
LibSE: Inferring return values and path conditions for library functions

Paul Marinescu

Advanced Software Analasys and Verification

EPFL

Lausanne, Switzerland

Abstract

Determining the possible ways in which a cer-

tain software component can fail is a critical yet

overlooked aspect in the development and testing of

general-purpose software, partially because there are

no easy-to-use tools that would make this information

available to the tester. In this paper we present LibSE

(Library Symbolic Execution), a tool for automatically

inferring the possible modes of failure for one of the

most used types of software components: shared li-

braries. The paper builds on the idea of fault injection

and how the fault injection process can be improved

by analyzing library functions via symbolic execution.

1. Introduction

General-purpose applications rely heavily on shared

libraries. For example, we found that the MySQL

database server directly links to 13 shared libraries, the

Apache Web server can link to more than 30 shared li-

braries depending on compile options and Adobe Pho-

toshop directly links to 36 shared libraries and if we

count recursively the shared libraries used by libraries

themselves, the numbers are as high as 138 in the case

of Adobe Photoshop. These applications make impor-

tant assumptions about how the underlying libraries

work, and any guarantees they try to provide to users

depend heavily on the correctness of such assump-

tions. For software that is expected to be highly de-

pendable (database servers, Web servers, email clients,

etc.) testing must verify that the ways in which appli-

cations use these libraries is consistent with the actual

library behavior. In particular, it is essential to verify

that the applications correctly handle faults at or below

the library layer that manifest as errors returned by the

library functions.

Relying on documentation to decide how a library

may expose faults is risky: even if the documentation

exists and is correct for one library version, it can get

out of sync with the next one. Library documentation

can be incomplete and miss some of the error return

codes. Last but not least, the documentation may not

always be available or easy to parse. We must there-

fore extract information on the potential errors directly

from the libraries. In this paper we introduce LibSE, a

tool that can automatically infer possible return values

by using symbolic execution.

Symbolic execution is a technique used among oth-

ers on small-scale programs for automated testing, as

it can find interesting program behaviors without any

human assistance. For example, KLEE [2] found 56

serious bugs in some of the most extensively used

and tested UNIX utilities. Instead of running the pro-

gram with regular inputs, symbolic execution executes

a program with symbolic inputs that are unconstrained

(e.g., an integer input is represented as a symbol that

can take on any integer value). When the program

encounters a branch that depends on symbolic input,

program state is forked to produce two parallel ex-

ecutions, one following the then-branch and another

following the else-branch. The symbolic variables are

constrained in the two clones with a predicate making

the branch condition evaluate to true respectively false.

Execution splits in two parallel sub-executions at each

relevant branch. When an event of interest is encoun-

tered, solving the constraints collected along the path

that led to the bug produces a set of inputs that repro-

duces it. In this way, symbolic execution can analyze

1



the behavior of code for entire classes of inputs, with-

out having to try each one out, as in exhaustive test-

ing. The biggest challenge in symbolic execution is

path explosion: the number of execution paths to ex-

plore in a program grows exponentially in the num-

ber of branch instructions that depend (directly or in-

directly) on inputs. As we’ll argue, this problem is par-

tially mitigated in our approach by the fact that we’re

not going to analyze entire programs but instead one

library function at a time which empirically is likely

to be small enough to be processed in a reasonable

amount of time.

Another important concept we’ll present is fault

injection, a testing technique usually used to re-

create corner-case situations (e.g., disk full, no mem-

ory available) which are easy to miss and can lead

to crashes or correctness violations. More exactly,

library-level fault injection involves selectivelly inter-

cepting and failing library calls made by the system

under test while observing its behavior. The specifics

of library-level fault injection are beyond the scope of

this paper but can be found in [5].

In the rest of the paper we provide an overview of

LibSE (§2), describe the implementation (§3), show

preliminary evaluation results (§5), survey related

work (§6), and conclude (§7).

2. System Overview

The goal of LibSE is to give testers meaningful de-

tails about how a certain library function can fail in

terms of return values vs. arguments, e.g. a possi-

ble output of our tools can be the function can return

NULL if the second argument is lower than 0 and the

third is exactly 10. We chose to determine the return

values only by considering the function arguments as

symbolic. While one may also choose to consider

all global variables or perhaps the entire memory as

symbolic, this can have adverse effects on the perfor-

mance. We envision that future versions of LibSE will

allow the user to specify what parts of the target’s en-

vironment should be marked as symbolic and which

should remain concrete.

In order to make the tool easily usable to users, we

require no apriori knowledge of the library’s internals.

However, if the user has some domain knowledge (for

example it knows that his application calls the func-

tion X with the second argument always set to 0) he

could tune the LibSE results to his application, getting

in return a potential speedup due to a smaller number

of symbolic values.

It’s not necessary to know the names of the exported

functions as they can be determined along with their

entry points either via the LLVM API or if the library

is in native format, via tools like readelf.

Users point LibSE at a target library and they get

in return, for each exported function, a list of pairs,

each of them containing a function return value and

a constraint (known as the path condition in symbolic

execution vocabulary) that must be fulfilled when the

function is called for the associated value to be re-

turned. However, because the same value can possi-

bly be returned via different execution paths, the final

constraint will actually be a disjunction. This informa-

tion can be either used by the developers in order to

make sure his or her code properly uses the function

and handles well the cases when the function fails, ei-

ther by the testers in order to devise fault injection ex-

periments as show in [5].

2.1. Alternatives

For our purposes, one alternative to symbolic exe-

cution is static analysis. Going from the idea that re-

turn codes are constant values, one could use a data-

flow analysis algorithm to find the constants that can

be propagated to the return value during the function

execution [5]. While static analysis has the advan-

tage of speed, its more likely to produce false posi-

tives when it deals with complex obfuscated code and

it also has the disadvantage that it can’t provide the

constrains that symbolic execution does, e.g. one may

end up thinking that a call to read can always fail with

an EWOULDBLOCK error, while that is actually true

only when the function receives an asynchronous file

descriptor as argument.

More involved examples can be conceived and

we found no general rule to handle them via static

analasys.

3. Implementation

Our current implementation is based on the KLEE

open source symbolic execution engine which runs on

2



the LLVM [4] framework. KLEE is a fast symbolic

execution engine, reportedly scaling up to programs

with 10,000 lines of code.

In order to use KLEE (and implicitly LibSE), one

must first compile the code to LLVM bytecode. For-

tunately, this is possible by using the C/C++ front-end

LLVM provides. Although not all C/C++ code com-

piles via LLVM, software components as big as the

FreeBSD kernel were compiled to LLVM and active

development is underway.

To achieve our goal, we modified both the KLEE

engine and the driver program that initializes and

steers the symbolic execution. While the initial behav-

ior was to start executing the target program with its

main function, we added the ability to specify a cus-

tom function to start testing with. Using the LLVM

API, we dynamically create code that calls uClibc for

initialization and then passes control to our target func-

tion.

For the process to be as transparent as possible, we

also dynamically instrument the function of interest in

order to make all its arguments symbolic. While this

could easily be done by modifying the source code be-

fore compilation and adding a klee make symbolic

call for each variable that we want to consider as

symbolic, we felt that it would not be reasonable to

add this requirement. Therefore, our dynamic in-

strumentation enumerates through all function argu-

ments, allocates a similar object in memory, calls the

klee make symbolic function for the appropriate

memory location and replaces all uses of the argument

with the symbolic memory location. While this may

seem overcomplicated, it is necessary because func-

tion arguments are considered by LLVM as ’registers’,

not as memory locations therefore the KLEE function

responsible for marking objects as symbolic is unable

to work with them.

One advantage of doing the analasys on LLVM’s in-

termediate representation (IR) is the meta-data that is

made available to us, for example the number of ar-

guments a function expects and their types, informa-

tion not available if running native code. A number of

tricks or the user’s input would be needed to achive the

same result on native code. The same is true for global

variables, which are clearly exposed via the LLVM

API but are not straightforward to detect in x86 code.

We also modified the executor component of KLEE

such that for each return instruction executed we check

the stack depth at which we are. If we detect that the

return instruction is in the frame of our target function

we save the return value. The path condition are also

saved by KLEE on disk both in its internal format and

in CVC format.

4. Limitations

One of the limitations of our current implementa-

tion is that it relies on the LLVM representation of

the program to be analyzed, which forces testers to

recompile the libraries using the LLVM compiler. It

would be therefore more natural to allow LibSE to

work directly on the native binary format. This can

be achieved in two ways: either dynamically translate

the native code to LLVM as proposed by projects such

as S2E [3] or use a different symbolic execution frame-

work like BitBlaze [1] which can work directly on x86

code.

Furthermore, the LLVM toolchain is not 100%

compatible with the gcc toolchain therefore recom-

piling an application is usually more involving that

simply specifying a different compiler to the config-

ure/makefile script.

Another aspect that limits the applicability of the

tool for real software is that the current implemen-

tation doesn’t support functions that accept complex

type arguments. This is however only an engineering

problem and will be addressed in future versions of

LibSE.

Yet another limitation inherent to all tools based

on symbolic execution is that it may not be possible

to solve all constraints as this is a well known NP-

complete problem. For example a test like

if (md5(arg1) == MAGIC)

is unlikely to be solved, therefore the paths leaving

from this condition will usually not be explored leav-

ing potential return values undiscovered. This hap-

pens because the paths are considered unfeasible (i.e.

there is no input that can steer execution on that path).

One could consider the approach where these paths

are further explored optimistically, but this would have

the big disadvantage of yielding false positives, not to

mention the faster state explosion and the fact that the

3



symbolic execution engine won’t be able to generate

path conditions.

It is also possible to miss return values because of

indirect branches, where the branch address is sym-

bolic or based on a symbolic object (e.g. a virtual

function call). In this case the symbolic execution en-

gine is unlikely to infer a set of possible branch targets

causing the abandon of the current execution path.

5. Evaluation

We evaluated LibSE on hand made toy libraries in

order to verify its proper functioning and discovered

as expected that the approach obtains accurate results

that could otherwise be very hard to obtain via static

analasys.
One such example is presented below:

int f(int x);

{

int ret_val;

if (0 == x) { return ERROR1; }

if (x == x*2) ret_val = ERROR2;

else ret_val = ERRORSUCCESS;

while (x == 0x20 && (ret_val = 0x10))

{

ret_val = ERROR3;

x = 0;

}

return ret_val;

}

Here the possible return values are ERROR1,

ERRORSUCCESS and ERROR3. While these can

be inferred via standard symbolic execution along

with the constrains that the argument x must respect,

it would arguably harder to devise a general static

analasys algorithm to compute the same result.

6. Related Work

We built our system on top of the KLEE symbolic

execution engine, initially designed for automatic soft-

ware testing. Similar multi-purpose symbolic execu-

tion engines like BitBlaze have recently emerged and

could be adapted for our goal.

Static analysis methods were used in LFI [5] in or-

der to extract possible return values from arbitrary li-

braries in native (x86) format, achieving an average

accuracy of 75%, however without offering argument

constrains. The same paper explains how these results

can be used to create fault injection experiments.

Previous work [6], introduced a technique for learn-

ing library-level error return values by injecting sys-

tem call errors (i.e., faults at the boundary between the

operating system and the library) and observing their

propagation to the libc interface. LibSE uses sym-

bolic execution and is arguably providing more infor-

mation that can help develop more accurate tests and

thus eliminate false positives.

7. Conclusion

We presented LibSE, a tool for analyzing arbitrary

library functions and finding possible return values

along with the conditions needed to be satisfied for

each value to be returned. We shown how we can au-

gument an existing symbolic execution engine in order

to achieve our goal and found promising initial results

that suggest that the approach could scale and be us-

able on real libraries. We also explained how these

results can be used to improve software development

and testing via fault injection methods.

References

[1] D. Brumley, C. Hartwig, M. G. Kang, Z. L. J. New-

some, P. Poosankam, D. Song, and H. Yin. BitScope:

Automatically dissecting malicious binaries. Technical

report, Carnegie Mellon University, 2007.

[2] C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unas-

sisted and automatic generation of high-coverage tests

for complex systems programs. In 8th Symp. on Oper-

ating Systems Design and Implementation, 2008.

[3] V. Chipounov,V. Georgescu, C. Zamfir, andG. Candea.

Selective symbolic execution. In 5th Workshop on Hot

Topics in Dependable Systems, 2009.

[4] C. Lattner and V. Adve. LLVM: A compilation frame-

work for lifelong program analysis and transformation.

In Intl. Symp. on Code Generation and Optimization,

2004.

[5] P. Marinescu and G. Candea. LFI: A practical and gen-

eral library-level fault injector. In Intl. Conf. on De-

pendable Systems and Networks, 2009.

[6] M. Süßkraut and C. Fetzer. Learning library-level error

return values from syscall error injection. In European

Dependable Computing Conference, 2006.

4


