Local Reachability Analysis for Better Debugging

Project Report

Horatiu Jula
Dependable Systems Laboratory
EPFL, Switzerland

June 22, 2009

Abstract tion. For the start program position, the programmer
may input a source code location from which he/she

The goal of this project is to perform local reachabilitguspects that the bug starts to manifest.

analysis, for Java programs, in order to find the condi-

tions under which a given target program position can
be reached from a start program position. Our tool cgh Problem Definition
be used as a framework for learning the conditions un-
der which a bug manifests in a Java application, onBefore diving into details, let us formally define the
the bug is detected. The information we learn is usproblem. LetPy4¢ represent the start program position
ful for debugging Java programs, but also for improand Rarge represent the target program position. Our
ing failure immunity techniques like deadlock immugoal is to infer the se€Cqart—targe Of conditions that
nity [5]. have to hold betweeBRgart andRarget, for Rarge to be
reachable fronPya¢. A condition is a tuplgs,v) indi-
. cating the branch that has to be taken at the conditional
1 Introduction statemens for Rarge t0 be reachable. For instance, the
tuple (s,true) means that, at the conditional statement

The goal of this project is to perform local reachability we have to take thizue branch.
analysis for Java programs, in order to find the condi-The constraints our approach learns for the following
tions under which a given target program position caaya code
be reached from a start program position. We developed
a prototype (using the Soot static analysis frameworkynchr oni zed(x) {//Pstart
that performs local reachability analysis for Java byte- i f (condl1) {
code, given a start program location and a target pro-
gram location; more precisely, it finds the branches that}
have to be taken from the start position, to reach theel se {
target position.

Our tool can be used as a framework for learning the }
conditions under which a bug manifests in a Java ap-i f (cond2) {
plication, once the bug is detected. The informationwe i f (cond3) {
learn is useful for debugging Java programs, but also for
improving failure immunity techniques like deadlock }
immunity [5]. A possible usage scenario for our system el se {

is the following. Once a bug is detected at runtime, the synchroni zed(y) {//Ptarget
developer usually knows (from the bug report) the loca- ..
tion in the source code where the bug manifested, then }

he/she feeds it to our system as the target program posi- }

} succ*(firgStm(method(s)))) A ((Sarge € succ*(s)) vV
el se { (39 € succ*(s),m € Mgart—target - S -calls(m))).

) } 3.1 Implementation

areCgart—targe = {(condy, true), (conds, false)}.

Our analysis has two phases. In the first phase,
use static analysis to quickly find an approximation o
Cqart—target - In the second phase, we refiGgart —target
by using symbolic execution, in order to get a strong
set of constraints.

The static analysis implements the above declarative al-
%rithms. The challenges we encountered were in han-
\img inheritence and in dynamically building the CFG.
We build the CFG incrementally (using a fix point
algorithm), while computindVigart—targee- TO handle
Synamic method lookups, we consider that a call state-
mentx.m(...) can invoke any method.m(...), whereT

is derived from (or equal to) the static typeof

3 Static Analysis

: _ _ _ 3.2 Evaluation
We use static analysis to quickly find an approximation

of Carttarget - Given the CFG (control flow graph) of aWe evaluated our implementation on tisgldb library,
program, for each conditional statemebetweerPy,y used in Limewire. We ran our tool to find what
andRage, if Rage is Notstatically reachable from the branches need to be taken to get to the statement at
true/falsebranch ofs, we add the brancfs, false/true) line 739 inHsglTimer class, from the statement at line
t0 Csart—target - We say that a statemest is statically 511 from the same class. Our tool accurately reported
reachable from a statemestiff there is a path in the Mgart—target = {

CFG froms; t0 ;. Let Sqart/Sarge denote the state-org.hsgldb.lib.Hsgl Timer $TaskQueue. peekTask(),

ment corresponding tBsart /Rarger, aNdMyart /Marge Org-hsgldb.lib.Hsgl Timer.next Task(),

the method containinByart /Parget. Lt Succ*(s/m) be org.hsgldb.lib.Hsql Timer.isCancelled()}, and

the transitive closure of the statements/methods reaChart —target = {

able from the statement/methsdm (including s/m). (super.heap[0]! = null @ 901true),

For a statemens, succ*(s) is computed intraprocedu-(task! = null @ 514true),

rally, within the method containing (wait > 0 @ 524true),

The static analysis has two phases. Firdthis.isShutdown||Thread.interrupted() @ 502true)}.
we detect the setMgat_tage Of the methods The third condition (wait > 0 @ 524true)) is not
statically reachable betweerPyat and Rage. trivial; for some time we thought it is a false positive
Formally, we have Mgart—tage = {MMage € Caused by abug in ourimplementation.
succ*(m) A m € U succ*(mo)}, where The static analysis we use does not have false posi-

MoEMstart § tives when it returns theRarge is unreachable—it re-
Msart = {Myart } U{M|3s € succ” (Syart) - SCalS(M)}; ports thatRage is unreachable iff there is no path to
scalls(m) means that statemeatcalls methodm (or p_ . However, it has false positives when it returns
may call m, if we consider inheritence and methoghatp,, . is reachable. We aim at reducing these false

overloading). In the second phase, we detect gllgjiives by symbolically executing the program.
branching statements (for simplicity, we refer only

to if statements) statically reachable frég,, from

which Rage is reachable through only one branch Symbo”c Execution

of s. Let Sue/rase denote the first statement on

the true/false branch of s, method(s) the method We refine the constraints produced by the static anal-
to which statemens belongs, andfirsSm(m) the ysis, by using symbolic execution, in order to get a

first statement of methodn. Formally, we define stronger set of constraints. We generate a symbolic
Carttarge = {(S,V)|method(s) € Msart—targe A representation of each execution path, as a set of con-
Reach3q iarge(S) A —Reach33 iarge(S-v)}. straints. The actual symbolic execution consists of solv-
where Reachggtrit‘;ta,ga (s) = (method(s) = mgat = ing these sets of constraints; we use the Z3 SMT solver
S € sucC*(Sgart)) A (method(s) # mgat = S € to solve them.

We describe now the symbolic execution in more deution path ending ifarge is feasible, and we say that
tail. In the symbolic program, each statemerns$ la- Rarge is reachable in instande If a symbolic execu-
belled with a fresh boolean variablgdenoting thats tion instance terminates, and it ends in other position
has to be executed. We use the prime notatido de- thanRage, we say thaRage is not reachable in that
note that the version of is incremented. Byext(s), instance. We say th&arge is reachable from a state-
we denoted the statement followisgBy p(s), we de- mentsiff there is a symbolic execution instance within
note the constraints accumulated during the symbofi¢s), in which Rage is reachable. We say th&arge
execution of the statement/expression is unreachable from a statemexiff in every symbolic

Checking whether Rage is reachable from execution instance withip(s), Rarget iS unreachable.
Psart IS simply checking the satisfiability of We refine the results returned by the static analy-
p(firstSM(Mgart)) Alirsam(mar) N ssart A sarga - sis as follows. For each conditional statement

Formally, the symbolic execution of an assignmeht cond goto Srue € se goto Stas encountered during
statements = x = e is p(s) = (Is = (X = p(e) A the symbolic execution, for whicRarge iS unreach-
lheq(s)) A P(NeXt(s)). Since we use a unique labl able (only) froms;ue/Staise, We add(s, false/true) to
for each statemerstand we increment the version kaf Cstart—target -
every time we reencounterwe do not need a variable
for the program counter. 4.1 Implementation

When we meet a conditional statemest= . . - .
One of the main challenges is to efficiently implement

if cond goto else goto S, We explore both . .)
golo Srue 9 false P the forking. For the moment, we implemented a sim-

branches ofs, by forking a new symbolic execu- . . .
tion engine, that runs in parallel with the current er?—le forking mechanism, that clones the current symbolic

gine. The symbolic execution o when thetrue execution engine (it performs deep copy of the version-

branch is taken, i (s) = (Is = (p(cond) AL) A ing data, and shallow copy for the rest).

Strue i i
p(Srue). The symbolic execution o, when thefalse An advantage of our design is that the loop/method

branch is taken, ig(s) = (Is = (ﬁp(cond)/\lgfaj) unrolling is.performed automatically by_ the forking
. . e echanism; we do not have to know a priori how many

p(stase). When symbolically executing conditiona imes a loop/method has to be unrolled.
statemgnts, we reuse the r.e_sults of the static an,alySis_Another important advantage is that we do not have
every time we meet a conditional statemarf_t)_rwhlgh to perform any merging of the execution paths a priori.
(s false/true) € Caart—targe, We know that it is point- However, the path merging is hard to do on-the-fly, dur-
less to explore the brandts,true/ false), so we only ing the symbolic execution. This is the price we have to
explore the brgncf& false/true). pay for explicitely exploring the execution paths—we

We symbolically execute rhs array accessgs, may redundantly explore many states. This redundancy
using McCarthy's theory of arrays—we have thahay |ead to a blowup of the memory consumption. We
p(alg) = select(a,p(e)). We model ot_)jects as arrayScan mitigate that by using a thread pool—if the thread
Therefore, rhs accesses to object fields are symbglisy) s full when forking a new symbolic execution en-
cally executed as array accesses. For each figlde gine we run the new engine in the current thread. How-
have a unique idfieldId(f). We have thap(x.f) = gyer, if we use a thread pool, the impact of redundant
select(x, fieldld(f)). We symbolically execute a Ihseypiorations turns into a longer execution time.
array access in an assignment ale] = v, asinp(S) = e ensure the consistency of the versioning dur-
(Is= (af = store(a, p(e), p(V)) Alieq(s))) AP(NEX(S)). ing method unrolling by (1) maintaining the call
We symbolically execute a Ihs object field access #jack, (2) associating a fresh id with each method call
an assignmens = x.f =v, as inp(s) = (Is= (X = the we symbolically execute, and (3) maintaining a
store(x, fieldld(f), p(v)) Alfgg(s))) A P(NEX(S)). (variable,version,callld) triple to refer to a local vari-

Remember that each symbolic execution instanable.
executes only one path. When a symbolic execu-Keeping track of aliasing was straightforward, since
tion instance reachefarge, We check the satisfiabil-a symbolic execution instance explores only one exe-
ity of the formulap (firsSm(Mgart)) Al firgammgar) /A CUtiON path. We maintain in theef map the aliasing
lseart A lsiarge @CCUMUlated in instance If the afore- information for each variableof a reference type (i.e.,
mentioned formula is satisfiable, then the current exaray/object type). When we encounter an assignment

X =y, wherex,y are references to arrays/objects, wiag a larger range of problems. We want our approach to
have thatef (x) = ref(y). For areferencrto a freshly be able to infer meaningful predicates at arbitrary pro-
allocated array/object, we have thaf (x) = x. This gram positions; the predicates are expressed in terms of
way, ref (x) always points to the original array/objectprogram variables visible at those positions. We will
A field invocatione = x. f is symbolically executed asapply our approach to Dimmunix, to learn new dead-
p(e) = select(ref(x), fieldld(f)). An assignmens= lock signatures from an existing deadlock signature,
x.f = eis symbolically executed as(s) = ref(x)’ = and to learn conditions that have to hold (after acquiring

sore(ref (x), fieldld(f),p(e)). a lock) for a deadlock location to be reachable.
In terms of handling loops in symbolic execution,
4.2 Evaluation only [1] describes a technique of handling loops, based

on computing fix points. They first identify the induc-

We evaluated our symbolic execution approach on siien variables in each loop. Then, they infer loop invari-
ple Java programs; we managed to improve the reswtss in terms of induction variables and loop conditions.
obtained by the static analysis. For the following Jawowever, it is not clear how they infer the number of it-
code erations starting from loop invariants. We adopt a sim-
) _ ple fork-based technique, for which we do not need to

void f(int x) { estimate the size of the loops/recursive calls a priori.
x = 1;//Pstart

X = this.g(x);

if (x ==1) 6 Discussion and Future Work
x--; 1/ Ptarget

} There are still many challenges that remained untack-
led.
int g(i .nt x) Ao We need to handle real applications in the symbolic
X+, execution engine. We managed to do that for our static
return x;

analysis module; but it is considerably harder for the
} symbolic execution, because we actually need to simu-

the static analysis retumEsar arge = {(x == 1€ e program’s execution. _ .
1,true)}; it wrongly assumes thaagq is reachable Anot_he-rchallenge is soundness. Again, for the static
through the branctk== 1,true). The symbolic execu- analysis it was easy to return sounBarge unreach-
tion module easily figures out thats incremented after able” results; but for the symbolic execution that is vir-

the x = this.g(x) assignment, and therefore the brandHally impossible. There are factors like data races and
(x==1,true) cannot be reached. lack of context information (e.g., aliasing information,

program state), that impede the symbolic execution—

failing to deal with them makes the symbolic execution
5 Related Work unsound. The main handicap of our approach is that we

start the symbolic execution from an arbitrary program
Previous work exists in achieving immunity against execationPsart; we do not have any information about the
ploits like buffer overrun. Systems like Vigilante [4].execution of the application prior ®4t, and therefore
Bouncer [3], [2] or [1] use static analysis and/or synwe do not have any context informationRgat. Due
bolic execution to learn filters from existing exploitsto this fact, we will drop any soundness requirement for
Bouncer [3] also tries to learn new exploits that exethe symbolic execution. Unfortunately, that is not good
cise the same vulnerability as the original exploit. THer failure immunity systems like Dimmunix [5] (for
filters these approaches deduce refer only to the inpwtsich we actually want to apply this tool); Dimmunix
of functions that process messages, and they are m@eds sound unreachability results. However, for de-
plied only at the beginning of such functions. Moredugging purposes, it is not a problem if sometimes the
over, these approaches only address exploits like buffesults are unsound.
overruns. Some clear advantages of our approach are its flexi-

We want to develop a technique similar to the abowdity and scalability. A programmer may input any pro-

ones, but applicable in a larger context, to help addregsam locations for the start position and the target po-

sition. Moreover, if the two locations are close to each
other (e.g., they belong to the same class), our approach
scales well—the size of the application matters very lit-
tle in that case. For the existing reachability analysis
techniques, the start position is usually the beginning of
the program; this impedes both the flexibility and the
scalability.

An important drawback of our approach is that
the memory model only handles objects/arrays with
fields/elements of primitive types. To handle ar-
rays/objects with elements/fields of reference types, we
need to change our memory model. We can model the
memory as an array whose elements are either primi-
tive types or arrays. Having nested reference types also
changes the aliasing tracking. For instance, for an as-
signmentx.f =y.f, wheref is a reference type, we
have tharef(x, f) =ref(y, f); ref(x, f) represents the
object/array to whick. f points.

References

[1] D. Brumley, J. Newsome, D. Song, H. Wang, and S. Jha.
Towards automatic generation of vulnerability-based sig-
natures. InlEEE Symposium on Security and Privacy,
2006.

[2] M. Castro, M. Costa, and J.-P. Martin. Better bug report-
ing with better privacy. Inl3th Intl. Conf. on Architec-
tural Support for Programming Languages and Operat-
ing Systems, 2008.

[3] M. Costa, M. Castro, L. Zhou, L. Zhang, and M. Peinado.
Bouncer: securing software by blocking bad input. In
ACM Symp. on Operating Systems Principles, 2007.

[4] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou,
L. Zhang, and P. Barham. Vigilante: end-to-end contain-
ment of internet worms. IRACM Symp. on Operating
Systems Principles, 2005.

[5] H.Jdula, D. Tralamazza, C. Zamfir, and G. Candea. Dead-
lock immunity: Enabling systems to defend against dead-
locks. In8th Symp. on Operating Systems Design and
Implementation, 2008.

