcontrollers:

No cache, no pipelining.
Deterministic execution time.
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Intruction set

Nicely encoded instruction set.

First step → write a disassembler.

Figure: Format of an I-type instruction.
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Control flow graph

From the disassembled code, we can generate a control flow
graph.

Figure: A control flow graph.
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Data dependencies

We keep a map for each instruction, indicating register
dependencies.

x : add r2, r4, r5 -- deps: r2 -> (r4,r5)
x+4 : add r3, r2, r6 -- deps: r2 -> (r4,r5);

r3 -> (r4,r5,r6)

The dependencies are forwarded in the control graph.
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Worklist algorithm

We start with a worklist with the first node in it.

Then we repeat the following:

1 Pick an element of the worklist.

2 Merge dependencies from predecessors.

3 Analyse current instruction.

4 If dependencies have changed → add successors to the
worklist.
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Convergence

We are working in a lattice:

Dependencies are a list of sets.

Easy to define a partial order on it.

Our update function is monotonic (we only add dependencies,
never remove).

→ Tarski’s fixed point theorem guarantees that we will
converge eventually.
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Control and time dependencies

Consider the following example (r2 depends on r5):

→ The execution time will depend on r5.
→ The value of r8 will depend on r5.
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Time and control dependencies

To find whether a branch introduces time or control
dependency, we need to find the merging point.
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Post dominators

Find the immediate post-dominator of the branch instruction,
i.e. the first instruction that will be executed whether the
condition is true or false (→ the merging point).

Well-known algorithms exist to compute those (ex: Tarjan’s
algorithm).
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Control flow dependencies

All operations results are tainted by the branch condition, until
we reach a post-dominator.
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Time dependency

Time is recorded in both branches.

If 2 branches merge with a different time, we add a time
dependency on the branch condition.
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Function calls

Function calls are handled

We need to manage the stack as well

Very simple symbolic execution to know the stack pointer.
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Study case - Multiplication in Gallois field

Multiplication in Gallois field:

/* Multiply two numbers in the GF(2^8) finite field defined

* by the polynomial x^8 + x^4 + x^3 + x + 1 */

uint8_t gmul(uint8_t a, uint8_t b) {

uint8_t p = 0;

uint8_t counter;

uint8_t hi_bit_set;

for(counter = 0; counter < 8; counter++) {

if((b & 1) == 1)

p ^= a;

hi_bit_set = (a & 0x80);

a <<= 1;

if(hi_bit_set == 0x80)

a ^= 0x1b; /* x^8 + x^4 + x^3 + x + 1 */

b >>= 1;

}

return p;

}
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Unsafe version

Now, consider b contains some sensitive information (e.g. the
key being used).

for(counter=0; counter < 8; counter++) {
if((b & 1) == 1)
p ^= a;

...
}

Our tool reports a time dependency on b.
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Safe version

Let’s fix that by adding some nops:

for(counter=0; counter < 8; counter++) {
if((b & 1) == 1) {
p ^= a;

} else {
asm volatile( "nop" );
asm volatile( "nop" );

}
...

}

Our tool reports no time dependency on b.
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Experimental verification

We can test both versions on an FPGA4U.

Measure the execution time as a function of b.
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Experimental verification
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Experimental verification

In this case, our tool provides correct results.
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Future work

Analyse memory operations.

Handle recursive function calls.

Analysis of more complex programs.

Analysis of pipelined processors.
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Thanks for your attention.

Questions ?
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Backup

Backup
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Lattice definition

Registers:
S = {r1, ...r31}

Dependencies:
(dr1, dr2, ...dr31), d∗ ∈ 2S

Lattice:
(dr1, ...dr31) v (d ′r1, ...d

′
r31)↔

∧
i∈S di ⊆ d ′i
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