
Generation and Analysis of Transition Systems

Hossein Hojjat

June 7, 2009

Annotated Program

Verification Condition
Generator

f1, f2, ..., fn

Theorem Prover

Figure 1: The overall process of VCG generaion

Abstract

In the common practice of co

1 Introduction

One of the main approaches in software formal ver-
ification is assertional reasoning based on Hoare
logic [5]. This way a code is annotated in certain
points with some assertions about the correctness
of the program. An assertion guarantees that the
program has the desired properties at the definition
point From an annotated code a tool extracts a set
of verification conditions (VC), which are then fed
to a theorem prover for correctness proof. The big
picture of the VC generation process is depicted in
Figure 1.

The complex features such as pointers, mem-
ory allocation, data structures and concurrency can
make VC generation challenging. In the program
verifiers usually the original source code is first
translated to a simple intermediate language. De-
riving VC conditions from the simple intermedi-

ate language is easier. It is also useful when ex-
tending the verifier with more features, since the
new capabilities may be translated to the inter-
mediate language without the need to change the
VC generator. The intermediate language is usu-
ally some flavor of the Dijkstra’s guarded command
language [3], and the VC conditions are generated
using liberal precondition semantics. Some success-
ful verifiers for the Java language include Kraka-
toa [6], ESC/JAVA [4] and Jahob [2]. Krakatoa
translates JML-annotated Java programs to proof
obligations for various interactive theorem provers.
ESC/JAVA uses automated theorem proving for
some particular classes of errors, and it is not
sound. The main strength of Jahob in comparison
to the others is its capability in reasoning about
data structures.

In this project we suggest an intermediate lan-
guage for the language Scala. Scala is a program-
ming language being developed at the EPFL Uni-
versity. As a mixture of object oriented and func-
tional paradigms, Scala allows a great deal of flex-
ibility in programming. For a complete documen-
tation for the language we refer to its webpage [1].
The proposed intermediate language uses the con-
trol flow graph (CFG) of a program. CFG shows all
the paths that might be traversed through a pro-
gram during its execution. We represent the graph
using a logical formula. The corresponding formula
of a CFG describes how the state of the program is
changed during the transitions. A transition is de-
scribed as a guarded command that executes only
when the condition of the transition is satisfied. We
use the Isabelle/HOL interactive theorem prover [7]
to reason about the formula of a system.

An important merit of using a CFG as an inter-
mediate language is it simplicity. CFGs are a com-
mon way to reason about the execution of most of
the programs.

1

pc = v4

(x > y)?¬(x > y)?
pc = v1

pc = v3 pc = v2

max2 := y max2 := x

def max2(x:Int,y:Int):Int= {
if (x > y) x

else y }

Figure 2: The CFG of a maximum function

However, we are not sure know they can be com-
pared with the previous approaches. We are in
the process of implementing an automated compiler
from Scala to a formula in Isabelle, and until then
we cannot give a precise comparison.

1.1 Small Example

In this section we give a small motivating example
which shows how are mapping works in general.
Figure 2 shows both the code and CFG of a func-
tion that takes two integer arguments and returns
their maximum value.

We exploit a similar approach to [8] in describing
a transition system in Isabelle.

datatype label = v1 | v2 | v3 | v4
record state =
pc :: label
x :: int
y :: int
max2 :: int

definition program :: “(state × state) set”
where “program ≡{(s,s’).
(s′ = sLpc := v2M ∧ (xs > ys) ∧ (pcs = v1))∨
(s′ = sLpc := v3M ∧ ¬(xs > ys) ∧ (pcs = v1))∨
(s′ = sLpc := v4,max2 := xsM ∧ (pcs = v2))∨
(s′ = sLpc := v4,max2 := ysM ∧ (pcs = v3))}”

Here s and s′ denote the initial and final states,
and the condition afterwards is the guard of the
command. The variable pc controls the overall
execution of the program in its path and prevents
illegal jumping from one point to another point
in the transition system. Let r be the relation
representing the program and s be the relation
representing the specification, program meets spec-
ification iff r∗ ⊆ s. Proving the correctness of the

Table 1: Mapping of arrays

Scala Isabelle/HOL
xs : Array[Int] xs :: “int list”

xs(5) xs ! 5
xs.length length xs
xs(1) = 4 list update xs 1 4

xs map (x ⇒ x + 1) map (λx. x + 1) xs

requirement in its general form is cumbersome and
turns out to be difficult. We can test the program
by unrolling the relation for some constant n, and
then prove the weaker condition rn ⊆ s. In the
“max2” function since there are no loops and all
paths of the program finish in two steps, we un-
roll the relation two times and show its correctness.

lemma maximum [simp]:
“(program ◦ program ◦ program) ⊆
{(s, s′).(pcs = v1)→ (max2s′ = max(xs)(ys))}”
apply (unfold program def)
apply auto
done

In the rest of the report we describe how our
mapping works for data structures, pattern match-
ing, recursion and concurrency.

2 Data Structures

Many data structures can be represented with lists
in Isabelle. As a simple example, consider the map-
ping of Scala arrays in Teble 1. In some cases
the behavior of the Scala arrays may be differ-
ent from its model in Isabelle. As an example the
ArrayIndexOutOfBoundsException exception does
not have a counterpart in our Isabelle model. We
believe that these capabilities can be easily added
to the translation. For the moment we do not con-
sider these complications.

We apply the given mapping in the translation
of a bubble sort (Figure 3) Scala code. The CFG
of the code is shown in Figure 4.

The state of the program contains the following
elements: pc :: label, xs :: “int list”, res :: “int
list”, changed :: bool, a :: nat and tmp :: int. For
example, the transition between labels v6 and v7
has the following form:

2

def bubblesort(xs:Array[Int]):Array[Int]={
var changed=false
do{

changed=false
for(a←0 until (xs.length - 1))
if(xs(a)>xs(a+1)){

var tmp=xs(a)
xs(a)=xs(a+1)
xs(a+1)=tmp
changed=true}

}while(changed)
xs
}

Figure 3: Bubble sort

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v13

changed := false

changed := false

a := 0

(xs(a) > xs(a + 1))?

tmp := xs(a)

xs(a) := xs(a + 1)

xs(a + 1) := tmp

changed := true

a := a + 1

(changed = false)?

res := xs

¬(a < xs.length− 1)?

(a < xs.length− 1)?

(changed = true)?

¬(xs(a) > xs(a + 1))?

Figure 4: CFG of bubble sort

(s′ = sLpc := v7,
xs := list update(xss)(as)((xss)!(as+ 1))M∧
(pcs = v6))

Scala has a built-in general pattern matching
mechanism. It allows to match on any sort of data
with a first-match policy. For example, consider
the following small example.

def matchTest(x: Int): String = x match {
case 1 ⇒ “one”
case 2 ⇒ “two”

}
The pattern matching cases are mapped to

partial patterns in Isabelle. Since the guards are of
type boolean, at the end of each partial matching
we add | ⇒ False. This makes the whole ex-
pression False whenever the pattern is not matched.

((case (xs) of 1⇒ s′ = sLpc := v2, res := oneM
∧ (pcs = v1)| ⇒ False) ∨
(case (xs) of 2⇒ s′ = sLpc := v2, res := twoM
∧ (pcs = v1)| ⇒ False))

3 Recursion

In a recursive computation some transitions of
CFG are reused in each recursive call. To re-
execute the transition we simply cannot loop back,
since the local values of each call can be different
from the previous ones. Similar to the method of
compiling a recursive program, we make use of a
stack in our translation. Stack is modelled with
lists in Isabelle, the same as Section 2. Consider
the following simple recursive factorial function:

def fact(n:Int):Int={
if(n==0) 1
else {
val t=fact(n-1)
n*t
}

}
The CFG of the “factorial” function is depicted

in Figure 5.

3

pc = v1

(stack[sp].n = 0)?

pc = v2

¬(stack[sp].n = 0)?

pc = v3

pc = stack[sp].ret

pc = v4

pc = v5

pc = v6pc = v7

pc = v8

pc = v9

pc = stack[sp].ret

pc = v2

stack[sp].ret := vF

res := 1

sp := sp− 1

stack[sp].t := res

res := stack[sp].n× stack[sp].t

stack[sp + 1].n := stack[sp].n− 1

stack[sp + 1].ret := v7

sp := sp + 1

Figure 5: CFG of factorial

4 Concurrency

The overall control of a program is preformed
by the pc variable. We have to use a separate
pcs for each concurrent process. Consider the
producer-consumer code of Figure 6, and the
corresponding CFG in Figure 6. Two different pc
variables are used for modelling the probelm. The
variable pc1 is used in producer and pc2 is used in
consumer. If the number of concurrent processes
are not known in advance, we consider an array of
pc variables.

definition producer :: ”(state × state) set”
where “producer ≡ {(s, s′).∃i.(s′ = sL
pc1 := list update(pc1s) i v1,
msgbox := Cons0(msgboxs)M
∧((pc1s)!i = v1))}

If the process had also local variables then we
used a stack to manage the different variables.

5 Future Work

We are implementing the proposed mapping for a
subset of Scala. A bigger goal is to combine our
ideas with the forthcoming theorem prover of the
LARA group.

class Producer(c:Consumer) extends Actor{
def act(){

while(true) c!0
}}

class Consumer extends Actor {
var num = 0
def act() {
react{
case msg ⇒ {

num = num + 1
act}

}}}

Figure 6: Producer-Consumer

enqueue(msgbox, 0)

(#msgbox > 0)?

dequeue(msgbox)

(#msgbox = 0)?

producer

consumer

pc1 = v1

pc2 = u1

pc2 = u2

pc2 = u3

pc2 = u4

num := 0

num := num + 1

Figure 7: CFG of producer consumer

4

References

[1] http://www.scala-lang.org/

[2] C. Bouillaguet, V. Kuncak, T. Wies, K. Zee, M.
Rinard, Using First-Order Theorem Provers in
the Jahob Data Structure Verification System,
Verification, Model Checking and Abstract In-
terpretation, 2007

[3] E. Dijkstra, A Discipline of Programming,
Prentice Hall PTR, 1997.

[4] C. Flanagan, K. R. M. Leino, M. Lillibridge, G.
Nelson, J. B. Saxe, R. Stata, Extended static
checking for Java, SIGPLAN Not. Analysis of
Object-Oriented Programs, v. 37, n. 5, pp. 234–
245, 2002.

[5] C. A. R. Hoare, An axiomatic basis for com-
puter programming, Communications of the
ACM, v. 12, n. 10, pp. 576–580, 1969. pp. 12–
32, 2008.

[6] C. Marché, C. Paulin-Mohring, X. Urbain,
The KRAKATOA tool for certification of
JAVA/JAVACARD programs annotated in
JML, Journal of Logic and Algebraic Program-
ming, v. 58, n. 1-2, pp. 89–106, 2004.

[7] T. Nipkow, L. C. Paulson, M. Wenzel, Is-
abelle/HOL: a proof assistant for higher-order
logic, Springer-Verlag, 2002.

[8] L. C. Paulson, Mechanizing UNITY in Is-
abelle, ACM Transactions on Computational
Logic (TOCL), v. 1, n. 1, pp. 3–32, 2000.

5

http://www.scala-lang.org/

	Introduction
	Small Example

	Data Structures
	Recursion
	Concurrency
	Future Work

