
© March 2009 Altera Corporation
Section II. Nios II Processor
Implementation and Reference
This section provides additional information about the Nios® II processor.

This section includes the following chapters:

■ Chapter 5, Nios II Core Implementation Details

■ Chapter 6, Nios II Processor Revision History

■ Chapter 7, Application Binary Interface

■ Chapter 8, Instruction Set Reference
Nios II Processor Reference Handbook
Preliminary

II–2 Section II: Nios II Processor Implementation and Reference
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

© March 2009 Altera Corporation

NII51015-9.0.0
5. Nios II Core Implementation Details
Introduction
This document describes all of the Nios® II processor core implementations available
at the time of publishing. This document describes only implementation-specific
features of each processor core. All cores support the Nios II instruction set
architecture.

f For more information regarding the Nios II instruction set architecture, refer to the
Instruction Set Reference chapter of the Nios II Processor Reference Handbook.

For common core information and details on a specific core, refer to the appropriate
section:

■ “Device Family Support” on page 5–3

■ “Nios II/f Core” on page 5–3

■ “Nios II/s Core” on page 5–12

■ “Nios II/e Core” on page 5–18

Table 5–1 compares the objectives and features of each Nios II processor core. The
table is designed to help system designers choose the core that best suits their target
application.

Table 5–1. Nios II Processor Cores (Part 1 of 3)

Feature

Core

Nios II/e Nios II/s Nios II/f

Objective Minimal core size Small core size Fast execution speed

Performance DMIPS/MHz (1) 0.15 0.74 1.16

Max. DMIPS (2) 31 127 218

Max. fMAX (2) 200 MHz 165 MHz 185 MHz

Area < 700 LEs;

< 350 ALMs

< 1400 LEs;

< 700 ALMs

 Without MMU or MPU:

 < 1800 LEs;

 < 900 ALMs

With MMU:

 < 3000 LEs;

 < 1500 ALMs

With MPU:

 < 2400 LEs;

 < 1200 ALMs

Pipeline 1 stage 5 stages 6 stages

External Address Space 2 GBytes 2 GBytes 2 GBytes without MMU

4 GBytes with MMU
Nios II Processor Reference Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2cpu_nii51017.pdf

5–2 Chapter 5: Nios II Core Implementation Details
Introduction
Instruction
Bus

Cache – 512 bytes to
64 KBytes

512 bytes to 64 KBytes

Pipelined Memory Access – Yes Yes

Branch Prediction – Static Dynamic

Tightly-Coupled Memory – Optional Optional

Data Bus Cache – – 512 bytes to 64 KBytes

Pipelined Memory Access – – –

Cache Bypass Methods – – ■ I/O instructions

■ Bit-31 cache bypass

■ Optional MMU

Tightly-Coupled Memory – – Optional

Arithmetic
Logic Unit

Hardware Multiply – 3-cycle (3) 1-cycle (3)

Hardware Divide – Optional Optional

Shifter 1 cycle-per-bit 3-cycle shift (3) 1-cycle barrel

shifter (3)

JTAG Debug
Module

JTAG interface, run control,
software breakpoints

Optional Optional Optional

Hardware Breakpoints – Optional Optional

Off-Chip Trace Buffer – Optional Optional

Memory Management Unit – – Optional

Memory Protection Unit – – Optional

Exception
Handling

Exception Types Software trap,
unimplemented
instruction, illegal
instruction, hardware
interrupt

Software trap,
unimplemented
instruction, illegal
instruction, hardware
interrupt

Software trap,
unimplemented
instruction,

illegal instruction,
supervisor-only
instruction,
supervisor-only instruction
address, supervisor-only
data address, misaligned
destination address,
misaligned data address,
division error, fast TLB
miss, double TLB miss,
TLB permission violation,
MPU region violation,
hardware interrupt

Integrated Interrupt
Controller

Yes Yes Yes

User Mode Support No; Permanently in
supervisor mode

No; Permanently in
supervisor mode

Yes; When MMU or MPU
present

Table 5–1. Nios II Processor Cores (Part 2 of 3)

Feature

Core

Nios II/e Nios II/s Nios II/f
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 5: Nios II Core Implementation Details 5–3
Device Family Support
Device Family Support
All Nios II cores provide the same support for target Altera device families. Nios II
cores provide either full or preliminary device family support, as described below:

■ Full support means the Nios II cores meet all functional and timing requirements
for the device family and may be used in production designs

■ Preliminary support means the Nios II cores meet all functional requirements, but
might still be undergoing timing analysis for the device family; they may be used
in production designs with caution.

Table 5–2 shows the level of support offered to each of the Altera device families by
the Nios II cores.

Nios II/f Core
The Nios II/f fast core is designed for high execution performance. Performance is
gained at the expense of core size. The base Nios II/f core, without the memory
management unit (MMU) or memory protection unit (MPU), is approximately 25%
larger than the Nios II/s core. Altera designed the Nios II/f core with the following
design goals in mind:

Custom Instruction Support Yes Yes Yes

Notes to Table 5–1:

(1) DMIPS performance for the Nios II/s and Nios II/f cores depends on the hardware multiply option.
(2) Using the fastest hardware multiply option, and targeting a Stratix II FPGA in the fastest speed grade.
(3) Multiply and shift performance depends on which hardware multiply option is used. If no hardware multiply option is used, multiply operations

are emulated in software, and shift operations require one cycle per bit. For details, refer to the arithmetic logic unit description for each core.

Table 5–1. Nios II Processor Cores (Part 3 of 3)

Feature

Core

Nios II/e Nios II/s Nios II/f

Table 5–2. Device Family Support

Device Family Support

Arria™ GX Full

Stratix® IV Preliminary

Stratix III Full

Stratix II Full

Stratix II GX Full

Stratix GX Full

Stratix Full

Hardcopy® II Full

HardCopy Full

Cyclone® III Full

Cyclone II Full

Cyclone Full

Other device families No support
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

5–4 Chapter 5: Nios II Core Implementation Details
Nios II/f Core
■ Maximize the instructions-per-cycle execution efficiency

■ Maximize fMAX performance of the processor core

The resulting core is optimal for performance-critical applications, as well as for
applications with large amounts of code and/or data, such as systems running a
full-featured operating system.

Overview
The Nios II/f core:

■ Has separate instruction and data caches

■ Provides optional MMU to support operating systems that require an MMU

■ Provides optional MPU to support operating systems and runtime environments
that desire memory protection but do not need virtual memory management

■ Can access up to 2 GBytes of external address space when no MMU is present and
4 GBytes when the MMU is present

■ Supports optional tightly-coupled memory for instructions and data

■ Employs a 6-stage pipeline to achieve maximum DMIPS/MHz

■ Performs dynamic branch prediction

■ Provides hardware multiply, divide, and shift options to improve arithmetic
performance

■ Supports the addition of custom instructions

■ Supports the JTAG debug module

■ Supports optional JTAG debug module enhancements, including hardware
breakpoints and real-time trace

The following sections discuss the noteworthy details of the Nios II/f core
implementation. This document does not discuss low-level design issues or
implementation details that do not affect Nios II hardware or software designers.

Arithmetic Logic Unit
The Nios II/f core provides several arithmetic logic unit (ALU) options to improve the
performance of multiply, divide, and shift operations.

Multiply and Divide Performance
The Nios II/f core provides the following hardware multiplier options:

■ DSP Block—Includes DSP block multipliers available on the target device. This
option is available only on Altera FPGAs that have DSP Blocks.

■ Embedded Multipliers—Includes dedicated embedded multipliers available on
the target device. This option is available only on Altera FPGAs that have
embedded multipliers.

■ Logic Elements—Includes hardware multipliers built from logic element (LE)
resources.
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 5: Nios II Core Implementation Details 5–5
Nios II/f Core
■ None—Does not include multiply hardware. In this case, multiply operations are
emulated in software.

The Nios II/f core also provides a hardware divide option that includes LE-based
divide circuitry in the ALU.

Including an ALU option improves the performance of one or more arithmetic
instructions.

1 The performance of the embedded multipliers differ, depending on the target FPGA
family.

Table 5–3 lists the details of the hardware multiply and divide options.

The cycles per instruction value determines the maximum rate at which the ALU can
dispatch instructions and produce each result. The latency value determines when the
result becomes available. If there is no data dependency between the results and
operands for back-to-back instructions, then the latency does not affect throughput.
However, if an instruction depends on the result of an earlier instruction, then the
processor stalls through any result latency cycles until the result is ready.

In the following code example, a multiply operation (with 1 instruction cycle and 2
result latency cycles) is followed immediately by an add operation that uses the result
of the multiply. On the Nios II/f core, the addi instruction, like most ALU
instructions, executes in a single cycle. However, in this code example, execution of
the addi instruction is delayed by two additional cycles until the multiply operation
completes.

mul r1, r2, r3 ; r1 = r2 * r3
addi r1, r1, 100 ; r1 = r1 + 100 (Depends on result of mul)

In contrast, the following code does not stall the processor.

mul r1, r2, r3 ; r1 = r2 * r3
or r5, r5, r6 ; No dependency on previous results
or r7, r7, r8 ; No dependency on previous results
addi r1, r1, 100 ; r1 = r1 + 100 (Depends on result of mul)

Table 5–3. Hardware Multiply and Divide Details for the Nios II/f Core

ALU Option Hardware Details
Cycles per
Instruction

Result Latency
Cycles

Supported
Instructions

No hardware multiply or
divide

Multiply and divide
instructions generate an
exception

– – None

Logic elements ALU includes 32 x 4-bit
multiplier

11 +2 mul, muli

DSP block on Stratix,
Stratix II and Stratix III
families

ALU includes 32 x 32-bit
multiplier

1 +2 mul, muli,
mulxss, mulxsu,

mulxuu

Embedded multipliers on
Cyclone II and Cyclone
III families

ALU includes 32 x 16-bit
multiplier

5 +2 mul, muli

Hardware divide ALU includes multicycle
divide circuit

4 – 66 +2 div, divu
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

5–6 Chapter 5: Nios II Core Implementation Details
Nios II/f Core
Shift and Rotate Performance
The performance of shift operations depends on the hardware multiply option. When
a hardware multiplier is present, the ALU achieves shift and rotate operations in one
or two clock cycles. Otherwise, the ALU includes dedicated shift circuitry that
achieves one-bit-per-cycle shift and rotate performance. Refer to Table 5–9 on
page 5–11 for details.

Memory Access
The Nios II/f core provides optional instruction and data caches. The cache size for
each is user-definable, between 512 bytes and 64 KBytes.

The memory address width in the Nios II/f core depends on whether the optional
MMU is present. Without an MMU, the Nios II/f core supports the bit-31 cache
bypass method for accessing I/O on the data master port. Therefore addresses are 31
bits wide, reserving bit 31 for the cache bypass function. With an MMU, cache bypass
is a function of the memory partition and the contents of the translation lookaside
buffer (TLB). Therefore bit-31 cache bypass is disabled, and 32 address bits are
available to address memory.

Instruction and Data Master Ports
The instruction master port is a pipelined Avalon® Memory-Mapped (Avalon-MM)
master port. If the core includes data cache with a line size greater than four bytes,
then the data master port is a pipelined Avalon-MM master port. Otherwise, the data
master port is not pipelined.

The instruction and data master ports on the Nios II/f core are optional. A master port
can be excluded, as long as the core includes at least one tightly-coupled memory to
take the place of the missing master port.

1 Although the Nios II processor can operate entirely out of tightly-coupled memory
without the need for Avalon-MM instruction or data masters, software debug is not
possible when either the Avalon-MM instruction or data master is omitted.

Support for pipelined Avalon-MM transfers minimizes the impact of synchronous
memory with pipeline latency. The pipelined instruction and data master ports can
issue successive read requests before prior requests complete.

Instruction and Data Caches
This section first describes the similar characteristics of the instruction and data cache
memories, and then describes the differences.

Both the instruction and data cache addresses are divided into fields based on
whether or not an MMU is present in your system. Table 5–4 shows the cache byte
address fields for systems without an MMU present.

Table 5–4. Cache Byte Address Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

tag line offset
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 5: Nios II Core Implementation Details 5–7
Nios II/f Core
Table 5–5 shows the cache virtual byte address fields for systems with an MMU
present. Table 5–6 shows the cache physical byte address fields for systems with an
MMU present.

Instruction Cache

The instruction cache memory has the following characteristics:

■ Direct-mapped cache implementation.

■ 32 bytes (8 words) per cache line.

■ The instruction master port reads an entire cache line at a time from memory, and
issues one read per clock cycle.

■ Critical word first.

■ Virtually-indexed, physically-tagged, when MMU present.

The size of the tag field depends on the size of the cache memory and the physical
address size. The size of the line field depends only on the size of the cache memory.
The offset field is always five bits (i.e., a 32-byte line). The maximum instruction byte
address size is 31 bits in systems without an MMU present. In systems with an MMU,
the maximum instruction byte address size is 32 bits and the tag field always includes
all the bits of the physical frame number (PFN).

The instruction cache is optional. However, excluding instruction cache from the
Nios II/f core requires that the core include at least one tightly-coupled instruction
memory.

Data Cache

The data cache memory has the following characteristics:

■ Direct-mapped cache implementation

■ Configurable line size of 4, 16, or 32 bytes

■ The data master port reads an entire cache line at a time from memory, and issues
one read per clock cycle.

■ Write-back

■ Write-allocate (i.e., on a store instruction, a cache miss allocates the line for that
address)

■ Virtually-indexed, physically-tagged, when MMU present

Table 5–5. Cache Virtual Byte Address Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

line offset

Table 5–6. Cache Physical Byte Address Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

tag offset
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

5–8 Chapter 5: Nios II Core Implementation Details
Nios II/f Core
The size of the tag field depends on the size of the cache memory and the physical
address size. The size of the line field depends only on the size of the cache memory.
The size of the offset field depends on the line size. Line sizes of 4, 16, and 32 bytes
have offset widths of 2, 4, and 5 bits respectively. The maximum data byte address size
is 31 bits in systems without an MMU present. In systems with an MMU, the
maximum data byte address size is 32 bits and the tag field always includes all the bits
of the PFN.

The data cache is optional. If the data cache is excluded from the core, the data master
port can also be excluded.

The Nios II instruction set provides several different instructions to clear the data
cache. There are two important questions to answer when determining the instruction
to use. Do you need to consider the tag field when looking for a cache match? Do you
need to write dirty cache lines back to memory before clearing? Table 5–8 shows the
most appropriate instruction to use for each case.

1 The 4-byte line data cache implementation substitutes the flushd instruction for the
flushda instruction and triggers an unimplemented instruction exception for the
initda instruction. The 16-byte and 32-byte line data cache implementations fully
support the flushda and initda instructions.

f For more information regarding the Nios II instruction set, refer to the Instruction Set
Reference chapter of the Nios II Processor Reference Handbook.

The Nios II/f core implements all the data cache bypass methods.

f For information regarding the data cache bypass methods, refer to the Processor
Architecture chapter of the Nios II Processor Reference Handbook

Mixing cached and uncached accesses to the same cache line can result in invalid data
reads. For example, the following sequence of events causes cache incoherency.

1. The Nios II core writes data to cache, creating a dirty data cache line.

2. The Nios II core reads data from the same address, but bypasses the cache.

Avoid mixing cached and uncached accesses to the same cache line. If it is necessary
to mix cached and uncached data accesses, flush the corresponding line of the data
cache after completing the cached accesses and before performing the uncached
accesses.

Bursting
When the data cache is enabled, you can enable bursting on the data master port.
Consult the documentation for memory devices connected to the data master port to
determine whether bursting will improve performance.

Table 5–7. Data Cache Clearing Instructions

Ignore Tag Field Consider Tag Field

Write Dirty Lines flushd flushda

Don’t Write Dirty Lines initd initda
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2cpu_nii51017.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51017.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51002.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51002.pdf

Chapter 5: Nios II Core Implementation Details 5–9
Nios II/f Core
Tightly-Coupled Memory
The Nios II/f core provides optional tightly-coupled memory interfaces for both
instructions and data. A Nios II/f core can use up to four each of instruction and data
tightly-coupled memories. When a tightly-coupled memory interface is enabled, the
Nios II core includes an additional memory interface master port. Each
tightly-coupled memory interface must connect directly to exactly one memory slave
port.

When tightly-coupled memory is present, the Nios II core decodes addresses
internally to determine if requested instructions or data reside in tightly-coupled
memory. If the address resides in tightly-coupled memory, the Nios II core fetches the
instruction or data through the tightly-coupled memory interface. Software accesses
tightly-coupled memory with the usual load and store instructions, such as ldw or
ldwio.

Accessing tightly-coupled memory bypasses cache memory. The processor core
functions as if cache were not present for the address span of the tightly-coupled
memory. Instructions for managing cache, such as initd and flushd, do not affect
the tightly-coupled memory, even if the instruction specifies an address in
tightly-coupled memory.

When the MMU is present, tightly-coupled memories are always mapped into the
kernel partition and can only be accessed in supervisor mode.

Memory Management Unit
The Nios II/f core provides options to improve the performance of the Nios II MMU.

f For details on the MMU architecture, refer to the Programming Model chapter of the
Nios II Processor Reference Handbook.

Micro Translation Lookaside Buffers
The translation lookaside buffer (TLB) consists of one main TLB stored in on-chip
RAM and two separate micro TLBs (μTLB) for instructions (μITLB) and data (μDTLB)
stored in LE-based registers.

The μTLBs have a configurable number of entries and are fully associative. The
default configuration has 6 μDTLB entries and 4 μITLB entries. The hardware chooses
the least-recently used μTLB entry when loading a new entry.

The μTLBs are not visible to software. They act as an inclusive cache of the main TLB.
The processor firsts look for a hit in the μTLB. If it misses, it then looks for a hit in the
main TLB. If the main TLB misses, the processor takes an exception. If the main TLB
hits, the TLB entry is copied into the μTLB for future accesses.

The hardware automatically flushes the μTLB on each TLB write operation and on a
wrctl to the tlbmisc register in case the process identifier (PID) has changed.

Memory Protection Unit
The Nios II/f core provides options to improve the performance of the Nios II MPU.
For details on the MPU architecture, refer to the Programming Model chapter of the
Nios II Processor Reference Handbook.
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2cpu_nii51003.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51003.pdf

5–10 Chapter 5: Nios II Core Implementation Details
Nios II/f Core
Execution Pipeline
This section provides an overview of the pipeline behavior for the benefit of
performance-critical applications. Designers can use this information to minimize
unnecessary processor stalling. Most application programmers never need to analyze
the performance of individual instructions.

The Nios II/f core employs a 6-stage pipeline. The pipeline stages are listed in
Table 5–8.

Up to one instruction is dispatched and/or retired per cycle. Instructions are
dispatched and retired in-order. Dynamic branch prediction is implemented using a
2-bit branch history table. The pipeline stalls for the following conditions:

■ Multi-cycle instructions

■ Avalon-MM instruction master port read accesses

■ Avalon-MM data master port read/write accesses

■ Data dependencies on long latency instructions (e.g., load, multiply, shift).

Pipeline Stalls
The pipeline is set up so that if a stage stalls, no new values enter that stage or any
earlier stages. No “catching up” of pipeline stages is allowed, even if a pipeline stage
is empty.

Only the A-stage and D-stage are allowed to create stalls.

The A-stage stall occurs if any of the following conditions occurs:

■ An A-stage memory instruction is waiting for Avalon-MM data master requests to
complete. Typically this happens when a load or store misses in the data cache, or
a flushd instruction needs to write back a dirty line.

■ An A-stage shift/rotate instruction is still performing its operation. This only
occurs with the multi-cycle shift circuitry (i.e., when the hardware multiplier is not
available).

■ An A-stage divide instruction is still performing its operation. This only occurs
when the optional divide circuitry is available.

■ An A-stage multi-cycle custom instruction is asserting its stall signal. This only
occurs if the design includes multi-cycle custom instructions.

Table 5–8. Implementation Pipeline Stages for Nios II/f Core

Stage Letter Stage Name

F Fetch

D Decode

E Execute

M Memory

A Align

W Writeback
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 5: Nios II Core Implementation Details 5–11
Nios II/f Core
The D-stage stall occurs if an instruction is trying to use the result of a late result
instruction too early and no M-stage pipeline flush is active. The late result
instructions are loads, shifts, rotates, rdctl, multiplies (if hardware multiply is
supported), divides (if hardware divide is supported), and multi-cycle custom
instructions (if present).

Branch Prediction
The Nios II/f core performs dynamic branch prediction to minimize the cycle penalty
associated with taken branches.

Instruction Performance
All instructions take one or more cycles to execute. Some instructions have other
penalties associated with their execution. Late result instructions have two cycles
placed between them and an instruction that uses their result. Instructions that flush
the pipeline cause up to three instructions after them to be cancelled. This creates a
three-cycle penalty and an execution time of four cycles. Instructions that require
Avalon-MM transfers are stalled until any required Avalon-MM transfers (up to one
write and one read) are completed.

Execution performance for all instructions is shown in Table 5–9.

Table 5–9. Instruction Execution Performance for Nios II/f Core 4byte/line data cache (Part 1 of 2)

Instruction Cycles Penalties

Normal ALU instructions (e.g., add, cmplt) 1

Combinatorial custom instructions 1

Multi-cycle custom instructions > 1 Late result

Branch (correctly predicted, taken) 2

Branch (correctly predicted, not taken) 1

Branch (mis-predicted) 4 Pipeline flush

trap, break, eret, bret, flushp, wrctl; illegal and unimplemented instructions 4 Pipeline flush

call, jmpi 2

jmp, ret, callr 3

rdctl 1 Late result

load (without Avalon-MM transfer) 1 Late result

load (with Avalon-MM transfer) > 1 Late result

store (without Avalon-MM transfer) 1

store (with Avalon-MM transfer) > 1

flushd, flushda (without Avalon-MM transfer) 2

flushd, flushda (with Avalon-MM transfer) > 2

initd, initda 2

flushi, initi 4

Multiply (1) Late result

Divide (1) Late result

Shift/rotate (with hardware multiply using embedded multipliers) 1 Late result

Shift/rotate (with hardware multiply using LE-based multipliers) 2 Late result
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

5–12 Chapter 5: Nios II Core Implementation Details
Nios II/s Core
Exception Handling
The Nios II/f core supports the following exception types:

■ Hardware interrupt

■ Software trap

■ Illegal instruction

■ Unimplemented instruction

■ Supervisor-only instruction

■ Supervisor-only instruction address

■ Supervisor-only data address

■ Misaligned data address

■ Misaligned destination address

■ Division error

■ Fast TLB miss

■ Double TLB miss

■ TLB permission violation

■ MPU region violation

JTAG Debug Module
The Nios II/f core supports the JTAG debug module to provide a JTAG interface to
software debugging tools. The Nios II/f core supports an optional enhanced interface
that allows real-time trace data to be routed out of the processor and stored in an
external debug probe.

1 The Nios II MMU does not support the JTAG debug module trace.

Nios II/s Core
The Nios II/s standard core is designed for small core size. On-chip logic and memory
resources are conserved at the expense of execution performance. The Nios II/s core
uses approximately 20% less logic than the Nios II/f core, but execution performance
also drops by roughly 40%. Altera designed the Nios II/s core with the following
design goals in mind:

■ Do not cripple performance for the sake of size.

Shift/rotate (without hardware multiply present) 1 - 32 Late result

All other instructions 1

Note to Table 5–9:

(1) Depends on the hardware multiply or divide option. Refer to Table 5–3 on page 5–5 for details.

Table 5–9. Instruction Execution Performance for Nios II/f Core 4byte/line data cache (Part 2 of 2)

Instruction Cycles Penalties
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 5: Nios II Core Implementation Details 5–13
Nios II/s Core
■ Remove hardware features that have the highest ratio of resource usage to
performance impact.

The resulting core is optimal for cost-sensitive, medium-performance applications.
This includes applications with large amounts of code and/or data, such as systems
running an operating system in which performance is not the highest priority.

Overview
The Nios II/s core:

■ Has an instruction cache, but no data cache

■ Can access up to 2 Gbytes of external address space

■ Supports optional tightly-coupled memory for instructions

■ Employs a 5-stage pipeline

■ Performs static branch prediction

■ Provides hardware multiply, divide, and shift options to improve arithmetic
performance

■ Supports the addition of custom instructions

■ Supports the JTAG debug module

■ Supports optional JTAG debug module enhancements, including hardware
breakpoints and real-time trace

The following sections discuss the noteworthy details of the Nios II/s core
implementation. This document does not discuss low-level design issues or
implementation details that do not affect Nios II hardware or software designers.

Arithmetic Logic Unit
The Nios II/s core provides several ALU options to improve the performance of
multiply, divide, and shift operations.

Multiply and Divide Performance
The Nios II/s core provides the following hardware multiplier options:

■ DSP Block—Includes DSP block multipliers available on the target device. This
option is available only on Altera FPGAs that have DSP Blocks.

■ Embedded Multipliers—Includes dedicated embedded multipliers available on
the target device. This option is available only on Altera FPGAs that have
embedded multipliers.

■ Logic Elements—Includes hardware multipliers built from logic element (LE)
resources.

■ None—Does not include multiply hardware. In this case, multiply operations are
emulated in software.

The Nios II/s core also provides a hardware divide option that includes LE-based
divide circuitry in the ALU.
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

5–14 Chapter 5: Nios II Core Implementation Details
Nios II/s Core
Including an ALU option improves the performance of one or more arithmetic
instructions.

1 The performance of the embedded multipliers differ, depending on the target FPGA
family.

Table 5–10 lists the details of the hardware multiply and divide options.

Shift and Rotate Performance
The performance of shift operations depends on the hardware multiply option. When
a hardware multiplier is present, the ALU achieves shift and rotate operations in three
or four clock cycles. Otherwise, the ALU includes dedicated shift circuitry that
achieves one-bit-per-cycle shift and rotate performance. Refer to Table 5–13 on
page 5–17 for details.

Memory Access
The Nios II/s core provides instruction cache, but no data cache. The instruction
cache size is user-definable, between 512 bytes and 64 KBytes. The Nios II/s core can
address up to 2 Gbyte of external memory. The Nios II architecture reserves the
most-significant bit of data addresses for the bit-31 cache bypass method. In the
Nios II/s core, bit 31 is always zero.

f For information regarding data cache bypass methods, refer to the Processor
Architecture chapter of the Nios II Processor Reference Handbook.

Instruction and Data Master Ports
The instruction port on the Nios II/s core is optional. The instruction master port can
be excluded, as long as the core includes at least one tightly-coupled instruction
memory. The instruction master port is a pipelined Avalon-MM master port.

Support for pipelined Avalon-MM transfers minimizes the impact of synchronous
memory with pipeline latency. The pipelined instruction master port can issue
successive read requests before prior requests complete.

Table 5–10. Hardware Multiply and Divide Details for the Nios II/s Core

ALU Option Hardware Details
Cycles per
instruction Supported Instructions

No hardware multiply or divide Multiply and divide instructions
generate an exception

– None

LE-based multiplier ALU includes 32 x 4-bit
multiplier

11 mul, muli

Embedded multiplier on Stratix,
Stratix II and Stratix III families

ALU includes 32 x 32-bit
multiplier

3 mul, muli, mulxss,
mulxsu, mulxuu

Embedded multiplier on
Cyclone II and Cyclone III
families

ALU includes 32 x 16-bit
multiplier

5 mul, muli

Hardware divide ALU includes multicycle divide
circuit

4 – 66 div, divu
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2cpu_nii51002.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51002.pdf

Chapter 5: Nios II Core Implementation Details 5–15
Nios II/s Core
The data master port on the Nios II/s core is always present.

Instruction Cache
The instruction cache for the Nios II/s core is nearly identical to the instruction cache
in the Nios II/f core. The instruction cache memory has the following characteristics:

■ Direct-mapped cache implementation

■ The instruction master port reads an entire cache line at a time from memory, and
issues one read per clock cycle.

■ Critical word first

Table 5–11 shows the instruction byte address fields.

The size of the tag field depends on the size of the cache memory and the physical
address size. The size of the line field depends only on the size of the cache memory.
The offset field is always five bits (i.e., a 32-byte line). The maximum instruction byte
address size is 31 bits.

The instruction cache is optional. However, excluding instruction cache from the
Nios II/s core requires that the core include at least one tightly-coupled instruction
memory.

Tightly-Coupled Memory
The Nios II/s core provides optional tightly-coupled memory interfaces for
instructions. A Nios II/s core can use up to four tightly-coupled instruction
memories. When a tightly-coupled memory interface is enabled, the Nios II core
includes an additional memory interface master port. Each tightly-coupled memory
interface must connect directly to exactly one memory slave port.

When tightly-coupled memory is present, the Nios II core decodes addresses
internally to determine if requested instructions reside in tightly-coupled memory. If
the address resides in tightly-coupled memory, the Nios II core fetches the instruction
through the tightly-coupled memory interface. Software does not require awareness
of whether code resides in tightly-coupled memory or not.

Accessing tightly-coupled memory bypasses cache memory. The processor core
functions as if cache were not present for the address span of the tightly-coupled
memory. Instructions for managing cache, such as initi and flushi, do not affect
the tightly-coupled memory, even if the instruction specifies an address in
tightly-coupled memory.

Execution Pipeline
This section provides an overview of the pipeline behavior for the benefit of
performance-critical applications. Designers can use this information to minimize
unnecessary processor stalling. Most application programmers never need to analyze
the performance of individual instructions, and live happy lives without ever
studying Table 5–12.

Table 5–11. Instruction Byte Address Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

tag line offset
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

5–16 Chapter 5: Nios II Core Implementation Details
Nios II/s Core
The Nios II/s core employs a 5-stage pipeline. The pipeline stages are listed in
Table 5–12.

Up to one instruction is dispatched and/or retired per cycle. Instructions are
dispatched and retired in-order. Static branch prediction is implemented using the
branch offset direction; a negative offset (backward branch) is predicted as taken, and
a positive offset (forward branch) is predicted as not-taken. The pipeline stalls for the
following conditions:

■ Multi-cycle instructions (e.g., shift/rotate without hardware multiply)

■ Avalon-MM instruction master port read accesses

■ Avalon-MM data master port read/write accesses

■ Data dependencies on long latency instructions (e.g., load, multiply, shift
operations)

Pipeline Stalls
The pipeline is set up so that if a stage stalls, no new values enter that stage or any
earlier stages. No “catching up” of pipeline stages is allowed, even if a pipeline stage
is empty.

Only the M-stage is allowed to create stalls.

The M-stage stall occurs if any of the following conditions occurs:

■ An M-stage load/store instruction is waiting for Avalon-MM data master transfer
to complete.

■ An M-stage shift/rotate instruction is still performing its operation when using
the multi-cycle shift circuitry (i.e., when the hardware multiplier is not available).

■ An M-stage shift/rotate/multiply instruction is still performing its operation
when using the hardware multiplier (which takes three cycles).

■ An M-stage multi-cycle custom instruction is asserting its stall signal. This only
occurs if the design includes multi-cycle custom instructions.

Branch Prediction
The Nios II/s core performs static branch prediction to minimize the cycle penalty
associated with taken branches.

Table 5–12. Implementation Pipeline Stages for Nios II/s Core

Stage Letter Stage Name

F Fetch

D Decode

E Execute

M Memory

W Writeback
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 5: Nios II Core Implementation Details 5–17
Nios II/s Core
Instruction Performance
All instructions take one or more cycles to execute. Some instructions have other
penalties associated with their execution. Instructions that flush the pipeline cause up
to three instructions after them to be cancelled. This creates a three-cycle penalty and
an execution time of four cycles. Instructions that require an Avalon-MM transfer are
stalled until the transfer completes.

Execution performance for all instructions is shown in Table 5–13.

Exception Handling
The Nios II/s core supports the following exception types:

■ Hardware interrupt

■ Software trap

■ Illegal instruction

■ Unimplemented instruction

Table 5–13. Instruction Execution Performance for Nios II/s Core

Instruction Cycles Penalties

Normal ALU instructions (e.g., add, cmplt) 1

Combinatorial custom instructions 1

Multi-cycle custom instructions > 1

Branch (correctly predicted taken) 2

Branch (correctly predicted not taken) 1

Branch (mispredicted) 4 Pipeline flush

trap, break, eret, bret,
flushp, wrctl, unimplemented

4 Pipeline flush

jmp, jmpi, ret, call, callr 4 Pipeline flush

rdctl 1

load, store > 1

flushi, initi 4

Multiply (1)

Divide (1)

Shift/rotate (with hardware multiply using embedded
multipliers)

3

Shift/rotate (with hardware multiply using LE-based multipliers) 4

Shift/rotate (without hardware multiply present) 1 to 32

All other instructions 1

Note to Table 5–13:

(1) Depends on the hardware multiply or divide option. Refer to Table 5–10 on page 5–14 for details.
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

5–18 Chapter 5: Nios II Core Implementation Details
Nios II/e Core
JTAG Debug Module
The Nios II/s core supports the JTAG debug module to provide a JTAG interface to
software debugging tools. The Nios II/s core supports an optional enhanced interface
that allows real-time trace data to be routed out of the processor and stored in an
external debug probe.

Nios II/e Core
The Nios II/e economy core is designed to achieve the smallest possible core size.
Altera designed the Nios II/e core with a singular design goal: reduce resource
utilization any way possible, while still maintaining compatibility with the Nios II
instruction set architecture. Hardware resources are conserved at the expense of
execution performance. The Nios II/e core is roughly half the size of the Nios II/s
core, but the execution performance is substantially lower.

The resulting core is optimal for cost-sensitive applications as well as applications that
require simple control logic.

Overview
The Nios II/e core:

■ Executes at most one instruction per six clock cycles

■ Can access up to 2 Gbytes of external address space

■ Supports the addition of custom instructions

■ Supports the JTAG debug module

■ Does not provide hardware support for potential unimplemented instructions

■ Has no instruction cache or data cache

■ Does not perform branch prediction

The following sections discuss the noteworthy details of the Nios II/e core
implementation. This document does not discuss low-level design issues, or
implementation details that do not affect Nios II hardware or software designers.

Arithmetic Logic Unit
The Nios II/e core does not provide hardware support for any of the potential
unimplemented instructions. All unimplemented instructions are emulated in
software.

The Nios II/e core employs dedicated shift circuitry to perform shift and rotate
operations. The dedicated shift circuitry achieves one-bit-per-cycle shift and rotate
operations.
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 5: Nios II Core Implementation Details 5–19
Nios II/e Core
Memory Access
The Nios II/e core does not provide instruction cache or data cache. All memory and
peripheral accesses generate an Avalon-MM transfer. The Nios II/e core can address
up to 2 Gbytes of external memory. The Nios II architecture reserves the
most-significant bit of data addresses for the bit-31 cache bypass method. In the
Nios II/e core, bit 31 is always zero.

f For information regarding data cache bypass methods, refer to the Processor
Architecture chapter of the Nios II Processor Reference Handbook.

Instruction Execution Stages
This section provides an overview of the pipeline behavior as a means of estimating
assembly execution time. Most application programmers never need to analyze the
performance of individual instructions.

Instruction Performance
The Nios II/e core dispatches a single instruction at a time, and the processor waits
for an instruction to complete before fetching and dispatching the next instruction.
Because each instruction completes before the next instruction is dispatched, branch
prediction is not necessary. This greatly simplifies the consideration of processor
stalls. Maximum performance is one instruction per six clock cycles. To achieve six
cycles, the Avalon-MM instruction master port must fetch an instruction in one clock
cycle. A stall on the Avalon-MM instruction master port directly extends the execution
time of the instruction.

Execution performance for all instructions is shown in Table 5–14.

Exception Handling
The Nios II/e core supports the following exception types:

Table 5–14. Instruction Execution Performance for Nios II/e Core

Instruction Cycles

Normal ALU instructions (e.g., add, cmplt) 6

branch, jmp, jmpi, ret, call, callr 6

trap, break, eret, bret,
flushp, wrctl, rdctl,
unimplemented

6

load word 6 + Duration of Avalon-MM read transfer

load halfword 9 + Duration of Avalon-MM read transfer

load byte 10 + Duration of Avalon-MM read transfer

store 6 + Duration of Avalon-MM write transfer

Shift, rotate 7 to 38

All other instructions 6

Combinatorial custom instructions 6

Multi-cycle custom instructions Š6
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2cpu_nii51002.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51002.pdf

5–20 Chapter 5: Nios II Core Implementation Details
Referenced Documents
■ Hardware interrupt

■ Software trap

■ Illegal instruction

■ Unimplemented instruction

JTAG Debug Module
The Nios II/e core supports the JTAG debug module to provide a JTAG interface to
software debugging tools. The JTAG debug module on the Nios II/e core does not
support hardware breakpoints or trace.

Referenced Documents
This chapter references the following documents:

■ Instruction Set Reference chapter of the Nios II Processor Reference Handbook

■ Processor Architecture chapter of the Nios II Processor Reference Handbook

■ Programming Model chapter of the Nios II Processor Reference Handbook

Document Revision History
Table 5–15 shows the revision history for this document.

Table 5–15. Document Revision History (Part 1 of 2)

Date & Document
Version Changes Made Summary of Changes

March 2009

v9.0.0

Maintenance release. —

November 2008

v8.1.0

Maintenance release. —

May 2008

v8.0.0

Added text for MMU and MPU. Added MMU and MPU

October 2007

v7.2.0

Added jmpi instruction to tables. —

May 2007

v7.1.0

■ Added table of contents to Introduction section.

■ Added Referenced Documents section.

—

March 2007

v7.0.0

Add preliminary Cyclone III device family support Cyclone III device family

November 2006

v6.1.0

Add preliminary Stratix III device family support Stratix III device family

May 2006

v6.0.0

Performance for flushi and initi instructions changes from 1 to
4 cycles for Nios II/s and Nios II/f cores.

—

October 2005

v5.1.0

Maintenance release. —
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2cpu_nii51002.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51003.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51017.pdf

Chapter 5: Nios II Core Implementation Details 5–21
Document Revision History
May 2005

v5.0.0

Updates to Nios II/f and Nios II/s cores. Added tightly-coupled memory
and new data cache options. Corrected cycle counts for shift/rotate
operations.

—

December 2004

v1.2

Updates to Multiply and Divide Performance section for Nios II/f and
Nios II/s cores.

—

September 2004

v1.1

Updates for Nios II 1.01 release. —

May 2004

v1.0

Initial release. —

Table 5–15. Document Revision History (Part 2 of 2)

Date & Document
Version Changes Made Summary of Changes
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

5–22 Chapter 5: Nios II Core Implementation Details
Document Revision History
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

© March 2009 Altera Corporation

NII51018-9.0.0
6. Nios II Processor Revision History
Introduction
Each release of the Nios® II Embedded Design Suite (EDS) introduces improvements
to the Nios II processor, the software development tools, or both. This document
catalogs the history of revisions to the Nios II processor; it does not track revisions to
development tools, such as the Nios II integrated development environment (IDE).
This chapter contains the following sections:

■ “Nios II Versions” on page 6–1

■ “Architecture Revisions” on page 6–2

■ “Core Revisions” on page 6–3

■ “JTAG Debug Module Revisions” on page 6–6

Improvements to the Nios II processor might affect:

■ Features of the Nios II architecture—An example of an architecture revision is
adding instructions to support floating-point arithmetic.

■ Implementation of a specific Nios II core—An example of a core revision is
increasing the maximum possible size of the data cache memory for the Nios II/f
core.

■ Features of the JTAG debug module—An example of a JTAG debug module
revision is adding an additional trigger input to the JTAG debug module, allowing
it to halt processor execution on a new type of trigger event.

Altera implements Nios II revisions such that code written for an existing Nios II core
also works on future revisions of the same core.

Nios II Versions
The number for any version of the Nios II processor is determined by the version of
the Nios II EDS. For example, in the Nios II EDS version 8.0, all Nios II cores are also
version 8.0.

Table 6–1 lists the version numbers of all releases of the Nios II processor.

Table 6–1. Nios II Processor Revision History (Part 1 of 2)

Version Release Date Notes

8.0 May 2008 ■ Added an optional memory management unit (MMU).

■ Added an optional memory protection unit (MPU).

■ Added advanced exception checking.

■ Added the initda instruction.

7.2 October 2007 Added the jmpi instruction.

7.1 May 2007 No changes.

7.0 March 2007 No changes.
Nios II Processor Reference Handbook
Preliminary

6–2 Chapter 6: Nios II Processor Revision History
Architecture Revisions
Architecture Revisions
Architecture revisions augment the fundamental capabilities of the Nios II
architecture, and affect all Nios II cores. A change in the architecture mandates a
revision to all Nios II cores to accommodate the new architectural enhancement. For
example, when Altera adds a new instruction to the instruction set, Altera
consequently must update all Nios II cores to recognize the new instruction. Table 6–2
lists revisions to the Nios II architecture.

6.1 November 2006 No changes.

6.0 May 2006 The name Nios II Development Kit describing the software development tools
changed to Nios II Embedded Design Suite.

5.1 SP1 January 2006 Bug fix for Nios II/f core.

5.1 October 2005 No changes.

5.0 May 2005 ■ Changed version nomenclature. Altera® now aligns the Nios II processor
version with Altera's Quartus II® software version.

■ Memory structure enhancements:

(1) Added tightly-coupled memory.

(2) Made data cache line size configurable.

(3) Made cache optional in Nios II/f and Nios II/s cores.

■ Support for HardCopy® devices.

1.1 December 2004 ■ Minor enhancements to the architecture: Added cpuid control register,
and updated the break instruction.

■ Increased user control of multiply and shift hardware in the arithmetic
logic unit (ALU) for Nios II/s and Nios II/f cores.

■ Minor bug fixes.

1.01 September 2004 ■ Minor bug fixes.

1.0 May2004 Initial release of the Nios II processor.

Table 6–1. Nios II Processor Revision History (Part 2 of 2)

Version Release Date Notes

Table 6–2. Nios II Architecture Revisions (Part 1 of 2)

Version Release Date Notes

8.0 May 2008 ■ Added an optional MMU.

■ Added an optional MPU.

■ Added advanced exception checking to detect division errors, illegal
instructions, misaligned memory accesses, and provide extra exception
information.

■ Added the initda instruction.

7.2 October 2007 Added the jmpi instruction.

7.1 May 2007 No changes.

7.0 March 2007 No changes.

6.1 November 2006 No changes.

6.0 May 2006 Added optional cpu_resetrequest and cpu_resettaken signals to all
processor cores.
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 6: Nios II Processor Revision History 6–3
Core Revisions
Core Revisions
Core revisions introduce changes to an existing Nios II core. Core revisions most
commonly fix identified bugs, or add support for an architecture revision. Not every
Nios II core is revised with every release of the Nios II architecture.

Nios II/f Core
Table 6–3 lists revisions to the Nios II/f core.

5.1 October 2005 No changes.

5.0 May 2005 Added the flushda instruction.

1.1 December 2004 ■ Added cpuid control register.

■ Updated break instruction specification to accept an immediate argument
for use by debugging tools.

1.01 September 2004 No changes.

1.0 May 2004 Initial release of the Nios II processor architecture.

Table 6–2. Nios II Architecture Revisions (Part 2 of 2)

Version Release Date Notes

Table 6–3. Nios II/f Core Revisions (Part 1 of 2)

Version Release Date Notes

8.0 May 2008 ■ Implemented the optional MMU.

■ Implemented the optional MPU.

■ Implemented advanced exception checking.

■ Implemented the initda instruction.

7.2 October 2007 Implemented the jmpi instruction.

7.1 May 2007 No changes.

7.0 March 2007 No changes.

6.1 November 2006 No changes.

6.0 May 2006 Cycle count for flushi and initi instructions changes from 1 to 4 cycles.

5.1 SP1 January 2006 Bug Fix:

Back-to-back store instructions can cause memory corruption to the stored data.
If the first store is not to the last word of a cache line and the second store is to the
last word of the line, memory corruption occurs.

5.1 October 2005 No changes.
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

6–4 Chapter 6: Nios II Processor Revision History
Core Revisions
Nios II/s Core
Table 6–4 lists revisions to the Nios II/s core.

5.0 May 2005 ■ Added optional tightly-coupled memory ports. Designers can add zero to four
tightly-coupled instruction master ports, and zero to four tightly-coupled data
master ports.

■ Made the data cache line size configurable. Designers can configure the data
cache with the following line sizes: 4, 16, or 32 bytes. Previously, the data
cache line size was fixed at 4 bytes.

■ Made instruction and data caches optional (previously, cache memories were
always present). If the instruction cache is not present, the Nios II core does
not have an instruction master port, and must use a tightly-coupled instruction
memory.

■ Full support for HardCopy devices (previous versions required a work around to
support HardCopy devices).

1.1 December 2004 ■ Added user-configurable options affecting multiply and shift operations. Now
designers can choose one of three options:

(1) Use embedded multiplier resources available in the target device family
(previously available).

(2) Use logic elements to implement multiply and shift hardware (new option).

(3) Omit multiply hardware. Shift operations take one cycle per bit shifted;
multiply operations are emulated in software (new option).

■ Added cpuid control register.

■ Bug Fix:

Interrupts that were disabled by wrctl ienable remained enabled for one
clock cycle following the wrctl instruction. Now the instruction following
such a wrctl cannot be interrupted.

1.01 September 2004 ■ Bug Fixes:

(1) When a store to memory is followed immediately in the pipeline by a load
from the same memory location, and the memory location is held in the data
cache, the load may return invalid data. This situation can occur in C code
compiled with optimization off (-O0).

(2) The SOPC Builder top-level system module included an extra, unnecessary
output port for systems with very small address spaces.

1.0 May 2004 Initial release of the Nios II/f core.

Table 6–3. Nios II/f Core Revisions (Part 2 of 2)

Version Release Date Notes

Table 6–4. Nios II/s Core Revisions (Part 1 of 2)

Version Release Date Notes

8.0 May 2008 Implemented the illegal instruction exception.

7.2 October 2007 Implemented the jmpi instruction.

7.1 May 2007 No changes.

7.0 March 2007 No changes.

6.1 November 2006 No changes.

6.0 May 2006 Cycle count for flushi and initi instructions changes from 1 to 4 cycles.
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 6: Nios II Processor Revision History 6–5
Core Revisions
Nios II/e Core
Table 6–5 lists revisions to the Nios II/e core.

5.1 October 2005 No changes.

5.0 May 2005 ■ Added optional tightly-coupled memory ports. Designers can add zero to four
tightly-coupled instruction master ports.

■ Made instruction cache optional (previously instruction cache was always
present). If the instruction cache is not present, the Nios II core does not have an
instruction master port, and must use a tightly-coupled instruction memory.

■ Full support for HardCopy devices (previous versions required a work around to
support HardCopy devices).

1.1 December 2004 ■ Added user-configurable options affecting multiply and shift operations. Now
designers can choose one of three options:

(1) Use embedded multiplier resources available in the target device family
(previously available).

(2) Use logic elements to implement multiply and shift hardware (new option).

(3) Omit multiply hardware. Shift operations take one cycle per bit shifted;
multiply operations are emulated in software (new option).

■ Added user-configurable option to include divide hardware in the ALU. Previously
this option was available for only the Nios II/f core.

■ Added cpuid control register.

1.01 September 2004 Bug fix:

The SOPC Builder top-level system module included an extra, unnecessary output
port for systems with very small address spaces.

1.0 May 2004 Initial release of the Nios II/s core.

Table 6–4. Nios II/s Core Revisions (Part 2 of 2)

Version Release Date Notes

Table 6–5. Nios II/e Core Revisions

Version Release Date Notes

8.0 May 2008 Implemented the illegal instruction exception.

7.2 October 2007 Implemented the jmpi instruction.

7.1 May 2007 No changes.

7.0 March 2007 No changes.

6.1 November 2006 No changes.

6.0 May 2006 No changes.

5.1 October 2005 No changes.

5.0 May 2005 Full support for HardCopy devices (previous versions required a work around to
support HardCopy devices).

1.1 December 2004 Added cpuid control register.

1.01 September 2004 Bug fix:

The SOPC Builder top-level system module included an extra, unnecessary output
port for systems with very small address spaces.

1.0 May 2004 Initial release of the Nios II/e core.
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

6–6 Chapter 6: Nios II Processor Revision History
JTAG Debug Module Revisions
JTAG Debug Module Revisions
JTAG debug module revisions augment the debug capabilities of the Nios II
processor, or fix bugs isolated within the JTAG debug module logic.

Table 6–6 lists revisions to the JTAG debug module.

Referenced Documents
This chapter references no other documents.

Document Revision History
Table 6–7 shows the revision history for this document.

Table 6–6. JTAG Debug Module Revisions

Version Release Date Notes

8.0 May 2008 No changes.

7.2 October 2007 No changes.

7.1 May 2007 No changes.

7.0 March 2007 No changes.

6.1 November 2006 No changes.

6.0 May 2006 No changes.

5.1 October 2005 No changes.

5.0 May 2005 Full support for HardCopy devices (previous versions of the JTAG debug module did
not support HardCopy devices).

1.1 December 2004 Bug fix:

When using the Nios II/s and Nios II/f cores, hardware breakpoints may have falsely
triggered when placed on the instruction sequentially following a jmp, trap, or any
branch instruction.

1.01 September 2004 ■ Feature enhancements:

(1) Added the ability to trigger based on the instruction address. Uses include
triggering trace control (trace on/off), sequential triggers, and trigger in/out
signal generation.

(2) Enhanced trace collection such that collection can be stopped when the trace
buffer is full without halting the Nios II processor.

(3) Armed triggers – Enhanced trigger logic to support two levels of triggers, or
"armed triggers"; enabling the use of "Event A then event B" trigger definitions.

■ Bug fixes:

(1) On the Nios II/s core, trace data sometimes recorded incorrect addresses
during interrupt processing.

(2) Under certain circumstances, captured trace data appeared to start earlier or
later than the desired trigger location.

(3) During debugging, the processor would hang if a hardware breakpoint and an
interrupt occurred simultaneously.

1.0 May 2004 Initial release of the JTAG debug module.
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 6: Nios II Processor Revision History 6–7
Document Revision History
Table 6–7. Document Revision History

Date & Document
Version Changes Made Summary of Changes

March 2009

v9.0.0

Maintenance release. —

November 2008

v8.1.0

Maintenance release. —

May 2008

v8.0.0

■ Added MMU information.

■ Added MPU information.

■ Added advanced exception checking information.

■ Added initda instruction information.

Added MMU, MPU,
advanced exception

checking, and initda
instruction.

October 2007

v7.2.0

■ Added jmpi instruction information.

■ Added exception handling information.

Added jmpi instruction

May 2007

v7.1.0

■ Updated tables to reflect no changes to cores.

■ Added table of contents to Introduction section.

■ Added Referenced Documents section.

—

March 2007

v7.0.0

Updated tables to reflect no changes to cores. —

November 2006

v6.1.0

Updated tables to reflect no changes to cores. —

May 2006

v6.0.0

Updates for Nios II cores version 6.0. —

October 2005

v5.1.0

Updates for Nios II cores version 5.1. —

May 2005

v5.0.0

Updates for Nios II cores version 5.0. —

December 2004

v1.1

Updates for Nios II cores version 1.1. —

September 2004

v1.0

Initial release. —
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

6–8 Chapter 6: Nios II Processor Revision History
Document Revision History
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

© March 2009 Altera Corporation

NII51016-9.0.0
7. Application Binary Interface
This chapter describes the Application Binary Interface (ABI) for the Nios® II
processor. The ABI describes:

■ How data is arranged in memory

■ Behavior and structure of the stack

■ Function calling conventions

This chapter contains the following sections:

■ “Data Types” on page 7–1

■ “Memory Alignment” on page 7–1

■ “Register Usage” on page 7–2

■ “Stacks” on page 7–3

■ “Arguments and Return Values” on page 7–6

■ “Relocation” on page 7–8

Data Types
Table 7–1 shows the size and representation of the C/C++ data types for the Nios II
processor.

Memory Alignment
Contents in memory are aligned as follows:

Table 7–1. Representation of Data Types

Type Size (Bytes) Representation

char, signed char 1 two’s complement (ASCII)

unsigned char 1 binary (ASCII)

short, signed short 2 two’s complement

unsigned short 2 binary

int, signed int 4 two’s complement

unsigned int 4 binary

long, signed long 4 two’s complement

unsigned long 4 binary

float 4 IEEE

double 8 IEEE

pointer 4 binary

long long 8 two’s complement

unsigned long long 8 binary
Nios II Processor Reference Handbook
Preliminary

7–2 Chapter 7: Application Binary Interface
Register Usage
■ A function must be aligned to a minimum of 32-bit boundary.

■ The minimum alignment of a data element is its natural size. A data element larger
than 32 bits need only be aligned to a 32-bit boundary.

■ Structures, unions, and strings must be aligned to a minimum of 32 bits.

■ Bit fields inside structures are always 32-bit aligned.

Register Usage
The ABI adds additional usage conventions to the Nios II register file defined in the
Programming Model chapter of the Nios II Processor Reference Handbook. The ABI uses
the registers as shown in Table 7–2.

Table 7–2. Nios II ABI Register Usage (Part 1 of 2)

Register Name
Used by
Compiler

Callee
Saved (1) Normal Usage

r0 zero v 0x00000000

r1 at Assembler temporary

r2 v Return value (least-significant 32 bits)

r3 v Return value (most-significant 32 bits)

r4 v Register arguments (first 32 bits)

r5 v Register arguments (second 32 bits)

r6 v Register arguments (third 32 bits)

r7 v Register arguments (fourth 32 bits)

r8 v Caller-saved general-purpose registers

r9 v

r10 v

r11 v

r12 v

r13 v

r14 v

r15 v

r16 v v Callee-saved general-purpose registers

r17 v v

r18 v v

r19 v v

r20 v v

r21 v v

r22 v v

r23 v v

r24 et Exception temporary

r25 bt Break temporary

r26 gp v Global pointer

r27 sp v Stack pointer
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2cpu_nii51003.pdf

Chapter 7: Application Binary Interface 7–3
Stacks
The endianness of values greater than 8 bits is little endian. The upper 8 bits of a value
are stored at the higher byte address.

Stacks
The stack grows downward (i.e. towards lower addresses). The stack pointer points to
the last used slot. The frame pointer points to the saved frame pointer near the top of
the stack frame.

Figure 7–1 shows an example of the structure of a current frame. In this case, function
a() calls function b(), and the stack is shown before the call and after the prologue in
the called function has completed.

Each section of the current frame is aligned to a 32-bit boundary. The ABI requires the
stack pointer be 32-bit aligned at all times.

r28 fp v Frame pointer (2)

r29 ea Exception return address

r30 ba Break return address

r31 ra v Return address

Notes to Table 7–2:

(1) A function can use one of these registers if it saves it first. The function must restore the register's original value
before exiting.

(2) If the frame pointer is not used, the register is available as a temporary register. Refer to “Frame Pointer
Elimination” on page 7–4.

Table 7–2. Nios II ABI Register Usage (Part 2 of 2)

Register Name
Used by
Compiler

Callee
Saved (1) Normal Usage

Figure 7–1. Stack Pointer, Frame Pointer and the Current Frame

In function a()
Just prior to calling b()

In function b()
Just after executing prologue

Incoming
stack

arguments

Other saved
registers

Space for
outgoing

stack
arguments

Allocated and freed by a()
(i.e. the calling function)

Allocated and freed by b()
(i.e. the current function)

Stack pointer

Outgoing
stack

arguments

Higher addresses

Stack pointer

Lower addresses

Space for
stack

temporaries

Return address

Saved frame
pointerFrame pointer
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

7–4 Chapter 7: Application Binary Interface
Stacks
Frame Pointer Elimination
The frame pointer is provided for debugger support. If you are not using a debugger,
you can optimize your code by eliminating the frame pointer, using the
-fomit-frame-pointer compiler option. When the frame pointer is eliminated,
register fp is available as a temporary register.

Call Saved Registers
The compiler is responsible for saving registers that need to be saved in a function. If
there are any such registers, they are saved on the stack, from high to low addresses,
in the following order: ra, fp, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13,
r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, gp, and sp. Stack space
is not allocated for registers that are not saved.

Further Examples of Stacks
There are a number of special cases for stack layout, which are described in this
section.

Stack Frame for a Function With alloca()
The Nios II stack frame implementation provides support for the alloca() function,
defined in the Berkeley Software Distribution (BSD) extension to C, and implemented
by the gcc compiler. Figure 7–2 depicts what the frame looks like after alloca() is
called. The space allocated by alloca() replaces the outgoing arguments and the
outgoing arguments get new space allocated at the bottom of the frame.

1 The Nios II C/C++ compiler maintains a frame pointer for any function that calls
alloca(), even if -fomit-frame-pointer is specifed.

Stack Frame for a Function with Variable Arguments
Functions that take variable arguments (varargs) still have their first 16 bytes of
arguments arriving in registers r4 through r7, just like other functions.

Figure 7–2. Stack Frame after Calling alloca()

higher addresses

lower addresses

space for
outgoing

stack
 arguments

sp

sp

space for
outgoing

stack
 arguments

memory
allocated

by
alloca()

Before After calling alloca()
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 7: Application Binary Interface 7–5
Stacks
In order for varargs to work, functions that take variable arguments allocate 16 extra
bytes of storage on the stack. They copy to the stack the first 16 bytes of their
arguments from registers r4 through r7 as shown in Figure 7–3.

Stack Frame for a Function with Structures Passed By Value
Functions that take struct value arguments still have their first 16 bytes of
arguments arriving in registers r4 through r7, just like other functions.

If part of a structure is passed using registers, the function might need to copy the
register contents back to the stack. This operation is similar to that required in the
variable arguments case as shown in Figure 7–3.

Function Prologues
The Nios II C/C++ compiler generates function prologues that allocate the stack
frame of a function for storage of stack temporaries and outgoing arguments. In
addition, each prologue is responsible for saving the state of the calling function. This
entails saving certain registers on the stack. These registers, the callee-saved registers,
are listed in Table 7–2 on page 7–2. A function prologue is required to save a
callee-saved register only if the function uses the register.

Given the function prologue algorithm, when doing a back trace, a debugger can
disassemble instructions and reconstruct the processor state of the calling function.

Figure 7–3. Stack Frame Using Variable Arguments

In function a()
Just prior to calling b()

In function b()
Just after executing prologue

Incoming
stack

arguments

Other saved
registers

Space for
outgoing

stack
arguments

Allocated and freed by a()
(i.e. the calling function)

Allocated and freed by b()
(i.e. the current function)

Outgoing
stack

arguments

Higher addresses

Lower addresses

Stack pointer

Copy of r7
Copy of r6
Copy of r5
Copy of r4

Space for
stack

temporaries

Stack pointer

Return address

Saved frame
pointerFrame pointer
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

7–6 Chapter 7: Application Binary Interface
Arguments and Return Values
1 An even better way to find out what the prologue has done is to use information
stored in the DWARF2 debugging fields of the executable and linkable format (.elf)
file.

The instructions found in a Nios II function prologue perform the following tasks:

■ Adjust the stack pointer (to allocate the frame)

■ Store registers to the frame

■ Set the frame pointer to the location of the saved frame pointer

Example 7–1 shows a function prologue.

Prologue Variations
The following variations can occur in a prologue:

■ If the function’s frame size is greater than 32,767 bytes, extra temporary registers
are used in the calculation of the new stack pointer as well as for the offsets of
where to store callee-saved registers. The extra registers are needed because of the
maximum size of immediate values allowed by the Nios II processor.

■ If the frame pointer is not in use, the final instruction, recalculating the frame
pointer, is not generated.

■ If variable arguments are used, extra instructions store the argument registers on
the stack.

■ If the compiler designates the function as a leaf function, the return address is not
saved.

■ If optimizations are on, especially instruction scheduling, the order of the
instructions might change and become interlaced with instructions located after
the prologue.

Arguments and Return Values
This section discusses the details of passing arguments to functions and returning
values from functions.

Example 7–1. A function prologue

/* Adjust the stack pointer */
addi sp, sp, -16 /* make a 16-byte frame */

/* Store registers to the frame */
stw ra, 12(sp) /* store the return address */
stw fp, 8(sp) /* store the frame pointer*/
stw r16, 4(sp) /* store callee-saved register */
stw r17, 0(sp) /* store callee-saved register */

/* Set the new frame pointer */
addi fp, sp, 8
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 7: Application Binary Interface 7–7
Arguments and Return Values
Arguments
The first 16 bytes to a function are passed in registers r4 through r7. The arguments
are passed as if a structure containing the types of the arguments were constructed,
and the first 16 bytes of the structure are located in r4 through r7.

A simple example:

int function (int a, int b);

The equivalent structure representing the arguments is:

struct { int a; int b; };

The first 16 bytes of the struct are assigned to r4 through r7. Therefore r4 is
assigned the value of a and r5 the value of b.

The first 16 bytes to a function taking variable arguments are passed the same way as
a function not taking variable arguments. The called function must clean up the stack
as necessary to support the variable arguments. Refer to “Stack Frame for a Function
with Variable Arguments” on page 7–4.

Return Values
Return values of types up to 8 bytes are returned in r2 and r3. For return values
greater than 8 bytes, the caller must allocate memory for the result and must pass the
address of the result memory as a hidden zero argument.

The hidden zero argument is best explained through an example.

In Example 7–2, if the result type is no larger than 8 bytes, b() returns its result in r2
and r3.

If the return type is larger than 8 bytes, the Nios II C/C++ compiler treats this
program as if a() had passed a pointer to b(). Example 7–3 shows how the Nios II
C/C++ compiler sees the code in Example 7–2.

Example 7–2. Returned struct

/* b() computes a structure-type result and returns it */
STRUCT b(int i, int j)
{

...
return result;

}

void a(...)
{

...
value = b(i, j);

}

© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

7–8 Chapter 7: Application Binary Interface
Relocation
Relocation
In a Nios II object file, each relocatable address reference possesses a relocation type.
The relocation type specifies how to calculate the relocated address.Table 7–3 lists the
calculation for address relocation for each Nios II relocation type. The bit mask
specifies where the address is found in the instruction.

Example 7–3. Returned struct is Larger than 8 Bytes

void b(STRUCT *p_result, int i, int j)
{

...
*p_result = result;

}

void a(...)
{

STRUCT value;
...
b(*value, i, j);

}

Table 7–3. Nios II Relocation Calculation (Part 1 of 2)

Name Value
Overflow
check (1)

Relocated Address
R (2)

Bit Mask
M

Bit Shift
B

R_NIOS2_NONE 0 n/a None n/a n/a

R_NIOS2_S16 1 Yes S + A 0x003FFFC0 6

R_NIOS2_U16 2 Yes S + A 0x003FFFC0 6

R_NIOS2_PCREL16 3 Yes ((S + A) – 4) - PC 0x003FFFC0 6

R_NIOS2_CALL26 4 No (S + A) >> 2 0xFFFFFFC0 6

R_NIOS2_IMM5 5 Yes (S + A) & 0x1F 0x000007C0 6

R_NIOS2_CACHE_OPX 6 Yes (S + A) & 0x1F 0x07C00000 22

R_NIOS2_IMM6 7 Yes (S + A) & 0x3F 0x00000FC0 6

R_NIOS2_IMM8 8 Yes (S + A) & 0xFF 0x00003FC0 6

R_NIOS2_HI16 9 No ((S + A) >> 16) & 0xFFFF 0x003FFFC0 6

R_NIOS2_LO16 10 No (S + A) & 0xFFFF 0x003FFFC0 6

R_NIOS2_HIADJ16 11 No ((((S+A) >> 16) & 0xFFFF) +

(((S+A) >> 15) & 0x1)) & 0xFFFF

0x003FFFC0 6

R_NIOS2_BFD_RELOC_32 12 No S + A 0xFFFFFFFF 0

R_NIOS2_BFD_RELOC_16 13 Yes (S + A) & 0xFFFF 0x0000FFFF 0

R_NIOS2_BFD_RELOC_8 14 Yes (S + A) & 0xFF 0x000000FF 0

R_NIOS2_GPREL 15 No (S + A - GP) & 0xFFFF 0x003FFFC0 6

R_NIOS2_GNU_VTINHERIT 16 n/a None n/a n/a

R_NIOS2_GNU_VTENTRY 17 n/a None n/a n/a

R_NIOS2_UJMP 18 No ((S + A) >> 16) & 0xFFFF,

(S + A + 4) & 0xFFFF

0x003FFFC0 6
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 7: Application Binary Interface 7–9
Referenced Documents
With the information in Table 7–3, any Nios II instruction can be relocated by
manipulating it as an unsigned 32-bit integer, as follows:

Xr = ((R << B) & M | (X & ~M));

where:

■ R is the relocated address, calculated as shown in Table 7–3

■ B is the bit shift shown in Table 7–3

■ M is the bit mask shown in Table 7–3

■ X is the original instruction

■ Xr is the relocated instruction

Validated Relocation Types
The Nios II C/C++ compiler generates and uses a subset of the available relocation
types. The following five types are used frequently and have been thoroughly
validated:

■ R_NIOS2_HIADJ16

■ R_NIOS2_LO16

■ R_NIOS2_CALL26

■ R_NIOS2_GPREL

■ R_NIOS2_BFD_RELOC32

Other relocation types are not supported.

Referenced Documents
This chapter references the following documents:

■ Programming Model chapter of the Nios II Processor Reference Handook

R_NIOS2_CJMP 19 No ((S + A) >> 16) & 0xFFFF,

(S + A + 4) & 0xFFFF

0x003FFFC0 6

R_NIOS2_CALLR 20 No ((S + A) >> 16) & 0xFFFF)

(S + A + 4) & 0xFFFF

0x003FFFC0 6

R_NIOS2_ALIGN 21 n/a None n/a n/a

R_NIOS2_ILLEGAL 22 n/a None n/a n/a

Notes to Table 7–3:

(1) For relocation types where no overflow check is performed, the relocated address is truncated to fit the instruction.

(2) S: Symbol address, A: Addend, PC: Program counter, GP: Global pointer

Table 7–3. Nios II Relocation Calculation (Part 2 of 2)

Name Value
Overflow
check (1)

Relocated Address
R (2)

Bit Mask
M

Bit Shift
B

© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2cpu_nii51003.pdf

7–10 Chapter 7: Application Binary Interface
Document Revision History
Document Revision History
Table 7–4 shows the revision history for this document.

Table 7–4. Document Revision History

Date & Document
Version Changes Made Summary of Changes

March 2009

v9.0.0

Maintenance release. —

November 2008

v8.1.0

Maintenance release. —

May 2008

v8.0.0

Frame pointer description updated

Relocation table added

Frame pointer
implementation redefined

October 2007

v7.2.0

Maintenance release. —

May 2007

v7.1.0

■ Added table of contents to Introduction section.

■ Added Referenced Documents section.

—

March 2007

v7.0.0

Maintenance release. —

November 2006

v6.1.0

Maintenance release. —

May 2006

v6.0.0

Maintenance release. —

October 2005

v5.1.0

Maintenance release. —

May 2005

v5.0.0

Maintenance release. —

May 2004

v1.0

Initial release. —
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

© March 2009 Altera Corporation

NII51017-9.0.0
8. Instruction Set Reference
Introduction
This section introduces the Nios® II instruction-word format and provides a detailed
reference of the Nios II instruction set. This chapter contains the following sections:

■ “Word Formats” on page 8–1

■ “Instruction Opcodes” on page 8–2

■ “Assembler Pseudo-Instructions” on page 8–3

■ “Assembler Macros” on page 8–4

■ “Instruction Set Reference” on page 8–4

Word Formats
There are three types of Nios II instruction word format: I-type, R-type, and J-type.

I-Type
The defining characteristic of the I-type instruction-word format is that it contains an
immediate value embedded within the instruction word. I-type instructions words
contain:

■ A 6-bit opcode field OP

■ Two 5-bit register fields A and B

■ A 16-bit immediate data field IMM16

In most cases, fields A and IMM16 specify the source operands, and field B specifies
the destination register. IMM16 is considered signed except for logical operations and
unsigned comparisons.

I-type instructions include arithmetic and logical operations such as addi and andi;
branch operations; load and store operations; and cache management operations.

The I-type instruction format is:

R-Type
The defining characteristic of the R-type instruction-word format is that all arguments
and results are specified as registers. R-type instructions contain:

■ A 6-bit opcode field OP

■ Three 5-bit register fields A, B, and C

■ An 11-bit opcode-extension field OPX

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 OP
Nios II Processor Reference Handbook
Preliminary

8–2 Chapter 8: Instruction Set Reference
Instruction Opcodes
In most cases, fields A and B specify the source operands, and field C specifies the
destination register. Some R-Type instructions embed a small immediate value in the
low-order bits of OPX.

R-type instructions include arithmetic and logical operations such as add and nor;
comparison operations such as cmpeq and cmplt; the custom instruction; and other
operations that need only register operands.

The R-type instruction format is:

J-Type
J-type instructions contain:

■ A 6-bit opcode field

■ A 26-bit immediate data field

J-type instructions, such as call and jmpi, transfer execution anywhere within a 256
MByte range.

The J-type instruction format is:

Instruction Opcodes
The OP field in the Nios II instruction word specifies the major class of an opcode as
shown in Table 8–1 and Table 8–2. Most values of OP are encodings for I-type
instructions. One encoding, OP = 0x00, is the J-type instruction call. Another
encoding, OP = 0x3a, is used for all R-type instructions, in which case, the OPX field
differentiates the instructions. All undefined encodings of OP and OPX are reserved.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C OPX OP

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMMED26 OP

Table 8–1. OP Encodings (Part 1 of 2)

OP Instruction OP Instruction OP Instruction OP Instruction

0x00 call 0x10 cmplti 0x20 cmpeqi 0x30 cmpltui

0x01 jmpi 0x11 0x21 0x31

0x02 0x12 0x22 0x32 custom

0x03 ldbu 0x13 initda 0x23 ldbuio 0x33 initd

0x04 addi 0x14 ori 0x24 muli 0x34 orhi

0x05 stb 0x15 stw 0x25 stbio 0x35 stwio

0x06 br 0x16 blt 0x26 beq 0x36 bltu

0x07 ldb 0x17 ldw 0x27 ldbio 0x37 ldwio

0x08 cmpgei 0x18 cmpnei 0x28 cmpgeui 0x38

0x09 0x19 0x29 0x39

0x0A 0x1A 0x2A 0x3A R-type
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–3
Assembler Pseudo-Instructions
Assembler Pseudo-Instructions
Table 8–3 lists pseudo-instructions available in Nios II assembly language.
Pseudo-instructions are used in assembly source code like regular assembly
instructions. Each pseudo-instruction is implemented at the machine level using an
equivalent instruction. The movia pseudo-instruction is the only exception, being
implemented with two instructions. Most pseudo-instructions do not appear in
disassembly views of machine code.

0x0B ldhu 0x1B flushda 0x2B ldhuio 0x3B flushd

0x0C andi 0x1C xori 0x2C andhi 0x3C xorhi

0x0D sth 0x1D 0x2D sthio 0x3D

0x0E bge 0x1E bne 0x2E bgeu 0x3E

0x0F ldh 0x1F 0x2F ldhio 0x3F

Table 8–2. OPX Encodings for R-Type Instructions

OPX Instruction OPX Instruction OPX Instruction OPX Instruction

0x00 0x10 cmplt 0x20 cmpeq 0x30 cmpltu

0x01 eret 0x11 0x21 0x31 add

0x02 roli 0x12 slli 0x22 0x32

0x03 rol 0x13 sll 0x23 0x33

0x04 flushp 0x14 0x24 divu 0x34 break

0x05 ret 0x15 0x25 div 0x35

0x06 nor 0x16 or 0x26 rdctl 0x36 sync

0x07 mulxuu 0x17 mulxsu 0x27 mul 0x37

0x08 cmpge 0x18 cmpne 0x28 cmpgeu 0x38

0x09 bret 0x19 0x29 initi 0x39 sub

0x0A 0x1A srli 0x2A 0x3A srai

0x0B ror 0x1B srl 0x2B 0x3B sra

0x0C flushi 0x1C nextpc 0x2C 0x3C

0x0D jmp 0x1D callr 0x2D trap 0x3D

0x0E and 0x1E xor 0x2E wrctl 0x3E

0x0F 0x1F mulxss 0x2F 0x3F

Table 8–1. OP Encodings (Part 2 of 2)

OP Instruction OP Instruction OP Instruction OP Instruction

Table 8–3. Assembler Pseudo-Instructions (Part 1 of 2)

Pseudo-Instruction Equivalent Instruction

bgt rA, rB, label blt rB, rA, label

bgtu rA, rB, label bltu rB, rA, label

ble rA, rB, label bge rB, rA, label

bleu rA, rB, label bgeu rB, rA, label

cmpgt rC, rA, rB cmplt rC, rB, rA
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–4 Chapter 8: Instruction Set Reference
Assembler Macros
Assembler Macros
The Nios II assembler provides macros to extract halfwords from labels and from
32-bit immediate values. Table 8–4 lists the available macros. These macros return
16-bit signed values or 16-bit unsigned values depending on where they are used.
When used with an instruction that requires a 16-bit signed immediate value, these
macros return a value ranging from –32768 to 32767. When used with an instruction
that requires a 16-bit unsigned immediate value, these macros return a value ranging
from 0 to 65535.

Instruction Set Reference
The following pages list all Nios II instruction mnemonics in alphabetical order.
Table 8–5 shows the notation conventions used to describe instruction operation.

cmpgti rB, rA, IMMED cmpgei rB, rA, (IMMED+1)

cmpgtu rC, rA, rB cmpltu rC, rB, rA

cmpgtui rB, rA, IMMED cmpgeui rB, rA, (IMMED+1)

cmple rC, rA, rB cmpge rC, rB, rA

cmplei rB, rA, IMMED cmplti rB, rA, (IMMED+1)

cmpleu rC, rA, rB cmpgeu rC, rB, rA

cmpleui rB, rA, IMMED cmpltui rB, rA, (IMMED+1)

mov rC, rA add rC, rA, r0

movhi rB, IMMED orhi rB, r0, IMMED

movi rB, IMMED addi, rB, r0, IMMED

movia rB, label orhi rB, r0, %hiadj(label)

addi, rB, r0, %lo(label)

movui rB, IMMED ori rB, r0, IMMED

nop add r0, r0, r0

subi rB, rA, IMMED addi rB, rA, (-IMMED)

Table 8–3. Assembler Pseudo-Instructions (Part 2 of 2)

Pseudo-Instruction Equivalent Instruction

Table 8–4. Assembler Macros

Macro Description Operation

%lo(immed32) Extract bits [15..0] of immed32 immed32 & 0xffff

%hi(immed32) Extract bits [31..16] of immed32 (immed32 >> 16) & 0xffff

%hiadj(immed32) Extract bits [31..16] and adds bit 15 of immed32 ((immed32 >> 16) & 0xffff) +

((immed32 >> 15) & 0x1)

%gprel(immed32) Replace the immed32 address with an offset from
the global pointer (1)

immed32 –_gp

Note to Table 8–4:

(1) Refer to the Application Binary Interface chapter of the Nios II Processor Reference Handbook for more information about global pointers.
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2cpu_nii51016.pdf

Chapter 8: Instruction Set Reference 8–5
Instruction Set Reference
The following exceptions are not listed for each instruction because they can occur on
any instruction fetch:

■ Supervisor-only instruction address

■ Fast TLB miss (instruction)

■ Double TLB miss (instruction)

■ TLB permission violation (execute)

■ MPU region violation (instruction)

f For details on these and all Nios II exceptions, refer to the Programming Model chapter
of the Nios II Processor Reference Handbook.

Table 8–5. Notation Conventions

Notation Meaning

X ← Y X is written with Y

PC ← X The program counter (PC) is written with address X; the instruction at X will
be the next instruction to execute

PC The address of the assembly instruction in question

rA, rB, rC One of the 32-bit general-purpose registers

IMMn An n-bit immediate value, embedded in the instruction word

IMMED An immediate value

Xn The nth bit of X, where n = 0 is the LSB

Xn..m Consecutive bits n through m of X

0xNNMM Hexadecimal notation

X : Y Bitwise concatenation
For example, (0x12 : 0x34) = 0x1234

σ(X) The value of X after being sign-extended to a full register-sized signed integer

X >> n The value X after being right-shifted n bit positions

X << n The value X after being left-shifted n bit positions

X & Y Bitwise logical AND

X | Y Bitwise logical OR

X ^ Y Bitwise logical XOR

~X Bitwise logical NOT (one’s complement)

Mem8[X] The byte located in data memory at byte-address X

Mem16[X] The halfword located in data memory at byte-address X

Mem32[X] The word located in data memory at byte-address X

label An address label specified in the assembly file

(signed) rX The value of rX treated as a signed number

(unsigned) rX The value of rX treated as an unsigned number
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2cpu_nii51003.pdf

8–6 Chapter 8: Instruction Set Reference
Instruction Set Reference
add add

Operation: rC ← rA + rB

Assembler Syntax: add rC, rA, rB

Example: add r6, r7, r8

Description: Calculates the sum of rA and rB. Stores the result in rC. Used for both signed and unsigned addition.

Usage: Carry Detection (unsigned operands):

Following an add operation, a carry out of the MSB can be detected by checking whether the
unsigned sum is less than one of the unsigned operands. The carry bit can be written to a register, or
a conditional branch can be taken based on the carry condition. Both cases are shown below.

add rC, rA, rB

cmpltu rD, rC, rA

add rC, rA, rB

bltu rC, rA, label

; The original add operation

; rD is written with the carry bit

; The original add operation

; Branch if carry was generated

Overflow Detection (signed operands):

An overflow is detected when two positives are added and the sum is negative, or when two negatives
are added and the sum is positive. The overflow condition can control a conditional branch, as shown
below.

add rC, rA, rB

xor rD, rC, rA

xor rE, rC, rB

and rD, rD, rE

blt rD, r0,label

; The original add operation

; Compare signs of sum and rA

; Compare signs of sum and rB

; Combine comparisons

; Branch if overflow occurred

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x31 0 0x3a
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–7
Instruction Set Reference
addi add immediate

Operation: rB ← rA + σ (IMM16)

Assembler Syntax: addi rB, rA, IMM16

Example: addi r6, r7, -100

Description: Sign-extends the 16-bit immediate value and adds it to the value of rA. Stores the sum in rB.

Usage: Carry Detection (unsigned operands):

Following an addi operation, a carry out of the MSB can be detected by checking whether the
unsigned sum is less than one of the unsigned operands. The carry bit can be written to a
register, or a conditional branch can be taken based on the carry condition. Both cases are
shown below.

addi rB, rA, IMM16

cmpltu rD, rB, rA

addi rB, rA, IMM16

bltu rB, rA, label

; The original add operation

; rD is written with the carry bit

; The original add operation

; Branch if carry was generated

Overflow Detection (signed operands):

An overflow is detected when two positives are added and the sum is negative, or when two
negatives are added and the sum is positive. The overflow condition can control a conditional
branch, as shown below.

addi rB, rA, IMM16

xor rC, rB, rA

xorhi rD, rB, IMM16

and rC, rC, rD

blt rC, r0,label

; The original add operation

; Compare signs of sum and rA

; Compare signs of sum and IMM16

; Combine comparisons

; Branch if overflow occurred

Exceptions: None

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x04
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–8 Chapter 8: Instruction Set Reference
Instruction Set Reference
and bitwise logical and

Operation: rC ← rA & rB

Assembler Syntax: and rC, rA, rB

Example: and r6, r7, r8

Description: Calculates the bitwise logical AND of rA and rB and stores the result in rC.

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x0e 0 0x3a
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–9
Instruction Set Reference
andhi bitwise logical and immediate into high halfword

Operation: rB ← rA & (IMM16 : 0x0000)

Assembler Syntax: andhi rB, rA, IMM16

Example: andhi r6, r7, 100

Description: Calculates the bitwise logical AND of rA and (IMM16 : 0x0000) and stores the result in rB.

Exceptions: None

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x2c
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–10 Chapter 8: Instruction Set Reference
Instruction Set Reference
andi bitwise logical and immediate

Operation: rB ← rA & (0x0000 : IMM16)

Assembler Syntax: andi rB, rA, IMM16

Example: andi r6, r7, 100

Description: Calculates the bitwise logical AND of rA and (0x0000 : IMM16) and stores the result in rB.

Exceptions: None

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x0c
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–11
Instruction Set Reference
beq branch if equal

Operation: if (rA == rB)

then PC ← PC + 4 + σ (IMM16)

else PC ← PC + 4

Assembler Syntax: beq rA, rB, label

Example: beq r6, r7, label

Description: If rA == rB, then beq transfers program control to the instruction at label. In the instruction
encoding, the offset given by IMM16 is treated as a signed number of bytes relative to the
instruction immediately following beq. The two least-significant bits of IMM16 are always
zero, because instruction addresses must be word-aligned.

Exceptions: Misaligned destination address

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x26
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–12 Chapter 8: Instruction Set Reference
Instruction Set Reference
bge branch if greater than or equal signed

Operation: if ((signed) rA >= (signed) rB)

then PC ← PC + 4 + σ (IMM16)

else PC ← PC + 4

Assembler Syntax: bge rA, rB, label

Example: bge r6, r7, top_of_loop

Description: If (signed) rA >= (signed) rB, then bge transfers program control to the instruction at label. In
the instruction encoding, the offset given by IMM16 is treated as a signed number of bytes
relative to the instruction immediately following bge. The two least-significant bits of IMM16
are always zero, because instruction addresses must be word-aligned.

Exceptions: Misaligned destination address

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x0e
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–13
Instruction Set Reference
bgeu branch if greater than or equal unsigned

Operation: if ((unsigned) rA >= (unsigned) rB)

then PC ← PC + 4 + σ (IMM16)

else PC ← PC + 4

Assembler Syntax: bgeu rA, rB, label

Example: bgeu r6, r7, top_of_loop

Description: If (unsigned) rA >= (unsigned) rB, then bgeu transfers program control to the instruction at
label. In the instruction encoding, the offset given by IMM16 is treated as a signed number of
bytes relative to the instruction immediately following bgeu. The two least-significant bits of
IMM16 are always zero, because instruction addresses must be word-aligned.

Exceptions: Misaligned destination address

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x2e
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–14 Chapter 8: Instruction Set Reference
Instruction Set Reference
bgt branch if greater than signed

Operation: if ((signed) rA > (signed) rB)

then PC ← label

else PC ← PC + 4

Assembler Syntax: bgt rA, rB, label

Example: bgt r6, r7, top_of_loop

Description: If (signed) rA > (signed) rB, then bgt transfers program control to the instruction at label.

Pseudo-instruction: bgt is implemented with the blt instruction by swapping the register operands.
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–15
Instruction Set Reference
bgtu branch if greater than unsigned

Operation: if ((unsigned) rA > (unsigned) rB)

then PC ← label

else PC ← PC + 4

Assembler Syntax: bgtu rA, rB, label

Example: bgtu r6, r7, top_of_loop

Description: If (unsigned) rA > (unsigned) rB, then bgtu transfers program control to the instruction at
label.

Pseudo-instruction: bgtu is implemented with the bltu instruction by swapping the register operands.
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–16 Chapter 8: Instruction Set Reference
Instruction Set Reference
ble branch if less than or equal signed

Operation: if ((signed) rA <= (signed) rB)

then PC ← label

else PC ← PC + 4

Assembler Syntax: ble rA, rB, label

Example: ble r6, r7, top_of_loop

Description: If (signed) rA <= (signed) rB, then ble transfers program control to the instruction at label.

Pseudo-instruction: ble is implemented with the bge instruction by swapping the register operands.
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–17
Instruction Set Reference
bleu branch if less than or equal to unsigned

Operation: if ((unsigned) rA <= (unsigned) rB)

then PC ← label

else PC ← PC + 4

Assembler Syntax: bleu rA, rB, label

Example: bleu r6, r7, top_of_loop

Description: If (unsigned) rA <= (unsigned) rB, then bleu transfers program counter to the instruction at
label.

Pseudo-instruction: bleu is implemented with the bgeu instruction by swapping the register operands.
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–18 Chapter 8: Instruction Set Reference
Instruction Set Reference
blt branch if less than signed

Operation: if ((signed) rA < (signed) rB)

then PC ← PC + 4 + σ (IMM16)

else PC ← PC + 4

Assembler Syntax: blt rA, rB, label

Example: blt r6, r7, top_of_loop

Description: If (signed) rA < (signed) rB, then blt transfers program control to the instruction at label. In
the instruction encoding, the offset given by IMM16 is treated as a signed number of bytes
relative to the instruction immediately following blt. The two least-significant bits of IMM16
are always zero, because instruction addresses must be word-aligned.

Exceptions: Misaligned destination address

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x16
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–19
Instruction Set Reference
bltu branch if less than unsigned

Operation: if ((unsigned) rA < (unsigned) rB)

then PC ← PC + 4 + σ (IMM16)

else PC ← PC + 4

Assembler Syntax: bltu rA, rB, label

Example: bltu r6, r7, top_of_loop

Description: If (unsigned) rA < (unsigned) rB, then bltu transfers program control to the instruction at
label. In the instruction encoding, the offset given by IMM16 is treated as a signed number of
bytes relative to the instruction immediately following bltu. The two least-significant bits of
IMM16 are always zero, because instruction addresses must be word-aligned.

Exceptions: Misaligned destination address

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

MM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x36
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–20 Chapter 8: Instruction Set Reference
Instruction Set Reference
bne branch if not equal

Operation: if (rA != rB)

then PC ← PC + 4 + σ (IMM16)

else PC ← PC + 4

Assembler Syntax: bne rA, rB, label

Example: bne r6, r7, top_of_loop

Description: If rA != rB, then bne transfers program control to the instruction at label. In the instruction
encoding, the offset given by IMM16 is treated as a signed number of bytes relative to the
instruction immediately following bne. The two least-significant bits of IMM16 are always
zero, because instruction addresses must be word-aligned.

Exceptions: Misaligned destination address

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x1e
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–21
Instruction Set Reference
br unconditional branch

Operation: PC ← PC + 4 + σ (IMM16)

Assembler Syntax: br label

Example: br top_of_loop

Description: Transfers program control to the instruction at label. In the instruction encoding, the offset
given by IMM16 is treated as a signed number of bytes relative to the instruction immediately
following br. The two least-significant bits of IMM16 are always zero, because instruction
addresses must be word-aligned.

Exceptions: Misaligned destination address

Instruction Type: I

Instruction Fields: IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 IMM16 0x06
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–22 Chapter 8: Instruction Set Reference
Instruction Set Reference
break debugging breakpoint

Operation: bstatus ← status

PIE ← 0

U ← 0

ba ← PC + 4

PC ← break handler address

Assembler Syntax: break

break imm5

Example: break

Description: Breaks program execution and transfers control to the debugger break-processing routine.
Saves the address of the next instruction in register ba and saves the contents of the status
register in bstatus. Disables interrupts, then transfers execution to the break handler.

The 5-bit immediate field imm5 is ignored by the processor, but it can be used by the
debugger.

break with no argument is the same as break 0.

Usage: break is used by debuggers exclusively. Only debuggers should place break in a user
program, operating system, or exception handler. The address of the break handler is specified
at system generation time.

Some debuggers support break and break 0 instructions in source code. These debuggers
treat the break instruction as a normal breakpoint.

Exceptions: Break

Instruction Type: R

Instruction Fields: IMM5 = Type of breakpoint

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0x1e 0x34 IMM5 0x3a
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–23
Instruction Set Reference
bret breakpoint return

Operation: status ← bstatus

PC ← ba

Assembler Syntax: bret

Example: bret

Description: Copies the value of bstatus to the status register, then transfers execution to the address
in ba.

Usage: bret is used by debuggers exclusively and should not appear in user programs, operating
systems, or exception handlers.

Exceptions: Misaligned destination address

Supervisor-only instruction

Instruction Type: R

Instruction Fields: None

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x1e 0 0 0x09 0 0x3a
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–24 Chapter 8: Instruction Set Reference
Instruction Set Reference
call call subroutine

Operation: ra ← PC + 4

PC ← (PC31..28 : IMM26 × 4)

Assembler Syntax: call label

Example: call write_char

Description: Saves the address of the next instruction in register ra, and transfers execution to the
instruction at address (PC31..28 : IMM26 × 4).

Usage: call can transfer execution anywhere within the 256 MByte range determined by PC31..28. The
Nios II GNU linker does not automatically handle cases in which the address is out of this range.

Exceptions: None

Instruction Type: J

Instruction Fields: IMM26 = 26-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM26 0
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–25
Instruction Set Reference
callr call subroutine in register

Operation: ra ← PC + 4

PC ← rA

Assembler Syntax: callr rA

Example: callr r6

Description: Saves the address of the next instruction in the return-address register, and transfers execution
to the address contained in register rA.

Usage: callr is used to dereference C-language function pointers.

Exceptions: Misaligned destination address

Instruction Type: R

Instruction Fields: A = Register index of operand rA

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A 0 0x1f 0x1d 0 0x3a
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–26 Chapter 8: Instruction Set Reference
Instruction Set Reference
cmpeq compare equal

Operation: if (rA == rB)

then rC ← 1

else rC ← 0

Assembler Syntax: cmpeq rC, rA, rB

Example: cmpeq r6, r7, r8

Description: If rA == rB, then stores 1 to rC; otherwise, stores 0 to rC.

Usage: cmpeq performs the == operation of the C programming language. Also, cmpeq can be used
to implement the C logical-negation operator “!”.

cmpeq rC, rA, r0 ; Implements rC = !rA

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x20 0 0x3a
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–27
Instruction Set Reference
cmpeqi compare equal immediate

Operation: if (rA σ (IMM16))

then rB ← 1

else rB ← 0

Assembler Syntax: cmpeqi rB, rA, IMM16

Example: cmpeqi r6, r7, 100

Description: Sign-extends the 16-bit immediate value IMM16 to 32 bits and compares it to the value of rA. If
rA == σ (IMM16), cmpeqi stores 1 to rB; otherwise stores 0 to rB.

Usage: cmpeqi performs the == operation of the C programming language.

Exceptions: None

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x20
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–28 Chapter 8: Instruction Set Reference
Instruction Set Reference
cmpge compare greater than or equal signed

Operation: if ((signed) rA >= (signed) rB)

then rC ← 1

else rC ← 0

Assembler Syntax: cmpge rC, rA, rB

Example: cmpge r6, r7, r8

Description: If rA >= rB, then stores 1 to rC; otherwise stores 0 to rC.

Usage: cmpge performs the signed >= operation of the C programming language.

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x08 0 0x3a
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–29
Instruction Set Reference
cmpgei compare greater than or equal signed immediate

Operation: if ((signed) rA >= (signed) σ (IMM16))

then rB ← 1

else rB ← 0

Assembler Syntax: cmpgei rB, rA, IMM16

Example: cmpgei r6, r7, 100

Description: Sign-extends the 16-bit immediate value IMM16 to 32 bits and compares it to the value of rA. If
rA >= σ(IMM16), then cmpgei stores 1 to rB; otherwise stores 0 to rB.

Usage: cmpgei performs the signed >= operation of the C programming language.

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x08
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–30 Chapter 8: Instruction Set Reference
Instruction Set Reference
cmpgeu compare greater than or equal unsigned

Operation: if ((unsigned) rA >= (unsigned) rB)

then rC ← 1

else rC ← 0

Assembler Syntax: cmpgeu rC, rA, rB

Example: cmpgeu r6, r7, r8

Description: If rA >= rB, then stores 1 to rC; otherwise stores 0 to rC.

Usage: cmpgeu performs the unsigned >= operation of the C programming language.

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x28 0 0x3a
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–31
Instruction Set Reference
cmpgeui compare greater than or equal unsigned immediate

Operation: if ((unsigned) rA >= (unsigned) (0x0000 : IMM16))

then rB ← 1

else rB ← 0

Assembler Syntax: cmpgeui rB, rA, IMM16

Example: cmpgeui r6, r7, 100

Description: Zero-extends the 16-bit immediate value IMM16 to 32 bits and compares it to the value of
rA. If rA >= (0x0000 : IMM16), then cmpgeui stores 1 to rB; otherwise stores 0 to rB.

Usage: cmpgeui performs the unsigned >= operation of the C programming language.

Exceptions: None

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x28
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–32 Chapter 8: Instruction Set Reference
Instruction Set Reference
cmpgt compare greater than signed

Operation: if ((signed) rA > (signed) rB)

then rC ← 1

else rC ← 0

Assembler Syntax: cmpgt rC, rA, rB

Example: cmpgt r6, r7, r8

Description: If rA > rB, then stores 1 to rC; otherwise stores 0 to rC.

Usage: cmpgt performs the signed > operation of the C programming language.

Pseudo-instruction: cmpgt is implemented with the cmplt instruction by swapping its rA and rB operands.
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–33
Instruction Set Reference
cmpgti compare greater than signed immediate

Operation: if ((signed) rA > (signed) IMMED)

then rB ← 1

else rB ← 0

Assembler Syntax: cmpgti rB, rA, IMMED

Example: cmpgti r6, r7, 100

Description: Sign-extends the immediate value IMMED to 32 bits and compares it to the value of rA. If rA >
σ(IMMED), then cmpgti stores 1 to rB; otherwise stores 0 to rB.

Usage: cmpgti performs the signed > operation of the C programming language. The maximum
allowed value of IMMED is 32766. The minimum allowed value is –32769.

Pseudo-instruction: cmpgti is implemented using a cmpgei instruction with an IMM16 immediate value of
IMMED + 1.
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–34 Chapter 8: Instruction Set Reference
Instruction Set Reference
cmpgtu compare greater than unsigned

Operation: if ((unsigned) rA > (unsigned) rB)

then rC ← 1

else rC ← 0

Assembler Syntax: cmpgtu rC, rA, rB

Example: cmpgtu r6, r7, r8

Description: If rA > rB, then stores 1 to rC; otherwise stores 0 to rC.

Usage: cmpgtu performs the unsigned > operation of the C programming language.

Pseudo-instruction: cmpgtu is implemented with the cmpltu instruction by swapping its rA and rB operands.
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–35
Instruction Set Reference
cmpgtui compare greater than unsigned immediate

Operation: if ((unsigned) rA > (unsigned) IMMED)

then rB ← 1

else rB ← 0

Assembler Syntax: cmpgtui rB, rA, IMMED

Example: cmpgtui r6, r7, 100

Description: Zero-extends the immediate value IMMED to 32 bits and compares it to the value of rA. If rA >
IMMED, then cmpgtui stores 1 to rB; otherwise stores 0 to rB.

Usage: cmpgtui performs the unsigned > operation of the C programming language. The maximum
allowed value of IMMED is 65534. The minimum allowed value is 0.

Pseudo-instruction: cmpgtui is implemented using a cmpgeui instruction with an IMM16 immediate value of
IMMED + 1.
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–36 Chapter 8: Instruction Set Reference
Instruction Set Reference
cmple compare less than or equal signed

Operation: if ((signed) rA <= (signed) rB)

then rC ← 1

else rC ← 0

Assembler Syntax: cmple rC, rA, rB

Example: cmple r6, r7, r8

Description: If rA <= rB, then stores 1 to rC; otherwise stores 0 to rC.

Usage: cmple performs the signed <= operation of the C programming language.

Pseudo-instruction: cmple is implemented with the cmpge instruction by swapping its rA and rB operands.
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–37
Instruction Set Reference
cmplei compare less than or equal signed immediate

Operation: if ((signed) rA < (signed) IMMED)

then rB ← 1

else rB ← 0

Assembler Syntax: cmplei rB, rA, IMMED

Example: cmplei r6, r7, 100

Description: Sign-extends the immediate value IMMED to 32 bits and compares it to the value of rA. If rA <=
σ(IMMED), then cmplei stores 1 to rB; otherwise stores 0 to rB.

Usage: cmplei performs the signed <= operation of the C programming language. The maximum
allowed value of IMMED is 32766. The minimum allowed value is –32769.

Pseudo-instruction: cmplei is implemented using a cmplti instruction with an IMM16 immediate value of
IMMED + 1.
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–38 Chapter 8: Instruction Set Reference
Instruction Set Reference
cmpleu compare less than or equal unsigned

Operation: if ((unsigned) rA < (unsigned) rB)

then rC ← 1

else rC ← 0

Assembler Syntax: cmpleu rC, rA, rB

Example: cmpleu r6, r7, r8

Description: If rA <= rB, then stores 1 to rC; otherwise stores 0 to rC.

Usage: cmpleu performs the unsigned <= operation of the C programming language.

Pseudo-instruction: cmpleu is implemented with the cmpgeu instruction by swapping its rA and rB operands.
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–39
Instruction Set Reference
cmpleui compare less than or equal unsigned immediate

Operation: if ((unsigned) rA <= (unsigned) IMMED)

then rB ← 1

else rB ← 0

Assembler Syntax: cmpleui rB, rA, IMMED

Example: cmpleui r6, r7, 100

Description: Zero-extends the immediate value IMMED to 32 bits and compares it to the value of rA. If rA <=
IMMED, then cmpleui stores 1 to rB; otherwise stores 0 to rB.

Usage: cmpleui performs the unsigned <= operation of the C programming language. The maximum
allowed value of IMMED is 65534. The minimum allowed value is 0.

Pseudo-instruction: cmpleui is implemented using a cmpltui instruction with an IMM16 immediate value of
IMMED + 1.
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–40 Chapter 8: Instruction Set Reference
Instruction Set Reference
cmplt compare less than signed

Operation: if ((signed) rA < (signed) rB)

then rC ← 1

else rC ← 0

Assembler Syntax: cmplt rC, rA, rB

Example: cmplt r6, r7, r8

Description: If rA < rB, then stores 1 to rC; otherwise stores 0 to rC.

Usage: cmplt performs the signed < operation of the C programming language.

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x10 0 0x3a
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–41
Instruction Set Reference
cmplti compare less than signed immediate

Operation: if ((signed) rA < (signed) σ (IMM16))

then rB ← 1

else rB ← 0

Assembler Syntax: cmplti rB, rA, IMM16

Example: cmplti r6, r7, 100

Description: Sign-extends the 16-bit immediate value IMM16 to 32 bits and compares it to the value of rA. If
rA < σ (IMM16), then cmplti stores 1 to rB; otherwise stores 0 to rB.

Usage: cmplti performs the signed < operation of the C programming language.

Exceptions: None

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x10
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–42 Chapter 8: Instruction Set Reference
Instruction Set Reference
cmpltu compare less than unsigned

Operation: if ((unsigned) rA < (unsigned) rB)

then rC ← 1

else rC ← 0

Assembler Syntax: cmpltu rC, rA, rB

Example: cmpltu r6, r7, r8

Description: If rA < rB, then stores 1 to rC; otherwise stores 0 to rC.

Usage: cmpltu performs the unsigned < operation of the C programming language.

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x30 0 0x3a
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–43
Instruction Set Reference
cmpltui compare less than unsigned immediate

Operation: if ((unsigned) rA < (unsigned) (0x0000 : IMM16))

then rB ← 1

else rB ← 0

Assembler Syntax: cmpltui rB, rA, IMM16

Example: cmpltui r6, r7, 100

Description: Zero-extends the 16-bit immediate value IMM16 to 32 bits and compares it to the value of rA. If
rA < (0x0000 : IMM16), then cmpltui stores 1 to rB; otherwise stores 0 to rB.

Usage: cmpltui performs the unsigned < operation of the C programming language.

Exceptions: None

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x30
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–44 Chapter 8: Instruction Set Reference
Instruction Set Reference
cmpne compare not equal

Operation: if (rA != rB)

then rC ← 1

else rC ← 0

Assembler Syntax: cmpne rC, rA, rB

Example: cmpne r6, r7, r8

Description: If rA != rB, then stores 1 to rC; otherwise stores 0 to rC.

Usage: cmpne performs the != operation of the C programming language.

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x18 0 0x3a
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–45
Instruction Set Reference
cmpnei compare not equal immediate

Operation: if (rA != σ (IMM16))

then rB ← 1

else rB ← 0

Assembler Syntax: cmpnei rB, rA, IMM16

Example: cmpnei r6, r7, 100

Description: Sign-extends the 16-bit immediate value IMM16 to 32 bits and compares it to the value of rA. If
rA != σ (IMM16), then cmpnei stores 1 to rB; otherwise stores 0 to rB.

Usage: cmpnei performs the != operation of the C programming language.

Exceptions: None

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x18
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–46 Chapter 8: Instruction Set Reference
Instruction Set Reference
custom custom instruction

Operation: if c == 1

then rC ← fN(rA, rB, A, B, C)

else Ø ← fN(rA, rB, A, B, C)

Assembler Syntax: custom N, xC, xA, xB

Where xA means either general purpose register rA, or custom register cA.

Example: custom 0, c6, r7, r8

Description: The custom opcode provides access to up to 256 custom instructions allowed by the Nios II
architecture. The function implemented by a custom instruction is user-defined and is specified
at system generation time. The 8-bit immediate N field specifies which custom instruction to
use. Custom instructions can use up to two parameters, xA and xB, and can optionally write the
result to a register xC.

Usage: To access a custom register inside the custom instruction logic, clear the bit readra, readrb, or
writerc that corresponds to the register field. In assembler syntax, the notation cN refers to
register N in the custom register file and causes the assembler to clear the c bit of the opcode.
For example, custom 0, c3, r5, r0 performs custom instruction 0, operating on
general-purpose registers r5 and r0, and stores the result in custom register 3.

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand A

B = Register index of operand B

C = Register index of operand C

readra = 1 if instruction uses rA, 0 otherwise

readrb = 1 if instruction uses rB, 0 otherwise

writerc = 1 if instruction provides result for rC, 0 otherwise

N = 8-bit number that selects instruction

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C ra rb rc N 0x32
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–47
Instruction Set Reference
div divide

Operation: rC ← rA ÷ rB

Assembler Syntax: div rC, rA, rB

Example: div r6, r7, r8

Description: Treating rA and rB as signed integers, this instruction divides rA by rB and then stores the
integer portion of the resulting quotient to rC. After attempted division by zero, the value of rC
is undefined. There is no divide-by-zero exception. After dividing –2147483648 by –1, the
value of rC is undefined (the number +2147483648 is not representable in 32 bits). There is
no overflow exception.

Nios II processors that do not implement the div instruction cause an
unimplemented-instruction exception.

Usage: Remainder of Division:

If the result of the division is defined, then the remainder can be computed in rD using the
following instruction sequence:

div rC, rA, rB

mul rD, rC, rB

sub rD, rA, rD

; The original div operation

; rD = remainder

Exceptions: Division error

Unimplemented instruction

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x25 0 0x3a
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–48 Chapter 8: Instruction Set Reference
Instruction Set Reference
divu divide unsigned

Operation: rC ← rA ÷ rB

Assembler Syntax: divu rC, rA, rB

Example: divu r6, r7, r8

Description: Treating rA and rB as unsigned integers, this instruction divides rA by rB and then stores the
integer portion of the resulting quotient to rC. After attempted division by zero, the value of rC
is undefined. There is no divide-by-zero exception.

Nios II processors that do not implement the divu instruction cause an
unimplemented-instruction exception.

Usage: Remainder of Division:

If the result of the division is defined, then the remainder can be computed in rD using the
following instruction sequence:

divu rC, rA, rB

mul rD, rC, rB

sub rD, rA, rD

; The original divu operation

; rD = remainder

Exceptions: Division error

Unimplemented instruction

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x24 0 0x3a
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–49
Instruction Set Reference
eret exception return

Operation: status ← estatus

PC ← ea

Assembler Syntax: eret

Example: eret

Description: Copies the value of estatus into the status register, and transfers execution to the
address in ea.

Usage: Use eret to return from traps, external interrupts, and other exception-handling routines.
Note that before returning from hardware interrupt exceptions, the exception handler must
adjust the ea register.

Exceptions: Misaligned destination address

Supervisor-only instruction

Instruction Type: R

Instruction Fields: None

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x1d 0x1e 0 0x01 0 0x3a
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–50 Chapter 8: Instruction Set Reference
Instruction Set Reference
flushd flush data cache line

Operation: Flushes the data cache line associated with address rA + σ (IMM16).

Assembler Syntax: flushd IMM16(rA)

Example: flushd -100(r6)

Description: If the Nios II processor implements a direct mapped data cache, flushd writes the data cache
line that is mapped to the specified address back to memory if the line is dirty, and then clears
the data cache line. Unlike flushda, flushd writes the dirty data back to memory even
when the addressed data is not currently in the cache. This process comprises the following
steps:

■ Compute the effective address specified by the sum of rA and the signed 16-bit immediate
value.

■ Identify the data cache line associated with the computed effective address. Each data cache
effective address comprises a tag field and a line field. When identifying the data cache
line, flushd ignores the tag field and only uses the line field to select the data cache
line to clear.

■ Skip comparing the cache line tag with the effective address to determine if the addressed
data is currently cached. Because flushd ignores the cache line tag, flushd flushes the
cache line regardless of whether the specified data location is currently cached.

■ If the data cache line is dirty, write the line back to memory. A cache line is dirty when one or
more words of the cache line have been modified by the processor, but have not yet been
written to memory.

■ Clear the valid bit for the line.

If the Nios II processor core does not have a data cache, the flushd instruction performs no
operation.

Usage: Use flushd to write dirty lines back to memory even if the addressed memory location is not
in the cache, and then flush the cache line. By contrast, refer to “flushda flush data cache
address” on page 8–51, “initd initialize data cache line” on page 8–54, and “initda initialize data
cache address” on page 8–55 for other cache-clearing options.

For more information on data cache, refer to the Cache and Tightly Coupled Memory chapter of
the Nios II Software Developer’s Handbook.

Exceptions: None

Instruction Type: I

Instruction Fields: A = Register index of operand rA

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A 0 IMM16 0x3b
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf

Chapter 8: Instruction Set Reference 8–51
Instruction Set Reference
flushda flush data cache address

Operation: Flushes the data cache line currently caching address rA + σ (IMM16)

Assembler Syntax: flushda IMM16(rA)

Example: flushda -100(r6)

Description: If the Nios II processor implements a direct mapped data cache, flushda writes the data
cache line that is mapped to the specified address back to memory if the line is dirty, and then
clears the data cache line. Unlike flushd, flushda writes the dirty data back to memory
only when the addressed data is currently in the cache. This process comprises the following
steps:

■ Compute the effective address specified by the sum of rA and the signed 16-bit immediate
value.

■ Identify the data cache line associated with the computed effective address. Each data cache
effective address comprises a tag field and a line field. When identifying the line,
flushda uses both the tag field and the line field.

■ Compare the cache line tag with the effective address to determine if the addressed data is
currently cached. If the tag fields do not match, the effective address is not currently
cached, so the instruction does nothing.

■ If the data cache line is dirty and the tag fields match, write the dirty cache line back to
memory. A cache line is dirty when one or more words of the cache line have been modified
by the processor, but are not yet written to memory.

■ Clear the valid bit for the line.

If the Nios II processor core does not have a data cache, the flushda instruction performs no
operation.

Usage: Use flushda to write dirty lines back to memory only if the addressed memory location is
currently in the cache, and then flush the cache line. By contrast, refer to “flushd flush data
cache line” on page 8–50, “initd initialize data cache line” on page 8–54, and “initda initialize
data cache address” on page 8–55 for other cache-clearing options.

For more information on the Nios II data cache, refer to the Cache and Tightly Coupled Memory
chapter of the Nios II Software Developer’s Handbook.

Exceptions: Supervisor-only data address

Fast TLB miss (data)

Double TLB miss (data)

MPU region violation (data)

Instruction Type: I

Instruction Fields: A = Register index of operand rA

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A 0 IMM16 0x1b
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf

8–52 Chapter 8: Instruction Set Reference
Instruction Set Reference
flushi flush instruction cache line

Operation: Flushes the instruction-cache line associated with address rA.

Assembler Syntax: flushi rA

Example: flushi r6

Description: Ignoring the tag, flushi identifies the instruction-cache line associated with the byte address
in rA, and invalidates that line.

If the Nios II processor core does not have an instruction cache, the flushi instruction
performs no operation.

For more information about the data cache, refer to the Cache and Tightly Coupled Memory
chapter of the Nios II Software Developer’s Handbook.

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand rA

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A 0 0 0x0c 0 0x3a
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf

Chapter 8: Instruction Set Reference 8–53
Instruction Set Reference
flushp flush pipeline

Operation: Flushes the processor pipeline of any pre-fetched instructions.

Assembler Syntax: flushp

Example: flushp

Description: Ensures that any instructions pre-fetched after the flushp instruction are removed from the
pipeline.

Usage: Use flushp before transferring control to newly updated instruction memory.

Exceptions: None

Instruction Type: R

Instruction Fields: None

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0x04 0 0x3a
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–54 Chapter 8: Instruction Set Reference
Instruction Set Reference
initd initialize data cache line

Operation: Initializes the data cache line associated with address rA + σ (IMM16).

Assembler Syntax: initd IMM16(rA)

Example: initd 0(r6)

Description: If the Nios II processor implements a direct mapped data cache, initd clears the data cache
line without checking for (or writing) a dirty data cache line that is mapped to the specified
address back to memory. Unlike initda, initd clears the cache line regardless of whether
the addressed data is currently cached. This process comprises the following steps:

■ Compute the effective address specified by the sum of rA and the signed 16-bit immediate
value.

■ Identify the data cache line associated with the computed effective address. Each data cache
effective address comprises a tag field and a line field. When identifying the line, initd
ignores the tag field and only uses the line field to select the data cache line to clear.

■ Skip comparing the cache line tag with the effective address to determine if the addressed
data is currently cached. Because initd ignores the cache line tag, initd flushes the
cache line regardless of whether the specified data location is currently cached.

■ Skip checking if the data cache line is dirty. Because initd skips the dirty cache line check,
data that has been modified by the processor, but not yet written to memory is lost.

■ Clear the valid bit for the line.

If the Nios II processor core does not have a data cache, the initd instruction performs no
operation.

Usage: Use initd after processor reset and before accessing data memory to initialize the
processor’s data cache. Use initd with caution because it does not write back dirty data. By
contrast, refer to “flushd flush data cache line” on page 8–50, “flushda flush data cache
address” on page 8–51, and “initda initialize data cache address” on page 8–55 for other
cache-clearing options. Altera recommends using initd only when the processor comes out
of reset.

For more information on data cache, refer to the Cache and Tightly Coupled Memory chapter of
the Nios II Software Developer’s Handbook.

Exceptions: Supervisor-only instruction

Instruction Type: I

Instruction Fields: A = Register index of operand rA

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A 0 IMM16 0x33
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf

Chapter 8: Instruction Set Reference 8–55
Instruction Set Reference
initda initialize data cache address

Operation: Initializes the data cache line currently caching address rA + σ (IMM16)

Assembler Syntax: initda IMM16(rA)

Example: initda -100(r6)

Description: If the Nios II processor implements a direct mapped data cache, initda clears the data cache
line without checking for (or writing) a dirty data cache line that is mapped to the specified
address back to memory. Unlike initd, initda clears the cache line only when the
addressed data is currently cached. This process comprises the following steps:

■ Compute the effective address specified by the sum of rA and the signed 16-bit immediate
value.

■ Identify the data cache line associated with the computed effective address. Each data cache
effective address comprises a tag field and a line field. When identifying the line,
initda uses both the tag field and the line field.

■ Compare the cache line tag with the effective address to determine if the addressed data is
currently cached. If the tag fields do not match, the effective address is not currently
cached, so the instruction does nothing.

■ Skip checking if the data cache line is dirty. Because initd skips the dirty cache line check,
data that has been modified by the processor, but not yet written to memory is lost.

■ Clear the valid bit for the line.

If the Nios II processor core does not have a data cache, the initda instruction performs no
operation.

Usage: Use initda to skip writing dirty lines back to memory and to flush the cache line only if the
addressed memory location is currently in the cache. By contrast, refer to “flushd flush data
cache line” on page 8–50, “flushda flush data cache address” on page 8–51, and “initd initialize
data cache line” on page 8–54 for other cache-clearing options. Use initda with caution
because it does not write back dirty data.

For more information on the Nios II data cache, refer to the Cache and Tightly Coupled Memory
chapter of the Nios II Software Developer’s Handbook.

Exceptions: Supervisor-only data address

Fast TLB miss (data)

Double TLB miss (data)

MPU region violation (data)

Unimplemented instruction

Instruction Type: I

Instruction Fields: A = Register index of operand rA

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A 0 IMM16 0x13
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf

8–56 Chapter 8: Instruction Set Reference
Instruction Set Reference
initi initialize instruction cache line

Operation: Initializes the instruction-cache line associated with address rA.

Assembler Syntax: initi rA

Example: initi r6

Description: Ignoring the tag, initi identifies the instruction-cache line associated with the byte address
in ra, and initi invalidates that line.

If the Nios II processor core does not have an instruction cache, the initi instruction
performs no operation.

Usage: This instruction is used to initialize the processor’s instruction cache. Immediately after
processor reset, use initi to invalidate each line of the instruction cache.

For more information on instruction cache, refer to the Cache and Tightly Coupled Memory
chapter of the Nios II Software Developer’s Handbook.

Exceptions: Supervisor-only instruction

Instruction Type: R

Instruction Fields: A = Register index of operand rA

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A 0 0 0x29 0 0x3a
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf

Chapter 8: Instruction Set Reference 8–57
Instruction Set Reference
jmp computed jump

Operation: PC ← rA

Assembler Syntax: jmp rA

Example: jmp r12

Description: Transfers execution to the address contained in register rA.

Usage: It is illegal to jump to the address contained in register r31. To return from subroutines called
by call or callr, use ret instead of jmp.

Exceptions: Misaligned destination address

Instruction Type: R

Instruction Fields: A = Register index of operand rA

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A 0 0 0x0d 0 0x3a
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–58 Chapter 8: Instruction Set Reference
Instruction Set Reference
jmpi jump immediate

Operation: PC ← (PC31..28 : IMM26 × 4)

Assembler Syntax: jmpi label

Example: jmpi write_char

Description: Transfers execution to the instruction at address (PC31..28 : IMM26 × 4).

Usage: jmpi is a low-overhead local jump. jmpi can transfer execution anywhere within the 256
MByte range determined by PC31..28. The Nios II GNU linker does not automatically handle
cases in which the address is out of this range.

Exceptions: None

Instruction Type: J

Instruction Fields: IMM26 = 26-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM26 0x01
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–59
Instruction Set Reference
ldb / ldbio load byte from memory or I/O peripheral

Operation: rB ← σ (Mem8[rA + σ (IMM16)])

Assembler Syntax: ldb rB, byte_offset(rA)

ldbio rB, byte_offset(rA)

Example: ldb r6, 100(r5)

Description: Computes the effective byte address specified by the sum of rA and the instruction's signed
16-bit immediate value. Loads register rB with the desired memory byte, sign extending the
8-bit value to 32 bits. In Nios II processor cores with a data cache, this instruction may retrieve
the desired data from the cache instead of from memory.

Usage: Use the ldbio instruction for peripheral I/O. In processors with a data cache, ldbio
bypasses the cache and is guaranteed to generate an Avalon-MM data transfer. In processors
without a data cache, ldbio acts like ldb.

For more information on data cache, refer to the Cache and Tightly Coupled Memory chapter of
the Nios II Software Developer’s Handbook.

Exceptions: Supervisor-only data address

Misaligned data address

TLB permission violation (read)

Fast TLB miss (data)

Double TLB miss (data)

MPU region violation (data)

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x07

Instruction format for ldb

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x27

Instruction format for ldbio
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf

8–60 Chapter 8: Instruction Set Reference
Instruction Set Reference
ldbu / ldbuio load unsigned byte from memory or I/O peripheral

Operation: rB ← 0x000000 : Mem8[rA + σ (IMM16)]

Assembler Syntax: ldbu rB, byte_offset(rA)

ldbuio rB, byte_offset(rA)

Example: ldbu r6, 100(r5)

Description: Computes the effective byte address specified by the sum of rA and the instruction's signed
16-bit immediate value. Loads register rB with the desired memory byte, zero extending the
8-bit value to 32 bits.

Usage: In processors with a data cache, this instruction may retrieve the desired data from the cache
instead of from memory. Use the ldbuio instruction for peripheral I/O. In processors with a
data cache, ldbuio bypasses the cache and is guaranteed to generate an Avalon-MM data
transfer. In processors without a data cache, ldbuio acts like ldbu.

For more information on data cache, refer to the Cache and Tightly Coupled Memory chapter of
the Nios II Software Developer’s Handbook.

Exceptions: ■ Supervisor-only data address

■ Misaligned data address

■ TLB permission violation (read)

■ Fast TLB miss (data)

■ Double TLB miss (data)

■ MPU region violation (data)

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x03

Instruction format for ldbu

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x23

Instruction format for ldbuio
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf

Chapter 8: Instruction Set Reference 8–61
Instruction Set Reference
ldh / ldhio load halfword from memory or I/O peripheral

Operation: rB ← σ (Mem16[rA + σ (IMM16)])

Assembler Syntax: ldh rB, byte_offset(rA)

ldhio rB, byte_offset(rA)

Example: ldh r6, 100(r5)

Description: Computes the effective byte address specified by the sum of rA and the instruction's signed
16-bit immediate value. Loads register rB with the memory halfword located at the effective byte
address, sign extending the 16-bit value to 32 bits. The effective byte address must be halfword
aligned. If the byte address is not a multiple of 2, the operation is undefined.

Usage: In processors with a data cache, this instruction may retrieve the desired data from the cache
instead of from memory. Use the ldhio instruction for peripheral I/O. In processors with a
data cache, ldhio bypasses the cache and is guaranteed to generate an Avalon-MM data
transfer. In processors without a data cache, ldhio acts like ldh.

For more information on data cache, refer to the Cache and Tightly Coupled Memory chapter of
the Nios II Software Developer’s Handbook.

Exceptions: ■ Supervisor-only data address

■ Misaligned data address

■ TLB permission violation (read)

■ Fast TLB miss (data)

■ Double TLB miss (data)

■ MPU region violation (data)

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x0f

Instruction format for ldh

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x2f

Instruction format for ldhio
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf

8–62 Chapter 8: Instruction Set Reference
Instruction Set Reference
ldhu / ldhuio load unsigned halfword from memory or I/O peripheral

Operation: rB ← 0x0000 : Mem16[rA + σ (IMM16)]

Assembler Syntax: ldhu rB, byte_offset(rA)

ldhuio rB, byte_offset(rA)

Example: ldhu r6, 100(r5)

Description: Computes the effective byte address specified by the sum of rA and the instruction's signed
16-bit immediate value. Loads register rB with the memory halfword located at the effective
byte address, zero extending the 16-bit value to 32 bits. The effective byte address must be
halfword aligned. If the byte address is not a multiple of 2, the operation is undefined.

Usage: In processors with a data cache, this instruction may retrieve the desired data from the cache
instead of from memory. Use the ldhuio instruction for peripheral I/O. In processors with a
data cache, ldhuio bypasses the cache and is guaranteed to generate an Avalon-MM data
transfer. In processors without a data cache, ldhuio acts like ldhu.

For more information on data cache, refer to the Cache and Tightly Coupled Memory chapter of
the Nios II Software Developer’s Handbook.

Exceptions: Supervisor-only data address

Misaligned data address

TLB permission violation (read)

Fast TLB miss (data)

Double TLB miss (data)

MPU region violation (data)

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x0b

Instruction format for ldhu

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x2b

Instruction format for ldhuio
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf

Chapter 8: Instruction Set Reference 8–63
Instruction Set Reference
ldw / ldwio load 32-bit word from memory or I/O peripheral

Operation: rB ← Mem32[rA + σ (IMM14)]

Assembler Syntax: ldw rB, byte_offset(rA)

ldwio rB, byte_offset(rA)

Example: ldw r6, 100(r5)

Description: Computes the effective byte address specified by the sum of rA and the instruction's signed
16-bit immediate value. Loads register rB with the memory word located at the effective byte
address. The effective byte address must be word aligned. If the byte address is not a multiple
of 4, the operation is undefined.

Usage: In processors with a data cache, this instruction may retrieve the desired data from the cache
instead of from memory. Use the ldwio instruction for peripheral I/O. In processors with a
data cache, ldwio bypasses the cache and memory. Use the ldwio instruction for peripheral
I/O. In processors with a data cache, ldwio bypasses the cache and is guaranteed to generate
an Avalon-MM data transfer. In processors without a data cache, ldwio acts like ldw.

For more information on data cache, refer to the Cache and Tightly Coupled Memory chapter of
the Nios II Software Developer’s Handbook.

Exceptions: Supervisor-only data address

Misaligned data address

TLB permission violation (read)

Fast TLB miss (data)

Double TLB miss (data)

MPU region violation (data)

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x17

Instruction format for ldw

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x37

Instruction format for ldwio
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf

8–64 Chapter 8: Instruction Set Reference
Instruction Set Reference
mov move register to register

Operation: rC ← rA

Assembler Syntax: mov rC, rA

Example: mov r6, r7

Description: Moves the contents of rA to rC.

Pseudo-instruction: mov is implemented as add rC, rA, r0.
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–65
Instruction Set Reference
movhi move immediate into high halfword

Operation: rB ← (IMMED : 0x0000)

Assembler Syntax: movhi rB, IMMED

Example: movhi r6, 0x8000

Description: Writes the immediate value IMMED into the high halfword of rB, and clears the lower halfword
of rB to 0x0000.

Usage: The maximum allowed value of IMMED is 65535. The minimum allowed value is 0. To load a
32-bit constant into a register, first load the upper 16 bits using a movhi pseudo-instruction.
The %hi() macro can be used to extract the upper 16 bits of a constant or a label. Then, load
the lower 16 bits with an ori instruction. The %lo() macro can be used to extract the lower 16
bits of a constant or label as shown below.

movhi rB, %hi(value)

ori rB, rB, %lo(value)

An alternative method to load a 32-bit constant into a register uses the %hiadj() macro and the
addi instruction as shown below.

movhi rB, %hiadj(value)

addi rB, rB, %lo(value)

Pseudo-instruction: movhi is implemented as orhi rB, r0, IMMED.
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–66 Chapter 8: Instruction Set Reference
Instruction Set Reference
movi move signed immediate into word

Operation: rB ← σ (IMMED)

Assembler Syntax: movi rB, IMMED

Example: movi r6, -30

Description: Sign-extends the immediate value IMMED to 32 bits and writes it to rB.

Usage: The maximum allowed value of IMMED is 32767. The minimum allowed value is

–32768. To load a 32-bit constant into a register, refer to the movhi instruction.

Pseudo-instruction: movi is implemented as addi rB, r0, IMMED.
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–67
Instruction Set Reference
movia move immediate address into word

Operation: rB ← label

Assembler Syntax: movia rB, label

Example: movia r6, function_address

Description: Writes the address of label to rB.

Pseudo-instruction: movia is implemented as:

orhi rB, r0, %hiadj(label)

addi rB, rB, %lo(label)
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–68 Chapter 8: Instruction Set Reference
Instruction Set Reference
movui move unsigned immediate into word

Operation: rB ← (0x0000 : IMMED)

Assembler Syntax: movui rB, IMMED

Example: movui r6, 100

Description: Zero-extends the immediate value IMMED to 32 bits and writes it to rB.

Usage: The maximum allowed value of IMMED is 65535. The minimum allowed value is 0. To load a
32-bit constant into a register, refer to the movhi instruction.

Pseudo-instruction: movui is implemented as ori rB, r0, IMMED.
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–69
Instruction Set Reference
mul multiply

Operation: rC ← (rA × rB) 31..0

Assembler Syntax: mul rC, rA, rB

Example: mul r6, r7, r8

Description: Multiplies rA times rB and stores the 32 low-order bits of the product to rC. The result is the
same whether the operands are treated as signed or unsigned integers.

Nios II processors that do not implement the mul instruction cause an
unimplemented-instruction exception.

Usage: Carry Detection (unsigned operands):

Before or after the multiply operation, the carry out of the MSB of rC can be detected using the
following instruction sequence:

mul rC, rA, rB

mulxuu rD, rA, rB

cmpne rD, rD, r0

; The mul operation (optional)

; rD is non-zero if carry occurred

; rD is 1 if carry occurred, 0 if not

The mulxuu instruction writes a non-zero value into rD if the multiplication of unsigned
numbers will generate a carry (unsigned overflow). If a 0/1 result is desired, follow the
mulxuu with the cmpne instruction.

Overflow Detection (signed operands):

After the multiply operation, overflow can be detected using the following instruction sequence:

mul rC, rA, rB

cmplt rD, rC, r0

mulxss rE, rA, rB

add rD, rD, rE

cmpne rD, rD, r0

; The original mul operation

; rD is non-zero if overflow

; rD is 1 if overflow, 0 if not

The cmplt–mulxss–add instruction sequence writes a non-zero value into rD if the
product in rC cannot be represented in 32 bits (signed overflow). If a 0/1 result is desired,
follow the instruction sequence with the cmpne instruction.

Exceptions: Unimplemented instruction

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x27 0 0x3a
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–70 Chapter 8: Instruction Set Reference
Instruction Set Reference
muli multiply immediate

Operation: rB ← (rA × σ(IMM16)) 31..0

Assembler Syntax: muli rB, rA, IMM16

Example: muli r6, r7, -100

Description: Sign-extends the 16-bit immediate value IMM16 to 32 bits and multiplies it by the value of rA.
Stores the 32 low-order bits of the product to rB. The result is independent of whether rA is
treated as a signed or unsigned number.

Nios II processors that do not implement the muli instruction cause an
unimplemented-instruction exception.

Carry Detection and Overflow Detection:

For a discussion of carry and overflow detection, refer to the mul instruction.

Exceptions: Unimplemented instruction

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x24
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–71
Instruction Set Reference
mulxss multiply extended signed/signed

Operation: rC ← ((signed) rA) × ((signed) rB)) 63..32

Assembler Syntax: mulxss rC, rA, rB

Example: mulxss r6, r7, r8

Description: Treating rA and rB as signed integers, mulxss multiplies rA times rB, and stores the 32
high-order bits of the product to rC.

Nios II processors that do not implement the mulxss instruction cause an
unimplemented-instruction exception.

Usage: Use mulxss and mul to compute the full 64-bit product of two 32-bit signed integers.
Furthermore, mulxss can be used as part of the calculation of a 128-bit product of two 64-bit
signed integers. Given two 64-bit integers, each contained in a pair of 32-bit registers, (S1 :
U1) and (S2 : U2), their 128-bit product is (U1 × U2) + ((S1 × U2) << 32) + ((U1 × S2) << 32)
+ ((S1 × S2) << 64). The mulxss and mul instructions are used to calculate the 64-bit
product S1 × S2.

Exceptions: Unimplemented instruction

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x1f 0 0x3a
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–72 Chapter 8: Instruction Set Reference
Instruction Set Reference
mulxsu multiply extended signed/unsigned

Operation: rC ← ((signed) rA) × ((unsigned) rB)) 63..32

Assembler Syntax: mulxsu rC, rA, rB

Example: mulxsu r6, r7, r8

Description: Treating rA as a signed integer and rB as an unsigned integer, mulxsu multiplies rA times rB,
and stores the 32 high-order bits of the product to rC.

Nios II processors that do not implement the mulxsu instruction cause an
unimplemented-instruction exception.

Usage: mulxsu can be used as part of the calculation of a 128-bit product of two 64-bit signed
integers. Given two 64-bit integers, each contained in a pair of 32-bit registers, (S1 : U1) and
(S2 : U2), their 128-bit product is: (U1 × U2) + ((S1 × U2) << 32) + ((U1 × S2) << 32) + ((S1
× S2) << 64). The mulxsu and mul instructions are used to calculate the two 64-bit products
S1 × U2 and U1 × S2.

Exceptions: Unimplemented instruction

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x17 0 0x3a
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–73
Instruction Set Reference
mulxuu multiply extended unsigned/unsigned

Operation: rC ← ((unsigned) rA) × ((unsigned) rB)) 63..32

Assembler Syntax: mulxuu rC, rA, rB

Example: mulxuu r6, r7, r8

Description: Treating rA and rB as unsigned integers, mulxuu multiplies rA times rB and stores the 32
high-order bits of the product to rC.

Nios II processors that do not implement the mulxuu instruction cause an
unimplemented-instruction exception.

Usage: Use mulxuu and mul to compute the 64-bit product of two 32-bit unsigned integers.
Furthermore, mulxuu can be used as part of the calculation of a 128-bit product of two
64-bit signed integers. Given two 64-bit signed integers, each contained in a pair of 32-bit
registers, (S1 : U1) and (S2 : U2), their 128-bit product is (U1 × U2) + ((S1 × U2) << 32)
+ ((U1 × S2) << 32) + ((S1 × S2) << 64). The mulxuu and mul instructions are used to
calculate the 64-bit product U1 × U2.

mulxuu also can be used as part of the calculation of a 128-bit product of two 64-bit
unsigned integers. Given two 64-bit unsigned integers, each contained in a pair of 32-bit
registers, (T1 : U1) and (T2 : U2), their 128-bit product is (U1 × U2) + ((U1 × T2) << 32)
+ ((T1 × U2) << 32) + ((T1 × T2) << 64). The mulxuu and mul instructions are used to
calculate the four 64-bit products U1 × U2, U1 × T2, T1 × U2, and T1 × T2.

Exceptions: Unimplemented instruction

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x07 0 0x3a
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–74 Chapter 8: Instruction Set Reference
Instruction Set Reference
nextpc get address of following instruction

Operation: rC ← PC + 4

Assembler Syntax: nextpc rC

Example: nextpc r6

Description: Stores the address of the next instruction to register rC.

Usage: A relocatable code fragment can use nextpc to calculate the address of its data segment.
nextpc is the only way to access the PC directly.

Exceptions: None

Instruction Type: R

Instruction Fields: C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 C 0x1c 0 0x3a
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–75
Instruction Set Reference
nop no operation

Operation: None

Assembler Syntax: nop

Example: nop

Description: nop does nothing.

Pseudo-instruction: nop is implemented as add r0, r0, r0.
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–76 Chapter 8: Instruction Set Reference
Instruction Set Reference
nor bitwise logical nor

Operation: rC ← ~(rA | rB)

Assembler Syntax: nor rC, rA, rB

Example: nor r6, r7, r8

Description: Calculates the bitwise logical NOR of rA and rB and stores the result in rC.

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x06 0 0x3a
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–77
Instruction Set Reference
or bitwise logical or

Operation: rC ← rA | rB

Assembler Syntax: or rC, rA, rB

Example: or r6, r7, r8

Description: Calculates the bitwise logical OR of rA and rB and stores the result in rC.

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x16 0 0x3a
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–78 Chapter 8: Instruction Set Reference
Instruction Set Reference
orhi bitwise logical or immediate into high halfword

Operation: rB ← rA | (IMM16 : 0x0000)

Assembler Syntax: orhi rB, rA, IMM16

Example: orhi r6, r7, 100

Description: Calculates the bitwise logical OR of rA and (IMM16 : 0x0000) and stores the result in rB.

Exceptions: None

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x34
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–79
Instruction Set Reference
ori bitwise logical or immediate

Operation: rB ← rA | (0x0000 : IMM16)

Assembler Syntax: ori rB, rA, IMM16

Example: ori r6, r7, 100

Description: Calculates the bitwise logical OR of rA and (0x0000 : IMM16) and stores the result in rB.

Exceptions: None

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x14
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–80 Chapter 8: Instruction Set Reference
Instruction Set Reference
rdctl read from control register

Operation: rC ← ctlN

Assembler Syntax: rdctl rC, ctlN

Example: rdctl r3, ctl31

Description: Reads the value contained in control register ctlN and writes it to register rC.

Exceptions: Supervisor-only instruction

Instruction Type: R

Instruction Fields: C = Register index of operand rC

N = Control register index of operand ctlN

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 C 0x26 N 0x3a
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–81
Instruction Set Reference
ret return from subroutine

Operation: PC ← ra

Assembler Syntax: ret

Example: ret

Description: Transfers execution to the address in ra.

Usage: Any subroutine called by call or callr must use ret to return.

Exceptions: Misaligned destination address

Instruction Type: R

Instruction Fields: None

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x1f 0 0 0x05 0 0x3a
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–82 Chapter 8: Instruction Set Reference
Instruction Set Reference
rol rotate left

Operation: rC ← rA rotated left rB4..0 bit positions

Assembler Syntax: rol rC, rA, rB

Example: rol r6, r7, r8

Description: Rotates rA left by the number of bits specified in rB4..0 and stores the result in rC. The bits that
shift out of the register rotate into the least-significant bit positions. Bits 31–5 of rB are
ignored.

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x03 0 0x3a
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–83
Instruction Set Reference
roli rotate left immediate

Operation: rC ← rA rotated left IMM5 bit positions

Assembler Syntax: roli rC, rA, IMM5

Example: roli r6, r7, 3

Description: Rotates rA left by the number of bits specified in IMM5 and stores the result in rC. The bits that
shift out of the register rotate into the least-significant bit positions.

Usage: In addition to the rotate-left operation, roli can be used to implement a rotate-right operation.
Rotating left by (32 – IMM5) bits is the equivalent of rotating right by IMM5 bits.

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand rA

C = Register index of operand rC

IMM5 = 5-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A 0 C 0x02 IMM5 0x3a
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–84 Chapter 8: Instruction Set Reference
Instruction Set Reference
ror rotate right

Operation: rC ← rA rotated right rB4..0 bit positions

Assembler Syntax: ror rC, rA, rB

Example: ror r6, r7, r8

Description: Rotates rA right by the number of bits specified in rB4..0 and stores the result in rC. The bits that
shift out of the register rotate into the most-significant bit positions. Bits 31– 5 of rB are
ignored.

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x0b 0 0x3a
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–85
Instruction Set Reference
sll shift left logical

Operation: rC ← rA << (rB4..0)

Assembler Syntax: sll rC, rA, rB

Example: sll r6, r7, r8

Description: Shifts rA left by the number of bits specified in rB4..0 (inserting zeroes), and then stores the
result in rC. sll performs the << operation of the C programming language.

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x13 0 0x3a
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–86 Chapter 8: Instruction Set Reference
Instruction Set Reference
slli shift left logical immediate

Operation: rC ← rA << IMM5

Assembler Syntax: slli rC, rA, IMM5

Example: slli r6, r7, 3

Description: Shifts rA left by the number of bits specified in IMM5 (inserting zeroes), and then stores the
result in rC.

Usage: slli performs the << operation of the C programming language.

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand rA

C = Register index of operand rC

IMM5 = 5-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A 0 C 0x12 IMM5 0x3a
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–87
Instruction Set Reference
sra shift right arithmetic

Operation: rC ← (signed) rA >> ((unsigned) rB4..0)

Assembler Syntax: sra rC, rA, rB

Example: sra r6, r7, r8

Description: Shifts rA right by the number of bits specified in rB4..0 (duplicating the sign bit), and then stores
the result in rC. Bits 31–5 are ignored.

Usage: sra performs the signed >> operation of the C programming language.

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x3b 0 0x3a
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–88 Chapter 8: Instruction Set Reference
Instruction Set Reference
srai shift right arithmetic immediate

Operation: rC ← (signed) rA >> ((unsigned) IMM5)

Assembler Syntax: srai rC, rA, IMM5

Example: srai r6, r7, 3

Description: Shifts rA right by the number of bits specified in IMM5 (duplicating the sign bit), and then
stores the result in rC.

Usage: srai performs the signed >> operation of the C programming language.

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand rA

C = Register index of operand rC

IMM5 = 5-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A 0 C 0x3a IMM5 0x3a
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–89
Instruction Set Reference
srl shift right logical

Operation: rC ← (unsigned) rA >> ((unsigned) rB4..0)

Assembler Syntax: srl rC, rA, rB

Example: srl r6, r7, r8

Description: Shifts rA right by the number of bits specified in rB4..0 (inserting zeroes), and then stores the
result in rC. Bits 31–5 are ignored.

Usage: srl performs the unsigned >> operation of the C programming language.

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x1b 0 0x3a
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–90 Chapter 8: Instruction Set Reference
Instruction Set Reference
srli shift right logical immediate

Operation: rC ← (unsigned) rA >> ((unsigned) IMM5)

Assembler Syntax: srli rC, rA, IMM5

Example: srli r6, r7, 3

Description: Shifts rA right by the number of bits specified in IMM5 (inserting zeroes), and then stores the
result in rC.

Usage: srli performs the unsigned >> operation of the C programming language.

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand rA

C = Register index of operand rC

IMM5 = 5-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A 0 C 0x1a IMM5 0x3a
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–91
Instruction Set Reference
stb / stbio store byte to memory or I/O peripheral

Operation: Mem8[rA + σ (IMM16)] ← rB7..0

Assembler Syntax: stb rB, byte_offset(rA)

stbio rB, byte_offset(rA)

Example: stb r6, 100(r5)

Description: Computes the effective byte address specified by the sum of rA and the instruction's signed
16-bit immediate value. Stores the low byte of rB to the memory byte specified by the effective
address.

Usage: In processors with a data cache, this instruction may not generate an Avalon-MM bus cycle to
non-cache data memory immediately. Use the stbio instruction for peripheral I/O. In
processors with a data cache, stbio bypasses the cache and is guaranteed to generate an
Avalon-MM data transfer. In processors without a data cache, stbio acts like stb.

Exceptions: Supervisor-only data address

Misaligned data address

TLB permission violation (write)

Fast TLB miss (data)

Double TLB miss (data)

MPU region violation (data)

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x05

Instruction format for stb

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x25

Instruction format for stbio
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–92 Chapter 8: Instruction Set Reference
Instruction Set Reference
sth / sthio store halfword to memory or I/O peripheral

Operation: Mem16[rA + σ (IMM16)] ← rB15..0

Assembler Syntax: sth rB, byte_offset(rA)

sthio rB, byte_offset(rA)

Example: sth r6, 100(r5)

Description: Computes the effective byte address specified by the sum of rA and the instruction's signed
16-bit immediate value. Stores the low halfword of rB to the memory location specified by the
effective byte address. The effective byte address must be halfword aligned. If the byte address
is not a multiple of 2, the operation is undefined.

Usage: In processors with a data cache, this instruction may not generate an Avalon-MM data transfer
immediately. Use the sthio instruction for peripheral I/O. In processors with a data cache,
sthio bypasses the cache and is guaranteed to generate an Avalon-MM data transfer. In
processors without a data cache, sthio acts like sth.

Exceptions: Supervisor-only data address

Misaligned data address

TLB permission violation (write)

Fast TLB miss (data)

Double TLB miss (data)

MPU region violation (data)

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x0d

Instruction format for sth

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x2d

Instruction format for sthio
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–93
Instruction Set Reference
stw / stwio store word to memory or I/O peripheral

Operation: Mem32[rA + σ (IMM16)] ← rB

Assembler Syntax: stw rB, byte_offset(rA)

stwio rB, byte_offset(rA)

Example: stw r6, 100(r5)

Description: Computes the effective byte address specified by the sum of rA and the instruction's signed
16-bit immediate value. Stores rB to the memory location specified by the effective byte
address. The effective byte address must be word aligned. If the byte address is not a multiple
of 4, the operation is undefined.

Usage: In processors with a data cache, this instruction may not generate an Avalon-MM data transfer
immediately. Use the stwio instruction for peripheral I/O. In processors with a data cache,
stwio bypasses the cache and is guaranteed to generate an Avalon-MM bus cycle. In
processors without a data cache, stwio acts like stw.

Exceptions: Supervisor-only data address

Misaligned data address

TLB permission violation (write)

Fast TLB miss (data)

Double TLB miss (data)

MPU region violation (data)

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x15

Instruction format for stw

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x35

Instruction format for stwio
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–94 Chapter 8: Instruction Set Reference
Instruction Set Reference
sub subtract

Operation: rC ← rA – rB

Assembler Syntax: sub rC, rA, rB

Example: sub r6, r7, r8

Description: Subtract rB from rA and store the result in rC.

Usage: Carry Detection (unsigned operands):

The carry bit indicates an unsigned overflow. Before or after a sub operation, a carry out of
the MSB can be detected by checking whether the first operand is less than the second
operand. The carry bit can be written to a register, or a conditional branch can be taken based
on the carry condition. Both cases are shown below.

sub rC, rA, rB

cmpltu rD, rA, rB

sub rC, rA, rB

bltu rA, rB, label

; The original sub operation (optional)

; rD is written with the carry bit

; The original sub operation (optional)

; Branch if carry was generated

Overflow Detection (signed operands):

Detect overflow of signed subtraction by comparing the sign of the difference that is written
to rC with the signs of the operands. If rA and rB have different signs, and the sign of rC is
different than the sign of rA, an overflow occurred. The overflow condition can control a
conditional branch, as shown below.

sub rC, rA, rB

xor rD, rA, rB

xor rE, rA, rC

and rD, rD, rE

blt rD, r0, label

; The original sub operation

; Compare signs of rA and rB

; Compare signs of rA and rC

; Combine comparisons

; Branch if overflow occurred

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x39 0 0x3a
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–95
Instruction Set Reference
subi subtract immediate

Operation: rB ← rA – σ (IMMED)

Assembler Syntax: subi rB, rA, IMMED

Example: subi r8, r8, 4

Description: Sign-extends the immediate value IMMED to 32 bits, subtracts it from the value of rA and then
stores the result in rB.

Usage: The maximum allowed value of IMMED is 32768. The minimum allowed value is

–32767.

Pseudo-instruction: subi is implemented as addi rB, rA, -IMMED
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–96 Chapter 8: Instruction Set Reference
Instruction Set Reference
sync memory synchronization

Operation: None

Assembler Syntax: sync

Example: sync

Description: Forces all pending memory accesses to complete before allowing execution of subsequent
instructions. In processor cores that support in-order memory accesses only, this instruction
performs no operation.

Exceptions: None

Instruction Type: R

Instruction Fields: None

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0x36 0 0x3a
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–97
Instruction Set Reference
trap trap

Operation: estatus ← status

PIE ← 0

U ← 0

ea ← PC + 4

PC ← exception handler address

Assembler Syntax: trap

trap imm5

Example: trap

Description: Saves the address of the next instruction in register ea, saves the contents of the status
register in estatus, disables interrupts, and transfers execution to the exception handler.
The address of the exception handler is specified at system generation time.

The 5-bit immediate field imm5 is ignored by the processor, but it can be used by the
debugger.

trap with no argument is the same as trap 0.

Usage: To return from the exception handler, execute an eret instruction.

Exceptions: Trap

Instruction Type: R

Instruction Fields: IMM5 = Type of breakpoint

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0x1d 0x2d IMM5 0x3a
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–98 Chapter 8: Instruction Set Reference
Instruction Set Reference
wrctl write to control register

Operation: ctlN ← rA

Assembler Syntax: wrctl ctlN, rA

Example: wrctl ctl6, r3

Description: Writes the value contained in register rA to the control register ctlN.

Exceptions: Supervisor-only instruction

Instruction Type: R

Instruction Fields: A = Register index of operand rA

N = Control register index of operand ctlN

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A 0 0 0x2e N 0x3a
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–99
Instruction Set Reference
xor bitwise logical exclusive or

Operation: rC ← rA ^ rB

Assembler Syntax: xor rC, rA, rB

Example: xor r6, r7, r8

Description: Calculates the bitwise logical exclusive XOR of rA and rB and stores the result in rC.

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B C 0x1e 0 0x3a
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–100 Chapter 8: Instruction Set Reference
Instruction Set Reference
xorhi bitwise logical exclusive or immediate into high halfword

Operation: rB ← rA ^ (IMM16 : 0x0000)

Assembler Syntax: xorhi rB, rA, IMM16

Example: xorhi r6, r7, 100

Description: Calculates the bitwise logical exclusive XOR of rA and (IMM16 : 0x0000) and stores the result
in rB.

Exceptions: None

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x3c
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

Chapter 8: Instruction Set Reference 8–101
Instruction Set Reference
xori bitwise logical exclusive or immediate

Operation: rB ← rA ^ (0x0000 : IMM16)

Assembler Syntax: xori rB, rA, IMM16

Example: xori r6, r7, 100

Description: Calculates the bitwise logical exclusive OR of rA and (0x0000 : IMM16) and stores the result in
rB.

Exceptions: None

Instruction Type: I

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x1c
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–102 Chapter 8: Instruction Set Reference
Referenced Documents
Referenced Documents
This chapter references the following documents:

■ Programming Model chapter of the Nios II Processor Reference Handbook

■ Application Binary Interface chapter of the Nios II Processor Reference Handbook

■ Cache and Tightly Coupled Memory chapter of the Nios II Software Developer’s
Handbook

Document Revision History
Table 8–6 shows the revision history for this document.

Table 8–6. Document Revision History (Part 1 of 2)

Date & Document
Version Changes Made Summary of Changes

March 2009

v9.0.0

Backward-compatible change to the eret instruction B field encoding. —

November 2008

v8.1.0

Maintenance release. —

May 2008

v8.0.0

Added an Exceptions section to all instructions. Added MMU.

October 2007

v7.2.0

Added jmpi instruction. —

May 2007

v7.1.0

■ Added table of contents to Introduction section.

■ Added Referenced Documents section.

—

March 2007

v7.0.0

Maintenance release. —

November 2006

v6.1.0

Maintenance release. —

May 2006

v6.0.0

Maintenance release. —

October 2005

v5.1.0

■ Correction to the blt instruction.

■ Added U bit operation for break and trap instructions.

—

July 2005

v5.0.1

■ Added new flushda instruction.

■ Updated flushd instruction.

■ Instruction Opcode table updated with flushda instruction.

—

May 2005

v5.0.0

Maintenance release. —

December 2004

v1.2

■ break instruction update.

■ srli instruction correction.

—

Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51003.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

Chapter 8: Instruction Set Reference 8–103
Document Revision History
September 2004

v1.1

Updates for Nios II 1.01 release. —

May 2004

v1.0

Initial release. —

Table 8–6. Document Revision History (Part 2 of 2)

Date & Document
Version Changes Made Summary of Changes
© March 2009 Altera Corporation Nios II Processor Reference Handbook
Preliminary

8–104 Chapter 8: Instruction Set Reference
Document Revision History
Nios II Processor Reference Handbook © March 2009 Altera Corporation
Preliminary

	Section II. Nios II Processor Implementation and Reference
	5. Nios II Core Implementation Details
	Introduction
	Device Family Support
	Nios II/f Core
	Overview
	Arithmetic Logic Unit
	Memory Access
	Tightly-Coupled Memory
	Memory Management Unit
	Memory Protection Unit
	Execution Pipeline
	Instruction Performance
	Exception Handling
	JTAG Debug Module

	Nios II/s Core
	Overview
	Arithmetic Logic Unit
	Memory Access
	Tightly-Coupled Memory
	Execution Pipeline
	Instruction Performance
	Exception Handling
	JTAG Debug Module

	Nios II/e Core
	Overview
	Arithmetic Logic Unit
	Memory Access
	Instruction Execution Stages
	Instruction Performance
	Exception Handling
	JTAG Debug Module

	Referenced Documents
	Document Revision History

	6. Nios II Processor Revision History
	Introduction
	Nios II Versions
	Architecture Revisions
	Core Revisions
	Nios II/f Core
	Nios II/s Core
	Nios II/e Core

	JTAG Debug Module Revisions
	Referenced Documents
	Document Revision History

	7. Application Binary Interface
	Data Types
	Memory Alignment
	Register Usage
	Stacks
	Frame Pointer Elimination
	Call Saved Registers
	Further Examples of Stacks
	Function Prologues

	Arguments and Return Values
	Arguments
	Return Values

	Relocation
	Validated Relocation Types

	Referenced Documents
	Document Revision History

	8. Instruction Set Reference
	Introduction
	Word Formats
	I-Type
	R-Type
	J-Type

	Instruction Opcodes
	Assembler Pseudo-Instructions
	Assembler Macros
	Instruction Set Reference
	add add
	addi add immediate
	and bitwise logical and
	andhi bitwise logical and immediate into high halfword
	andi bitwise logical and immediate
	beq branch if equal
	bge branch if greater than or equal signed
	bgeu branch if greater than or equal unsigned
	bgt branch if greater than signed
	bgtu branch if greater than unsigned
	ble branch if less than or equal signed
	bleu branch if less than or equal to unsigned
	blt branch if less than signed
	bltu branch if less than unsigned
	bne branch if not equal
	br unconditional branch
	break debugging breakpoint
	bret breakpoint return
	call call subroutine
	callr call subroutine in register
	cmpeq compare equal
	cmpeqi compare equal immediate
	cmpge compare greater than or equal signed
	cmpgei compare greater than or equal signed immediate
	cmpgeu compare greater than or equal unsigned
	cmpgeui compare greater than or equal unsigned immediate
	cmpgt compare greater than signed
	cmpgti compare greater than signed immediate
	cmpgtu compare greater than unsigned
	cmpgtui compare greater than unsigned immediate
	cmple compare less than or equal signed
	cmplei compare less than or equal signed immediate
	cmpleu compare less than or equal unsigned
	cmpleui compare less than or equal unsigned immediate
	cmplt compare less than signed
	cmplti compare less than signed immediate
	cmpltu compare less than unsigned
	cmpltui compare less than unsigned immediate
	cmpne compare not equal
	cmpnei compare not equal immediate
	custom custom instruction
	div divide
	divu divide unsigned
	eret exception return
	flushd flush data cache line
	flushda flush data cache address
	flushi flush instruction cache line
	flushp flush pipeline
	initd initialize data cache line
	initda initialize data cache address
	initi initialize instruction cache line
	jmp computed jump
	jmpi jump immediate
	ldb / ldbio load byte from memory or I/O peripheral
	ldbu / ldbuio load unsigned byte from memory or I/O peripheral
	ldh / ldhio load halfword from memory or I/O peripheral
	ldhu / ldhuio load unsigned halfword from memory or I/O peripheral
	ldw / ldwio load 32-bit word from memory or I/O peripheral
	mov move register to register
	movhi move immediate into high halfword
	movi move signed immediate into word
	movia move immediate address into word
	movui move unsigned immediate into word
	mul multiply
	muli multiply immediate
	mulxss multiply extended signed/signed
	mulxsu multiply extended signed/unsigned
	mulxuu multiply extended unsigned/unsigned
	nextpc get address of following instruction
	nop no operation
	nor bitwise logical nor
	or bitwise logical or
	orhi bitwise logical or immediate into high halfword
	ori bitwise logical or immediate
	rdctl read from control register
	ret return from subroutine
	rol rotate left
	roli rotate left immediate
	ror rotate right
	sll shift left logical
	slli shift left logical immediate
	sra shift right arithmetic
	srai shift right arithmetic immediate
	srl shift right logical
	srli shift right logical immediate
	stb / stbio store byte to memory or I/O peripheral
	sth / sthio store halfword to memory or I/O peripheral
	stw / stwio store word to memory or I/O peripheral
	sub subtract
	subi subtract immediate
	sync memory synchronization
	trap trap
	wrctl write to control register
	xor bitwise logical exclusive or
	xorhi bitwise logical exclusive or immediate into high halfword
	xori bitwise logical exclusive or immediate

	Referenced Documents
	Document Revision History

