
Local Reachability Analysis for Better Debugging
Project Report

Horatiu Jula
Dependable Systems Laboratory

EPFL, Switzerland

June 22, 2009

Abstract

The goal of this project is to perform local reachability
analysis, for Java programs, in order to find the condi-
tions under which a given target program position can
be reached from a start program position. Our tool can
be used as a framework for learning the conditions un-
der which a bug manifests in a Java application, once
the bug is detected. The information we learn is use-
ful for debugging Java programs, but also for improv-
ing failure immunity techniques like deadlock immu-
nity [5].

1 Introduction

The goal of this project is to perform local reachability
analysis for Java programs, in order to find the condi-
tions under which a given target program position can
be reached from a start program position. We developed
a prototype (using the Soot static analysis framework)
that performs local reachability analysis for Java byte-
code, given a start program location and a target pro-
gram location; more precisely, it finds the branches that
have to be taken from the start position, to reach the
target position.

Our tool can be used as a framework for learning the
conditions under which a bug manifests in a Java ap-
plication, once the bug is detected. The information we
learn is useful for debugging Java programs, but also for
improving failure immunity techniques like deadlock
immunity [5]. A possible usage scenario for our system
is the following. Once a bug is detected at runtime, the
developer usually knows (from the bug report) the loca-
tion in the source code where the bug manifested, then
he/she feeds it to our system as the target program posi-

tion. For the start program position, the programmer
may input a source code location from which he/she
suspects that the bug starts to manifest.

2 Problem Definition

Before diving into details, let us formally define the
problem. LetPstart represent the start program position
andPtarget represent the target program position. Our
goal is to infer the setCstart→target of conditions that
have to hold betweenPstart andPtarget , for Ptarget to be
reachable fromPstart . A condition is a tuple(s,v) indi-
cating the branch that has to be taken at the conditional
statements for Ptarget to be reachable. For instance, the
tuple (s,true) means that, at the conditional statement
s, we have to take thetrue branch.

The constraints our approach learns for the following
Java code

synchronized(x) {//Pstart
if (cond1) {

...
}
else {

...
}
if (cond2) {

if (cond3) {
...

}
else {

synchronized(y) {//Ptarget
...

}
}

1

}
else {
...

}
}

areCstart→target = {(cond2,true),(cond3, f alse)}.
Our analysis has two phases. In the first phase, we

use static analysis to quickly find an approximation of
Cstart→target . In the second phase, we refineCstart→target

by using symbolic execution, in order to get a stronger
set of constraints.

3 Static Analysis

We use static analysis to quickly find an approximation
of Cstart→target . Given the CFG (control flow graph) of a
program, for each conditional statements betweenPstart

andPtarget , if Ptarget is notstatically reachable from the
true/false branch ofs, we add the branch(s, f alse/true)
to Cstart→target . We say that a statements2 is statically
reachable from a statements1 iff there is a path in the
CFG from s1 to s2. Let sstart/starget denote the state-
ment corresponding toPstart/Ptarget , andmstart/mtarget

the method containingPstart/Ptarget . Let succ∗(s/m) be
the transitive closure of the statements/methods reach-
able from the statement/methods/m (including s/m).
For a statements, succ∗(s) is computed intraprocedu-
rally, within the method containings.

The static analysis has two phases. First,
we detect the setMstart→target of the methods
statically reachable betweenPstart and Ptarget .
Formally, we have Mstart→target = {m|mtarget ∈
succ∗(m) ∧ m ∈

⋃

m0∈Mstart

succ∗(m0)}, where

Mstart = {mstart}∪{m|∃s ∈ succ∗(sstart) . s.calls(m)};
s.calls(m) means that statements calls methodm (or
may call m, if we consider inheritence and method
overloading). In the second phase, we detect all
branching statementss (for simplicity, we refer only
to if statements) statically reachable fromPstart , from
which Ptarget is reachable through only one branch
of s. Let strue/ f alse denote the first statement on
the true/false branch of s, method(s) the method
to which statements belongs, andf irstStm(m) the
first statement of methodm. Formally, we define
Cstart→target = {(s,v)|method(s) ∈ Mstart→target ∧
Reachstatic

start→target (sv) ∧ ¬Reachstatic
start→target (s¬v)},

where Reachstatic
start→target (s) ≡ (method(s) = mstart ⇒

s ∈ succ∗(sstart)) ∧ (method(s) 6= mstart ⇒ s ∈

succ∗(f irstStm(method(s)))) ∧ ((starget ∈ succ∗(s)) ∨
(∃s′ ∈ succ∗(s),m ∈ Mstart→target . s′.calls(m))).

3.1 Implementation

The static analysis implements the above declarative al-
gorithms. The challenges we encountered were in han-
dling inheritence and in dynamically building the CFG.

We build the CFG incrementally (using a fix point
algorithm), while computingMstart→target . To handle
dynamic method lookups, we consider that a call state-
mentx.m(...) can invoke any methodT.m(...), whereT
is derived from (or equal to) the static type ofx.

3.2 Evaluation

We evaluated our implementation on thehsqldb library,
used in Limewire. We ran our tool to find what
branches need to be taken to get to the statement at
line 739 inHsqlTimer class, from the statement at line
511 from the same class. Our tool accurately reported
Mstart→target = {
org.hsqldb.lib.HsqlTimer$TaskQueue.peekTask(),
org.hsqldb.lib.HsqlTimer.nextTask(),
org.hsqldb.lib.HsqlTimer.isCancelled()}, and
Cstart→target = {
(super.heap[0]! = null @ 901,true),
(task! = null @ 514,true),
(wait > 0 @ 524,true),
(!this.isShutdown||Thread.interrupted() @ 502,true)}.
The third condition ((wait > 0 @ 524,true)) is not
trivial; for some time we thought it is a false positive
caused by a bug in our implementation.

The static analysis we use does not have false posi-
tives when it returns thatPtarget is unreachable—it re-
ports thatPtarget is unreachable iff there is no path to
Ptarget . However, it has false positives when it returns
thatPtarget is reachable. We aim at reducing these false
positives by symbolically executing the program.

4 Symbolic Execution

We refine the constraints produced by the static anal-
ysis, by using symbolic execution, in order to get a
stronger set of constraints. We generate a symbolic
representation of each execution path, as a set of con-
straints. The actual symbolic execution consists of solv-
ing these sets of constraints; we use the Z3 SMT solver
to solve them.

2

We describe now the symbolic execution in more de-
tail. In the symbolic program, each statements is la-
belled with a fresh boolean variablels denoting thats
has to be executed. We use the prime notationx′ to de-
note that the version ofx is incremented. Bynext(s),
we denoted the statement followings. By ρ(s), we de-
note the constraints accumulated during the symbolic
execution of the statement/expressions.

Checking whether Ptarget is reachable from
Pstart is simply checking the satisfiability of
ρ(f irstStm(mstart))∧ l f irstStm(mstart) ∧ lsstart ∧ lstarget .

Formally, the symbolic execution of an assignment
statements ≡ x = e is ρ(s) ≡ (ls ⇒ (x′ = ρ(e) ∧
l′next(s)))∧ ρ(next(s)). Since we use a unique labells
for each statements and we increment the version ofls
every time we reencounters, we do not need a variable
for the program counter.

When we meet a conditional statements ≡
i f cond goto strue else goto s f alse, we explore both
branches ofs, by forking a new symbolic execu-
tion engine, that runs in parallel with the current en-
gine. The symbolic execution ofs, when thetrue
branch is taken, isρ(s) ≡ (ls ⇒ (ρ(cond)∧ l′strue

))∧
ρ(strue). The symbolic execution ofs, when thefalse
branch is taken, isρ(s) ≡ (ls ⇒ (¬ρ(cond)∧ l′s f alse

))∧

ρ(s f alse). When symbolically executing conditional
statements, we reuse the results of the static analysis—
every time we meet a conditional statements, for which
(s, f alse/true) ∈ Cstart→target , we know that it is point-
less to explore the branch(s,true/ f alse), so we only
explore the branch(s, f alse/true).

We symbolically execute rhs array accessesa[e],
using McCarthy’s theory of arrays—we have that
ρ(a[e]) ≡ select(a,ρ(e)). We model objects as arrays.
Therefore, rhs accesses to object fields are symboli-
cally executed as array accesses. For each fieldf , we
have a unique idf ieldId(f). We have thatρ(x. f) ≡
select(x, f ieldId(f)). We symbolically execute a lhs
array access in an assignments ≡ a[e] = v, as inρ(s)≡
(ls ⇒ (a′ = store(a,ρ(e),ρ(v))∧ l′next(s)))∧ρ(next(s)).
We symbolically execute a lhs object field access in
an assignments ≡ x. f = v, as in ρ(s) ≡ (ls ⇒ (x′ =
store(x, f ieldId(f),ρ(v))∧ l′next(s)))∧ρ(next(s)).

Remember that each symbolic execution instance
executes only one path. When a symbolic execu-
tion instanceI reachesPtarget , we check the satisfiabil-
ity of the formulaρ(f irstStm(mstart))∧ l f irstStm(mstart)∧
lsstart ∧ lstarget accumulated in instanceI. If the afore-
mentioned formula is satisfiable, then the current exe-

cution path ending inPtarget is feasible, and we say that
Ptarget is reachable in instanceI. If a symbolic execu-
tion instance terminates, and it ends in other position
thanPtarget , we say thatPtarget is not reachable in that
instance. We say thatPtarget is reachable from a state-
ments iff there is a symbolic execution instance within
ρ(s), in which Ptarget is reachable. We say thatPtarget

is unreachable from a statements iff in every symbolic
execution instance withinρ(s), Ptarget is unreachable.

We refine the results returned by the static analy-
sis as follows. For each conditional statements ≡
i f cond goto strue else goto s f alse encountered during
the symbolic execution, for whichPtarget is unreach-
able (only) fromstrue/s f alse, we add(s, f alse/true) to
Cstart→target .

4.1 Implementation

One of the main challenges is to efficiently implement
the forking. For the moment, we implemented a sim-
ple forking mechanism, that clones the current symbolic
execution engine (it performs deep copy of the version-
ing data, and shallow copy for the rest).

An advantage of our design is that the loop/method
unrolling is performed automatically by the forking
mechanism; we do not have to know a priori how many
times a loop/method has to be unrolled.

Another important advantage is that we do not have
to perform any merging of the execution paths a priori.
However, the path merging is hard to do on-the-fly, dur-
ing the symbolic execution. This is the price we have to
pay for explicitely exploring the execution paths—we
may redundantly explore many states. This redundancy
may lead to a blowup of the memory consumption. We
can mitigate that by using a thread pool—if the thread
pool is full when forking a new symbolic execution en-
gine, we run the new engine in the current thread. How-
ever, if we use a thread pool, the impact of redundant
explorations turns into a longer execution time.

We ensure the consistency of the versioning dur-
ing method unrolling by (1) maintaining the call
stack, (2) associating a fresh id with each method call
the we symbolically execute, and (3) maintaining a
(variable,version,callId) triple to refer to a local vari-
able.

Keeping track of aliasing was straightforward, since
a symbolic execution instance explores only one exe-
cution path. We maintain in theref map the aliasing
information for each variablex of a reference type (i.e.,
array/object type). When we encounter an assignment

3

x = y, wherex,y are references to arrays/objects, we
have thatre f (x) = re f (y). For a referencex to a freshly
allocated array/object, we have thatre f (x) = x. This
way, re f (x) always points to the original array/object.
A field invocatione ≡ x. f is symbolically executed as
ρ(e) ≡ select(re f (x), f ieldId(f)). An assignments ≡
x. f = e is symbolically executed asρ(s) ≡ re f (x)′ =
store(re f (x), f ieldId(f),ρ(e)).

4.2 Evaluation

We evaluated our symbolic execution approach on sim-
ple Java programs; we managed to improve the results
obtained by the static analysis. For the following Java
code

void f(int x) {
x = 1;//Pstart
x = this.g(x);
if (x == 1)

x--;//Ptarget
}

int g(int x) {
x++;
return x;

}

the static analysis returnsCstart→target = {(x ==
1,true)}; it wrongly assumes thatPtarget is reachable
through the branch(x == 1,true). The symbolic execu-
tion module easily figures out thatx is incremented after
the x = this.g(x) assignment, and therefore the branch
(x == 1,true) cannot be reached.

5 Related Work

Previous work exists in achieving immunity against ex-
ploits like buffer overrun. Systems like Vigilante [4],
Bouncer [3], [2] or [1] use static analysis and/or sym-
bolic execution to learn filters from existing exploits.
Bouncer [3] also tries to learn new exploits that exer-
cise the same vulnerability as the original exploit. The
filters these approaches deduce refer only to the inputs
of functions that process messages, and they are ap-
plied only at the beginning of such functions. More-
over, these approaches only address exploits like buffer
overruns.

We want to develop a technique similar to the above
ones, but applicable in a larger context, to help address-

ing a larger range of problems. We want our approach to
be able to infer meaningful predicates at arbitrary pro-
gram positions; the predicates are expressed in terms of
program variables visible at those positions. We will
apply our approach to Dimmunix, to learn new dead-
lock signatures from an existing deadlock signature,
and to learn conditions that have to hold (after acquiring
a lock) for a deadlock location to be reachable.

In terms of handling loops in symbolic execution,
only [1] describes a technique of handling loops, based
on computing fix points. They first identify the induc-
tion variables in each loop. Then, they infer loop invari-
ants in terms of induction variables and loop conditions.
However, it is not clear how they infer the number of it-
erations starting from loop invariants. We adopt a sim-
ple fork-based technique, for which we do not need to
estimate the size of the loops/recursive calls a priori.

6 Discussion and Future Work

There are still many challenges that remained untack-
led.

We need to handle real applications in the symbolic
execution engine. We managed to do that for our static
analysis module; but it is considerably harder for the
symbolic execution, because we actually need to simu-
late the program’s execution.

Another challenge is soundness. Again, for the static
analysis it was easy to return sound “Ptarget unreach-
able” results; but for the symbolic execution that is vir-
tually impossible. There are factors like data races and
lack of context information (e.g., aliasing information,
program state), that impede the symbolic execution—
failing to deal with them makes the symbolic execution
unsound. The main handicap of our approach is that we
start the symbolic execution from an arbitrary program
locationPstart ; we do not have any information about the
execution of the application prior toPstart , and therefore
we do not have any context information atPstart . Due
to this fact, we will drop any soundness requirement for
the symbolic execution. Unfortunately, that is not good
for failure immunity systems like Dimmunix [5] (for
which we actually want to apply this tool); Dimmunix
needs sound unreachability results. However, for de-
bugging purposes, it is not a problem if sometimes the
results are unsound.

Some clear advantages of our approach are its flexi-
bility and scalability. A programmer may input any pro-
gram locations for the start position and the target po-

4

sition. Moreover, if the two locations are close to each
other (e.g., they belong to the same class), our approach
scales well—the size of the application matters very lit-
tle in that case. For the existing reachability analysis
techniques, the start position is usually the beginning of
the program; this impedes both the flexibility and the
scalability.

An important drawback of our approach is that
the memory model only handles objects/arrays with
fields/elements of primitive types. To handle ar-
rays/objects with elements/fields of reference types, we
need to change our memory model. We can model the
memory as an array whose elements are either primi-
tive types or arrays. Having nested reference types also
changes the aliasing tracking. For instance, for an as-
signmentx. f = y. f , where f is a reference type, we
have thatre f (x, f) = re f (y, f); re f (x, f) represents the
object/array to whichx. f points.

References
[1] D. Brumley, J. Newsome, D. Song, H. Wang, and S. Jha.

Towards automatic generation of vulnerability-based sig-
natures. InIEEE Symposium on Security and Privacy,
2006.

[2] M. Castro, M. Costa, and J.-P. Martin. Better bug report-
ing with better privacy. In13th Intl. Conf. on Architec-
tural Support for Programming Languages and Operat-
ing Systems, 2008.

[3] M. Costa, M. Castro, L. Zhou, L. Zhang, and M. Peinado.
Bouncer: securing software by blocking bad input. In
ACM Symp. on Operating Systems Principles, 2007.

[4] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou,
L. Zhang, and P. Barham. Vigilante: end-to-end contain-
ment of internet worms. InACM Symp. on Operating
Systems Principles, 2005.

[5] H. Jula, D. Tralamazza, C. Zamfir, and G. Candea. Dead-
lock immunity: Enabling systems to defend against dead-
locks. In 8th Symp. on Operating Systems Design and
Implementation, 2008.

5

