
Bounded Local Reachability Analysis in
Pre-compiled Applications

Horatiu Jula

Abstract

The goal of the project is to establish whether a program position Ptarget is
reachable from a program location Pstart and, in the same time, infer the con-
straints that have to hold at Pstart for Ptarget to be reachable and learn possible
execution paths that lead to Ptarget through Pstart. The analysis is interprocedural
and it uses Z3 SMT solver to decide the reachability and retrieve the constraints.
The analysis is performed on the CFG of an application bytecode. The project can
be implemented for LLVM or JVM bytecodes.

Our method consists mostly of symbolic execution. However, some static anal-
ysis is necessary for guiding the symbolic execution or filtering the outputs of the
symbolic execution.

Overview
Given the CFG in SSA form of an application bytecode, we generate a symbolic repre-
sentation of the application. The symbolic program captures all the execution suffixes
starting from up to N call frames behind Pstart, crossing Pstart and ending in Ptarget.
We capture execution suffixes starting before Pstart in order to derive context informa-
tion for Pstart, and thus increase the precision of the reachability analysis.

For the reachability analysis, each statement s from the CFG is labeled with a fresh
boolean variable ls in the symbolic program denoting that s has to be executed. By
ρ(s) we denote the symbolic representation of a statement s. For instance, the symbolic
representation of the code

l: if (cond)
l1: s1

else
l2: s2

is

l→ (ρ(cond) ∧ l1 ∨ ¬ρ(cond) ∧ l2)
∧
l1 → ρ(s1)
∧
l2 → ρ(s2)

1



Learning reachability constraints
Let Sym[Prog,N, Pstart, Ptarget] be the symbolic representation of Prog, delimited
byN , Pstart and Ptarget, and lstart/ltarget the labels corresponding to Pstart/Ptarget.

Analyzing whether Ptarget is reachable from Pstart is simply checking the satisfia-
bility of Sym[Prog,N, Pstart, Ptarget]∧lstart∧ltarget. The constraintsCstart→target

under which Ptarget is reachable from Pstart are given by the unsatisfiable core of
Sym[Prog,N, Pstart, Ptarget]∧ lstart∧¬ltarget. We check the satisfiability using the
Z3 SMT solver.

The constraints we need are the projection of Cstart→target over the variables
that are visible at Pstart and influence the outcomes of branches between Pstart and
Ptarget.

Learning possible execution paths
To actually retrieve the feasible execution paths ending in Ptarget and crossing Pstart,
we need to combine symbolic execution with static analysis. Using static analysis,
we find all the execution paths l1 : P1, ..., ln : Pn, lstart : Pstart, l

′
1 : P ′1, ..., l

′
m :

P ′m, ltarget : Ptarget. To see if such a path is feasible, we just check the satisfiability
of Sym[Prog,N, Pstart, Ptarget] ∧ (

∧
1≤i≤n

li) ∧ lstart ∧ (
∧

1≤i≤m

l′i) ∧ ltarget.

To find all the possible call stack suffixes ending in the method Mstart containing
Pstart, we just have to extract the call stacks from the feasible execution paths (trimmed
at Pstart) found above.

Dealing with function calls and loops
To keep the approach scalable, we skip the symbolic execution of the function calls
that do not lead to Ptarget. If the execution depends on their return values, then these
calls are treated as uninterpreted functions in the symbolic program.

We can deal with loops in an iterative fashion. First, we unroll a loop once. If it
is not sufficient (i.e., the assume statement after the unrolled loop makes the symbolic
program unsatisfiable), we try to infer the correct number of iterations from the failed
assume. For instance, if the symbolic execution indicated that assume(i == 100)
failed after an unrolled loop, we can learn that the loop has to be unrolled 100 times.
If we can not infer the actual size of the loop, we double the size of the unrolled
loop. After this learning step, we refine the symbolic program and repeat the symbolic
execution. To do this efficiently, we could add the constraints encoding the new loop
iterations on the fly, in order to make use of the incremental constraint solving.

If Ptarget is inside a recursive function, we treat that function as a loop.

Related work
Previous work exists in achieving immunity against exploits like buffer overrun. Sys-
tems like Vigilante [4], Bouncer [3], [2] or [1] use static analysis and/or symbolic
execution to learn filters from existing exploits. Bouncer [3] also tries to learn new
exploits that exercise the same vulnerability as the original exploit. The filters these
approaches deduce refer only to the inputs of functions that process messages, and

2



they are applied only at the beginning of such functions. Moreover, these approaches
only address exploits like buffer overruns.

We want to develop a technique similar to the above ones, but applicable in a larger
context, to help addressing a larger range of problems. We want our approach to be
able to infer meaningful predicates at arbitrary program positions; the predicates are
expressed in terms of program variables visible at those positions. We will apply our
approach to Dimmunix, to learn new deadlock signatures from an existing deadlock
signature, and to learn conditions that have to hold right after acquiring a lock, for a
deadlock location to be reachable.

In terms of handling loops in symbolic execution, only [1] describes a technique
of handling loops, based on computing fix points. They first identify the induction
variables in each loop. Then, they infer loop invariants in terms of induction variables
and loop conditions. However, it is not clear how they infer the number of iterations
starting from loop invariants. We adopt a simple technique that we believe it will work
well in practice. Our technique is based on learning the size of a loop from symbolic
execution failures caused by insufficient number of unrolled iterations. If we can not
learn the size of the loop this way, we use widening techniques, as [1] uses.

Discussion

JVM vs. LLVM
1. Soot CFG vs. LLVM provided CFG.

2. Inlining filters at runtime in JVM vs. LLVM.

3. Building new call stacks for JVM vs. LLVM applications.

Precision and Soundness
1. For multi-threaded programs, how do we guarantee that the learned predicates

are sound, i.e., that they are not involved in data races between Pstart and Ptarget

?

2. Since the analysis is bounded, and therefore imprecise, could we get too many
possible call stacks ending in Mstart ?

3. Should we simulate two threads in the symbolic execution, to get more realis-
tic signatures for Dimmunix? Otherwise, to get new signatures, we would just
blindly combine call stacks ending in Mstart.

References
[1] D. Brumley, J. Newsome, D. Song, H. Wang, and S. Jha. Towards automatic generation of

vulnerability-based signatures. In In Proceedings of the 2006 IEEE Symposium on Security
and Privacy, pages 2–16, 2006.

[2] M. Castro, M. Costa, and J.-P. Martin. Better bug reporting with better privacy. In ASPLOS,
2008.

[3] M. Costa, M. Castro, L. Zhou, L. Zhang, and M. Peinado. Bouncer: securing software by
blocking bad input. In SOSP, 2007.

[4] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou, L. Zhang, and P. Barham. Vigi-
lante: end-to-end containment of internet worms. In SOSP, 2005.

3


