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A DECISION PROCEDURE FOR THE FIRST ORDER THEORY
OF REAL ADDITION WITH ORDER*

JEANNE FERRANTEt AND CHARLES RACKOFF

Abstract. Consider the first order theory of the real numbers with the function + (plus) and the
predicate < (less than). Let S be the set of true sentences of this theory. We first present an elimination
of quantifiers decision procedure for S, and then analyze it to show that it takes at most time 22% where
c is a constant, to decide sentences of length n.

We next show that a given sentence does not change in truth value when each of the quantifiers
is limited to range over an appropriately chosen finite set of rationals. This fact leads to a new decision
procedure for S which uses at most space 2cn. We also remark that our methods lead to a decision
procedure for Presburger arithmetic which operates within space 22on. These upper bounds should be
compared with the results of Fischer and Rabin [2] that for some constant c, real addition requires
time 2 and Presburger arithmetic requires time 22.

Key words, real addition, decision procedures, quantifier-bounding, elimination of quantifiers,
Presburger arithmetic.

1. Introduction. In this paper we present an efficient decision procedure for
the first order theory of the real numbers with the function + (plus) and the
predicate < (less than). Of course, the decidability of the theory in question is a
consequence of Tarski’s theorem that the real numbers under +,. (times), and < is
decidable [5]; however, Tarski’s procedure is far from efficient for the restricted
theory we are interested in. We propose to exhibit a procedure which is nearly
optimal in its computational efficiency. Fischer and Rabin [2] show that there is
a constant c > 0 such that any nondeterministic Turing machine which decides
real addition (even without order) requires, for almost every n, time 2 to decide
some sentences of length n. We will present a deterministic procedure for the theory
of addition on the ordered set of real numbers which uses at most space 2" and
time 22" (where d and g are constants) to decide sentences of length n. Thus there
appears to be a gap of approximately one exponential between upper and lower
time bounds. But since the upper bound is deterministic and the lower bound is
nondeterministic, this gap should be viewed in the light of a long-standing, un-
proved conjecture of automata theory which states that nondeterministic time
is equal in power to deterministic time 2’.

The procedure we give replaces unbounded quantifiers by quantifiers ranging
over a finite set of rationals; truth of a sentence about the real numbers will thus
be determined by checking finitely many instances of a matrix. In order to prove
the correctness of our procedure, we first present an elimination of quantifiers
procedure with the important feature that it does not require the sentence to be
put in disjunctive normal form at each quantifier elimination.

In 2 we define the language under consideration. In 3 we give our elimination
of quantifiers procedure. Our method utilizes an idea used by Cooper [1 in deciding
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integral addition. In 4 we show--via an analysis of 3that each quantifier in a
formula can be replaced by a suitably bounded quantifier, and then show that
the desired space bound can be achieved. In 5 we remark on further applications
of our methods.

2. Notation. We now define a language 2" ofthe first order predicate calculus"
q has variables Xo, x l, X lo, (i.e., the subscripts are written in binary)"
2" has a constant symbol (written in binary) for every integer i"
2" has rational constant symbols composed of integer constant symbols, that

is, if a and b are nonzero integers, then (a/b) is a rational constant symbol of 2’’
has terms of the form (ax/bl)y + (a2/bE)Y2 + + (a/b,)y, (abbreviated

,’= (ai/bi)Yi) where (ai/b) is a rational constant for =< =< n and where yl, "’", Y
represent distinct variables of . The constant symbol 0 will also be considered
a term of 0.

An atomic formula of 2" is either the string TRUE, the string FALSE, or a
formula of the form t 2 or of the form tl < t2, where tl and 2 are terms;the
formulas and sentences of 2" are built up from the atomic formulas in the usual
Way using the symbols V, :1, V, ~, (,).

Let R be the set of real numbers. We interpret the formulas of 2" as follows"
if (a/b) is a rational constant symbol and x is interpreted as having the value r e R,
then we give (a/b)x the value (a/b). r. We interpret as equality, + as the usual
operation of addition on R, and < as the usual ordering on R. The atom TRUE is
always taken to be true, and FALSE is always taken to be false.

Let S be the set of sentences of 2" true under this interpretation. We will exhibit
a decision procedure for $ (that is, an algorithmic procedure for deciding whether
an arbitrary sentence of 2’ is in S or not) such that if B is a sentence of length n, the
algorithm determines whether or not B S within space 2d", where d is a constant.

A remark should be made here as to why we have defined the terms of 2" as
we have; if we had only allowed integer coefficients in our terms, then the resulting
language would have been no less powerful, yet it would have been more difficult
to arrive at a decision procedure. The reason is that our definition of a term reflects
the fact that R is not only an ordered group (under addition), but it is also divisible
and torsion-free. That R is divisible means that for every r e R and every positive
integer k, there is an s R such that k. s r, i.e.,

s+s+ +s=r.
times

That R is torsion-free means that for every r e R and every positive integer k,
there exists at most one s e R such that k. s r. it is because R is divisible and
torsion-free that it makes sense to talk about division by positive integers, and
hence multiplication by rational constants.

In fact, a close examination of our decision procedure will reveal that the only
fact we use about R is that it is an ordered, divisible, torsion-free Abelian group.
Hence our procedure will work as well on Q, the set of rationals (under the usual
addition and order).
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3. Elimination of quantifiers.
DEFINITION. Let Fl(Xl,,,., x,) and F2(xl,..,, x,) be formulas of

and F2 are equivalent if for every r 1, "", r, R, Fl(r 1, "’", r,) is true, F:(r 1, "", r,)
is true.

The goal of this section is to prove the following theorem.
THEOREM 1. For every formula F(x 1, ..., xn), there exists an equivalent

quantifier.free formula F’(xl,..., xn). In fact, there is an effective procedure for
goingfrom F to F’.

It is clear how Theorem leads to a decision procedure for S. To decide if a
sentence F is true, one need merely find an equivalent quantifier-free sentence F’;
F’ will be a Boolean combination of the atoms TRUE and FALSE, which we
know how to decide.

The proof of Theorem is by induction on the complexity of F(xl, ..., x,),
If F is an atomic formula, then we can take F’ to be F. If F is F V F2, then we
can take F’ to be F’I V F, where F’I and Fz are quantifier-free formulas equivalent,
respectively, to F1 and F2. if F is F1, then we can take F’ to be F’I. The remain-
ing two cases, VxF1 and :ixF, are handled by the following lemma, since the quanti-
fier Vx is equivalent to lx,,,

LEMIIA 1. Let B(x, x 1,..., x,) be a quantifier-free formula. Then there exists
an effective procedure for obtaining another quantifier.free formula, B’(xl,
such that B’(xl, x,) is equivalent to :ixB(x, x 1,,.. x,).

Proof. Let B(x, x,..., x,) be a quantifier-free formula,
Step 1. "Solve for x" in each atomic formula of B to obtain a quantifier-free

formula, D(x, x l, ..., x,), such that every atomic formula of D either does not
involve x or is of the form (i) x < t, (ii) < x, or (iii) x t, where is a term not
involving x.

Step 2. We now make the following definitions:
Given O(x, xx x,), to get O_(x x,) (O(xl .,,, x,)), replace

x < in D by TRUE (FALSE),

< x in D by FALSE (TRUE),

x in D by FALSE (FALSE).

Clearly, for any real numbers r, ..,, r,, if r is a sufficiently small real number,
then D(r, r 1,’.’, r,) and D_ (rl, "., r,) are equivalent. A similar statement can
be made for D for r sufficiently large.

Step 3. We will now eliminate the quantifier from lxD(x, x 1,... x,) using
a method very similar to that used by Cooper in his decision procedure for
Presburger arithmetic ]. Let U be the set of all terms (not involving x) such that
< x, x < t, or x is an atomic formula of D.

LEMMA 1.1. qxD(X, Xl, ..., 3n) is equivalent to the quantifier-free formula
B’(x, x,) defined to be

D_ V D V V D((t + v)/2, x l,..,,x,).
t,vU
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Proof. Suppose we are given real numbers r l, "’,

(B’- lxD)" Suppose

D-oo V D V V D((t + v)/2, r 1,... rn)
t,veU

is true. If one ofthe disjuncts D((t + v)/2, rx, rn)is true, so is ]xD(x, rx, rn).
So suppose one of the first two disjuncts is true, say D_. (The proof for D is
similar.) Then since we can pick r sufficiently small so that D(r, r 1,..., r,) is
equivalent to D-oo, :IxD(x, r x, ..., r) is true.

(:lxD B’)" Suppose :txD(x, r l, "", r) is true. Let l, "., t, be the distinct
real numbers, in increasing order, obtained by substituting r
in the terms in U. Since :i xD(x, r l, "., r,) is true, there is some real number r
such that D(r, r l, "", r) is true. Now r must satisfy a specific order relation with
respect to the numbers 1, "", tin. That is, exactly one of the following must hold"

(a) r <
(b) t,,,<r,
(c) r=tiforsomei, __<i__<m,
(d) t<r<ti+lforsomei, =<i__<m- 1.
If any other real number r’ satisfies the same order relations with respect to

1,..., t,, as r, then D(r’, r1,’", r,) is true. So if (a) holds, D_ must be true;
if (b) holds, D must be true; if (c) holds, D((t + t)/2, rl, "’, r,) must be true; if
(d) holds, D((ti + ti+ 1)/2, rl, "", r,) must be true.

So Lemma 1.1, Lemma and Theorem are proven. The key point of the
proof was in Step 3, where (following Cooper) instead of putting the formula D in
disjunctive normal form as is usually done, we replaced :IxD(x, x 1,..., x,) by
(essentially) a disjunct of formulas of the form D(t, x 1,’", x,) for a term in our
language.

4. Bounds on the procedure. The purpose of this section is to show that the
desired space bound can be attained. In order to do this, we want to compute a
space bound on the elimination of quantifiers procedure given in 3.

It should be noted that we are using as our model of computation the deter-
ministic, one-tape Turing machine; space bounds, or the number of tape squares
used by the Turing machine, are given as a function of n, the length of the sentence
the machine is deciding. As is widely known, this model is not restrictive for bounds
as large as exponential, since it can simulate a multitape or nondeterministic
machine in space at most the square of the space required by the more powerful
model [4]. Of course, we describe our procedure informally, leaving it to the reader
to convince himselfor herselfthat straightforward implementation ofour procedure
on a Turing machine would achieve the claimed bounds on time and space.

Notation. If F is a formula, let I(F) be the length of F and let s(F) be the largest
absolute value of any integral constant appearing in any rational constant in F.
(We assume, for ease of computing the complexity of our procedure, that I(F) >__ 2
and s(F) >__ 2.) By the "length" of an integer, we merely mean its length when written
out in binary.

DEFINITION. Let r be a real number and let k be a positive integer. Then r is
limited by k, written r -< k, if r is rational and if there exist integers a, b such that
r a/b and lal -< k and Ibl _-< k.
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Remark. Let rl, re, "", rk be real numbers limited by the positive integers
wl, we, "", wk respectively. Then rl + re + + r- k. wl’we. "’.w and
r .re ....r-( Wl.We..... w/. Now let B(x, xl, ..., xk) be a quantifier-free
formula and let B’(x 1, "’", x) be the formula obtained by applying the elimination
of quantifiers procedure of 3 to qxB. Let So s(:ixB) and let lo l(:lxB). We
compute an upper bound on s(B’) in terms of So and an upper bound on l(B’) in
terms of lo.

Step of the procedure, "Solve for x," first involves putting each atomic for-
mula of B which contains x in the form ax t, or < ax or ax < t, where is a
term not containing x. Call the resulting formula C(x, x 1,..., xk). Obtaining C
involves, for each variable in each atomic formula, subtracting one rational coeffi-
cient from another. Hence by the remark above, s(C) <= 2(So)e. Step then entails
dividing through in each atomic formula of C by the coefficient of x (if it is nonzero)
to obtain the formula D(x, x l, ..., x). Clearly, s(D) <= (s(C))e <= 4(So)4.

No new integer constant is created by writing down D and D_.
Step 3 of the procedure involves writing D((t + v)/2, xl,..., xk) for every

pair of terms t, v in D which don’t contain x. Now s(t + v) <= 2. (s(D))e, so we have

(1) s((t + v)/2) =< 4. (s(D))2 =< (So) 14.

So s(B’) <= (S0) 14.
To calculate l(B’), note that l(D oo) and l(D_ oo) are both _< lo. D looks exactly

like B except that the atomic formulas have been changed, so D has no more than
lo terms. Therefore we have to write down no more than l formulas of the form
D((t / v)/2, x 1,..., x). To determine the length of each D((t + v)/2, x 1,..., x),
note that in each of the at most lo atomic formulas, we may have to write two terms,
each term containing k rational coefficients, each numerator and denominator of
each coefficient bounded in size by (So) 14 and in length by 14. length (So). So the
length of each formula O((t + v)/2, x l, .’., x) __< lo. 2. k. 2. (14. length (So))
=< 56(/o)3. So l(B’) <= 2/o + /2o(56(/o)3) <-(lo) 14.

We now compute the amount of space it would take to eliminate quantifiers
in a formula E where l(E) lo, s(E) So, and the number of quantifiers in E is no.
Our analysis is similar to that given by Oppen [3] for Cooper’s procedure for
integral addition. We first put E in prenex normal form, using the standard
algorithm but always choosing variables with the shortest subscripts possible,
obtaining E’. Note that E’ is of length __< lo log (lo)" this is because there are at most

o occurrences of variables, and thus any subscript ofa variable in E will be increased
in length by a factor of at most log (lo). Note that the prenex normal form procedure
does not change the number of quantifiers or the size of constants, so E’ has no
quantifiers and s(E’) s(E).

Clearly, the largest formula obtained in the course of eliminating quantifiers
from E’ is of length at most

(lo log/o) 14" <_ (1o log 10) 14’ 22’

for some constant Co. Also, the largest integer constant (in absolute value) en-
countered is at most

(So)-o.
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Notice that if E is a sentence, then the total space used in eliminating quantifiers
from E need be no more than

22Co.1(E)

Since the number of steps involved in each quantifier elimination (and also in the
final step of evaluating a Boolean combination of TRUE and FALSE) is only a
fixed polynomial in the total space used, we see that our procedure operates within
time

for some constant C l.

Our next goal is to derive a new decision procedure for S which will be .approxi-
mately as efficient as the previous one with respect to time but more efficient with
respect to space.

DEFINITION. A quantifier Qx, where Q is V or l, is limited by the positive
integer k (written Qx k) if, instead of ranging over all real numbers, it ranges
over the numbers limited by k.

LEMMA 2. There exists a constant c such that the following is true. Let F(x,
x 1,..., Xk) be a formula containing n quantifiers" let So s(F) and let r, ..., rk
be any real numbers limited by the positive integers w l, ..., Wk, respectively" let Q
be either a universal or existential quantifier. Then QxF(x, r l,..., rk) i- true if
and only if

[Qx (so)ZC’"+k’(w Wk)]F(x, r t,... rk)

is true. (If k O, then we take W l...’. Wk tO equal 1).
Proof. Since Vx is equivalent to :Ix ~, we may assume without loss of genera-

lity that Q is existential. Let F’(x,x,..., Xk) be the quantifier-free formula
equivalent to F obtained by our quantifier elimination procedure. If we solve for
x in F’ and take the average of any two terms that appear, (1) tells us that every
rational coefficient will be limited by (s(F’)) 4.

Assume now that some value of x satisfies F’(x, r,..., rk), where r ----<_ w for
_<_ =< k. Then some value of x satisfying F’(x, r,..., rk) is either equal to the

average of two terms obtained by solving for x in F’(x, r,..., rk) or is bigger
than or smaller than all such averages. It is sufficient, therefore, to show that any
average is limited by

(So)2C’+’(w w)

But by the above paragraph, any such average is equal to k= ar for some

al,..., ak limited by (s(F’)) 4. Since air

_
(s(F’))4.wi, for <_ =< k, we have

,= air -< k. H=I [(s(F’))4w] Since s(F’) =< (So) 4", one can easily calculate that

k

airi- (So)2C’n+l)(W Wk)
i=1

for some constant c.
LEMMA 3. Let c be the constant of Lemma 2, let QlxQ2x2 Q,x,F(Xl,

x,) be a sentence, where F is quantifier-free and where Qi is V or ! for each i, <__
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<= n, and let So s(F). Let w (So)2c" and let Wk+l (s0)ZC"(Wl. Wk) jbr
<__ k < n. Then Qlxl Q,x,F(xl,..., x,) is true if and only if (Qlxl <__ wl)
(Qzx2 -< w2)..-(Q,x, -< w,)F(xx,..., x,)is true.

Proof. The proof is immediate from Lemma 2.
THEORFM 2. There is a constant d, and a decision procedure for S, such that to

decide a sentence B of length n takes at most space 2a". (Note that the procedure
must therefore take time __< 22d’’, for some constant d’, because of a well-known
theorem of automata theory relating time and space.)

Proof. Let B be a sentence of length n, and let So s(B). Put B in prenex
normal form to obtain a sentence B’. Now l(B’) <= n log (n), s(B’) so, and B’ has no
more than n quantifiers, so we can assume B’ looks like Q x Q,x,F(x,..., x,),
where F is quantifier-free and Qi is V or :1 for 1 N __< n.

Define w (s0)2c" and wk+ (s0)Z"(wl. wk) for =< k __< n. Then by
Lemma 3, B’ is equivalent to (Qxl -< Wl)... (Q,x,-< w,)F(x,..., x,). It is
easy to calculate that w ((So)2Cn)2k-t for __< k __< n, so w, __< (So)2’+ t". Since

So -< 2", we have w, =< 2 2c’" for some constant c’. Note that every rational constant
limited by 22’" can be written in space proportional to 2c’" (since integer constants
are written in binary). So B’ can be decided by cycling through the set of rationals
associated with each quantifier appropriately, all the time testing the truth of F
on different n-tuples of rational constants. We let the reader convince himself
or herself that a Turing machine implementing this outlined procedure need use
only 2" tape squares for some constant d.

5. Applications. The idea of deciding truth in a particular theory as outlined
above can be applied to many other theories, thereby obtaining procedures of
considerable computational efficiency. That is, given a particular theory, one gives
an elimination of quantifiers procedure, analyzes it to see how "large" constants
can grow, and then uses this analysis and the original procedure (in a manner
similar to that given above) to limit quantifiers to range over finite sets instead of
an infinite domain.

In particular, we consider the efficient quantifier elimination procedure given
by Cooper [1] for deciding truth in the first order theory of integer addition.
Define the first order language 50’ as follows"

50’ has variables Xo, x l, Xo, (i.e., the subscripts are written in binary)"
for each integer i, 5’ ha a constant symbol (written in binary)"
L" has terms of the form ay + + ay, where ai is an integer constant for

=< _< k and where Y l, Y2, Y are distinct formal variables"
5’ has atomicformulas of the form =< 2 (read "tl is less than or equal to t2"

") where t and 2 are terms and a is a positive integeror altl (read "a divides t
constant, or TRUE, or FALSE.

Sentences and formulas are built up in t,he usual way.
Let S’ be the set of sentences of 50’ which are true of Z, the set of integers,

when the symbols of 50’ are interpreted in the obvious way. Cooper decides S’
by elimination quantifiers, and Oppen [3] has determined bounds for this pro-
cedure.

DFFIYITIOY. An integer n is limited by the positive integer k, written n -< k, if
[nl =< k.
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DEFINmON. If F is a formula of ’, then s(F) is the smallest integer >= 2 such
that every integer constant of F is limited by s(F).

THEOREM 3 (Oppen). There exists a constant e such that the following is
true. If F is a formula of &.q’ with n quantifiers, then when Cooper’s procedure is
applied to F, every integer constant encountered is limited by

(s(F))2"

We can now state a lemma.
LEMMA 4. There exists a constant f such that the following is true. Let F(x,

Xl "", Xk) be aformula of’ containing n quantifiers let So s(F) and let n 1, ..., n
be integers limited by the positive integer w. Then :ixF(x, n, ..., nk) is true of Z
if and only if

[:Ix -< (s0)22s’"+k’ w]F(x, nl,..., nk)

is true of Z.
Proof. Use Theorem 3, Cooper’s procedure, and an analysis similar to that

given for real addition.
LEMMA 5. There.exists a constant g such that the following is true. Let B be

the formula Qxl... Q,x,F(x,..., x,), where F is quantifier-free and Qi is V
or :I for each i, <= <= n; let So s(F). Then B is true of Z if and only if

(Q1x1 " (So)22gn+ )(Q2x2 " (S0)22gn+2)... (Qnxn -, (So)22gn+")F(x1, Xn)

is true of Z.
Proof. Apply the previous lemma.
We can now state the following theorem.
THEOREM 4. There exists a constant h and a decision procedure for S’ such that

to decide a sentence of length n takes at most 22h" space.
Remark. Theorem 4 should be compared to the following result of Fischer

and Rabin [2].
TI-IEOREM (Fischer and Rabin). There exists a constant j > 0 such that any

nondeterministic Turing machine which decides S’ requires for almost every n time
22" to decide some sentences of length n.

Acknowledgments. We would like to acknowledge some helpful suggestions
by Henry Baker in the early stages of our work and the assistance of Albert Meyer
in the conception and preparation of this paper.

REFERENCES

[1 C. D. COO1,ER, Theorem-proving in arithmetic without multiplication, Machine Intelligence 7,
Meltzer and Michie, ed., John Wiley, 1972, pp. 91-99.

[2] M. FISCHEI AND M. O. RABIN, Super exponential complexity of Presburger arithmetic, Project
MAC Tech. Mem. 43, Mass. Inst. of Tech., Cambridge, 1974.

[3] D. C. O,I,EY, Elementary bounds for Presburger arithmetic, 5th ACM Sympos. on the Theory of
Computing, 1973, pp. 34-37.

[4] W. J. SAVlTCH, Relationships between nondeterministic and deterministic tape complexities, J.
Comput. System Sci., 4 (1970), pp. 177-191.

[5] A. TAsKI, A Decision Methodfor Elementary Algebra and Geometry, 2nd ed., University of Cali-
fornia Press, Berkeley, 1951.


