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Abstract We describe a weak quantifier elimination procedure for the full linear the-
ory of the integers. This theory is a generalization of Presburger arithmetic, where the
coefficients are arbitrary polynomials in non-quantified variables. The notion of weak
quantifier elimination refers to the fact that the result possibly contains bounded quan-
tifiers. For fixed choices of parameters these bounded quantifiers can be expanded into
disjunctions or conjunctions. We furthermore give a corresponding extended quantifier
elimination procedure, which delivers besides quantifier-free equivalents also sample
values for quantified variables. Our methods are efficiently implemented within the
computer logic system redlog, which is part of reduce. Various examples demon-
strate the applicability of our methods. These examples include problems currently
discussed in practical computer science.

Keywords Quantifier elimination · Integer constraint solving · Implementation

1 Introduction

After the fundamental work of Presburger [19] there has been considerable research
on Presburger arithmetic, which is the additive theory of the integers with ordering and
congruences. The largest part of this research was concerned with complexity issues
and with decidability [1–3,11–14].
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Weispfenning [28,29] was the first one who was explicitly interested in quantifier
elimination as such in contrast to using it as a technique for decision. His quantifier
elimination procedures are triply exponential, which is known to be optimal [13]. He
managed, however, to optionally decrease that complexity by one exponential step to
doubly exponential using the following technical trick: certain systematic disjunctions
occurring during the elimination process are not written down explicitly. Instead one
uses big

∨
(disjunction) and

∧
(conjunction) operators with an index variable running

over a finite range of integers. It is important to understand that at any time these big
operators could be expanded such that one obtains a regular first-order formula at the
price of considerably increasing the size.

In parallel Weispfenning and others have developed virtual substitution techniques
for quantifier elimination in various theories starting with the reals and including also
valued fields and Boolean algebras [17,20,24,27,30]. The present paper combines the
two research areas by presenting for the first time integer quantifier elimination within
the framework of virtual substitution. Moreover it extends that framework in order to
cover a considerable generalization of Presburger arithmetic: We admit as coefficients
arbitrary polynomials in the parameters, i.e., the unquantified variables. In other words,
we use the language of rings together with ordering and ternary congruence relations
with parametric moduli and impose the following restriction: Considering all terms
as polynomials, the total degree with respect to the quantified variables must not
exceed 1. We call this the full linear theory of the integers. It perfectly corresponds
to what is referred to as linear quantifier elimination for the reals and for valued
fields [17,24]. Recall that in regular Presburger arithmetic, in contrast, all coefficients
must be numbers. The difference vanishes, however, when considering sentences and
decision problems.

There is a price to pay for our new generality. We use big operators in the style of
Weispfenning but with a crucial difference: The index variable no longer ranges over a
fixed set of integers. Instead the range is determined by conditions possibly involving
parameters. Consequently, our big operators cannot be expanded to regular first-order
formulas unless one plugs in values for the parameters before. Strictly speaking, we
thus do not really have a quantifier elimination procedure in the traditional sense. This
would require to deliver equivalent quantifier-free first-order formulas. In terms of
model theory our big operators are bounded quantifiers. To make this difference clear,
we refer to our approach as weak quantifier elimination.

In comparison to other work [29] our approach implies various technical improve-
ments, which turned out crucial for an applicable implementation: We can handle
very liberal conditions on the range of the index variables of bounded quantifiers. In
particular our ranges need not be centered around 0, and as a consequence, estimating
their limits does not require considering the least common multiples of all leading
coefficients in the formula. After fixing values for all parameters, this decreases the
size of the obtained ranges by a factor that is exponential in the obtained values of the
leading coefficients.

Devising quantifier elimination procedures by virtual substitution systematically
reduces to constructing suitable finite elimination sets. Accordingly, correctness proofs
for such procedures systematically reduce to proofs that certain sets are elimination
sets, and there are well-established proof techniques for this [24,27]. Our step from
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regular quantifier elimination to weak quantifier elimination corresponds on the tech-
nical side to generalizing the notion of an elimination set to that of a parametric
elimination set. We consider it a major original result of the present article to present
a technique for proving the parametric elimination set property. This technique does
not at all depend on the theory of the integers but is generally applicable.

Further original contributions include an extended quantifier elimination procedure
for the pure Presburger case and a corresponding extended weak quantifier elimination
procedure for the full linear theory of the integers. The idea of extended quantifier
elimination is to provide, besides quantifier-free equivalents, sample values for the
eliminated quantified variables. We demonstrate that already for the pure Presburger
case the usual data structure for the result as originally specified by Weispfenning for
the reals [31] should be extended unless one accepts an exponential blowup.

To our knowledge we are describing here the only available implementation of a
quantifier elimination procedure for the integers with parameters at all. Our implemen-
tation is part of the reduce package redlog [5,8]. redlog provides an extension of
the computer algebra system reduce to a computer logic system implementing sym-
bolic algorithms on first-order formulas with respect to temporarily fixed first-order
languages and theories. Hence our implementation is embedded in an integrated envi-
ronment that is widely accepted in the scientific community for more than 10 years now.

The plan of this paper is as follows. We introduce in Sect. 2 the notions of bounded
quantifiers and parametric elimination sets. On this basis we give our central elimina-
tion theorem. Section 3 then turns to extended quantifier elimination procedures for
the integers. In Sect. 4 we give an overview on our implementation. This description
is not complete but sufficient to get a good impression about the implementation and
the framework around it. In particular it enables the reader to reproduce the compu-
tation examples described in the following Sect. 5. Some of our examples emphasize
the applicability of our methods in practical computer science. In Sect. 6 we finally
summarize and evaluate our work.

2 Weak quantifier elimination

Already in 1990, Weispfenning has given an effective quantifier elimination procedure
for conventional Presburger arithmetic [28]. This procedure was, however, not yet
described in terms of the virtual substitution framework, which is meanwhile well-
established for similar work mainly over the reals and the p-adic numbers [24,27,30].
It can, however, be reanalyzed as a procedure of that type. We start out doing so by
means of an example. Next we are going to make precise definitions generalizing the
corresponding notion of an elimination set to the more general parametric situation
considered here. Then we establish the notion of weak quantifier elimination for this
parametric situation, and prove a corresponding elimination theorem.

2.1 Reanalysis of conventional Presburger arithmetic

Consider the following formula in conventional Presburger arithmetic:

∃x(5x = b). (1)
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For this, the following is a quantifier-free equivalent according to [28]:

∨

−5≤k≤5

(
b + k ≡5 0 ∧ 5(b + k) = 5b

)
. (2)

From the contained equation, one easily derives k = 0 and thus the equivalence of the
entire elimination result to b ≡5 0. Anyway, let us concentrate on understanding the
original result (2) in the right way for our purposes here.

In terms of virtual substitution, we have derived from formula (1) an elimination
set

E = { (
b + k ≡5 0, b+k

5

) ∣
∣ −5 ≤ k ≤ 5

}
. (3)

Generally, a regular elimination set is a finite set

E = {
(γ1, t1), . . . , (γn, tn)

}
(4)

of guarded points. The ti are pseudo-terms derived as solutions of equations corre-
sponding to characteristic points of the solution sets of atomic formulas contained in
the original formula. One example for such characteristic points are the boundaries
of intervals given by inequalities. By pseudo-term, we mean that the ti are possibly
constructed in a language expanding the original one. For instance, the terms in our
example contain division by 5. The γi are quantifier-free formulas over the original
language.

The general idea is to eliminate an existential quantifier according to the following
scheme:

∃xϕ←→
∨

(γ,t)∈E

(
γ ∧ ϕ[t//x]), (5)

where [t//x] denotes a generalized substitution of t for x in such a way that the
substitution result is a formula in the original language. The corresponding guard γ
serves as a filter deleting (by means of equivalence to false) substitutions that have no
proper interpretation in the original structure. For instance, in our set E in (3) above
the guards take care that the pseudo-terms actually describe integers. In fact, the range
−5 ≤ k ≤ 5 in E has been chosen such that at least one pseudo-term describes an
integer.

It remains to be clarified how the generalized substitution works. We give the
substitution rules for atomic formulas with =, ≤, and ≡m :

(ax = b)
[

b′
a′ //x

]
:= (ab′ = a′b),

(ax ≤ b)
[

b′
a′ //x

]
:= (aa′b′ ≤ a′2b), (6)

(ax ≡m b)
[

b′
a′ //x

]
:= (ab′ ≡ma′ a′b).

From these one can easily derive those for all other relations in our language L , which
we are going to introduce right at the beginning of the next subsection. Furthermore,
the substitution naturally generalizes to quantifier-free formulas.
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In the framework of pure Presburger arithmetic a, b, a′, b′, and m are integers.
We are going to use these rules also for our extended framework. There these objects
are going to be terms. Our slightly more complicated substitution rule for inequalities
reflects the fact that a′ is possibly a negative number.

2.2 Bounded quantifiers

Let us now try to generalize the approach sketched in the previous subsection. We
consider the language of ordered rings with congruences. For convenience, we add
relation symbols, such that the language becomes closed under logical negation:

L =
{

0(0), 1(0),−(1),+(2), ·(2); 	=(2),≤(2), >(2),≥(2), <(2),≡(3), 	≡(3)
}
. (7)

Our domain are the integers Z, which clarifies the semantics of the symbols in L . We
assume without loss of generality that all terms with variables a1, . . . , ar , x1, . . . , xs

are distributive multivariate polynomials in Z[a1, . . . , ar , x1, . . . , xs].
The following is a generalized input formula corresponding to the example in (1).

∃x(ax = b) (8)

Following our ideas of the previous subsection, we would obtain the following elimi-
nation set for this:

E = { (
a 	= 0 ∧ b + k ≡a 0, b+k

a

) ∣
∣ −|a| ≤ k ≤ |a| } ∪ {(true, 0)

}
. (9)

We have added the guarded point (true, 0) in order to substitute at least one test point
also for the case a = 0, when the equation becomes trivial.

Application of the substitution scheme discussed above yields the following output:

∨

−|a|≤k≤|a|

(
a 	= 0 ∧ b + k ≡a 0 ∧ a(b + k) = ab

) ∨ (true ∧ a · 0 = b
)
. (10)

Following the same idea as for the non-uniform variant and observing that 0 = b is a
special case of b ≡a 0, this can be simplified to the quantifier-free formula b ≡a 0,
which is equivalent to the input formula.

Unfortunately, we cannot expect such nice simplifications to be possible in general.
Consequently, we have to expect objects like the one given as (10) to possibly establish
final or intermediate elimination results. For the successive elimination of several
quantifiers we possibly even have to process such objects in the input.

Let us have a closer look at that object. To start with, there occur symbols for the
absolute value of a, which are not contained in our language. These can be considered
as a short notation for a corresponding case distinction on the sign of a. There is,
however, a substantial reason why (10) is by no means a valid first-order formula: The
number of disjuncts in the big disjunction depends on a, and there is no restriction at
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all on the possible choices for a. Hence it cannot be considered a short notation for a
disjunction in the sense of first-order formulas.

Recall that uniform Presburger arithmetic in the form considered here is well-known
to be undecidable [29]. From this it follows in turn that it does not admit quantifier
elimination. From that point of view it is not too surprising that such problems crop up.

On the positive side, the present paper is going to demonstrate that quantifier
elimination becomes possible when admitting formal objects corresponding to the
questionable disjunction in (10). We are now going to make precise definitions for this.

We extend the language of logic by two additional quantifiers
⊔

k:β and
�

k:β . Here
k is a variable, and β is a formula in k and the parameters a1, . . . , ar not containing
any quantifier. The semantics of the new quantifiers is defined as follows:

⊔

k:β
ϕ iff ∃k(β ∧ ϕ),

�

k:β
ϕ iff ∀k(β −→ ϕ). (11)

The quantifier
⊔

k:β is called an existential bounded quantifier if the solution set

Sk
β(z1, . . . , zr ) =

{
z ∈ Z

∣
∣ β(z, z1, . . . , zr )

}
(12)

of β with respect to k is finite for all interpretations z1, …, zr ∈ Z of a1, …, ar .
We call β a k-bound or sometimes more generally a bound-condition. We call k the
bound-variable, and a1, …, ar the bound-parameters. Under the same condition

�
k:β

is called a universal bounded quantifier. Formulas containing no quantifiers at all are
called strictly quantifier-free. Formulas containing exclusively bounded quantifiers
are called weakly quantifier-free.

The choice of notation obviously resembles Weispfenning’s big disjunction and
conjunction operators. In general, however, bounded quantifiers can be explicitly ex-
panded only for fixed choices of all corresponding bound-parameters. The finite solu-
tion sets of all k-bounds can then be effectively enumerated. The idea is to start with
the outermost bounded quantifier and to successively determine the finite solutions
sets by means of dnf computations.

A term t is linear in x1, . . . , xs if it does not contain any products xi x j , in particular
no powers of any xi . A congruence t ≡m t ′ is linear in x1, . . . , xs if so are both t and
t ′, and additionally m does not contain x1, . . . , xs at all. The same definition applies
to incongruences. All other atomic formulas are linear in x1, . . . , xs if so are both
contained terms.

A formula is linear, if each contained atomic formula is linear in the set of variables
that are bounded by some quantifier at the place of its occurrence and each occurrence
of any of our new quantifiers is in fact a bounded quantifier.

Notice that linear formulas resemble formulas of Presburger arithmetic with the
generalization that all coefficients are polynomials in some parameters a1, . . . , ar .
Therefore our framework has also been referred to as uniform Presburger arithmetic
in the literature [29].
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A weak quantifier elimination procedure is an algorithm assigning to any first-order
formula ϕ a weakly quantifier-free formula ϕ∗ such that

ϕ∗ ←→ ϕ. (13)

Accordingly, a strict quantifier elimination procedure assigns to any first-order formula
a strictly quantifier-free formula with property (13). That is, strict quantifier elimination
corresponds to the standard definition of quantifier elimination.

It is now not hard to see that our questionable object (10) corresponds to a weakly
quantifier-free formula

⊔

k: −|a|≤k≤|a|

(
a 	= 0 ∧ b + k ≡a 0 ∧ a(b + k) = ab

) ∨ (true ∧ a · 0 = b
)
. (14)

Note that for any fixed choice of the parameter a, the bounded quantifier can be
straightforwardly replaced by a finite disjunction such that the formula is then strictly
quantifier-free.

To make the picture complete, it is quite instructive to state and briefly discuss the
following result:

Theorem 1 (Undecidability of bounded quantifiers) The question, whether a given
quantifier

⊔
k:β is a bounded quantifier, is undecidable.

Proof Consider an arbitrary multivariate polynomial p ∈ Z[a1, . . . , ar ]. Obviously,
p corresponds to a term in our language L . We define a strictly quantifier-free formula

β := p = 0 ∨ (p 	= 0 ∧ k = 0).

The quantifier
⊔

k:β is a bounded quantifier if and only if β is a k-bound if and only
if p has no integer root. So deciding whether a given quantifier is a bounded one is at
least as hard as deciding whether a given Diophantine equation p = 0 has a solution
or not. This is essentially Hilbert’s 10th problem, which is known to be undecidable
[4,18]. ��

At first glance this result appears a bit discouraging with respect to the framework
that we are proposing here: It is undecidable, whether a given formula is linear and
thus an admissible input formula. There is, however, a substantial fact, which makes
clear that there is not really a problem: In our extended logic there are the same
sets definable as in first-order logic. This allows the user to restrict to first-order
logic, for which linearity if obviously decidable. In addition, there are many natural
applications of bounded quantifiers, where their boundedness is obvious. One example
is the description of intervals.

Finally, it is going to turn out that our elimination procedure delivers linear output
for linear input. This has the important consequence that the procedure can be iterated
after the elimination of some innermost quantifier.
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2.3 Parametric elimination sets

Recall the general idea for the elimination of an existential quantifier by means of an
elimination set E , which we had discussed as Eq. (5):

∃xϕ←→
∨

(γ,t)∈E

(
γ ∧ ϕ[t//x]). (15)

For our generalized approach here it is important to understand that there is not the
entire big disjunction simply replaced by a bounded quantifier. Instead an elimination
set still contains finitely many guarded points, which are substituted by means of a
regular disjunction. Some of these guarded points however, introduce bounded quan-
tifiers within their particular disjunct. In our example elimination set (9) there are two
guarded points, the first of which introduces one bounded quantifier in the respective
weak quantifier elimination result (14). The top-level ∨ there actually corresponds to
the big disjunction above. It should now be obvious that the notion of an elimination
set has to be generalized in such a way that it encodes as well the bounded quantifiers
introduced by each guarded point.

Let ϕ be a weakly quantifier-free formula. A parametric pre-elimination set for
∃xϕ is a finite set

E = {
(γi , ti , Bi )

∣
∣ 1 ≤ i ≤ n

}
, where Bi =

(
(ki j , βi j )

∣
∣ 1 ≤ j ≤ mi

)
. (16)

The guards γi are strictly quantifier-free formulas, the test points ti are pseudo-terms
possibly involving division, the ki j are variables, and the βi j are ki j -bounds. The
variables possibly occurring in γi and ti are restricted to the free variables of ϕ together
with ki1, . . . , kimi . The variables possibly occurring in βi j are restricted to the free
variables of ϕ together with ki1, . . . , ki j−1.

A parametric elimination set E for ∃xϕ is a parametric pre-elimination set such
that using the definition of ϕ[ti//x] from (6), E satisfies

∃xϕ←→
∨

(γi ,ti ,Bi )∈E

⊔

ki1:βi1

. . .
⊔

kimi :βimi

(
γi ∧ ϕ[ti//x]). (17)

Thus a parametric pre-elimination set for ∃xϕ is a set of a particular format, while a
parametric elimination set is suitable for weak quantifier elimination of ∃x from ∃xϕ.

Although the definition is absolutely precise, it might support understanding if
we mention two additional properties, which all our parametric elimination sets are
going to have: First, the variables possibly occurring in γi and ti are going to be even
restricted to the free variables of ϕ together with kimi . Second, for every interpretation
of variables satisfying γi there are no zero denominators in ti , and ti is an integer.

As an example for a parametric elimination set, we formally write down the elimi-
nation set for ∃x(ax = b), which we had informally given as Eq. (9):

E = {(
a 	= 0 ∧ b + k ≡a 0, b+k

a ,
(
(k,−|a| ≤ k ≤ |a|))), (true, 0,∅

)}
. (18)
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Note that the elimination result discussed as (14) is exactly the result of applying E
in the sense of (17).

We have already mentioned that for fixed choices of all parameters, all bounded
quantifiers inside a weakly quantifier-free formula can be equivalently replaced by
regular finite disjunctions. Parametric elimination sets have a very similar property:
For a fixed choice of all parameters, they can be equivalently replaced by regular
elimination sets in the sense of Eq. (4). Aside from justifying the term parametric
elimination set, this is a crucial technical concept for the proof of our elimination
theorem in the following subsection. The remainder of the present subsection is de-
voted to making precise this concept and to proving the relevant results. We start by
giving a construction of the regular elimination sets mentioned above. Notice that the
computation of such sets is not going to be part of the weak quantifier elimination
algorithm.

Consider a parametric pre-elimination set E for ∃xϕ as in (16). Let a1, . . . , ar be
the parameters of ϕ, and let z1, . . . , zr ∈ Z. Substitution of terms for variables on
the guards γi , the test points ti , and the bounds βi j naturally induces a substitution on
parametric pre-elimination sets. Since all integers are definable in our language L , we
may simplify notation and substitute integers instead of the corresponding terms. We
define

E0 := E[z1/a1, . . . , zr/ar ] =
{
(γ ′i , t ′i , B ′i ) | 1 ≤ i ≤ n

}
, (19)

where B ′i = ( (ki j , β
′
i j ) | 1 ≤ j ≤ mi ).

The number of bounded quantifiers introduced by the application of E0 in the sense
of (17) is exactly the sum of all the mi . For technical reasons, we are rather interested
in the maximal number µ(E0) of bounded quantifiers introduced by a single element
of E0, and in the number ν(E0) of elements of E0 actually introducing that maximal
number of bounded quantifiers. Formally, we define for parametric elimination sets F :

µ(F) = max
1≤i≤n

mi and ν(F) = ∣
∣
{

i ∈ {1, . . . , n} ∣∣ mi = µ(F)
}∣
∣. (20)

By these definitions we obviously have µ(F) 	= 0 if and only if F actually introduces
bounded quantifiers. In the positive case, we may assume without loss of generality
that m1 = µ(F). Let us consider separately that first triplet:

E0 =
{(
γ ′1, t ′1,

(
(k11, β

′
11), (k12, β

′
12), . . . , (k1m1 , β

′
1m1
)
))} ∪ Ē0, (21)

where Ē0 = {(γ ′i , t ′i , B ′i ) | 2 ≤ i ≤ n }. Due to our substitution [z1/a1, . . . , zr/ar ],
β ′11 contains only one variable, which is k11. Since by definition β11 is a k11-bound,

the solution set Sk11
β ′11
= Sk11

β11
(z1, . . . , zr ) is finite. We define

E1 =
⋃

y∈S
k11
β′11

{(
γ ′1, t ′1,

(
(k12, β

′
12), . . . , (k1m1 , β

′
1m1
)
))}[

y/k11
] ∪ Ē0. (22)

The step from E0 to E1 has possibly even increased the overall number of bounded
quantifiers. It is, however, not hard to see that with respect to the lexicographic order
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on N
2 we have achieved that

(
µ(E1), ν(E1)

)
<
(
µ(E0), ν(E0)

)
. (23)

Thus after finitely many iterations l of the described process, one finally obtains a
uniquely determined parametric elimination set El with µ(El) = 0. In El we have
Bi = ∅ for all i . Thus El can be straightforwardly transformed into a regular elim-
ination set Π(E, z1, . . . , zr ) by simply dropping all these empty lists, which turns
the contained triplets into pairs. We callΠ(E, z1, . . . , zr ) the (z1, . . . , zr )-projection
of E .

Lemma 2 Let ϕ be a weakly quantifier-free formula with parameters a1, . . . , ar . Let
E be a parametric pre-elimination set for ∃xϕ. Let z1, . . . , zr be an interpretation of
the parameters a1, . . . , ar . Then the following holds:

(i) (γ ′, t ′) ∈ Π(E, z1, . . . , zr ) if and only if there exist (γi , ti , Bi ) ∈ E and

y1 ∈ Ski1
βi1
(z1, . . . , zr ), . . . , ymi ∈ S

kimi
βimi

(z1, . . . , zr , y1, . . . , ymi−1)

such that

γ ′ = γi [z1/a1, . . . , zr/ar , y1/ki1, . . . , ymi /kimi ] and

t ′ = ti [z1/a1, . . . , zr/ar , y1/ki1, . . . , ymi /kimi ].

(ii) If E is even a parametric elimination set for ∃xϕ, then Π(E, z1, . . . , zr ) is a
regular elimination set for ∃xϕ′, where ϕ′ = ϕ[z1/a1, . . . , zr/ar ], i.e.,

∃xϕ′ ←→
∨

(γ ′,t ′)∈Π(E,z1,...,zr )

(
γ ′ ∧ ϕ′[t ′//x]).

Proof (i) Inspection of the construction of Π(E, z1, . . . , zr ) above shows that
each element of this projection is obtained by finitely many substitutions into
some element of E . It is straightforward to verify that these substitutions are
exactly those given in the lemma.

(ii) Since E is a parametric elimination set for∃xϕ, it follows that E0 is a parametric
elimination set for ∃xϕ′. That is

∃xϕ′ ←→
∨

(γ ′i ,t ′i ,B′i )∈E0

⊔

ki1:β ′i1

. . .
⊔

kimi :β ′imi

(
γ ′i ∧ ϕ′[t ′i//x]).
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Considering the construction step for obtaining E1 from E0 it is easy to see
that

⊔

k11:β ′11

⊔

k12:β ′12

. . .
⊔

k1m1 :β ′1m1

(
γ ′1 ∧ ϕ′[t ′1//x])

←→
∨

y∈S
k11
β′11

⊔

k12:β ′12[y/k11]
. . .

⊔

k1m1 :β ′1m1
[y/k11]

(
γ ′1 ∧ ϕ′[t ′1//x])[y/k11

]
,

and consequently

∃xϕ′ ←→
∨

(γ ′i ,t ′i ,B′i )∈E0

⊔

ki1:β ′i1

. . .
⊔

kimi :β ′imi

(
γ ′i ∧ ϕ′[t ′i//x])

←→
∨

y∈S
k11
β′11

⊔

k12:β ′12[y/k11]
. . .

⊔

k1m1 :β ′1m1
[y/k11]

(
γ ′1 ∧ ϕ′[t ′1//x])[y/k11

]

∨
∨

(γ ′i ,t ′i ,B′i )∈E0
i>1

⊔

ki1:β ′i1

. . .
⊔

kimi :β ′imi

(
γ ′i ∧ ϕ′[t ′i//x])

←→
∨

(γ ′,t ′,((ki ,β
′
i )|1≤i≤m))∈E1

⊔

k1:β ′1
. . .

⊔

km :β ′m

(
γ ′ ∧ ϕ′[t ′//x]).

Corresponding equivalences obviously hold for all further steps of the con-
struction such that we finally obtain the assertion for Π(E, z1, . . . , zr ). ��

Next, we are going to show the converse of the previous Lemma 2: A para-
metric pre-elimination set for ∃xϕ is actually a parametric elimination set for ∃xϕ
provided that every (z1, . . . , zr )-projection Π(E, z1, . . . , zr ) is a elimination set for
ϕ′ = ϕ[z1/a1, . . . , zr/ar ].
Lemma 3 Let ϕ be a weakly quantifier-free formula with parameters a1, . . . , ar . Let
E be a parametric pre-elimination set for ∃xϕ with the following property: For each
interpretation z1, . . . , zr ∈ Z of the parameters a1, . . . , ar , we have

∃xϕ′ ←→
∨

(γ ′,t ′)∈Π(E,z1,...,zr )

(
γ ′ ∧ ϕ′[t ′//x]),

where ϕ′ = ϕ[z1/a1, . . . , zr/ar ]. Then E is a parametric elimination set for ∃xϕ.

Proof According to the definition of a parametric elimination set we have to show
that

∃xϕ←→
∨

(γi ,ti ,Bi )∈E

⊔

ki1:βi1

. . .
⊔

kimi :βimi

(
γi ∧ ϕ[ti//x]).
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The direction from the right to the left is trivial. Let vice versa z1, . . . , zr ∈ Z be
an interpretation of a1, . . . , ar such that ∃xϕ holds. It follows immediately that also
∃xϕ′ holds. By the assumption in the lemma it follows that the following application
of Π(E, z1, . . . , zr ) holds:

∨

(γ ′,t ′)∈Π(E,z1,...,zr )

(
γ ′ ∧ ϕ′[t ′//x]).

That is, there is at least one (γ ′, t ′) ∈ Π(E, z1, . . . , zr ) such that γ ′ ∧ϕ′[t ′//x] holds.
According to Lemma 2(i) there exist (γi , ti , Bi ) ∈ E and y1, . . . , ymi such that

γ ′ = γi [z1/a1, . . . , zr/ar , y1/ki1, . . . , ymi /kimi ] and

t ′ = ti [z1/a1, . . . , zr/ar , y1/ki1, . . . , ymi /kimi ].

It follows that

⊔

ki1:β ′i1

. . .
⊔

kimi :β ′imi

(
γi [z1/a1, . . . , zr/ar ] ∧ ϕ′[ti [z1/a1, . . . , zr/ar ]//x]),

where β ′ik = βik[z1/a1, . . . , zr/ar ]. With respect to our fixed interpretation of
a1, . . . , ar by z1, . . . , zr ∈ Z, it follows that the following parametric formula holds:

⊔

ki1:βi1

. . .
⊔

kimi :βimi

(
γi ∧ ϕ[ti//x]).

It finally follows that
∨
(γi ,ti ,Bi )∈E

⊔
ki1:βi1

. . .
⊔

kimi :βimi

(
γi ∧ ϕ[ti//x]) holds. ��

The next lemma states that for the elimination of an existential quantifier in front
of two alternative equivalent weakly quantifier-free formulas the same parametric
elimination set can be used.

Lemma 4 Let ϕ and ϕ̄ be weakly quantifier-free formulas, such that ϕ ←→ ϕ̄. Let
E be a parametric elimination set for ∃xϕ. Then E is also a parametric elimination
set for ∃x ϕ̄.

Proof Let E be of the form

E = {
(γi , ti , Bi ) | 1 ≤ i ≤ n

}
, where Bi =

(
(ki j , βi j ) | 1 ≤ j ≤ mi

)
.

From the assumption ϕ ←→ ϕ̄ it follows that ∃xϕ ←→ ∃x ϕ̄ holds as well. Conse-
quently
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∃x ϕ̄←→ ∃xϕ ←→
∨

(γi ,ti ,Bi )∈E

⊔

ki1:βi1

. . .
⊔

kimi :βimi

(
γi ∧ ϕ[ti//x])

←→
∨

(γi ,ti ,Bi )∈E

⊔

ki1:βi1

. . .
⊔

kimi :βimi

(
γi ∧ ϕ̄[ti//x]).

��

2.4 The elimination theorem

In this subsection we give a weak quantifier elimination procedure for the full linear
theory of the integers.

We call a formula ϕ positive if ϕ does not contain the symbol ¬. We call a weakly
quantifier-free formula ϕ in prenex normal form if ϕ is of the form

Q1
k1:β1

. . . Qn
kn :βn

ψ, (24)

where the Qi are bounded quantifiers, the βi are ki -bounds, andψ is strictly quantifier-
free. The following lemma summarizes some properties of these normal forms, which
we are going to use.

Lemma 5 (i) Letϕ be a weakly quantifier-free formula. Then there exists a weakly
quantifier-free formula ϕ̄ in prenex normal form such that ϕ̄←→ ϕ.

(ii) Let ϕ be a strictly quantifier-free formula. Then there is a strictly quantifier-free
positive formula ϕ̄ such that ϕ̄←→ ϕ. ��

We first restrict our attention to giving an elimination procedure for ∃x in front of
a positive prenex weakly quantifier-free formula. In the case that x occurs in some βi

the bounded quantifier should be transformed into a regular quantifier and eliminated
first. From now on we may assume that x does not occur in any of the bounds βi .

Consider a subset S ⊆ Z. We call z ∈ S an interval boundary in S if z − 1 	∈ S or
z + 1 	∈ S. In the former case, z is called a lower interval boundary. In the latter case,
z is called an upper interval boundary.

Lemma 6 (Representation Lemma) Let ϕ be a formula of the form
∧

i∈I1
ni x �i ri ,

where ni , ri ∈ Z with gcd{ni , ri } = 1 and �i ∈ {=, 	=,≤,>,≥,<} for all i ∈ I1.
Then the set Sx

ϕ is a finite union of intervals. Furthermore, for each interval boundary
z ∈ Sx

ϕ we have

z = ri + k

ni
∈ Z

for some i ∈ I1 and k ∈ Z, where 0 ≤ k ≤ |ni | if z is a lower boundary and
−|ni | ≤ k ≤ 0 if z is an upper boundary. Notice that for this choice of i and k we
have in particular ni | ri + k.
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Proof We prove the first part of our assertion by induction on the number s of occur-
rences of the relation symbol 	= in ϕ. If s = 0, then according to the interpretation of
Presburger formulas we have

Sx
ϕ =

⋂

i∈I1

Sx
ni x�i ri

,

which is an intersection of intervals and thus an interval itself. For s > 0, say �ı̂ equals
	=, we have

ϕ←→

⎛

⎜
⎜
⎝

∧

i∈I1
i 	=ı̂

ni x �i ri ∧ nı̂ x < rı̂

⎞

⎟
⎟
⎠ ∨

⎛

⎜
⎜
⎝

∧

i∈I1
i 	=ı̂

ni x �i ri ∧ nı̂ x > rı̂

⎞

⎟
⎟
⎠ .

By our induction hypothesis, the solution set of each of the two conjunctions above is
a finite union of intervals, and Sx

ϕ is in turn their union.
For the second part, we consider the case that z is a lower boundary. The other

one is analogous. By multiplication with −1 of atomic formulas in ϕ and adapting
the relation symbols accordingly, we may without loss of generality assume that all
ni > 0. Since z ∈ S and z− 1 /∈ S, there is a corresponding atomic formula nı̄ x �ı̄ rı̄

with that very property. It follows from our assumptions made so far that �ı̄ /∈ {≤,<}.
If n = 1 and in addition �ı̄ ∈ {=,≥}, then we choose k = 0. Otherwise, we choose
the unique k ∈ {1, . . . , |nı̄ |}, such that nı̄ | rı̄ + k. Note that rı̄/nı̄ is not an integer
then. ��

We call a subset S ⊆ Z an m-periodic set if z ∈ S implies z±m ∈ S. It is not hard
to see that intersection of an m1-periodic set with an m2-periodic is an m-periodic set,
where m = lcm{m1,m2}. This can be transferred to the solution sets of congruences
and incongruences both of which are periodic sets:

Lemma 7 Let ϕ be a formula of the form
∧

i∈I2
ni x �i ri , where ni , ri ∈ Z and �i is

a congruence or an incongruence with modulus 0 	= mi ∈ Z for all i ∈ I2. Then the
solution set Sx

ϕ is an m-periodic set with m = lcm{mi | i ∈ I2 }.
We now can state the central technical result of this article:

Lemma 8 (Weak elimination of one quantifier) Consider a linear formula ∃xϕ with
parameters a1, . . . , ar , where ϕ is weakly quantifier-free, positive, and in prenex
normal form

ϕ = Q1
k1:β1

. . . Qn
kn :βn

ψ.

Let the set of all atomic formulas of ψ that contain x be

{ ni x �i si + ri | i ∈ I1 ∪̇ I2 }.
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Here, the ni and ri are polynomials in the parameters a1, . . . , ar . The si are poly-
nomials in both the parameters a1, . . . , ar and the bound-variables k1, . . . , kn. For
i ∈ I1, we have �i ∈ {=, 	=,≤,>,≥,<}. For i ∈ I2, we have that �i is either ≡mi

or 	≡mi , where mi is a polynomial in a1, . . . , ar .
Let k, k∗1 , . . . , k∗n denote new variables. Define

β∗1 = β1[k∗1/k1, . . . , k∗n/kn], . . . , β∗n = βn[k∗1/k1, . . . , k∗n/kn].

Define m = lcm{m2
i + 1 | i ∈ I2 }. For i ∈ I1 ∪ I2 define

s∗i = si [k∗1/k1, . . . , k∗n/kn] and δi = −|ni |m ≤ k − s∗i ≤ |ni |m.

Then E = { (γi , ti , Bi ) | i ∈ I1 ∪ I2 } ∪ {(true, 0,∅)}, where

γi =(ni 	= 0 ∧ ri + k ≡ni 0), ti = ri + k

ni
, Bi =

(
(k∗1 , β∗1 ), . . . , (k∗n , β∗n ), (k, δi )

)
,

is a parametric elimination set for ∃xϕ.

Proof Fixing an interpretation z1, . . . , zr ∈ Z of the parameters a1, . . . , ar of ϕ, we
set ϕ′ = ϕ[z1/a1, . . . , zr/ar ]. In the same fashion, we denote

n′i = ni [z1/a1, . . . , zr/ar ],m′i = mi [z1/a1, . . . , zr/ar ],
s′i = si [z1/a1, . . . , zr/ar ], s∗i

′ = s∗i [z1/a1, . . . , zr/ar ],
r ′i = ri [z1/a1, . . . , zr/ar ].

According to Lemma 3 it now suffices to show that

∃xϕ′ ←→
∨

(γ ′,t ′)∈Π(E,z1,...,zr )

(
γ ′ ∧ ϕ′[t ′//x]),

whereΠ(E, z1, . . . , zr ) is the (z1, . . . , zr )-projection of E . The implication from the
right hand side to the left hand side is trivial.

For the other direction, assume that ∃xϕ′ holds. We are now going to take three
steps to transform ϕ′ into an equivalent formula ϕ′′, which is syntactically much more
convenient for our purposes here:

1. We equivalently replace all atomic formulas of the form n′i x ≡0 s′i + t ′i with
corresponding equations n′i x = s′i + t ′i . In the same way, we equivalently replace
n′i x 	≡0 s′i + t ′i with n′i x 	= s′i + t ′i . Let J ⊆ I2 be the set of all indices affected by
this step.

2. Since all the parameters have been substituted with integers, we can expand all
bounded quantifiers into finite disjunctions or conjunctions. After this, all atomic
formulas are of the form n′i x �′i s′′i,y + r ′i , where

s′′i,y = s′′i,y1,...,yn
= s′i [y1/k1, . . . , yn/kn] with y = (y1, . . . , yn) ∈ Z

n .
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More precisely, for j ∈ {1, . . . , n} we have

y j ∈ Ski
βi
(z1, . . . , zr , y1, . . . , y j−1) = S

k∗i
β∗i
(z1, . . . , zr , y1, . . . , y j−1).

Defining s∗i,y1,...,yn

′′ = s∗i
′[y1/k∗1 , . . . , yn/k∗n ] we obviously obtain s′′i,y = s∗i,y

′′.
3. We finally obtain a disjunctive normal form by finitely many applications of the

laws of distributivity. This does not change the set of contained atomic formulas.

If ϕ′′ ←→ true, then also ϕ′ ←→ true, and (true, 0) ∈ Π(E, z1, . . . , zr ) is a suitable
test point. We may from now on assume that not ϕ′′ ←→ true.

We had assumed that ∃xϕ′ holds. It follows that the equivalent formula ∃xϕ′′ holds
as well. From this it follows in turn that ∃xω holds for at least one conjunction ω in the
disjunctive normal form ϕ′′. We may assume without loss of generality that all atomic
formulas in ω actually contain x . We can split ω into the conjunction ω2 containing
all the congruences and incongruences and the conjunction ω1 containing all other
atomic formulas. Formally, ω = ω1 ∧ ω2, where

ω1 =
∧

i∈J1

∧

y∈Yi

n′i x �′i s′′i,y + r ′i and ω2 =
∧

i∈J2

∧

y∈Yi

n′i x �′i s′′i,y + r ′i

for suitable J1 ⊆ I1 ∪ J and J2 ⊆ I2\J . We assume without loss of generality that
n′i > 0 and gcd{n′i , s′′i,y + r ′i } = 1 for all i ∈ J1.

Consider the solution sets Sx
ω1

and Sx
ω2

. On the assumptions made so far, it is clear
that Sx

ω1
	= Z or Sx

ω2
	= Z. It is helpful to distinguish cases on the form of Sx

ω1
for a

moment. Recall that Sx
ω2

is periodic by Lemma 7. Denoting by µ its minimal positive
period, we have 1 ≤ µ ≤ m′ = m[z1/a1, . . . , zr/ar ]:
(a) If Sx

ω1
= Z, then Sx

ω2
	= Z and thus J2 	= ∅. Choose an arbitrary i ∈ J2 and

y ∈ Yi . Then there exists a ∆ ∈ Z with 0 ≤ ∆ < n′i with n′i | r ′i + s′′i,y + �.
Set c = (r ′i + s′′i,y + �)/n′i . Due to the periodicity of Sx

ω2
there exists some

z̄ ∈ Sx
ω2
= Sx

ω with c ≤ z̄ < c+µ ≤ c+m′; in other words, 0 ≤ z̄−c ≤ m′ −1.

(b) If Sx
ω1
	= Z, then still z ∈ Sx

ω1
. According to Lemma 6, z lies an interval S

that is maximal with the property z ∈ S ⊆ Sx
ω1

. Without loss of generality this
interval is bounded from below. Let c ∈ S with c − 1 	∈ S be a corresponding
interval boundary. Then Lemma 6 furthermore guarantees that there is i ∈ J1,
y ∈ Yi , and ∆ ∈ Z with 0 ≤ ∆ ≤ n′i such that c = (r ′i + s′′i,y +�)/n′i . Due to
periodicity there is some z̄ ∈ Sx

ω2
with z̄ ≤ z and c ≤ z̄ < c + µ ≤ c + m′; in

other words, 0 ≤ z̄ − c ≤ m′ − 1. It follows that c ≤ z̄ ≤ z, thus z̄ ∈ S ⊆ Sx
ω1

,
and furthermore z̄ ∈ Sx

ω1
∩ Sx

ω2
= Sx

ω.
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We proceed using the values for i , y,�, c, and z̄ from case (a) or (b), respectively. Set
y = ∆+ n′i (z̄ − c)+ s′′i,y ∈ Z. Then y satisfies the bound δi since

0 ≤ y − s∗i,y
′′ = y − s′′i,y = ∆+ n′i (z̄ − c) ≤ n′i + n′i (m′ − 1) = n′i m′.

By Lemma 2(i) there exists exactly one guarded point (γ ′, t ′) ∈ Π(E, z1, . . . , zr )

originating from (γi , ti , Bi ) ∈ E for our choice of y and y. We can write γ ′ and t ′ as
follows:

γ ′ = (n′i 	= 0 ∧ r ′i + y ≡n′i 0) and t ′ = r ′i + y

n′i
.

For the term r ′i + y we obtain the identity

r ′i + y = r ′i +∆+ n′i (z̄ − c)+ s′′i,y = (r ′i + s′′i,y +�)+ n′i (z̄ − c).

This shows that n′i | r ′i + y. Together with our assumption that n′i > 0 it follows that
γ ′ holds. For t ′ it follows that

t ′ = r ′i + y

n′i
= r ′i + s′′i,y +�

n′i
+ n′i (z̄ − c)

n′i
= c + (z̄ − c) = z̄.

Consequently ω[t ′//x] is equivalent to ω[z̄/x], which in turn holds due to z̄ ∈ Sx
ω. It

further follows that ϕ′′[t ′//x] holds, and in turn ϕ′[t ′//x] holds as well. This proves
that the entire disjunction

∨

(γ ′,t ′)∈Π(E,z1,...,zr )

(
γ ′ ∧ ϕ′[t ′//x])

holds, which is what had to be shown. ��
Theorem 9 (Uniform weak elimination theorem) The full linear theory of the integers
admits weak quantifier elimination.

Proof Let ϕ̂ be a linear formula. We proceed by induction on the number n of regular
quantifiers in ϕ̂. If n = 0, then ϕ̂ is already weakly quantifier-free. So there is nothing
to do. Consider now the case n > 0. There is then a subformula of ϕ̂ of one of the forms
∃xϕ or ∀xϕ, where ϕ is weakly quantifier-free. The latter case can be reduced to the
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former one by means of the equivalence ∀xϕ ←→ ¬∃x¬ϕ. According to Lemma 5
we may assume that ϕ is in prenex normal form and positive. By Lemma 8, there exists
a parametric elimination set E for ∃xϕ. That is, ∃xϕ is equivalent to

ϕ∗ =
∨

(γi ,ti ,Bi )∈E

⊔

ki1:βi1

. . .
⊔

kimi :βimi

(
γi ∧ ϕ[ti//x]), Bi =

(
(ki j , βi j ) | 1 ≤ j ≤ mi

)
.

We obtain ϕ̂∗ from ϕ̂ by equivalently replacing∃xϕwithϕ∗. Inspection of the definition
of E in Lemma 8 shows that ϕ̂∗ is again linear. Hence we can eliminate the remaining
quantifiers from ϕ̂∗ by our induction hypothesis. ��

Note that due to our linearity conditions, sentences in our framework are exactly
Presburger sentences. So our generalized quantifier elimination procedure does not
amount to a generalized decision procedure. It might be noteworthy, however, that
according to our theorem, Presburger arithmetic remains decidable when admitting
bounded quantifiers in the input formulas.

3 Extended weak quantifier elimination

Let us return to our introductory example for conventional elimination sets from
Sect. 2.1: For the conventional Presburger formula ∃x(5x = b), there is a regular
elimination set

E = {(
b + k ≡5 0, b+k

5

) ∣
∣ −5 ≤ k ≤ 5

}
. (25)

The application of this regular elimination set leads to the quantifier-free equivalent

∨

−5≤k≤5

(
b + k ≡5 0 ∧ 5(b + k) = 5b

)
, (26)

which is in turn obviously equivalent to b ≡5 0. It is easy to derive from the original
quantified formula that for any choice of b that satisfies our quantifier-free equivalent,
b/5 is a suitable choice for the existing x . It is well-known that with virtual substitution
methods over other domains such information can be systematically derived during
the elimination process [7,20,30]. A corresponding procedure has been originally
introduced for the reals by Weispfenning, who referred to the problem as the extended
linear elimination problem [31]. Instead of forming a disjunction, we write down the
following data:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

b + (−5) ≡5 0 ∧ 5(b + (−5)) = 5b
{

x = b+(−5)
5

}

...
...

b + 0 ≡5 0 ∧ 5(b + 0) = 5b
{

x = b+0
5

}

...
...

b + 5 ≡5 0 ∧ 5(b + 5) = 5b
{

x = b+5
5

}

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (27)
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For any choice of b, the left hand side formula of exactly the row displayed in the
middle, which origins from k = 0, becomes true. The corresponding right hand side
assignment is our above-mentioned suitable choice for x .

Generally, given a regular elimination set as in (4) the corresponding substitution
scheme (5) can be replaced by the following extended quantifier elimination scheme:

∃xϕ �

⎡

⎢
⎣

γ1 ∧ ϕ[t1//x] {x = t1}
...

...

γn ∧ ϕ[tn//x] {x = tn}

⎤

⎥
⎦ . (28)

We have to clarify the relation between the left hand side and the right hand side in
(28). For obvious syntactic reasons there cannot hold equivalence. Nevertheless, there
are absolutely precise semantics for extended quantifier elimination:

Lemma 10 (Semantics of extended existential quantifier elimination) Fix arbitrary
values for all parameters. The quantified input formula holds if and only if at least
one of the quantifier-free left hand side formulas in the extended quantifier elimination
result holds. In the positive case, for each left hand side formula that holds, the corre-
sponding right hand side assignment describes one possible choice for the existentially
quantified variable.

Extended quantifier elimination straightforwardly generalizes to an entire block
of existential quantifiers. Such as disjunctions of disjunctions can be equivalently
replaced by one disjunction inside regular elimination results, there is also no need
for any nested structures with extended quantifier elimination. On the right hand side
one then obtains sets of several assignments, one for each quantified variable.

For one universal quantifier, we obtain dual semantics:

Lemma 11 (Semantics of extended universal quantifier elimination) Fix arbitrary
values for all parameters. The quantified input formula holds if and only if all of the
quantifier-free left hand side formulas in the extended quantifier elimination result
hold. In the negative case, for each left hand side formula that does not hold, the
corresponding right hand side assignment describes one possible bad choice for the
universally quantified variable. ��

Again, this straightforwardly generalizes to blocks of universal quantifiers. Finally,
if there are several alternating quantifier blocks, extended quantifier elimination is
defined by first applying regular quantifier elimination for all inner blocks. After this
there is extended quantifier elimination applied to the outermost block.

3.1 Extended pure weak quantifier elimination

We restrict for a moment to pure weak quantifier elimination, which means we do not
admit any simplifications during or after the elimination process. Let us switch to the
slightly more general example ∃x(ax = b). For this we had determined the parametric
elimination set

E = {(
a 	= 0 ∧ b + k ≡a 0, b+k

a ,
(
(k,−|a| ≤ k ≤ |a|))), (true, 0,∅

)}
. (29)
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To start with, we copy the idea of our extended quantifier elimination scheme (28).
That is, we produce one row for each formally substituted term, where an assignment
of the respective term appears guarded by the subformula that it would produce with
non-extended quantifier elimination:

[ ⊔

k: −|a|≤k≤|a|
(
a 	= 0 ∧ b + k ≡a 0 ∧ a(b + k) = ab

) {
x = b+k

a

}

true ∧ a · 0 = b {x = 0}

]

. (30)

It is going to turn out that for any interpretation of a, b with a 	= 0 and b ≡a 0
the left hand side formula of the first row becomes true. In order to make use of
the corresponding assignment on the right hand side we do, however, have to take a
closer look at the bounded quantifier. By successively plugging in the at most 2|a|+1
possible choices for k, we can find out that the formula holds due to the possible choice
k = 0 provided that a and b are chosen as mentioned above. This possible choice for k
yields the possible choice for x , which is b/a. In general, there can be several possible
choices for bound-variables, each of which leads to a possible choice for x . Recall
that generally the assignments do not describe solution spaces but yield only sample
solutions. From that point of view it is a reasonable strategy to gain some efficiency
by restricting to finding only one possible choice for the bound-variables.

For a = b = 0 we would use the second row exactly as described for regular
elimination sets above. For all other choices of a and b the original quantified formula
does not hold.

With pure weak quantifier elimination the procedure described above by means of
an example is generally applicable. There is, however, one subtle point about the syn-
tactical form of our extended quantifier elimination result (30). Within the left hand
side formulas, the bound-variables do not occur freely. For instance, renaming k to l in
the formula in the first row would not at all change its semantics. In the corresponding
assignments, in contrast, the bound-variables apparently do occur freely. This obser-
vation is in fact evidence for a much deeper problem, which becomes apparent when
simplification gets involved.

3.2 Extended weak quantifier elimination in general

When applying our methods described here in practice, it is crucial for the success
to use powerful simplification techniques for quantifier-free intermediate results. Our
implementation comprises a variant of the standard simplifier described for the reals
by the second author and others [6,16].

For examining the possible effects of simplification on extended weak quantifier
elimination let us return once more to our simpler example ∃x(5x = b), which is
even a regular Presburger formula. Using parametric elimination sets, the extended
quantifier result is the following instance of (30):

[ ⊔

k: −5≤k≤5

(
5 	= 0 ∧ b + k ≡5 0 ∧ 5(b + k) = 5b

) {
x = b+k

5

}

true ∧ 5 · 0 = b {x = 0}

]

. (31)
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Automatic simplification replaces the formulas in the first and in the second row by
b ≡5 0 and b = 0 respectively. Since the latter implies the former, we may entirely
drop the second row. This way, (31) simplifies as follows:

[
b ≡5 0

{
x = b+k

5

} ]
. (32)

At that point the bound-variable k occurs in the sample point but no longer in the
guarding formula. It is really tempting to believe that in such situations the choice
of k does not matter at all. Our example, however, demonstrates that this belief is
wrong. In fact, we have lost the information contained in (31) that we have to consider
for k the finite range {−5, . . . , 5}. So we have to learn that here the classical scheme
for extended quantifier elimination does not work in combination with simplification,
which is in turn inevitable.

Notice that our counter-example is even a regular Presburger formula. For such
formulas, the problem can obviously be resolved by using in the elimination set instead
of bounded quantifiers a fixed number of corresponding regular test points. This,
however, increases both time complexity and the size of the output by one exponential
step from doubly exponential to triply exponential in the worst case.

Our general solution is to modify the extended quantifier elimination scheme (28)
such that we additionally store the bound-conditions contained in the parametric elim-
ination sets. With respect to a parametric elimination set

E = {
(γ1, t1, B1), . . . , (γn, tn, Bn)

}
, where Bi =

(
(ki1, βi1), . . . , (kimi , βimi )

)
,

this leads to the following extended parametric quantifier elimination scheme:

∃xϕ �

⎡

⎢
⎢
⎢
⎢
⎣

⊔

k11:β11

. . .
⊔

k1m1 :β1m1

(
γ1 ∧ ϕ[t1//x]) {β11, . . . , β1m1} {x = t1}

...
...

...⊔

kn1:βn1

. . .
⊔

knmn :βnmn

(
γn ∧ ϕ[tn//x]) {βn1, . . . , βnmn } {x = tn}

⎤

⎥
⎥
⎥
⎥
⎦
. (33)

We make precise the semantics for existentially quantified formulas. The semantics for
universal formulas can be derived in analogy to the non-parametric case in Lemma 11.

Lemma 12 (Semantics of extended weak quantifier elimination) Fix arbitrary values
for all parameters. The existentially quantified input formula holds if and only if at least
one of the quantifier-free left hand side formulas in the extended parametric quantifier
elimination result holds. In the positive case, for each left hand side formula that
holds, the corresponding conditions in the center column describe a finite range for
the bound-variables ki1, . . . , kimi . Within this range there is at least one choice for
the bound-variables such that the corresponding right hand side assignment describes
one possible choice for the existentially quantified variable. ��
Given a quantified formula ∃xϕ, for fixed parameters good choices for ki1, . . . , kimi

can always be determined: One successively plugs into ϕ the values of the terms ti for
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the finitely many possible choices for ki1, . . . , kimi within the finite range described
by βi1, . . . , βimi .

In general, simplification will not remove all the bounded quantifiers from the left
hand side formulas. Whenever there are any remaining bounded quantifiers in some
left hand side formula, the test whether this formula holds for the fixed parameters
yields in the positive case suitable choices for the corresponding bound-variables.
These choices are, of course, also good ones for the corresponding right hand side
assignment. This considerably reduces the search space.

Similarly to regular extended quantifier elimination, extended weak quantifier elim-
ination generalizes to the entire outermost quantifier block of a prenex input formula
after non-extended weak quantifier elimination of all other quantifiers.

We conclude this section by returning to our example ∃x(5x = b) once more.
Extended weak quantifier elimination yields

[
b ≡5 0 {−5 ≤ k ≤ 5} {x = b+k

5

} ]
. (34)

For the choice b = 15, we plug into 5x = 15 the terms (15 − 5)/5, (15 − 4)/5, . . .
until we find the sample solution (15− 0)/5, which happens to be the only one in this
special case.

4 Implementation

The procedures described in this paper have been implemented in redlog,1 which
stands for reduce logic system [5,8]. It provides an extension of the computer algebra
system reduce to a computer logic system implementing symbolic algorithms on first-
order formulas with respect to temporarily fixed first-order languages and theories.
Such a choice of language and theory is called a domain or, alternatively, context.

Before turning to the integer context relevant for our work here, we briefly sum-
marize the other existing domains together with short names and alternative names,
which are supported for backward compatibility:

boolean, B, ibalp The class of Boolean algebras with two elements. These alge-
bras are uniquely determined up to isomorphisms. boolean comprises quantified
propositional calculus [20].

complex, C, acfsf The class of algebraically closed fields such as the complex
numbers over the language of rings.

differential, dcfsfA domain for computing over differentially closed fields. There
is no natural example for such a field, but the methods can well be used for obtaining
relevant and interpretable results also for reasonable differential fields [9].

padics, dvfsf One prominent example for discretely valued fields are p-adic num-
bers for some prime p with abstract divisibility relations encoding order between
values. All padics algorithms are optionally uniform in p [24].

queues, qqe A (two-sided) queue is a finite sequence of elements of some basic type.
There are two sorts of variables, one for the basic type and one for the queue type.

1 www.redlog.eu
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Accordingly, there is first-order quantification possible for both sorts. So far, the
implementation is restricted to the reals as basic type [23].

reals, R, ofsf The class of real closed fields such as the real numbers with ordering.
This context was the original motivation for redlog. It is still the most important
and most comprehensive one [10].

terms, talp Free Malcev-type term algebras. The available function symbols and
their arity can be freely chosen. [25].

The work discussed here establishes another such context:

integers, Z, pasf The full linear theory of the integers.

The idea of redlog is to combine methods from computer algebra with first-order
logic thus extending the computer algebra system reduce to a computer logic system.
In this extended system both the algebraic side and the logic side greatly benefit from
each other in numerous ways. The current version redlog 3.0 is an integral part
of the computer algebra system reduce 3.8. The implementation of our methods
described here is part of the current development version of redlog. It is going to be
distributed with reduce 3.9. Until then it is freely available on the redlog homepage.
To our knowledge our implementation is the only existing implementation of quantifier
elimination for the integers with multiplicative parameters.

Besides the core elimination methods described in the present paper considerable
further theoretical research has entered the implementation. This comprises at the
first place sophisticated simplification methods for quantifier-free formulas over the
integers in the style of previous work of the second author and others on smart sim-
plification for the reals [6]. The resulting simplification theory for the integers has so
far been described only in the diploma thesis of the first author [16].

The remainder of this section is devoted to a very short primer on redlog and the
integers domain. This is by no means a full documentation. The system provides
much more functionally for handling and manipulating first-order functions than can
be described here. Instead, the idea is to make the present paper self-contained in the
sense that it provides sufficient information such that readers can reproduce the results
discussed in the following section on applications.

After starting reduce, the following commands load the redlog package and
switch to integers:

� load_package redlog;
� rlset integers;

Always use either ; or $ to terminate commands. The latter suppresses the output.
Parentheses may be omitted when functions have only one argument. Turn on the
switch time for displaying the computation times after each command:

� on time;

These times are CPU times, which include the time for printing the results of the
commands. So for longer results it makes a difference for the time whether they are
terminated by ; or $. A formula like for instance

∀x∃y(y ≡a2 x ∧ x < y ∧ y ≤ ax + b + 1)
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can be input and assigned to a variable as follows:

� phi := all(x,ex(y,cong(y,x,aˆ2) and x<y<=a*x+b+1));

redlog automatically transforms all such inputs into some more canonical represen-
tation. This transformation includes subtracting all left hand sides to the corresponding
right hand sides and then canonically ordering the right hand side polynomials. Use
part to select the subformula starting with the existential quantifier:

� phi0 := part(phi,2);

Weak quantifier elimination can be applied as follows:

� sol := rlwqe phi0;

redlog functions are generally prefixed withrl. The size of the solution is determined
as follows:

� rlatnum sol;

The name of this function is derived from atomic formula number. After plugging in
a value for the multiplicative parameter a, the bounded quantifier can be expanded:

� rlexpand sub(a=5,sol);

When there are no multiplicative parameters, weak quantifier elimination and succes-
sive expansion can be performed in one step:

� rlqe sub(a=5,phi0);

In this case, which is the pure Presburger case, we have in fact regular quantifier
elimination. Hence the name rlqe. Extended weak quantifier elimination is applied
as follows:

� sola := rlwqea phi0;

The a in rlwqea stands for answer. Extended quantifier elimination is generally also
referred to as quantifier elimination with answer. Here is how to expand an answer
after substitution for the multiplicative parameter a:

� rlexpanda sub(a=5,sola);

Finally terminate your reduce session:

� quit;

5 Benchmarks and application examples

In this section we collect some practical computations with our implementation. On
the one hand, this gives a good impression of the current practical applicability of the
methods described here. On the other hand, we want to give an idea of the possible
application range. The reduce input for all these examples is available online in the
remis database on the redlog homepage. remis is the redlog example management
and information system. All computations have been performed on a 2 GHz Pentium 4
using 128 MB of RAM. All times given are CPU times.
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5.1 Planar transportation problems

Multidimensional planar transportation problems have been a challenging benchmark
for real quantifier elimination for many years [17,26]. These are integer programming
problems, which are tractable by real methods because the corresponding matrix is
totally unimodular. Since real methods are certainly more efficient, our methods devel-
oped here are not really a reasonable tool for solving planar transportation problems
in practice. Anyway, they provide excellent benchmark examples, which even allow
to directly compare the performance of our weak quantifier elimination with linear
real quantifier elimination.

We adopt the formulations and notations used by Loos and Weispfenning [17].
All formulas are going to be regular Presburger formulas. In dimension 1, the input
formulas are of the form

T1,m := ∃x1 . . . ∃xm

(
m∑

i=1

xi = a ∧
m∧

i=1

xi ≥ 0

)

.

For explaining the entries in the tables below, let us discuss T1,2 in detail. The result
of our weak quantifier elimination procedure (rlwqe) is the following:

⊔

k1: k1+1≥0∧ k1≤0

a + k1 ≥ 0 ∨
⊔

k1: k1−1≤0∧ k1≥0

a − k1 ≥ 0.

The size of this result is 6, which is the number of atomic formulas counting the ones in
the bound-conditions as well. Since we are dealing with regular Presburger formulas,
the bound-conditions do not contain any parameters. They can thus be expanded to
disjunctions (rlexpand). The result of this expansion is a ≥ 0, which has size 1. In
general, one has to expect the size to grow with expansion. The total time is simply
the sum of the two other times. For comparison, the current standard real quantifier

m Time (rlwqe) (s) Size Time (rlexpand) (s) Result Time (total) (s)

5 0.06 192 0.02 a ≥ 0 0.08

6 0.14 480 0.06 a ≥ 0 0.20

7 0.34 1,152 0.24 a ≥ 0 0.58

8 0.80 2,688 0.74 a ≥ 0 1.54

9 1.89 6,144 2.39 a ≥ 0 4.28

10 4.43 13,824 10.05 a ≥ 0 14.48

11 11.10 30,720 44.43 a ≥ 0 55.53

elimination procedure of redlog computes the instances T1,100 and T1,500 in 0.16 s
and 19.76 s, respectively. The result there is also a ≥ 0 in all cases, which is obviously
optimal with respect to redundancy.
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In dimension 2, we have the following family of input formulas, where the number
of quantifiers for the instance T2,m is m2:

T2,m := ∃x11 . . . ∃xmm

⎛

⎝
m∧

i=1

m∑

j=1

xi j = ai ∧
m∧

j=1

m∑

i=1

xi j = b j ∧
m∧

i=1

m∧

j=1

xi j ≥ 0

⎞

⎠ .

In contrast to the situation with dimension 1, our final results here are mostly so large
that it is not reasonable to print them. We instead give the sizes. For m = 1 there do
not any bounded quantifiers come into existence. For comparison, real quantifier

m Time (rlwqe) (s) Size Time (rlexpand) (s) Size Time (total) (s)

1 < 0.01 2 – 2 < 0.01

2 0.01 24 < 0.01 32 < 0.02

3 0.94 5,032 39.62 32,766 40.56

elimination in redlog applied to T2,3, T2,7, and T2,8 yields 36 (in 0.01 s), 12,936 (in
8.85 s), and 54,912 (in 75.11 s) atomic formulas, respectively. In fact, each T2,m is
known to be equivalent to

m∑

i=1

ai =
m∑

j=1

b j ∧
m∧

i=1

ai ≥ 0 ∧
m∧

j=1

b j ≥ 0,

which contains 2m + 1 atomic formulas. For m = 1 we can obtain in our table size 2
instead of 3, because the condition b1 ≥ 0 follows from a1 = b1 ∧ a1 ≥ 0.

5.2 Dependency analysis for automatic parallelization

For executing the following nested for-loops in parallel it is crucial that there is no
data dependency. Generally, a data dependency can occur if there is some array cell
accessed twice where at least one of the accesses is a writing access [15]. In our piece
of code a critical data dependency occurs if there is some array cell written twice and
with different values:

for i := 0 to m do
for j := 0 to m do

A[n*i+j] := i+j
od

od.

In this example the dependency condition involves parameters m and n. Conse-
quently, it is not a regular Presburger formula. It can, however, well be expressed
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within our framework. Here is our formulation:

∃i∃ j∃i ′∃ j ′
(
0 ≤ i ≤ m ∧ 0 ≤ j ≤ m ∧ 0 ≤ i ′ ≤ m ∧ 0 ≤ j ′ ≤ m ∧
(i 	= i ′ ∨ j 	= j ′) ∧ i + j 	= i ′ + j ′ ∧ ni + j = ni ′ + j ′

)
.

To start with, note that real quantifier elimination cannot provide any useful infor-
mation here: It yields 24 atomic formulas after 0.01 s. The result is equivalent to n 	= 1
on the reasonable assumption that both m and n are greater than 0.

Let us now turn to weak quantifier elimination over the integers:rlwqe yields after
3.53 s a quantifier-free equivalent containing 25441 atomic formulas. This is a uniform
result for all possible m and n, which occur there as parameters. It can, however, not
be expanded, because these parameters occur in particular within bound-conditions.
After plugging in m = n = 4 expansion becomes possible. It yields “true” after 1.4 s,
which means there is a dependency.

A bit surprising, it is much more efficient in this example to first plug in values for
the parameters m and n, and then to perform quantifier elimination plus expansion.
This way we obtain “true” for m = n = 4 in only 0.28 s, and we obtain “false” for
m = 4 and n = 5 in 0.29 s.

For understanding why the two approaches are so much out of proportion at present
consider Lemma 8. In the non-parametric case we can and in fact do replace the
definition of m by m = lcm{mi | i ∈ I2 } because mi > 0 for all i . That problem can
be overcome in future versions by adding to the language a function symbol for the
absolute value. In addition, for the definition of E one does not have to consider I2
unless I1 = ∅.

5.3 Information flow control

Program dependency graphs in combination with constraint solving are a recent ap-
proach to information flow control. The aim is to automatically check source code
for security problems such as external manipulation of critical computations. Existing
software tools automatically generate path conditions from source code. These are
first-order sentences, which are necessary conditions for information flow on the path
between two program statements. This works, e.g, for C programs up to 10000 LOC
[21,22].

Consider for instance the following piece of program code, where all variables are
of type integer:

if (a < b) then
if (a+b mod 2 = 0) then

n := (a+b)/2
else

n := (a+b+1)/2
fi
A[n] := get_sensitive_data(x)
send_sensitive_data(trusted_receiver,A[n])

fi
y := A[abs(b-a)].

123



572 A. Lasaruk, T. Sturm

We say that there is an information flow within this piece of code, if the value of some
variable set in there is transferred to another one. To be concrete: Can y get the value of
A[n]? If so, A[n], which is supposed to be sensitive data, could become accessible
outside our piece of code.

The following sentence is a straightforward first-order formulation of a correspond-
ing path condition, which could be automatically generated:

∃a∃b∃n((a < b ∧ a + b ≡2 0 ∧ 2n = a + b ∧
((a < b ∧ b − a = n) ∨ (a ≥ b ∧ a − b = n))) ∨
(a < b ∧ a + b 	≡2 0 ∧ 2n = a + b + 1 ∧
((a < b ∧ b − a = n) ∨ (a ≥ b ∧ a − b = n)))

)
.

If this sentence is equivalent to “false,” then there is definitely no information flow.
If it is in contrast equivalent to “true,” then information flow might take place. Our
quantifier elimination delivers “true” in less than 0.01 s.

Extended quantifier elimination can do even more. Besides the result “true” it
delivers in less than 0.01 s possible values for the external variables a and b such that
information flow might take place:

[
true {−2 ≤ k1 ≤ 2} {n = k1, b = 3k1−1

2 , a = k1−1
2

}

true {−2 ≤ k2 ≤ 2} {
n = k2, b = 3k2

2 , a = k2
2

}

]

.

One easily verifies that k1 = 1 and k2 = 2 deliver suitable values.
While the sample values obtained by extended quantifier elimination are use-

ful for an attacker, the programmer would rather be interested in an exact descrip-
tion of all values for a and b possibly causing problems. This can be obtained in
less than 0.01 s by dropping the quantifiers ∃a∃b from our path condition thus only
eliminating ∃n:

(3a − b + 1 = 0 ∧ a + b ≡2 0 ∧ a < b) ∨ (3a − b = 0 ∧ a + b 	≡2 0 ∧ a < b).

5.4 Feasibility of parametric constraints

As another example for extended weak quantifier elimination we consider the follow-
ing question on the feasibility of a system of two parametric constraints:

∃x(ax ≥ b ∧ cx ≤ d).

Extended weak quantifier elimination yields a result after less than 0.01 s. Using the
absolute value within bound-conditions in order to keep our notation here short this
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result looks as follows:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⊔

k1: −|a|≤k1≤|a|
(b + k1 ≡a 0 ∧ a 	= 0 ∧ a2k1 ≥ 0 ∧ {−|a| ≤ k1 ≤ |a|}

{
x = b+k1

a

}

a2d − abc − ack1 ≥ 0)

⊔

k1: −|c|≤k1≤|c|
(d + k1 ≡c 0 ∧ c 	= 0 ∧ c2k1 ≤ 0 ∧ {−|c| ≤ k1 ≤ |c|}

{
x = d+k1

c

}

acd + ack1 − bc2 ≥ 0)

b ≤ 0 ∧ d ≥ 0 {} {x = 0}

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Let us now choose values a = 5, b = 1, c = 0, and d = 1 for the parameters.
Then it is easy to see that the left hand side formulas in both the second and the third
row do not hold. It is also not hard to see that the formula in the first row holds, where
−5 ≤ k1 = 4 ≤ 5 is the only choice satisfying both the congruence and the inequality
a2k1 ≥ 0. Accordingly, x = 1 is one solution of the given constraint system for our
fixed choice of parameters.

6 Conclusions

We have given a weak quantifier elimination procedure for the full linear theory of the
integers. For this, we have used a proof technique that we expect to be applicable also
to other theories whenever parametric elimination sets become relevant. Next, we have
modified the notion of extended quantifier elimination such that it becomes applicable
to quantifier elimination for Presburger arithmetic and even more generally for the
the full linear theory of the integers. We have given corresponding extended quan-
tifier elimination schemes. All our methods are efficiently implemented in redlog.
We have given various examples computed with this implementation. Our examples
demonstrate that our methods are of considerable relevance for problems in practical
computer science.
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