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Logic in Computer Science 2

computation is deduction

• logic programming, relational data bases
• operational semantics of PLs

proof theory

• mathematics on the computer
• constructive proofs and program synthesis

axiomatized domains

• modelling in logic
• knowledge representation
• specification and verification
• rapid prototyping

descriptive complexity theory



Emphasis in this Course 3

• introduction into logics and deductive services underlying important

domains of application

– first-order logic (universal calculus; theorem proving)
– Horn clause logic (logic programming; goal solving)
– temporal logic (verification of communicating programs; model

checking)
– [typed λ-calculus (constructive proofs; program extraction)]

• proof systems: soundness, completeness, complexity, implementation

• efficient algorithms for specific deduction problems

• exercises: implementation (in SML) of theoretical constructions
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Part 1: First-Order Logic 5

• formalizes fundamental mathematical concepts

• expressive (Turing-complete)

• not too expressive (not axiomatizable: natural numbers, uncountable

sets)

• rich structure of decidable fragments

• rich model and proof theory

First-order logic is also called (first-order) predicate logic.



1.1 Syntax 6

• non-logical symbols (domain-specific)

⇒ terms, atomic formulas

• logical symbols (domain-independent)

⇒ Boolean combinations, quantifiers



Signature 7

Usage: fixing the alphabet of non-logical symbols

Σ = (Ω,Π),

where

• Ω a set of function symbols f with arity n ≥ 0, written f/n,

• Π a set of predicate symbols p with arity m ≥ 0, written p/m.

If n = 0 then f is also called a constant (symbol). If m = 0 then p is also

called a propositional variable. We use letters P , Q, R, S, to denote

propositional variables.

Refined concept for practical applications: many-sorted signatures

(corresponds to simple type systems in programming languages); not so

interesting from a logical point of view



Variables 8

Predicate logic admits the formulation of abstract, schematic assertions.

(Object) variables are the technical tool for schematization.

We assume that

X

is a given countably infinite set of symbols which we use for (the

denotation of) variables.



Terms 9

Terms over Σ (resp., Σ-terms) are formed according to these syntactic

rules:

s, t, u, v ::= x , x ∈ X (variable)

| f(s1, ..., sn) , f/n ∈ Ω (functional term)

By TΣ(X) we denote the set of Σ-terms (over X). A term not containing

any variable is called a ground term. By TΣ we denote the set of Σ-ground

terms.

In other words, terms are formal expressions with well-balanced brackets

which we may also view as marked, ordered trees. The markings are

function symbols or variables. The nodes correspond to the subterms of

the term. A node v that is marked with a function symbol f of arity n has

exactly n subtrees representing the n immediate subterms of v.



Atoms 10

Atoms (also called atomic formulas) over Σ are formed according to this

syntax:

A,B ::= p(s1, ..., sm) , p/m ∈ Π
[

| (s ≈ t) (equation)
]

Whenever we admit equations as atomic formulas we are in the realm of

first-order logic with equality. Admitting equality does not really increase

the expressiveness of first-order logic, (cf. exercises). But deductive

systems where equality is treated specifically can be much more efficient.



Literals 11

L ::= A (positive literal)

| ¬A (negative literal)



Clauses 12

C,D ::= ⊥ (empty clause)

| L1 ∨ . . . ∨ Lk, k ≥ 1 (non-empty clause)



General First-Order Formulas 13

FΣ(X) is the set of first-order formulas over Σ defined as follows:

F,G,H ::= ⊥ (falsum)

| > (verum)

| A (atomic formula)

| ¬F (negation)

| (F ∧G) (conjunction)

| (F ∨G) (disjunction)

| (F → G) (implication)

| (F ↔ G) (equivalence)

| ∀xF (universal quantification)

| ∃xF (existential quantification)



Notational Conventions 14

• We omit brackets according to the following rules:

– ¬ >p ∨ >p ∧ >p → >p ↔

(binding precedences)

– ∨ and ∧ are associative and commutative

– → is right-associative

• Qx1, . . . , xn F abbreviates Qx1 . . . Qxn F .

• infix-, prefix-, postfix-, or mixfix-notation with the usual operator

precedences; examples:

s + t ∗ u for +(s, ∗(t, u))

s ∗ u ≤ t + v for ≤ (∗(s, u),+(t, v))

−s for −(s)

0 for 0()



Example: Peano Arithmetic 15

ΣPA = (ΩPA, ΠPA)

ΩPA = {0/0, +/2, ∗/2, s/1}

ΠPA = {≤ /2, < /2}

+, ∗, <, ≤ infix; ∗ >p + >p < >p ≤

Exampes of formulas over this signature are:

∀x, y(x ≤ y ↔ ∃z(x + z ≈ y))

∃x∀y(x + y ≈ y)

∀x, y(x ∗ s(y) ≈ x ∗ y + x)

∀x, y(s(x) ≈ s(y)→ x ≈ y)

∀x∃y (x < y ∧ ¬∃z(x < z ∧ z < y))



Remarks About the Example 16

We observe that the symbols ≤, <, 0, s are redundant as they can be

defined in first-order logic with equality just with the help of +. The first

formula defines ≤, while the second defines zero. The last formula,

respectively, defines s.

Eliminating the existential quantifiers by Skolemization (cf. below)

reintroduces the “redundant” symbols.

Consequently there is a trade-off between the complexity of the

quantification structure and the complexity of the signature.



Bound and Free Variables 17

In QxF, Q ∈ {∃, ∀}, we call F the scope of the quantifier Qx. An

occurrence of a variable x is called bound, if it is inside the scope of a

quantifier Qx. Any other occurrence of a variable is called free.

Formulas without free variables are also called closed formulas or

sentential forms.

Formulas without variables are called ground.



Example 18

∀

scope
︷ ︸︸ ︷

y (∀

scope
︷ ︸︸ ︷

x p(x) → q(x, y))

The occurrence of y is bound, as is the first occurrence of x. The second

occurrence of x is a free occurrence.



Substitutions 19

Substitution is a fundamental operation on terms and formulas that occurs

in all inference systems for first-order logic. In the presence of

quantification it is surprisingly complex.

By F [s/x] we denote the result of substituting all free occurrences of x in

F by the term s.

Formally we define F [s/x] by structural induction over the syntactic

structure of F by the equations depicted on the next page.



Substitution of a Term for a Free Variable 20

x[s/x] = s

x′[s/x] = x′ ; if x′ 6= x

f(s1, . . . , sn)[s/x] = f(s1[s/x], . . . , sn[s/x])

⊥[s/x] = ⊥

>[s/x] = >

p(s1, . . . , sn)[s/x] = p(s1[s/x], . . . , sn[s/x])

(u ≈ v)[s/x] = (u[s/x] ≈ v[s/x])

¬F [s/x] = ¬(F [s/x])

(FρG)[s/x] = (F [s/x]ρG[s/x]) ; for each binary connective ρ

(QyF )[s/x] = Qz((F [z/y])[s/x]) ; with z a “fresh” variable



Why Substitution is Complicated 21

We need to make sure that the (free) variables in s are not captured upon

placing s into the scope of a quantifier, hence the renaming of the bound

variable y into a “fresh”, that is, previously unused, variable z.

Why this definition of substitution is well-defined will be discussed below.



General Substitutions 22

In general, substitutions are mappings

σ : X → TΣ(X)

such that the domain of σ, that is, the set

dom(σ) = {x ∈ X | σ(x) 6= x},

is finite. The set of variables introduced by σ, that is, the set of variables

occurring in one of the terms σ(x), with x ∈ dom(σ), is denoted by

codom(σ).

Substitutions are often written as [s1/x1, . . . , sn/xn], with xi pairwise

distinct, and then denote the mapping

[s1/x1, . . . , sn/xn](y) =







si, if y = xi

y, otherwise

We also write xσ for σ(x).



Modifying a Substitution 23

The modification of a substitution σ at x is defined as follows:

σ[x 7→ t](y) =







t, if y = x

σ(y), otherwise



Application of a Substitution 24

“Homomorphic” extension of σ to terms and formulas:

f(s1, . . . , sn)σ = f(s1σ, . . . , snσ)

⊥σ = ⊥

>σ = >

p(s1, . . . , sn)σ = p(s1σ, . . . , snσ)

(u ≈ v)σ = (uσ ≈ vσ)

¬Fσ = ¬(Fσ)

(FρG)σ = (Fσ ρGσ) ; for each binary connective ρ

(QxF )σ = Qz (F σ[x 7→ z]) ; with z a fresh variable

E: Convince yourself that for the special case σ = [t/x] the new definition

coincides with our previous definition (modulo the choice of fresh names

for the bound variables).



Structural Induction 25

Theorem 1.1 Let G = (N,T, P, S) be a context-free grammara and let q

be a property of T ∗ (the words over the alphabet T of terminal symbols of

G).

q holds for all words w ∈ L(G), whenever one can prove these 2 properties:

1. (base cases)

q(w′) holds for each w′ ∈ T ∗ such that X ::= w′ is a rule in P .

2. (step cases)

If X ::= w0X0w1 . . . wnXnwn+1 is in P with Xi ∈ N , wi ∈ T ∗, n ≥ 0,

then for all w′
i ∈ L(G,Xi), whenever q(w′

i) holds for 0 ≤ i ≤ n, then

also q(w0w
′
0w1 . . . wnw′

nwn+1) holds.

Here L(G,Xi) ⊆ T ∗ denotes the language generated by the grammar G

from the nonterminal Xi.

aInfinite grammars are also admitted.



Structural Recursion 26

Theorem 1.2 Let G = (N,T, P, S) be a unambiguous context-free

grammar. A function f is well-defined on L(G) (that is, unambiguously

defined) whenever these 2 properties are satisfied:

1. (base cases)

f is well-defined on the words w′ ∈ Σ∗ for each rule X ::= w′ in P .

2. (step cases)

If X ::= w0X0w1 . . . wnXnwn+1 is a rule in P then

f(w0w
′
0w1 . . . wnw′

nwn+1) is well-defined, assuming that each of the

f(w′
i) is well-defined.

Q: Why should G be unambigous?



Substitution Revisited 27

Q: Does Theorem 1.2 justify that our homomorphic extension

apply : FΣ(X)× (X → TΣ(X)) → FΣ(X),

with apply(F, σ) denoted by Fσ, of a substitution is well-defined?

A: We have two problems here. One is that “fresh” is (deliberately) left

unspecified. That can be easily fixed by adding an extra variable counter

argument to the apply function.

The second problem is that Theorem 1.2 applies to unary functions only.

The standard solution to this problem is to curryfy, that is, to consider the

binary function as a unary function producing a unary (residual) function

as a result:

apply : FΣ(X) → ((X → TΣ(X))→ FΣ(X))

where we have denoted (apply(F ))(σ) as Fσ.

E: Convince yourself that this does the trick.



1.2. Semantics 28

To give semantics to a logical system means to define a notion of truth for

the formulas. The concept of truth that we will now define for first-order

logic goes back to Tarski.

In classical logic (dating back to Aristoteles) there are “only” two truth

values “true” and “false” which we shall denote, respectively, by 1 and 0.

There are multi-valued logics having more than two truth values.



Structures 29

A Σ-algebra (also called Σ-interpretation or Σ-structure) is a triple

A = (U, (fA : Un → U)f/n∈Ω, (pA ⊆ Um)p/m∈Π)

where U 6= ∅ is a set, called the universe of A.

Normally, by abuse of notation, we will have A denote both the algebra

and its universe.

By Σ-Alg we denote the class of all Σ-algebras.



Assignments 30

A variable has no intrinsic meaning. The meaning of a variable has to be

defined externally (explicitly or implicitly in a given context) by an

assignment.

A (variable) assignment, also called a valuation (over a given Σ-algebra

A), is a map β : X → A.

Variable assignments are the semantic counterparts of substitutions.



Value of a Term in A with Respect to β 31

By structural induction we define

A(β) : TΣ(X)→ A

as follows:

A(β)(x) = β(x), x ∈ X

A(β)(f(s1, . . . , sn)) = fA(A(β)(s1), . . . ,A(β)(sn)), f/n ∈ Ω

In the scope of a quantifier we need to evaluate terms with respect to

modified assigments. To that end, let β[x→ a] : X → A, for x ∈ X and

a ∈ A, denote the assignment

β[x 7→ a](y) :=







a if x = y

β(y) otherwise



Truth Value of a Formula in A with Respect to β 32

The set of truth values is given as {0, 1}. A(β) : Σ-formulas→ {0, 1} is

defined inductively over the structure of F as follows:

A(β)(⊥) = 0

A(β)(>) = 1

A(β)(p(s1, . . . , sn)) = 1 ⇔ (A(β)(s1), . . . ,A(β)(sn)) ∈ pA

A(β)(s ≈ t) = 1 ⇔ A(β)(s) = A(β)(t)

A(β)(¬F ) = 1 ⇔ A(β)(F ) = 0

A(β)(FρG) = Bρ(A(β)(F ),A(β)(G))

with Bρ the Boolean function associated with ρ

A(β)(∀xF ) = min
a∈U
{A(β[x 7→ a])(F )}

A(β)(∃xF ) = max
a∈U
{A(β[x 7→ a])(F )}



Ex: “Standard” Interpretation N for Peano Arithmetic 33

UN = {0, 1, 2, . . .}

0N = 0

sN : n 7→ n + 1

+N : (n,m) 7→ n + m

∗N : (n,m) 7→ n ∗m

≤N = {(n,m) | n less than or equal to m}

<N = {(n,m) | n less than m}

Note that N is just one out of many possible ΣPA-interpretations.



Values over N for Sample Terms and Formulas 34

Under the assignment β : x 7→ 1, y 7→ 3 we obtain

N(β)(s(x) + s(0)) = 3

N(β)(x + y ≈ s(y)) = 1

N(β)(∀x, y(x + y ≈ y + x)) = 1

N(β)(∀z z ≤ y) = 0

N(β)(∀x∃y x < y) = 1



1.3 Models, Validity, and Satisfiability 35



Validity and Satisfiability 36

F is valid in A under assigment β:

A, β |= F :⇔ A(β)(F ) = 1

F is valid in A (A is a model of F ):

A |= F :⇔ A, β |= F, for all β ∈ X → UA

F is valid (or is a tautology):

|= F :⇔ A |= F, for all A ∈ Σ-Alg

F is called satisfiable iff there exist A and β such that A, β |= F .

Otherwise F is called unsatisfiable.



Substitution Lemma 37

The following theorems, to be proved by structural induction, hold for all

Σ-algebras A, assignments β, and substitutions σ.

Theorem 1.3 For any Σ-term t

A(β)(tσ) = A(β ◦ σ)(t),

where β ◦ σ : X → A is the assignment β ◦ σ(x) = A(β)(xσ).

Theorem 1.4 For any Σ-formula F , A(β)(Fσ) = A(β ◦ σ)(F ).

Corollary 1.5 A, β |= Fσ ⇔ A, β ◦ σ |= F

These theorems basically express that the syntactic concept of substitution

corresponds to the semantic concept of an assignment.



Entailment and Equivalence 38

F entails (implies) G (or G is entailed by F ), written F |= G

:⇔ for all A ∈ Σ-Alg and β ∈ X → UA, whenever A, β |= F then

A, β |= G.

F and G are called equivalent

:⇔ for all A ∈ Σ-Alg und β ∈ X → UA we have A, β |= F ⇔ A, β |= G.

Proposition 1.1 F entails G iff (F → G) is valid

Proposition 1.2 F and G are equivalent iff (F ↔ G) is valid.

Extension to sets of formulas N in the “natural way”, e.g., N |= F

:⇔ for all A ∈ Σ-Alg and β ∈ X → UA:

if A, β |= G, for all G ∈ N , then A, β |= F .



Validity vs. Unsatisfiability 39

Validity and unsatisfiability are just two sides of the same medal as

explained by the following proposition.

Proposition 1.3

F valid ⇔ ¬F unsatisfiable

Hence in order to design a theorem prover (validity checker) it is sufficient

to design a checker for unsatisfiability.

Q: In a similar way, entailment N |= F can be reduced to unsatisfiability.

How?



Theory of a Structure 40

Let A ∈ Σ-Alg. The (first-order) theory of A is defined as

Th(A) =df {G ∈ FΣ(X) | A |= G}

Problem of axiomatizability:

For which structures A can one axiomatize Th(A), that is, can one write

down a formula F (or a recursively enumerable set F of formulas) such

that

Th(A) = {G | F |= G}?

Analoguously for sets of structures.



Two Interesting Theories 41

Let ΣPres = ({0/0, s/1,+/2}, ∅) and Z+ = (Z, 0, s,+) its standard

interpretation on the integers.a Th(Z+) is called Presburger arithmetic.b

Presburger arithmetic is decidable in 3EXPTIMEc (and there is a constant

c ≥ 0 such that Th(Z+) 6∈ NTIME(22
cn

)) and in 2EXPSPACE; usage of

automata-theoretic methods.

However, N∗ = (N, 0, s,+, ∗), the standard interpretation of

ΣPA = ({0/0, s/1,+/2, ∗/2}, ∅), has as theory the so-called Peano

arithmetic which is undedidable, not even recursively enumerable.

Note: The choice of signature can make a big difference with regard to the

compational complexity of theories.
aThere is no essential difference when one, instead of Z, considers the natural numbers

N as standard interpretation.
bM. Presburger (1929)

cD. Oppen: A 222n

upper bound on the complexity of Presburger arithmetic. Journal

of Computer and System Sciences, 16(3):323–332, July 1978



1.4 Algorithmic Problems 42

Validity(F ):

|= F ?

Satisfiability(F ):

F satisfiable?

Entailment(F ,G):

does F entail G?

Model(A,F ):

A |= F?

Solve(A,F ):

find an assignment β such that A, β |= F

Solve(F ):

find a substitution σ such that |= Fσ

Abduce(F ):

find G with “certain properties” such that G entails F



Gödel’s Famous Theorems 43

1. For most signatures Σ, validity is undecidable for Σ-formulas.

(We will prove this below.)

2. For each signature Σ, the set of valid Σ-formulas is recursively

enumerable.

(We will prove this by giving complete deduction systems.)

3. For Σ = ΣPA and N∗ = (N, 0, s,+, ∗), the theory Th(N∗) is not

recursively enumerable.

These complexity results motivate the study of subclasses of formulas

(fragments) of first-order logic

Q: Can you think of any fragments of first-order logic for which validity is

decidable?



Some Decidable Fragments 44

• Monadic class: no function symbols, all predicates unary; validity

NEXPTIME-complete

• Variable-free formulas without equality: satisfiability NP-complete

Q: why?

• Variable-free Horn clauses (clauses with at most 1 positive atom):

entailment is decidable in linear time (cf. below)

• Finite model checking is decidable in time polynomial in the size of the

structure and the formula.



1.5 Normal Forms, Skolemization, Herbrand Models 45

Study of normal forms motivated by

• reduction of logical concepts,

• efficient data structures for theorem proving.

The main problem in first-order logic is the treatment of quantifiers. The

subsequent normal form transformations are intended to eliminate many of

them.



Prenex Normal Form 46

Prenex formulas have the form

Q1x1 . . . Qnxn F,

where F quantifier-free, Qi ∈ {∀,∃}; we call Q1x1 . . . Qnxn the quantifier

prefix and F the matrix of the formula.

Computing prenex normal form by the rewrite relation ⇒P :

(F ↔ G) ⇒P (F → G) ∧ (G→ F )

¬QxF ⇒P Qx¬F (¬Q)

(QxF ρ G) ⇒P Qy(F [y/x] ρ G), y fresh, ρ ∈ {∧,∨}

(QxF → G) ⇒P Qy(F [y/x]→ G), y fresh

(F ρ QxG) ⇒P Qy(F ρ G[y/x]), y fresh, ρ ∈ {∧,∨,→}

Here Q denotes the quantifier dual to Q, i.e., ∀ = ∃ and ∃ = ∀.



Skolemization 47

Intuition: replacement of ∃y by a concrete choice function computing y

from all the arguments y depends on.

Transformation ⇒S (to be applied outermost, not in subformulas):

∀x1, . . . , xn∃yF ⇒S ∀x1, . . . , xnF [f(x1, . . . , xn)/y]

where f/n is a new function symbol (Skolem function).

Together: F
∗
⇒P G

︸︷︷︸

prenex

∗
⇒S H

︸︷︷︸

prenex, no ∃

Theorem 1.6 Let F , G, and H as defined above and closed. Then

(i) F and G are equivalent.

(ii) H |= G but the converse is not true in general.

(iii) G satisfiable (wrt. Σ-Alg) ⇔ H satisfiable (wrt. Σ′-Alg)

where Σ′ = (Ω ∪ SKF,Π), if Σ = (Ω,Π).



Clausal Normal Form (Conjunctive Normal Form) 48

(F ↔ G) ⇒K (F → G) ∧ (G→ F )

(F → G) ⇒K (¬F ∨G)

¬(F ∨G) ⇒K (¬F ∧ ¬G)

¬(F ∧G) ⇒K (¬F ∨ ¬G)

¬¬F ⇒K F

(F ∧G) ∨H ⇒K (F ∨H) ∧ (G ∨H)

(F ∧ >) ⇒K F

(F ∧ ⊥) ⇒K ⊥

(F ∨ >) ⇒K >

(F ∨ ⊥) ⇒K F

These rules are to be applied modulo associativity and commutativity of ∧ and

∨. The first five rules, plus the rule (¬Q), compute the negation normal form

(NNF) of a formula.



The Complete Picture 49

F
∗
⇒P Q1y1 . . . Qnyn G (G quantifier-free)

∗
⇒S ∀x1, . . . , xm H (m ≤ n, H quantifier-free)

∗
⇒K ∀x1, . . . , xm

︸ ︷︷ ︸

leave out

k∧

i=1

ni∨

j=1

Lij

︸ ︷︷ ︸

clauses Ci
︸ ︷︷ ︸

F ′

N = {C1, . . . , Ck} is called the clausal (normal) form (CNF) of F .

Note: the variables in the clauses are implicitly universally quantified.

Theorem 1.7 Let F be closed. F ′ |= F . The converse is not true in

general.

Theorem 1.8 Let F be closed. F satisfiable iff F ′ satisfiable iff N

satisfiable



Optimization 50

Here is lots of room for optimization since we only can preserve

satisfiability anyway:

• size of the CNF exponential when done naively;

• want to preserve the original formula structure;

• want small arity of Skolem functions (cf. Info IV and tutorials)!



Herbrand Interpretations for FOL without Equality 51

From now an we shall consider PL without equality. Ω shall contains at

least one constant symbol.

A Herbrand interpretation (over Σ) is a Σ-algebra A such that

(i) UA = TΣ (= the set of ground terms over Σ)

(ii) fA : (s1, . . . , sn) 7→ f(s1, . . . , sn), f/n ∈ Ω
PSfrag replacements

f

fA(4, . . . ,4) =

4 . . . 4

In other words, values are fixed to be ground terms and functions are fixed

to be the term constructors. Only predicate symbols p/m ∈ Π may be

freely interpreted as relations pA ⊆ T m
Σ .



Herbrand Interpretations as Sets of Ground Atoms 52

Proposition 1.9 Every set of ground atoms I uniquely determines a

Herbrand interpretation A via

(s1, . . . , sn) ∈ pA :⇔ p(s1, . . . , sn) ∈ I

Thus we shall identify Herbrand interpretations (over Σ) with sets of

Σ-ground atoms.

Example: ΣPres = ({0/0, s/1,+/2}, {< /2,≤ /2})

N as Herbrand interpretation over ΣPres:

I = { 0 ≤ 0, 0 ≤ s(0), 0 ≤ s(s(0)), . . . ,

0 + 0 ≤ 0, 0 + 0 ≤ s(0), . . . ,

. . . , (s(0) + 0) + s(0) ≤ s(0) + (s(0) + s(0))

. . .

s(0) + 0 < s(0) + 0 + 0 + s(0)

. . .}



Existence of Herbrand Models 53

A Herbrand interpretation I is called a Herbrand model of F ,

if I |= F .

Theorem 1.10 (Herbrand) Let N be a set of Σ clauses.

N satisfiable ⇔ N has a Herbrand model (over Σ)

⇔ GΣ(N) has a Herbrand model (over Σ)

where

GΣ(N) = {Cσ ground clause | C ∈ N, σ : X → TΣ}

the set of ground instances of N .

[Proof to be given below in the context of the completeness proof for

resolution.]
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For ΣPres one obtains for

C = (x < y) ∨ (y ≤ s(x))

the following ground instances:

(0 < 0) ∨ (0 ≤ s(0))

(s(0) < 0) ∨ (0 ≤ s(s(0)))

. . .

(s(0) + s(0) < s(0) + 0) ∨ (s(0) + 0 ≤ s(s(0) + s(0)))

. . .
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Inference systems Γ (proof calculi) are sets of tuples

(F1, . . . , Fn, Fn+1), n ≥ 0,

called inferences or inference rules, and written

premises
︷ ︸︸ ︷

F1 . . . Fn

Fn+1
︸ ︷︷ ︸

conclusion

.

Clausal inference system: premises and conclusions are clauses. One also

considers inference systems over other data structures (cf. below).

A proof in Γ of a formula F from a a set of formulas N (called

assumptions) is a sequence F1, . . . , Fk of formulas where (i) Fk = F , (ii)

for all 1 ≤ i ≤ k: Fi ∈ N , or else there exists an inference

(Fi1 , . . . , Fini
, Fi) in Γ, such that 0 ≤ ij < i, for 1 ≤ j ≤ ni.
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Provability `Γ of F from N in Γ:

N `Γ F :⇔ there exists a proof Γ of F from N .

Γ is called sound :⇔

F1 . . . Fn

F
∈ Γ ⇒ F1, . . . , Fn |= F

Γ is called complete :⇔

N |= F ⇒ N `Γ F

Γ is called refutationally complete :⇔

N |= ⊥ ⇒ N `Γ ⊥
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markings
∧
= formulas

leaves
∧
= assumptions and axioms

other nodes
∧
= inferences: conclusion

∧
= ancestor

premises
∧
= direct descendants

P (g(a, b))

P (f(a)) ∨ Q(b)

P (f(a)) ∨ Q(b) ¬P (f(a)) ∨ ¬P (f(a)) ∨ Q(b)

¬P (f(a)) ∨ Q(b) ∨ Q(b)

¬P (f(a)) ∨ Q(b)

Q(b) ∨ Q(b)

Q(b) ¬P (f(a)) ∨ ¬Q(b)

¬P (g(a, b))

⊥

Proposition 1.11 (i) Let Γ be sound. Then N `Γ F ⇒ N |= F

(ii) N `Γ F ⇒ there exist F1, . . . , Fn ∈ N s.t. F1, . . . , Fn `Γ F

(resembles compactness).
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We observe that propositional clauses and ground clauses are the same

concept.

In this section we only deal with ground clauses.
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Resolution inference rule:

C ∨A ¬A ∨D

C ∨D

Terminology: C ∨D: resolvent; A: resolved atom

(positive) factorisation:
C ∨A ∨A

C ∨A

These are schematic inference rules; for each substitution of the schematic

variables C, D, and A, respectively, by ground clauses and ground atoms

we obtain an inference rule.

As “∨” is considered associative and commutative, we assume that A and

¬A can occur anywhere in their respective clauses.
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1. ¬P (f(a)) ∨ ¬P (f(a)) ∨Q(b) (given)

2. P (f(a)) ∨Q(b) (given)

3. ¬P (g(b, a)) ∨ ¬Q(b) (given)

4. P (g(b, a)) (given)

5. ¬P (f(a)) ∨Q(b) ∨Q(b) (Res. 2. into 1.)

6. ¬P (f(a)) ∨Q(b) (Fact. 5.)

7. Q(b) ∨Q(b) (Res. 2. into 6.)

8. Q(b) (Fact. 7.)

9. ¬P (g(b, a)) (Res. 8. into 3.)

10. ⊥ (Res. 4. into 9.)
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C ∨A ∨ . . . ∨A ¬A ∨D

C ∨D

1. ¬P (f(a)) ∨ ¬P (f(a)) ∨Q(b) (given)

2. P (f(a)) ∨Q(b) (given)

3. ¬P (g(b, a)) ∨ ¬Q(b) (given)

4. P (g(b, a)) (given)

5. ¬P (f(a)) ∨Q(b) ∨Q(b) (Res. 2. into 1.)

6. Q(b) ∨Q(b) ∨Q(b) (Res. 2. into 5.)

7. ¬P (g(b, a)) (Res. 6. into 3.)

8. ⊥ (Res. 4. into 7.)
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Theorem 1.12 Propositional resolution is sound.

Proof. Let I ∈ Σ-Alg. To be shown:

(i) for resolution: I |= C ∨A, I |= D ∨ ¬A ⇒ I |= C ∨D

(ii) for factorization: I |= C ∨A ∨A ⇒ I |= C ∨A

ad (i): Assume premises are valid in I. Two cases need to be considered:

(a) A is valid, or (b) ¬A is valid.

a) I |= A ⇒ I |= D ⇒ I |= C ∨D

b) I |= ¬A ⇒ I |= C ⇒ I |= C ∨D

ad (ii): even simpler. 2

NB: In propositional logic (ground clauses) we have:

1. I |= L1 ∨ . . . ∨ Ln ⇔ there exists i: I |= Li.

2. I |= A or I |= ¬A.
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Literature: Baader F., Nipkow, T.: Term rewriting and all that.

Cambridge U. Press, 1998, Chapter 2.

For showing completeness of resolution we will make use of the concept of

well-founded orderings. A partial ordering � on a set M is called

well-founded (Noetherian) iff there exists no infinite descending chain

a0 � a1 � . . .

in M .

NB: A partial ordering is transitive and irreflexive and not necessarily

total (however our orderings usually are total).

An x ∈M is called minimal, if there is no y in M such that x � y.

Notation

≺ for the inverse relation �−1

� for the reflexive closure (� ∪=) of �
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Natural numbers. (N, >)

Lexicographic orderings. Let (M1,�1), (M2,�2) be well-founded

orderings. Then let their lexicographic combination

� = (�1,�2)lex

on M1 ×M2 be defined as

(a1, a2) � (b1, b2) :⇔ a1 �1 b1, or else a1 = b1 & a2 �2 b2

This again yields a well-founded ordering (proof below).

Length-based ordering on words. For alphabets Σ with a

well-founded ordering >Σ, the relation �, defined as

w � w′ := α) |w| > |w′| or

β) |w| = |w′| and w >Σ,lex w′,

is a well-founded ordering on Σ∗ (proof below).
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Lemma 1.13 (M,�) is well-founded ⇔ every ∅ ⊂M ′ ⊆M has a

minimal element.

Lemma 1.14

(Mi,�i) well-founded , i = 1, 2 ⇔ (M1 ×M2, (�1,�2)lex) well-founded.

Proof. (i) “⇒”: Suppose (M1 ×M2, �), with � = (�1,�2)lex, is not

well-founded. Then there is an infinite sequence

(a0, b0) � (a1, b1) � (a2, b2) � . . . .

Consider A = {ai | i ≥ 0} ⊆M1. A has a minimal element an, since

(M1,�1) is well-founded. But then B = {bi | i ≥ n} ⊆M2 can not have a

minimal element; contradition to the well-foundedness of (M2,�2).

(ii) “⇐”: obvious. 2
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Let (M,�) be a well-founded ordering.

Theorem 1.15 (Noetherian Induction) A property Q(m) holds for

all m ∈M , whenever for all m ∈M this implication is satisfied:

if Q(m′), for all m′ ∈M such that m � m′,a

then Q(m).b

Proof. Let X = {m ∈M | Q(m) false}. Suppose, X 6= ∅. Since (M,�) is

well-founded, X has a minimal element m1. Hence for all m′ ∈M with

m′ ≺ m1 the property Q(m′) holds. On the other hand, the implication

which is presupposed for this theorem holds in particular also for m1,

hence Q(m1) must be true so that m1 can not be in X. Contradiction. 2

ainduction hypothesis
binduction step
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Let M be a set. A multi-set S over M is a mapping S : M → N. Hereby

S(m) specifies the number of occurrences of elements m of the base set M

within the multi-set S.

m is called an element of S, if S(m) > 0. We use set notation (∈, ⊂, ⊆, ∪,

∩, etc.) with analogous meaning also for multi-sets, e.g.,

(S1 ∪ S2)(m) = S1(m) + S2(m)

(S1 ∩ S2)(m) = min{S1(m), S2(m)}

A multi-set is called finite, if

|{m ∈M | s(m) > 0}| <∞,

for each m in M .

From now on we only consider finite multi-sets.

Example. S = {a, a, a, b, b} is a multi-set over {a, b, c}, where S(a) = 3,

S(b) = 2, S(c) = 0.
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Let (M,�) be a partial ordering. The multi-set extension of � to

multi-sets over M is defined by

S1 �mul S2 :⇔ S1 6= S2

and ∀m ∈M : [S2(m) > S1(m)

⇒ ∃m′ ∈M : (m′ � m and S1(m
′) > S2(m

′))]

Theorem 1.16

a) �mul is a partial ordering.

b) � well-founded ⇒ �mul well-founded

c) � total ⇒ �mul total
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1. We assume that � is any fixed ordering on ground atoms that is total

and well-founded. (There exist many such orderings, e.g., the

lenght-based ordering on atoms when these are viewed as words over a

suitable alphabet such as ASCII.)

2. Extension to literals:

[¬]A �L [¬]B , if A � B

¬A �L A

3. Extension to an ordering �C on ground clauses:

�C = (�L)mul, the multi-set extension of the literal ordering �L.

Notation: � also for �L and �C .
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Suppose B2 � A2 � B1 � A1 � B0 � A0. Dann:

A0 ∨B0

≺

B0 ∨A1

≺

¬B0 ∨A1

≺

¬B0 ∨A2 ∨B1

≺

¬B0 ∨ ¬A2 ∨B1

≺

¬B2 ∨B2
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Proposition 1.17 1. The orderings on literals and clauses are total and

well-founded.

2. Let C and D be clauses with A = max(C), B = max(D), where

max(C) denotes the maximal atom in C.

(i) If A � B then C � D.

(ii) If A = B, A occurs negatively in C but only positively in D, then

C � D.
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Let A � B. Clause sets are then stratified in this form:

{

{

PSfrag replacements

...
...

≺

A

B
. . . ∨ B

. . .
. . . ∨ B ∨ B

. . .
¬B ∨ . . .

. . . ∨ A
. . .

. . . ∨ A ∨ A
. . .
¬A ∨ . . .

. . .

all D
where max(D) = B

all C
where max(C) = A
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Res(N) = {C | C is conclusion of a rule in Res w/ premises in N}

Res0(N) = N

Resn+1(N) = Res(Resn(N)) ∪Resn(N), for n ≥ 0

Res∗(N) =
⋃

n≥0

Resn(N)

N is called saturated (wrt. resolution), if Res(N) ⊆ N .

Proposition 1.18 (i) Res∗(N) is saturated.

(ii) Res is refutationally complete, iff for each set N of ground clauses:

N |= ⊥ ⇔ ⊥ ∈ Res∗(N)
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Given: set N of ground clauses, atom ordering �.

Wanted: Herbrand interpretation I such that

• “many” clauses from N are valid in I;

• I |= N , if N is saturated and ⊥ 6∈ N .

Construction according to �, starting with the minimal clause.
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Let B2 � A2 � B1 � A1 � B0 � A0 (max. atoms in clauses in red)

clauses C IC ∆C Remarks

1 ¬A0 ∅ ∅ true in IC

2 A0 ∨B0 ∅ {B0} B0 maximal

3 B0 ∨A1 {B0} ∅ true in IC

4 ¬B0 ∨A1 {B0} {A1} A1 maximal

5 ¬B0 ∨A2 ∨B1 ∨A0 {B0, A1} {A2} A2 maximal

6 ¬B0 ∨ ¬A2 ∨B1 {B0, A1, A2} ∅ B1 not maximal;

min. counterexample

7 ¬B0 ∨B2 {B0, A1, A2} {B2}

I = {B0, A1, A2, B2} is not a model of the clause set

⇒ there exists a counterexample.
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• Clauses are considered in the order given by ≺.

• When considering C, one already has a partial interpretation IC

(initially IC = ∅) available.

• If C is true in the partial interpretation IC , nothing is done. (∆C = ∅).

• If C is false, one would like to change IC such that C becomes true.

• Changes should, however, be monotone. One never deletes anything

from IC and the truthvalue of clauses smaller than C shouldb be

maintained the way it was in IC .

• Hence, one chooses ∆C = {A} if, and only if, C is false in IC , if A

occurs positively in C (adding A will make C become true) and if this

occurrence in C is strictly maximal in the ordering on literals

(changing the truthvalue of A has no effect on smaller clauses).
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¬B0 ∨A2 ∨B1 ∨A0 ¬B0 ∨ ¬A2 ∨B1

¬B0 ∨ ¬B0 ∨B1 ∨B1 ∨A0

Construction of I for the extended clause set:

clauses C IC ∆C

¬A0 ∅ ∅

A0 ∨ B0 ∅ {B0}

B0 ∨ A1 {B0} ∅

¬B0 ∨ A1 {B0} {A1}

¬B0 ∨ ¬B0 ∨ B1 ∨ B1 ∨ A0 {B0, A1} ∅ B1 occurs twice

minimal counterexample

¬B0 ∨ A2 ∨ B1 ∨ A0 {B0, A1} {A2}

¬B0 ∨ ¬A2 ∨ B1 {B0, A1, A2} ∅ counterexample

¬B0 ∨ B2 {B0, A1, A2} {B2}

The same I, but smaller counterexample, hence some progress was made.
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¬B0 ∨ ¬B0 ∨B1 ∨B1 ∨A0

¬B0 ∨ ¬B0 ∨B1 ∨A0

Construction of I for the extended clause set:

clauses C IC ∆C

¬A0 ∅ ∅

A0 ∨ B0 ∅ {B0}

B0 ∨ A1 {B0} ∅

¬B0 ∨ A1 {B0} {A1}

¬B0 ∨ ¬B0 ∨ B1 ∨ A0 {B0, A1} {B1}

¬B0 ∨ ¬B0 ∨ B1 ∨ B1 ∨ A0 {B0, A1, B1} ∅

¬B0 ∨ A2 ∨ B1 {B0, A1, B1} ∅ true in IC

¬B0 ∨ ¬A2 ∨ B1 {B0, A1, B1} ∅ true in IC

¬B1 ∨ B2 {B0, A1, B1} {B2}

The resulting I = {B0, A1, B1, B2} is a model of the clause set.
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Let N,� be given. We define sets IC and ∆C for all ground clauses C over

the given signature inductively over �:

IC :=
⋃

C�D ∆D

∆C :=







{A}, if C ∈ N , C = C ′ ∨A, A � C ′, IC 6|= C

∅, otherwise

We say that C produces A, if ∆C = {A}.

The candidate model for N (wrt. �) is given as

I�N :=
⋃

C

∆C .

We also simply write IN , or I, for I�
N if � is either irrelevant or known

from the context.
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Sei A � B; producing a new atom does not affect smaller clauses.

{

{

PSfrag replacements

...
...

≺

possibly productive

A

B
. . . ∨ B. . .
. . . ∨ B ∨ B. . .
¬B ∨ . . .

. . . ∨ A. . .

. . . ∨ A ∨ A. . .
¬A ∨ . . .. . .

all D
with max(D) = B

all C
with max(C) = A



Some Properties of the Construction 82

Proposition 1.19

(i) C = ¬A ∨ C ′ ⇒ no D � C produces A.

(ii) C productive ⇒ IC ∪∆C |= C.

(iii) Let D′ � D � C. Then

ID ∪∆D |= C ⇒ ID′ ∪∆D′ |= C and IN |= C.

If, in addition, C ∈ N or max(D) � max(C):

ID ∪∆D 6|= C ⇒ ID′ ∪∆D′ 6|= C and IN 6|= C.

(iv) Let D′ � D � C. Then

ID |= C ⇒ ID′ |= C and IN |= C.

If, in addition, C ∈ N or max(D) � max(C):

ID 6|= C ⇒ ID′ 6|= C and IN 6|= C.

(v) D = C ∨A produces A ⇒ IN 6|= C.
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Theorem 1.20 (Bachmair, Ganzinger 1990) Let � be a clause

ordering, let N be saturated wrt. Res, and suppose that ⊥ 6∈ N . Then

I�N |= N .

Proof. Suppose ⊥ 6∈ N , but I�
N 6|= N . Let C ∈ N minimal (in �) such that

I�N 6|= C. Since C is false in IN , C is not productive. As C 6= ⊥ there

exists a maximal atom A in C.

Case 1: C = ¬A ∨ C ′ (i.e., the maximal atom occurs negatively)

⇒ IN |= A and IN 6|= C ′

⇒ some D = D′ ∨A ∈ N produces A. As D′∨A ¬A∨C′

D′∨C′ , we infer that

D′ ∨ C ′ ∈ N , and C � D′ ∨ C ′ and IN 6|= D′ ∨ C ′

⇒ contradicts minimality of C.

Case 2: C = C ′ ∨A ∨A. Then C′∨A∨A
C′∨A yields a smaller counterexample

C ′ ∨A ∈ N . Contradiction. 2

Corollary 1.21 Let N be saturated wrt. Res. Then N |= ⊥ ⇔ ⊥ ∈ N .
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Theorem 1.22 (Compactness) Let N be a set of propositional

formulas. Then N unsatisfiable if, and only if, there exists M ⊆ N , with

|M | <∞, and M unsatisfiable.

Proof.

“⇐”: trivial.

“⇒”: Let N be unsatisfiable.

⇒ Res∗(N) unsatisfiable

⇒ (completeness of resolution) ⊥ ∈ Res∗(N)

⇒ ∃n ≥ 0 : ⊥ ∈ Resn(N)

⇒ ⊥ has a finite resolution proof P ;

choose M as the set of assumptions in P . 2
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(We use RIF , resolution with implicit factorisation.) Observe that (i)

upon instantiation two literals in a clause can become equal; and (ii)

generally more than one instance of a clause participate in a proof.

PSfrag replacements

P (x) ∨ P (f(a)) ∨ ¬Q(z) ¬P (y) P (g(x′, x)) ∨ Q(x)

P (f(a)) ∨ P (f(a)) ∨ ¬Q(z) ¬P (f(a))¬P (g(b, x)) P (g(b, x)) ∨ Q(x)

¬Q(z)

¬Q(a)

Q(x)

Q(a)

⊥

[f(a)/x]

[a/z]

[f(a)/y] [g(b, x)/y] [b/x′]

[a/x]
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Problem: Make saturation of infinite sets of clauses as they arise from

taking the (ground) instances of finitely many general clauses (with

variables) effective and efficient.

Idea (Robinson 65): • Resolution for general clauses
• Equality of ground atoms is generalized to unifiability of general

atoms
• Only compute most general (minimal) unfiers

Significance: The advantage of the method in (Robinson 65) compared

with (Gilmore 60) is that unification enumerates only those instances

of clauses that participate in an inference. Moreover, clauses are not

right away instantiated into ground clauses. Rather they are

instantiated only as far as required for an inference. Inferences with

non-ground clauses in general represent infinite sets of ground

inferences which are computed simultaneously in a single step.
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General binary resolution Res:

C ∨A D ∨ ¬B

(C ∨D)σ
if σ = mgu(A,B) [resolution]

C ∨A ∨B

(C ∨A)σ
if σ = mgu(A,B) [factorization]

General resolution RIF with implicit factorization:

C ∨A1 ∨ . . . ∨An D ∨ ¬B

(C ∨D)σ
if σ = mgu(A1, . . . , An, B) [RIF]

We additionally assume that the variables in one of the two premises of

the resolutions rule are (bijectively) renamed such that they become

different to any variable in the other premise. We do not formalize this.

Which names one uses for variables is otherwise irrelevant.
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Let E = {s1
.
= t1, . . . , sn

.
= tn} (si, ti terms or atoms) a multi-set of

equality problems. A substitution σ is called a unifier of E :⇔

∀1 ≤ i ≤ n : siσ = tiσ.

If a unifier exists, E is called unifiable. If a unifier of E is more general

than any other unifier of E, then we speak of a most general unifier (mgu)

of E. Hereby a substitution σ is called more general than a substitution τ

σ ≤ τ :⇔ there exists a substitution % s.t. % ◦ σ = τ

where (% ◦ σ)(x) := (xσ)% is the composition of σ and % als mappings.a

Proposition 1.23 (Exercise)

(i) ≤ is a quasi-ordering on substitutions, and ◦ is associative.

(ii) If σ ≤ τ and τ ≤ σ (we write σ ∼ τ in this case), then xσ and xτ are

equal up to (bijective) variable renaming, for any x in X.

aNote that % ◦ σ has a finite domain as required for a substitution.
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t
.
= t, E ⇒MM E

f(s1, . . . , sn)
.
= f(t1, . . . , tn), E ⇒MM s1

.
= t1, . . . , sn

.
= tn, E

f(. . .)
.
= g(. . .), E ⇒MM ⊥

x
.
= t, E ⇒MM x

.
= t, E[t/x]

if x ∈ var(E), x 6∈ var(t)

x
.
= t, E ⇒MM ⊥

if x 6= t, x ∈ var(t)

t
.
= x,E ⇒MM x

.
= t, E

if t 6∈ X
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A substutition σ is called idempotent, if σ ◦ σ = σ.

Proposition 1.24 σ is idempotent iff dom(σ) ∩ codom(σ) = ∅.

If E = x1

.
= u1, . . . , xk

.
= uk, with xi pw. distinct, xi 6∈ var(uj), then E is

called an (equational problem in) solved form representing the solution

σE = [u1/x1, . . . , uk/xk].

Proposition 1.25 If E is a solved form then σE is am mgu of E.

Theorem 1.26 1. If E ⇒MM E′ then σ unifier of E iff σ unfier of E ′

2. If E
∗

⇒MM ⊥ then E is not unifiable.

3. If E
∗

⇒MM E′, with E′ a solved form, then σE′ is an mgu of E.

Proof. (1) We have to show this for each of the rules. Let’s treat the case for the

4th rule here. Suppose σ is a unifier of x
.
= t, that is, xσ = tσ. Thus,

σ ◦ [t/x] = σ[x 7→ tσ] = σ[x 7→ xσ] = σ. Therefore, for any equation u
.
= v in E:

uσ = vσ, iff u[t/x]σ = v[t/x]σ. (2) and (3) follow by induction from (1) using

Proposition 1.25. 2
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Theorem 1.27 E unifiable ⇔ there exists a most general unifier σ of E,

such that σ is idempotent and dom(σ) ∪ codom(σ) ⊆ var(E).

Notation: σ = mgu(E)

Problem: exponential growth of terms possible
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• Systems E irreducible wrt. ⇒MM are either ⊥ or a solved form.

• ⇒MM is Noetherian. A suitable lexicographic ordering on the

multisets E (with ⊥ minimal) shows this. Compare in this order:

1. the number of defined variables (d.h. variables x in equations

x
.
= t with x 6∈ var(t)), which also occur outside their definition

elsewhere in E;

2. the multi-set ordering induced by (i) the size (number of symbols)

in an equation; (ii) if sizes are equal consider x
.
= t smaller than

t
.
= x, if t 6∈ X.

• Therefore, reducing any E by MM with end (no matter what

reduction strategy we apply) in an irreducible E ′ having the same

unifiers as E, and we can read off the mgu (or non-unifiability) of E

from E′ (Theorem 1.26, Proposition 1.25).

• σ is idempotent because of the substitution in rule 4.

dom(σ) ∪ codom(σ) ⊆ var(E), as no new variables are generated.



Lifting Lemma 93

Lemma 1.28 Let C and D be variable-disjoint clauses. If

C


y σ

Cσ

D


y %

D%

C ′
[propositional resolution]

then there exists a substitution τ such that

C D

C ′′



y τ

C ′ = C ′′τ

[general resolution]

Same for factorization.
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Corollary 1.29 Let N be a set of general clauses saturated unter Res,

i.e., Res(N) ⊆ N . Then also GΣ(N) is saturated, that is,

Res(GΣ(N)) ⊆ GΣ(N).

Proof. Wolog we may assume that clauses in N are pairwise

variable-disjoint. (Otherwise make them disjoint, and this renaming

process does neither change Res(N) nor GΣ(N).)

Let C ′ ∈ Res(GΣ(N)), meaning (i) there exist resolvable ground instances

Cσ and D% of N with resolvent C ′, or else (ii) C ′ is a factor of a ground

instance Cσ of C.

Ad (i): By the Lifting Lemma, C and D are resolvable with a resolvent C ′′

with C ′′τ = C ′, for a suitable substitution τ . As C ′′ ∈ N by assumption,

we obtain that C ′ ∈ GΣ(N).

Ad (ii): Similar. 2
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Theorem 1.30 (Herbrand) Let N be a set of Σ-clauses.

N satisfiable ⇔ N has a Herbrand model over Σ

Proof. “⇐”trivial

“⇒”

N 6|= ⊥ ⇒ ⊥ 6∈ Res∗(N) (resolution is sound)

⇒ ⊥ 6∈ GΣ(Res∗(N))

⇒ IGΣ(Res∗(N)) |= GΣ(Res∗(N)) (Theorem 1.20; Corollary 1.29)

⇒ IGΣ(Res∗(N)) |= Res∗(N) (I is a Herbrand model)

⇒ IGΣ(Res∗(N)) |= N (N ⊆ Res∗(N))

2



The Theorem of Löwenheim-Skolem 96

Theorem 1.31 (Löwenheim-Skolem) Let Σ be a countable signature

and let S be a set of closed Σ-formulas. Then S is satisfiable iff S has a

model over a countable universe.

Proof. S kann be at most countably infinite if both X and Σ are countable. Now

generate, maintaining satisfiability, a set N of clauses from S. This extends Σ by

at most countably many new Skolem functions to Σ′. As Σ′ is countable, so is

TΣ′ , the universe of Herbrand-interpretations over Σ′. Now apply Thereom 1.30.

2
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Theorem 1.32 Let N be a set of general clauses where Res(N) ⊆ N .

Then

N |= ⊥ ⇔ ⊥ ∈ N.

Proof. Let Res(N) ⊆ N . By Corollary 1.29: Res(GΣ(N)) ⊆ GΣ(N)

N |= ⊥ ⇔ GΣ(N) |= ⊥ (Theorem 1.30)

⇔ ⊥ ∈ GΣ(N) (propositional resolution sound and complete)

⇔ ⊥ ∈ N

2
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Theorem 1.33 (Compactness Theorem for First-Order Logic)

Let Φ be a set of first-order Formulas. Φ unsatisfiable ⇔ there exists

Ψ ⊆ Φ, |Ψ| <∞, Ψ unsatisfiable.

Proof.

“⇐”: trivial.

“⇒”: Let Φ be unsatisfiable and let N be the set of clauses obtained by

Skolemization and CNF transformation of the formulas in Φ.

⇒ Res∗(N) unsatisfiable

⇒ (Thm 1.32) ⊥ ∈ Res∗(N)

⇒ ∃n ≥ 0 : ⊥ ∈ Resn(N)

⇒ ⊥ has finite resolution proof B of depth ≤ n.

Choose Ψ als the subset of formulas in Φ such that the corresponding

clauses contain the assumptions (leaves) of B. 2
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Literature:

1. Paterson, Wegman: Linear Unification, JCSS 17, 348-375 (1978)

2. Dwork, Kanellakis, Mitchell: On the sequential nature of unification,

Journal Logic Prog. 1, 35-50 (1984)

3. Baader, Nipkow: Term rewriting and all that. Cambridge U. Press

1998, Capter 4.8

Theorem 1.34 (Paterson, Wegman 1978) Unifiability is decidable is

in linear time. A most general unifiers can be computed sind in linearer

time.

Theorem 1.35 (Dwork, Kanellakis, Mitchell 1984) Unifiability is

log-space complete for P , that is, every problem in P can be reduced in log

space to a unifiability problem.

As a consequence, unifiability can, most probably, not be efficiently

parallelized.
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Terms and term

sets as marked,

ordered, acyclic

graphs; each
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Since variables occur at most once they don’t appear as markings m(u)
⇒ binding table.

...

...

...

...

PSfrag replacements
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Rules (modulo symmetry of
.
=) for propagation of

.
= in G:

u
.
= v ⇒ u.i

.
= v.i, 1 ≤ i ≤ arity(u)

u
.
= v, v

.
= w ⇒ u

.
= w

m(u) 6= m(v) ⇒ ⊥ (not unifiable)

If G/
.
= contains a cycle (through oriented term-subterm edges) ⇒ not unifiable.

(Otherwise a term would have to be unified with a proper subterm of itself.)
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problem h(x, x, y, z)
.
= h(g(y), g(g(z)), g(g(a)), g(a))

after propagation:
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...

PSfrag replacements
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the quotient graph is cycle-free

⇒ [g(g(g(a)))/x, g(g(a))/y, g(a)/z] is a mgu.
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For a unification problem with term graph of size n we obtain without

much effort these complexity bounds:

• additional space in O(log2n)

• runtime in O(n3)

In fact, at most n2 edges can be generated by propagation, and each of

those requires time O(n) for a reachability test. For the quotient we have

to compute the strongly connected components and then do the cycle test.

This is both possible in time linear in the size of the graph, that is, in

O(n2).
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Let s, t be terms or atoms.

s matches t :

s ≤ t :⇔ there exists a substitution σ s.t. sσ = t

(σ is called a matching substitution.)

s ≤ t ⇒ σ = mgu(s, t), if var(t) ∩ var(s) = ∅.

Theorem 1.36 (Dwork, Kanellakis, Mitchell 1984) Matching can

be efficiently parallelized.
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Motivation: Search space for Res very large. Idea for improvement:

1. In the completeness proof (Model Existence Theorem 1.20) one only

needs to resolve and factor maximal atoms ⇒ order restrictions

2. Choice of negative literals don’t-care ⇒ selection

A selection function is a mapping

S : C 7→ set of occurrences of negative literals in C

Example of selection with selected literals indicated as X :

¬A ∨ ¬A ∨B

¬B0 ∨ ¬B1 ∨A
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Let � be an atom ordering and S a selection function. A literal L is called

[strictly] maximal wrt. a clause C :⇔ there exists a ground substitution σ

such that for all L′ in C: Lσ � L′σ [Lσ � L′σ].

C ∨A ¬B ∨D

(C ∨D)σ
[ordered resolution with selection]

if σ = mgu(A, B) and

(i) Aσ strictly maximal wrt. Cσ;

(ii) nothing is selected in C by S;

(iii) either ¬B is selected,

or else nothing is selected in ¬B ∨ D and ¬Bσ is maximal wrt. Dσ.

C ∨A ∨B

(C ∨A)σ
[ordered factoring]

if σ = mgu(A,B) and Aσ is maximal wrt. Cσ and nothing is selected in C.
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For ground clauses the resolution inference simplifies to

C ∨A D ∨ ¬A

C ∨D

if

(i) A � C;

(ii) nothing is selected in C by. S;

(iii) ¬A is selected in D ∨ ¬A,

or else nothing is selected in D ∨ ¬A and ¬A � max(D).

NB: For positive literals, A � C is the same as A � max(C).
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1) A ∨B

2) A ∨ ¬B

3) ¬A ∨B

4) ¬A ∨ ¬B

5) B ∨B 1&3

6) B 5

7) ¬A 6&4

8) A 6&2

9) ⊥ 8&7

we assume A � B and S

as indicated by X ; the

maximal atom in a clause

is depicted in red.

With this ordering and selection function the refutation proceeds strictly

deterministinally in this example. Generally, proof search will still be

non-deterministic but the search space will be much smaller than with

unrestricted resolution.
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From
C1 ∨A C2 ∨ ¬A ∨B

C1 ∨ C2 ∨B C3 ∨ ¬B

C1 ∨ C2 ∨ C3

we can obtain by rotation

C1 ∨A

C2 ∨ ¬A ∨B C3 ∨ ¬B

C2 ∨ ¬A ∨ C3

C1 ∨ C2 ∨ C3

another proof of the same clause. In large proofs many rotations are

possible. However, if A � B, then the second proof does not fulfill the

orderings restrictions.

Conclusion: In the presence of orderings restrictions (however one chooses

�) no rotations are possible. In other words, orderings identify exactly one

representant in any class of of rotation-equivalent proofs.
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Lemma 1.37 Let C and D be variable-disjoint clauses. If

C


y σ

Cσ

D


y ρ

Dρ

C ′
[propositional inference in Res�S ]

and if S(Cσ) ' S(C), S(Dρ) ' S(D) (that is, “corresponding” literals are

selected), then there exists a substitution τ such that

C D

C ′′



y τ

C ′ = C ′′τ

[Inference in Res�S ]

Analogously for factoring.
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Corollary 1.38 Let N be a set of general clauses saturated under Res�S ,

i.e. Res�S (N) ⊆ N . Then there exists a selection function S ′ such that

S|N = S′|N and GΣ(N) is also saturated, i.e.,

Res�S′(GΣ(N)) ⊆ GΣ(N).

Proof. We first define the selection function S ′ such that S′(C) = S(C) for

all clauses C ∈ GΣ(N) ∩N , and for C ∈ GΣ(N) \N we choose a fixed but

arbitrary clause D ∈ N mit C ∈ GΣ(D) and define S′(C) to be those

occurrences of literals which are the ground instances of the occurrences

selected by S in D.

The rest of the proof proceeds as in the proof of Corollary 1.29 using the

above lifting lemma. 2
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Theorem 1.39 Let � be an atom ordering and S a selection function

such that Res�S (N) ⊆ N . Then

N |= ⊥ ⇔ ⊥ ∈ N

Proof. “⇐”trivial

“⇒”

(i) propositional level: construction of a candidate model IN as for

unrestricted resolution, except that clauses C in N that have selected

literals are not productive, even when they are false in IC and when their

maximal atom occurs only once and positively.

(ii) general clauses: (i) + Corollary 1.38.

2
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A theoretical application of ordered resolution is Craig-Interpolation:

Theorem 1.40 (Craig 57) Let F and G be two propositional formulas

such that F |= G. Then there exists a formula H (called the interpolant

for F |= G), such that H contains only prop. variables occurring both in F

and in G, and such that F |= H and H |= G.

Proof. Translate F and ¬G into CNF. let N and M , resp., denote the resulting

clause set. Choose an atom ordering � for which the prop. variables that occur

in F but not in G are maximal. Saturate N into N∗ wrt. Res�
S

with an empty

selection function S . Then saturate N∗ ∪ M wrt. Res�
S

saturiert to derive ⊥.

As N∗ is already saturated, due to the ordering restrictions only inferences need

to be considered where premises, if they are from N∗, only contain symbols that

also occur in G. The conjunction of these premises is an interpolant H. 2

The theorem also holds for first-order formulas. For universal formulas the above

proof can be easily extended. In the general case, a proof based on resolution

technology is more complicated because of Skolemization.
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Redundancy

• many proof attempts cannot be completed to proofs: dead ends in

proof search

• one proof attempt may subsume another one

Rules for simplification of TP states N (that we would like to employ)

• Deletion of tautologies

N ∪ {C ∨A ∨ ¬A} . N

• Deletion of subsumed clauses

N ∪ {C,D} . N ∪ {C}

if Cσ ⊆ D (C subsumes D), and Cσ 6= D (subsumption is strict).

• Reduction (also called subsumption resolution)

N ∪ {C ∨ L, D ∨ Cσ ∨ Lσ} . N ∪ {C ∨ L,D ∨ Cσ}



Resolution Prover RP 116

3 clause sets: N(ew) containing new resolvents

P(rocessed) containing simplified resolvents

clauses get into O(ld) once their inferences have been computed

Strategy: Inferences will only be computed when there are no possibilites

for simplification
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Tautology elimination

NNN ∪ {C} | PPP | OOO . NNN | PPP | OOO

if C is a tautology

Forward subsumption

NNN ∪ {C} | PPP | OOO . NNN | PPP | OOO

if some D ∈ PPP ∪OOO subsumes C

Backward subsumption

NNN ∪ {C} | PPP ∪ {D} | OOO . NNN ∪ {C} | PPP | OOO

NNN ∪ {C} | PPP | OOO ∪ {D} . NNN ∪ {C} | PPP | OOO

if C strictly subsumes D

Forward reduction

NNN ∪ {C ∨ L} | PPP | OOO . NNN ∪ {C} | PPP | OOO

if there exists D ∨ L′ ∈ PPP ∪OOO such that L = L′σ and Dσ ⊆ C
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Backward reduction

NNN | PPP ∪ {C ∨ L} | OOO . NNN | PPP ∪ {C} | OOO

NNN | PPP | OOO ∪ {C ∨ L} . NNN | PPP ∪ {C} | OOO

if there exists D ∨ L′ ∈NNN such that L = L′σ and Dσ ⊆ C

Clause processing

NNN ∪ {C} | PPP | OOO . NNN | PPP ∪ {C} | OOO

Inference computation

∅ | PPP ∪ {C} | OOO . NNN | PPP | OOO ∪ {C}, mit NNN = Res�S (OOO ∪ {C})
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Theorem 1.41

N |= ⊥ ⇔ N | ∅ | ∅
∗
. N ′ ∪ {⊥} | |

Proof in

L. Bachmair, H. Ganzinger: Resolution Theorem Proving

(on my Web page under Publications/Journals; appeared in the Handbook

on Automated Theorem Proving, 2001)

Basis for the completeness proof is a formal notion of redundancy as

defined subsequently.
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Let N be a set of ground clauses and C a ground clause (not necessarliy in

N).

C is called redundant in N :⇔ there exists C1, . . . , Cn ∈ N, n ≥ 0 :

Ci ≺ C and C1, . . . , Cn |= C

Redundancy for general clauses:

C is called redundant in N :⇔ Cσ redundant in GΣ(N),

for all ground instances Cσ of C

Intuition: Redundant clauses are no minimal counterexamples for any

interpretation.

NB: The same ordering � is used both for ordering restrictions and for

redundancy.
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Proposition 1.42

• C tautology (i.e., |= C) ⇒ C redundant in any set N .

• Cσ ⊂ D ⇒ D redundant in N ∪ {C}

(stricta Subsumption: N ∪ {C,D} . N ∪ {C})

• Cσ ⊆ D ⇒ D ∨ Lσ redundant in N ∪ {C ∨ L, D}

An application of the latter is reduction (subsumption

resolution) in RP

acf. RP for cases when clauses can be deleted even if subsumption is not strict.
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N is called saturated up to redundancy (wrt. Res�S )

:⇔ Res�S (N \Red(N)) ⊆ N ∪Red(N)

Theorem 1.43 Let N be saturated up to redundancy. Then

N |= ⊥ ⇔ ⊥ ∈ N

Proof. [Sketch]

(i) Ground case:

• consider the construction of the candidate model I�
N for Res�S

• redundant clauses are not productive

• redundant clauses in N are not minimal counterexamples for I�
N

The premises of “essential” inferences are either minimal counterexamples

or productive.

(ii) Lifting: no additional problems over the proof of Theorem 1.39. 2
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Theorem 1.44 (i) N ⊆M ⇒ Red(N) ⊆ Red(M)

(ii) M ⊆ Red(N) ⇒ Red(N) ⊆ Red(N \M)

Proof: Exercise.

We conclude that redundancy is preserved when, during a theorem proving

process, one adds (derives) new clauses or deletes redundant clauses.

The theorems 1.43 and 1.44 are the basis for the completeness proof of our

prover RP .
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We define an improved version of hyperresolution with ordering restrictions and

selection. As for Res the calculus is parameterized by an atom ordering � and a

selection function S.

C1 ∨A1 . . . Cn ∨An ¬B1 ∨ . . . ∨ ¬Bn ∨D

(C1 ∨ . . . ∨ Cn ∨D)σ

with σ = mgu(A1
.
= B1, . . . , An

.
= Bn), if

(i) Aiσ strictly maximal wrt. Ciσ, 1 ≤ i ≤ n;

(ii) nothing is selected in Ci;

(iii) the indicated occurrences of the ¬Bi are exactly the ones selected by

S, or else nothing is selected in the right premise and n = 1 and ¬B1σ is

maximal wrt. Dσ.

HR needs to be complemented by a factoring inference as for Res�S .
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Hyperresolution can be simulated by iterated binary resolution. However

this yields intermediate clauses which HR might not derive, and many of

them might not be extendable into a full HR inference.

There are many more variants of resolution.

We refer to [Bachmair, Ganzinger: Resolution Theorem Proving] for

further reading.
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• Formalisation of a concrete application

• State-of-the-art in automated theorem proving

• Proof by consistency:

consistency ⇒ no unsafe states exist

• Termination requires elimination of redundancy
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Automatic Analysis of Security Protocols using SPASS: An Automated

Theorem Prover for First-Order Logic with Equality

by Christoph Weidenbach

The growing importance of the internet causes a growing need for security

protocols that protect transactions and communication. It turns out that the

design of such protocols is highly error-prone. Therefore, there is a need for tools

that automatically detect flaws like, e.g., attacks by an intruder. Here we show

that our automated theorem prover SPASS can successfully be used to analyze

the Newman-Stubblebine [1] key exchange protocol. To this end the protocol is

formalized in logic and then the security properties are automatically analyzed

by SPASS. A detailed description of the analysis can be found in [2]. The

animation successively shows two runs of the Newman-Stubblebine [1] key

exchange protocol. The first run works the way the protocol is designed to do,

i.e., it establishes a secure key between Alice and Bob.
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The second run shows a potential problem of the protocol. An intruder may

intercept the final message sent from Alice to Bob, replace it with a different

message and may eventually own a key that Bob believes to be a secure key with

Alice. The initial situation for the protocol is that the two participants Alice and

Bob want to establish a secure key for communication among them. They do so

with the help of a trusted server Trust where both already have a secure key for

communication with Trust. The below picture shows a sequence of four message

exchanges that eventually establishes the key.
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1. A
A,Na B

2. B
B,Nb, EKbt

(A,Na, Tb) T

3. T
EKat

(B,Na,Kab, Tb), EKbt
(A,Kab, Tb), Nb A

4. A
EKbt

(A,Kab, Tb), EKab
(Nb) B



What can happen? 131

How can an intruder now break this protocol? The key Kab is only

transmitted inside encrypted parts of messages and we assume that an

intruder cannot break any keys nor does he know any of the initial keys

Kat or Kbt. Here is the solution:
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1. A
A,Na B

2. B
B,Nb, EKbt

(A,Na, Tb) T

3. T
EKat

(B,Na,Kab, Tb), EKbt
(A,Kab, Tb), Nb A

4. A
EKbt

(A,Kab, Tb), EKab
(Nb) B

3. I
EKbt

(A,Na, Tb), ENa
(Nb) B
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The key idea of the formalization is to describe the set of sent messages. This is

done by introducing a monadic predicate M in first-order logic. Furthermore,

every participant holds its set of known keys, represented by the predicates Ak

for Alice’s keys, Bk for Bob’s keys, Tk for Trust’s keys and Ik for the keys the

intruder knows. The rest of the used symbols is introduced and explained with

the first appearance in a formula. Then the four messages can be translated into

the following formulae:

Step 1) A, Na

Ak(key(at, t)) (1)

M(sent(a, b, pair(a, na))) (2)

The two formulae express that initially Alice holds the key at for

communication with t (for Trust) and that she sends the first message. In

order to formalize messages we employ a three place function sent where the

first argument is the sender, the second the receiver and the third the

content of the message. So the constant a represents Alice, b Bob, t Trust



and i Intruder. The functions pair (triple, quadr) simply form sequences of

messages of the indicated length.

Step 2) B, E(Kbt, A, Na, T b), Nb

Bk(key(bt, t)) (3)

∀xa, xna [M(sent(xa, b, pair(xa, xna)))

→ M(sent(b, t, triple(b, nb(xna), encr(triple(xa, xna, tb(xna)), bt)))))]

(4)

Bob holds the key bt for secure communication with Trust and whenever he

receives a message of the form of message 1 (formula (2)), he sends a key

request to Trust according to message 2. Note that encryption is formalized

by the two place function encr where the first argument is the date and the

second argument the key. Every lowercase symbol starting with an x denotes

a variable. The functions nb and tb generate, respectively, a new nonce and

time span out of xa’s (Alice’s) request represented by her nonce xna.



Step 3) E(Kat, B, Na, Kab, T b), E(Kbt, A, Kab, T b), Nb

Tk(key(at, a))) ∧ Tk(key(bt, b)) (5)

∀xb, xnb,xa, xna, xbet, xbt, xat, xk

[ (M(sent(xb, t, triple(xb, xnb, encr(triple(xa, xna, xbet), xbt))))

∧ Tk(key(xbt, xb))

∧ Tk(key(xat, xa)))

→ M(sent(t, xa, triple(encr(quadr(xb, xna, kt(xna), xbet), xat),

encr(triple(xa, kt(xna), xbet), xbt), xnb))) ]

(6)

Trust holds the keys for Alice and Bob and answers appropriately to a

message in the format of message 2. Note that decryption is formalized by

unification with an appropriate term structure where it is checked that the

necessary keys are known to Trust. The server generates the key by

applying his key generation function kt to the nonce xna.



Step 4) E(Kbt, A, Kab, T b), E(Kab, Nb)

∀xnb,xbet, xk, xm, xb, xna

[ M(sent(t, a, triple(encr(quadr(xb, xna, xk, xbet), at), xm, xnb))

→ (M(sent(a, xb, pair(xm, encr(xnb, xk)))) ∧ Ak(key(xk, xb))) ]

(7)

∀xbet,xk, xnb, xa, xna

[ M(sent(xa, b, pair(encr(triple(xa, xk, tb(xna)), bt), encr(nb(xna), xk)))

→ Bk(key(xk, xa))]

(8)

Finally, Alice answers according to the protocol to message 3 and stores the

generated key for communication, formula (7). Formula (8) describes Bob’s

behaviour when he receives Alice’s message. Bob decodes this message and

stores the new key as well.
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A
A,Na B

→P (a)

→Ak(key(at , t))

→M(sent(a, b, pair (a,na)))

→Sa(pair(b,na))



A’s Formalization Part II 139

T
EKat

(B,Na,Kab, Tb), EKbt
(A,Kab, Tb), Nb A

A
EKbt

(A,Kab, Tb), EKab
(Nb) B

M(sent(t, a, triple(encr(quadr(xb, xna, xk , xbet), at), xm, xnb))),

Sa(pair(xb, xna))

→

M(sent(a, xb, pair(xm, encr (xnb, xk)))),

Ak(key(xk , xb))

NB: Variables (all implicitly universally quantified) start with letter “x”.
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The Intruder is modeled as an exhaustive hacker. He records all messages,

decomposes the messages as far as possible and generates all possible new

compositions. Furthermore, any object he has at hand is considered as a key and

tried to used for encryption as well as for decryption. All these messages are

posted. The set of messages the intruder has available is represented by the

predicate Im.

The participants are Alice, Bob, Trust and Intruder:

P (a) ∧ P (b) ∧ P (t) ∧ P (i) (9)

The intruder records all messages:

∀xa, xb, xm [M(sent(xa, xb, xm)) → Im(xm)] (10)



He decomposes and decrypts all messages he owns the key for:

∀u, v [Im(pair(u, v)) → Im(u) ∧ Im(v)] (11)

∀u, v, w [Im(triple(u, v, w)) → Im(u) ∧ Im(v) ∧ Im(w)] (12)

∀u, v, w, z [Im(quadr(u, v, w, z)) → Im(u) ∧ Im(v) ∧ Im(w) ∧ Im(z)] (13)

∀u, v, w [Im(encr(u, v)) ∧ Ik(key(v, w)) → Im(u)] (14)

He composes all possible messages:

∀u, v [Im(u) ∧ Im(v) → Im(pair(u, v))] (15)

∀u, v, w [Im(u) ∧ Im(v) ∧ Im(w) → Im(triple(u, v, w))] (16)

∀u, v, w, x [Im(u) ∧ Im(v) ∧ Im(w) ∧ Im(x) → Im(quadr(u, v, w, x))] (17)

He considers every item to be a key and uses it for encryption:

∀v, w [Im(v) ∧ P (w) → Ik(key(v, w))] (18)

∀u, v, w [Im(u) ∧ Ik(key(v, w)) ∧ P (w) → Im(encr(u, v))] (19)

He sends everything:

∀x, y, u [P (x) ∧ P (y) ∧ Im(u) → M(sent(x, y, u))] (20)



Finally we must formalize the insecurity requirement. Intruder must not have

any key for communication with Bob that Bob believes to be a secure key for

Alice:

∃x [Ik(key(x, b)) ∧ Bk(key(x, a))]
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...

M(sent(xa, xb, xm))→ Im(xm)
...

Im(pair(x1, x2))→ Im(x1)

Im(pair(x1, x2))→ Im(x2)
...

Im(x1), Im(x2)→ Im(pair(x1, x2))
...
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...

P(x1),P(x2), Im(x3)→ Im(sent(x1, x2, x3))
...

P(x1), Im(x2)→ Ik(key(x1, x2))

Im(x1), Ik (key(x2, x3))→ Im(encr(x1, x2))
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Now the protocol formulae (1)-(8) together with the intruder formulae (9)-(20)

and the insecurity formula above can be given to SPASS. Then SPASS

automatically proves that this formula holds and that the problematic key is the

nonce Na. The protocol can be repaired by putting type checks on the keys,

such that keys can no longer be confused with nonces. This can be added to the

SPASS first-order logic formalization. Then SPASS disproves the insecurity

formula above. This capability is currently unique to SPASS. Although some

other provers might be able to prove that the insecurity formula holds in the

formalization without type checks, we are currently not aware of any prover that

can disprove the insecurity formula in the formalization with type checking.

Further details can be found in [2], below. The experiment is available in full

detail from the SPASS home page in the download area.

References:

[1] Neuman, B. C. and Stubblebine, S. G., 1993, A note on the use of

timestamps as nonces, ACM SIGOPS, Operating Systems Review, 27(2), 10-14.

[2] Weidenbach, C., 1999, Towards an automatic analysis of security protocols in



first-order logic, in 16th International Conference on Automated Deduction,

CADE-16, Vol. 1632 of LNAI, Springer, pp. 378-382.
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• Resolution is a machine calculus..

• subtle interleaving of enumerating ground instances and proving

inconsistency through the use of unification

• parameters atom ordering � and selection function S; approximative

solving of ordering constraints on the non-ground level

• completeness proof by contructing candidate models from reductive

clauses C ∨A, A � C; inferences with those reduce counterexamples.

• local restrictions of inferences via � and S ⇒ fewer proof variants

• global restrictions of the search space via elimination of redundancy

⇒ computing with “smaller” ’ clause sets;

⇒ termination on many decidable fragments

• however: not good enough for dealing with orderings, equality and

more specific algebraic theories (lattices, abelian groups, rings, fields)

⇒ further specialization of inference systems required



1.11 Semantic Tableaux 148

analytic: inferences according to the logical content of the symbols

goal oriented: inferences operate directly on the goal to be proved

global: some inferences affect the entire proof state (set of formulas)

Literature: Fitting book, chapt. 3, 6, 7.

R.M. Smullyan: First-Order Logic, Dover Publ., New York, 1968,

revised 1995.

Like resolution, semantic tableaux were developed in the sixties, by R.M.

Smullyan,a on the basis of work by Gentzen in the 30ies and of Beth in the

50ies.
aAccording to Fitting, semantic tableaux were first proposed by the Polish scientist

Z. Lis in a paper in Studia Logica 10, 1960 that was only recently rediscovered.



A Tableau for {P ↓ (Q ∨R), ¬(Q ∧ ¬R)} 149

3. ¬Q

6. ¬P

7. ¬(Q ∨R)

8. ¬Q

9. ¬R

4. ¬¬R

5. R

!
!

!
!

P
P

P
P

P

1. P ↓ (Q ∨R)

2. ¬(Q ∧ ¬R)

This tableau is not “maximal”, however the first “path” is. This path is

not “closed”, hence the set {1, 2} is satisfiable. (These notions will all be

defined below.)
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conjunctive disjunctive

α α1 α2 β β1 β2

X ∧ Y X Y ¬(X ∧ Y ) ¬X ¬Y

¬(X ∨ Y ) ¬X ¬Y X ∨ Y X Y

¬(X → Y ) X ¬Y X → Y ¬X Y

¬(X ← Y ) ¬X Y X ← Y X ¬Y

¬(X ↑ Y ) X Y X ↑ Y ¬X ¬Y

X ↓ Y ¬X ¬Y ¬(X ↓ Y ) X Y

“↑” is “nand”, “↓” is “nor”.

Subsequently we will only use the binary connectives listed above. The

others we can eliminate.
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The rules are applied to the formulas in a tableau and expand the tableau

at a leaf. We append the conclusions of a rule (horizontally or vertically)

at a leaf, whenever the premise of the expansion rule matches a formula

appearing anywhere on the path from the root to that leaf.

Negation Elimination
¬¬F

F
¬>
⊥

¬⊥
>

α-Expansion (append α1 and α2 one on top of the other)

α

α1

α2

β-Expansion (append β1 and β2 horizontally; branch into β1 and β2)

β

β1 | β2
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A semantic tableau is a marked (by formulas), finite, unordered tree and

inductively defined as follows: Let {F1, . . . , Fn} be a set of formulas.

(i) The tree consisting of a single patha

F1

F2

...

Fn

is a tableau for {F1, . . . , Fn}.

(ii) If T is a tableau for {F1, . . . , Fn} and if T ′ results from T by applying

an expansion rule then T ′ is also a tableau for {F1, . . . , Fn}.

A path (from the root to a leaf) in a tableau is called closed, if it either

contains ⊥, or else it contains both some formula F and its negation ¬F .

Otherwise the path is called open.
aWe often do not draw tree edges leaving nodes having a single successor only.
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A tableau is called closed, if all paths are closed.

A tableau proof for F is a closed tableau for {¬F}.

A path P in a tableau is called maximal, if for each non-atomic formula F

on P there exists a node in P at which the expansion rule for F has been

applied. In that case, if F is a formula on P , P also contains:

(i) F1 and F2, if F is a α-formula,

(ii) F1 or F2, if F is a β-formula, and

(iii) F ′, if F is a negation formula, and F ′ the conclusion of the

corresponding elimination rule.

A tableau is called maximal, if each path is closed or maximal.

A tableau is called strict, if for each formula the corresponding expansion

rule has been applied at most once on each path containing that formula.

A tableau is called clausal, if each of its formulas is a clause.
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One starts out from the neegation of the formula to be proved.

10. P [41] 11. S [42]

�
�

�
�

�

P
P

P
P

P

8. ¬P [21]
9. Q→ R [22]

������

hhhhhhhhh

1. ¬[(P → (Q→ R))→ ((P ∨ S)→ ((Q→ R) ∨ S))]

2. (P → (Q→ R)) [11]

3. ¬((P ∨ S)→ ((Q→ R) ∨ S)) [12]

4. P ∨ S [31]

5. ¬((Q→ R) ∨ S)) [32]

6. ¬(Q→ R) [51]

7. ¬S [52]

There are three paths, each of them closed.
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We assume that T is a tableau for {F1, . . . , Fn}.

Theorem 1.45 {F1, . . . , Fn} satisfiable ⇔ some path (i.e., the set of its

formulas) in T is satisfiable.

(Proof by induction over the structure of T .)

Corollary 1.46 T closed ⇒ {F1, . . . , Fn} unsatisfiable

Theorem 1.47 Let T be a strict tableau. Then T is finite.

Proof. New formulas resulting from expansion are either ⊥, > or subformulas of

the expanded formula. By strictness, on each path a formula can be expanded at

most once. Therefore, each path is finite, and a finitely branching tree with finite

paths is finite (Königs Lemma). 2

Conclusion: Strict and maximal tableaux can be effectively constructed.
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Theorem 1.48 Let P be a maximal, open path in a tableau. Then set of

formulas on P is satisfiable.

Proof. [for the case of a clausal tableau] Let N be the set of formulas on P . As

P is open, ⊥ is not in N . Let C ∨ A and D ∨ ¬A be two resolvable clauses in N .

One of the two sublauses C or D, C say, is not empty, as otherwise P would be

closed. Since P is maximal, in P the β-rule was applied on C ∨ A. Therefore, P

(and N) contains a proper subclause of C ∨ A, and hence C ∨ A is redundant in

N . By the same reasoning, if N contains a clause that can be factored, that

clause must be redundant in N . In other words, N is saturated up to redundancy

wrt. Res(olution). Now apply Theorem 1.20 to prove satisfiability of N . 2

Theorem 1.49 {F1, . . . , Fn} satisfiable ⇔ there exists no closed strict

tableau for {F1, . . . , Fn}.

Proof. One direction is clear by Theorem 1.45. For the reverse direction, let T

be a strict, maximal tableau for {F1, . . . , Fn} and let P be an open path in T .

By the previous Theorem the set of formulas on P , and hence by Theorem 1.45

the set {F1, . . . , Fn}, is satisfiable. 2



Consequences 157

The validity of a propositional formula F can be established by

constructing a strict, maximal tableau for {¬F}:

• T closed ⇔ F valid.

• It suffices to test complementarity of paths wrt. atomic formulas (cf.

reasoning in the proof of Theorem 1.48).

• Which of the potentially many strict, maximal tableaux one computes

does not matter. In other words, tableau expansion rules can be

applied don’t-care non-deterministically (“proof confluence”).

• The expansion strategy, however, can have a dramatic impact on

tableau size.

• Since it is sufficient to saturate paths wrt. ordered resolution (up to

redundancy), tableau expansion rules can be even more restricted, in

particular by certain ordering constraints.
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Additional classification of quantified formulas:

universal existential

γ γ(t) δ δ(t)

∀xF F [t/x] ∃xF F [t/x]

¬∃xF ¬F [t/x] ¬∀xF ¬F [t/x]

Moreover we assume that the set of variables X is partitioned into 2

disjoint infinite subsets Xg and Xf , so that bound [free] variables variables

can be chosen from Xg [Xf ]. (This avoids the variable capturing problem.)
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γ-expansion
γ

γ(x)
where x is a variable in Xf

δ-expansion
δ

δ(f(x1, . . . , xn))

where f is a new Skolem function, and the xi are the free variables in δ

Skolemisation becomes part of the calculus and needs not necessarily be applied

in a preprocessing step. Of course, one could do Skolemization beforehand, and

then the δ-rule would not be needed.

Note that the rules are parametric, instantiated by the choices for x and f ,

respectively. Strictness here means that only one instance of the rule is applied

on each path to any formula on the path.

In this form the rules go back to Hähnle and Schmitt: The liberalized δ-rule in

free variable semantic tableaux, J. Automated Reasoning 13,2, 1994, 211–221.
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Let {F1, . . . , Fn} be a set of closed formulas.

(i) The tree consisting of the single path

F1

...

Fn

is a tableau for {F1, . . . , Fn}.

(ii) If T is a tableau for {F1, . . . , Fn} and if T ′ results by applying an

expansion rule to T , then T ′ is also a tableau for {F1, . . . , Fn}.

(iii) If T is a tableau for {F1, . . . , Fn} and if σ is a substitution, then Tσ is

also a tableau for {F1, . . . , Fn}.

The substitution rule (iii) may, potentially, modify all the formulas of a tableau.

This feature is what is makes the tableau method a global proof method.

(Resolution, by comparison, is a local method.)

Of one took (iii) literally, by repeated application of γ-rule one can enumerate all

substitution instances of the universally quantified formulas. That would be a

major drawback compared with resolution. Fortunately, we can improve on this.
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1. ¬[∃w∀x p(x,w, f(x,w))→ ∃w∀x∃y p(x,w, y)]

2. ∃w∀x p(x,w, f(x,w)) 11 [α]

3. ¬∃w∀x∃y p(x,w, y) 12 [α]

4. ∀x p(x, a, f(x, a)) 2(a) [δ]

5. ¬∀x∃y p(x, v1, y) 3(v1) [γ]

6. ¬∃y p(b(v1), v1, y) 5(b(v1)) [δ]

7. p(v2, a, f(v2, a)) 4(v2) [γ]

8. ¬p(b(v1), v1, v3) 6(v3) [γ]

7. and 8. are complementary (modulo unification):

v2
.
= b(v1), a

.
= v1, f(v2, a)

.
= v3

is solvable with an mgu σ = [a/v1, b(a)/v2, f(b(a), a)/v3], and, hence, Tσ is

a closed (linear) tableau for the formula in 1.



AMGU-Tableaux 162

Idea: Restrict the substitution rule to unfiers of complementary formulas.

We speak of an AMGU-Tableau, whenever the substitution rule is only

applied for substitutions σ for which there is a path in T containing two

literals ¬A and B such that σ = mgu(A,B).
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Given an signature Σ, by Σsko we denote the result of adding infinitely

many new Skolem function symbols which we may use in the δ-rule.

Let A be a Σsko-interpretation, T a Tableau, and β a variable assignment

over A. T is called (A, β)-valid, if there is a path Pβ in T such that

A, β |= F , for each formula F on Pβ. T is called satisfiable if there exists a

structure A such that for each assignment β the tableau T is (A, β)-valid.

(This implies that we may choose Pβ depending on β.)

Let Fi be closed Σ-formulas.

Theorem 1.50 Let T be a tableau for {F1, . . . , Fn}.

{F1, . . . , Fn} is satisfiable ⇔ T is satisfiable.

(Proof of “ ⇒ ” by induction over the depth of T . For δ one needs to reuse

the ideas for proving that Skolemization preserves [un-]satisfiability.)
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5. ¬p(a) 31 6. ¬p(b) 32

������

XXXXXX

1. ¬[∀x p(x)→ (p(a) ∧ p(b))]

2. ∀x p(x) 11

3. ¬(p(a) ∧ p(b)) 12

4. p(v1) 2(v1)

If we placed a strictness requirement also on applications of γ, the tableau

would only be expandable by the substitution rule. However, there is no

substitution (for v1) that can close both paths simultaneously.
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5. ¬p(a) 31

7. p(v2) 2v2

6. ¬p(b) 32

������

XXXXXX

1. ¬[∀x p(x)→ (p(a) ∧ p(b))]

2. ∀x p(x) 11

3. ¬(p(a) ∧ p(b)) 12

4. p(v1) 2v1

The point is that different applications of γ to ∀x p(x) may employ

different free variables for x.

Now, by two applications of the AMGU-rule, we obtain the substitution

[a/v1, b/v2] closing the tableau.



How Often Do we Have to Apply γ? 166

Theorem 1.51 There is no recursive function f : FΣ × FΣ → N such that,

if the closed formula F is unsatisfiable, then there exists a closed tableau

for F where to all formulas ∀xG appearing in T the γ-rule is applied at

most f(F,∀xG) times on each path containing ∀xG.

Otherwise unsatisfiablility or, respectively, validity for first-order logic would be

decidable. In fact, one would be able to enumerate in finite time all tableaux

bounded in depth as indicated by f . In other words, free-variable tableaux are

not recursively bounded in their depth.

Again ∀ is treated like an infinite conjunction. By repeatedly applying γ,

together with the substitution rule, one is capable of enumerating all instances

F [t/x] vertically, that is, conjunctively, in each path containing ∀xF .



Refutational Completeness 167

Therefore strictness for γ should from now on mean that each instance of

γ (depending on the choice of the free variable) is applied at most once to

each γ-formula on any path.

Theorem 1.52 {F1, . . . , Fn} satisfiable ⇔ there exists no closed, strict

AMGU-Tableau for {F1, . . . , Fn}.

For the proof one defines a fair tableau expansion process converging

against an infinite tableau where on each path each γ-formula is expanded

into all its variants (modulo the choice of the free variable).

One may then again show that each path in that tableau is saturated (up

to redundancy) by resolution. This requires to apply the lifting lemma for

resolution in order to show completeness of the AMGU-restriction.
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• Both methods are machine methods on which todays provers are based

upon.

• tableaux: global, goal-oriented, “backward”

• resolution: local, “forward”

• Resolution can be combined with more powerful redundancy

elimination methods.

• Like resolution, the tableau method, in order to be useful in practice,

must be accompanied by refinements: lemma generation, ordering

restrictions, efficient term and proof data structures

• Because of its global nature redundancy elimination is more difficult

for the tableau method.

• Resolution can be refined to work well with equality and algebraic

structures; tableaux cannot (it seems).
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Hilbert Calculus: direct proof method, synthetic (axioms + modus ponens),

not suitable for neither humans nor machines

Natural Deduction (Prawitz): models the concept of proofs from

assumptions as humans do it (cf. Huth/Ryan-book)

Sequent Calculus (Gentzen): assumptions internalized into the data

structure of sequents; a kind of mixture between natural deduction

and semantic tableaux; perfect symmetry between the handling of

assumptions and their consequences; can be used both backwards and

forwards,

Davis/Putnam/Loveland/Logeman procedure: well engineered method for

propositional satisfiability testing

Binary Decision Diagrams: data structure for the efficient representation of

Boolean functions (cf. below); works often well for equivalence and

tautology testing


