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Abstract. This article presents the octagon abstract domain, a relational numerical
abstract domain for static analysis by abstract interpretation. It allows representing
conjunctions of constraints of the form ±X ± Y ≤ c where X and Y range among
program variables and c is a constant in Z, Q, or R automatically inferred. Abstract
elements are represented using modified Difference Bound Matrices and we use
a normalization algorithm loosely based on the shortest-path closure to compute
canonical representations and construct best-precision abstract transfer functions.
We achieve a quadratic memory cost per abstract element and a cubic worst-case
time cost per abstract operation, with respect to the number of program variables.

In terms of cost and precision, our domain is in between the well-known fast
but imprecise interval domain and the costly polyhedron domain. We show that it
is precise enough to treat interesting examples requiring relational invariants, and
hence, out of the reach of the interval domain. We also present a packing strategy
that allows scaling our domain up to large programs by tuning the amount of
relationality. The octagon domain was incorporated into the Astrée industrial-
strength static analyzer and was key in proving the absence of run-time errors in
large critical embedded flight control software for Airbus planes.

Keywords: static analysis, abstract interpretation, numerical abstract domains,
relational numerical invariants.

1. Introduction

Writing correct programs has always been considered a great challenge
and, generally, much more time and effort is needed to hunt down
and eliminate bugs than to actually write programs. As we rely more
and more on software, the consequences of a bug are more dramatic,
causing great financial and even human losses. An extreme example
is the overflow bug that caused the failure of the Ariane 5 launcher in
1996 [37]. Testing, one of the most widely used techniques to ensure the
correctness of programs, is not sufficient. As only a few sample program
behaviors can be observed, it misses bugs. Hence the need for formal
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methods to provide mathematically sound techniques that guarantee
the full coverage of all program behaviors while relying on symbolic—as
opposed to explicit—representations to achieve efficiency.

In this paper, we will work in the Abstract Interpretation framework
[18, 20] which is a general theory of the approximation of program
semantics. It allows, among other applications, designing static analyz-
ers that are able to automatically discover, at compile-time, properties
of the run-time behavior of programs. These analyzers are sound by
construction: spurious behaviors can be reported but no behavior—
and thus, no bug—is missed. A core concept is that of an abstract
domain. An abstract domain is a class of computer-representable pro-
gram properties together with a set of effective operators to manipu-
late them. Such operators include abstract counterparts for semantical
transfer functions that model assignment and test statements, and set-
theoretic operators such as union and intersection. They also include
extrapolation operators such as widenings to compute, in finite time,
over-approximations of least-fixpoints involved in the semantics of loops
and recursive functions. Each abstract domain embeds some sort of
approximation and there does not exist a single, all-purpose, abstract
domain. It must be chosen depending on the properties that need to
be inferred, but also the programming style of the analyzed programs
and the amount of computing resources available for the static analysis.
Once an abstract domain is designed, it can be plugged into a static
analyzer based on Abstract Interpretation to perform the analysis fully
automatically and directly on the source code.

In this paper, we are interested in numerical abstract domains. They
focus on numerical properties of program variables and allow answer-
ing questions such as: “Can there be a division by zero?”, “Can this
computation overflow the precision of machine-integers?”, “Can this
array index exceed the array bounds?”. Moreover, many non-numerical
analyses are built on top of non-standard instrumented semantics that
introduce numerical quantities, and hence, are parametrized by numer-
ical abstract domains. Well-known examples include pointer aliasing
analyses by Deutsch [23] and Venet [53], a shape analysis by Rugina
[50], a string cleanness analysis by Dor et al. [25], analyses of π−calculus
by Feret [26], parametric predicate abstractions by Cousot [16], and
even liveness analyses such as the termination analysis by Colón and
Sipma [13]. There already exist several numerical abstract domains.
Well-know examples include the interval domain by Cousot and Cousot
[17] that discovers variable bounds (

∧

i Xi ∈ [ai, bi]), Karr’s domain [35]
that discovers affine equalities between variables (

∧

j

∑

i αijXi = βj),
Cousot and Halbwachs’ polyhedron domain [22] for affine inequali-
ties (

∧

j

∑

i αijXi ≤ βj), Granger’s congruence domain [29] (
∧

i Xi ∈
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Figure 1. The same set of points • abstracted in the interval, the octagon, and the
polyhedron domain. Spurious points caused by the approximation are denoted by
the × symbol.

aiZ + bi), etc. In this paper, we introduce a new numerical abstract
domain, called the octagon abstract domain, which is able to represent
and manipulate conjunctions of invariants of the form ±X ± Y ≤ c,
where X and Y are program variables, and c is a constant. It can be
seen as a restriction of the polyhedron domain where each inequality
constraint only involves at most two variables and unit coefficients.
Fig. 1 presents a set of points together with its best abstraction within
the interval, the octagon, and the polyhedron domain. The more precise
the domain is, the fewer spurious points there are. We see that the
octagon domain has a precision between that of the interval domain
and the polyhedron domain.

1.1. The Need for Relational Domains

A relational domain is a domain that is able to discover relationships
between variables. For instance, the polyhedron domain is relational
while the interval domain is non-relational. In order to motivate the
necessity for low-cost relational numerical abstract domains, consider
the following code fragment where the variable Y is incremented at most
eleven times within a loop with loop counter X:

X := 10

Y := 0

while X ≥ 0 {
X := X−1

if random() { Y := Y+1 }
}

In order to prove the non-relational invariant Y ≤ 11 at the end
of the loop, it is necessary to first prove the relational loop invariant
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X+Y ≤ 10, and then combine it with the loop exit condition X = −1.
Thus, this invariant is out of the reach of the interval domain but
can be established using the polyhedron domain. We will see that
the octagon domain, while less precise than the polyhedron domain, is
precise enough to treat this example. Other interesting properties that
can be exactly represented using the octagon domain include mutual
exclusion, ¬(X∧Y ), encoded as X ≥ 0 ∧ Y ≥ 0 ∧X+Y ≤ 1, as well as
numerical properties on absolute values, such as |X| ≤ Y + 1, encoded
as X − Y ≤ 1 ∧ −X − Y ≤ 1. Finally, some analyses, such as the
pointer and the π−calculus analyses proposed respectively by Venet
[53] and Feret [26], require the use of relational underlying numerical
abstract domains to discover non-uniform invariants—i.e., invariants
able to distinguish objects at different positions within the same array
or recursive data-structure, and different channel instances created at
the same syntactic point.

The main advantage of the octagon domain over the polyhedron do-
main is its smaller worst-case cost. The octagon domain has a quadratic
memory cost (per abstract element) and a cubic worst-case time cost
(per abstract operation), with respect to the number of variables. The
polyhedron domain has a memory and time cost that is unbounded in
theory and exponential in practice. Although the polyhedron domain
might be less costly on some analyses, experience shows that its cost
can grow in unpredictable ways while the octagon domain exhibits a
very predictable cubic cost in practice.

1.2. Previous Work

There has been much work on satisfiability algorithms for conjunctions
of inequalities of a restricted form. Consider, first, so-called potential
constraints, that is, constraints of the form X − Y ≤ c. A core result
by Bellman [7] is that the satisfiability of conjunctions of potential
constraints in Z, Q, or R can be reduced to checking for the existence
of a cycle with a strictly negative total weight in a weighted directed
graph. This result was then extended by Jaffar, Maher, Stuckey, Yap,
and Harvey, in [33, 32], to integer constraints of the form ±X ±Y ≤ c.
However, these works focus on satisfiability only and do not study the
more complex problem of manipulating constraint conjunctions.

From Bellman’s result, people from the model checking community
of timed automata [24, 54] and timed Petri nets [40] derived a structure
called Difference Bound Matrix (or DBM) allowing the manipulation
of conjunctions of potential constraints. They developed algorithms
to compute a canonical representation of DBMs, using the notion of
shortest-path closure. They also developed algorithms to compute the

article-mine.tex; 13/04/2006; 14:18; p.4



5

intersection of DBMs and test inclusion and equality. Other algorithms
presented in [54] and [40] are not useful for analysing general purpose
programming languages by Abstract Interpretation while many—such
as a union abstraction, general assignment and test transfer functions,
widenings, etc.—are missing. The idea of using DBMs to design a full
abstract domain that can infer potential constraints is already present
in the PhD work of Bagnara [4, Chap. 5] and Jeannet [34, §2.4.3]. It
has been effectively carried out simultaneously in the work of Shaham,
Kolodner, and Sagiv, in [51], and in our previous paper [43]. Some con-
structions in the present paper are reminiscent of this abstract domain,
but extended to the richer set of constraints ±X ± Y ≤ c.

A first set of algorithms for the manipulation of constraints of the
form ±X ± Y ≤ c was proposed by Balasundaram and Kennedy [6]
to represent data access patterns in arrays and perform automatic
loop parallelization—such constraint sets were denoted there as “simple
sections”. Alas, the authors fail to propose a normal form, although
they acknowledge that it is required in the implementation of their
union abstraction. Moreover, they present a single transfer function
that abstracts nested loops of a simple form, which is too specific for
our purpose. In the present paper, we choose to start from our abstract
domain for potential constraints [43] and adapt the DBM representa-
tion and its algorithms. In particular, much work is required to adapt
the normal form. We already presented, in a conference paper [44], an
early construction of the octagon abstract domain. Since then, some
more work has been done. In particular, we propose in the present paper
new and enhanced transfer functions—such as backward assignments
and transfer functions for interval linear forms—as well as encouraging
experimental results related to the Astrée project [3].

1.3. Overview of the Paper.

The paper is organized as follows. In Sect. 2, we show how to represent
conjunctions of constraints of the form ±X±Y ≤ c, so-called octagons,
using modified Difference Bound Matrices. Then, in Sect. 3, we present
our normalization algorithm and its properties. In particular, we are
able to prove a saturation property that will guarantee exactness and
best-precision results for some of our abstract transfer functions. We
will present both a cubic-time algorithm for rational and real con-
straints, and a quartic-time algorithm for the, more complex, integer
case. Sect. 4 is devoted to the design of all the abstract operators and
transfer functions required by an abstract domain. Whenever possi-
ble, we will propose several abstractions of the same concrete function
with different cost versus precision trade-offs. A few example analyses
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demonstrating the precision of the octagon domain are presented in
Sect. 5. Finally, Sect. 6 presents the integration of the octagon domain
within the Astrée industrial-strength static analyzer aimed at prov-
ing the absence of run-time errors in large embedded reactive avionics
software. We also present, in Sect. 6, a packing technique allowing us to
improve the efficiency of the analysis by relating only selected variables
together and achieve a practical cost that is linear in the program size.
Experimental results show that, while being precise enough to eliminate
hundreds of sources of imprecision, the octagon domain scales up to
real-life programs of a few hundred thousand lines. Sect. 7 concludes.
All our proofs are postponed to the appendix, together with a summary
of all introduced symbols and notations.

2. Octagon Representation

We suppose that we are given a program with a finite set of variables

V def
= {V1, . . . , Vn}. All variables live in a numerical set I that can be Z,

Q, or R. An environment ρ ∈ (V → I) maps each variable to its value,
at a given program point. An environment will often be assimilated to
a point in In.

We call octagonal constraint any constraint of the form ±Vi±Vj ≤ c
with c ∈ I. We call octagon the set of points satisfying a conjunction of
octagonal constraints. The name “octagon” comes from the fact that,
in two dimensions V = {V1, V2}, our sets are polyhedra with at most
eight sides.

2.1. Potential Constraints

First, we recall how to encode the subset of octagonal constraints,
so-called potential constraints, that have the form Vi − Vj ≤ c. The
term potential comes from the fact that solutions of conjunctions of
potential constraints are defined up to a constant. If (v1, . . . , vn) is
such a solution, so is (v1 + x, . . . , vn + x) for every x ∈ I. The set of
points in In that satisfy a conjunction of potential constraints will be
called a potential set.

Potential Graphs. A conjunction of potential constraints can be rep-
resented as a directed weighted graph G with nodes V and weights with
value in I. Such a graph is called a potential graph. For each ordered
pair of variables (Vi, Vj) ∈ V2, there will be an arc from Vi to Vj with
weight c if the constraint Vj − Vi ≤ c is in the constraint conjunction.
We can assume, without loss of generality, that there is at most one arc
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from any given node to any other given node. If several upper bounds
for the same variable difference appear in the conjunction, all but the
smallest upper bound are obviously redundant. We use the following
graph terminology: a path in G is a sequence of nodes, denoted by
〈Vi1 , . . . , Vim〉, such that there is an arc from each Vik to Vik+1

; a path
is said to be simple if its internal nodes Vi2 , . . . , Vim−1

are pairwise
distinct and different from Vi1 and Vim ; a cycle is a path 〈Vi1 , . . . , Vim〉
such that Vim = Vi1 ; a simple cycle is a cycle that is also a simple path.

Difference Bound Matrices. Let I
def
= I ∪ {+∞} be the extension of I

to +∞. The order ≤ is extended by stating that ∀c ∈ I, c ≤ +∞—the
extension of other operators to I will be presented when needed.

An equivalent representation for potential constraint conjunctions is
by means of a Difference Bound Matrix, or DBM for short. A DBM m is
a n×n square matrix, where n is the number of program variables, with
elements in I. The element at line i, column j, where 1 ≤ i ≤ n, 1 ≤
j ≤ n, denoted by mij , equals c ∈ I if there is a constraint of the form
Vj − Vi ≤ c in our constraint conjunction, and +∞ otherwise. DBMs
were introduced by Dill [24] as a convenient constraint representation
for the verification of timed systems and are now used pervasively in
the model-checking of timed-automata and timed Petri nets. Given a

fixed number n of variables, we will denote by DBM the set I
n×n

of
all DBMs. The potential set described by a DBM m is given by the
following concretization function γPot : DBM→ P(V → I):

γPot (m)
def
= { (v1, . . . , vn) ∈ In | ∀i, j, vj − vi ≤mij } .

Each DBM m can be seen as the adjacency matrix of a poten-
tial graph, that will be denoted in the following by G(m). Indeed,
DBMs and potential graphs are just two different notations for the
same objects. Fig. 2 represents a conjunction of potential constraints
together with its encoding as a potential graph and as a DBM, as well
as its concretization. These notations are complementary. Some theo-
rems and algorithms will be best described using the matrix notation,
while others will use graph-related terms, such as paths and cycles. In
the following, we will often present examples using the graph notation
even when the corresponding algorithms are presented using the matrix
notation, as constraint graphs are much easier to read.

In order to allow representing interval constraints Vi ≤ c and Vj ≥ d
in DBMs, a common trick—used in both model-checking [54, 40] and
abstract interpretation [43]—is to add a phantom variable V0 whose
value is the constant zero. Thus, we encode Vi ≤ c and Vj ≥ d respec-
tively as Vi − V0 ≤ c and V0 − Vj ≤ −d.
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Figure 2. A potential constraint conjunction (a), its corresponding DBM m (b),
potential graph G(m) (c), and potential set concretization γPot(m) (d).

2.2. Octagonal Constraints

In order to encode conjunctions of octagonal constraints, we introduce
the following technique. Given the set of variables V = {V1, . . . , Vn},
we derive the set V ′ def

= {V ′
1 , . . . , V ′

2n} containing twice as many
variables. Each variable Vi ∈ V has both a positive form V ′

2i−1, and
a negative form V ′

2i in V ′. We will encode octagonal constraints on V as
potential constraints on V ′. Intuitively, in a potential constraint, V ′

2i−1

will represent Vi while V ′
2i will represent −Vi. More formally:

the constraint is represented as

Vi − Vj ≤ c (i 6= j) V ′
2i−1 − V ′

2j−1 ≤ c and V ′
2j − V ′

2i ≤ c

Vi + Vj ≤ c (i 6= j) V ′
2i−1 − V ′

2j ≤ c and V ′
2j−1 − V ′

2i ≤ c

−Vi − Vj ≤ c (i 6= j) V ′
2i − V ′

2j−1 ≤ c and V ′
2j − V ′

2i−1 ≤ c

Vi ≤ c V ′
2i−1 − V ′

2i ≤ 2c

Vi ≥ c V ′
2i − V ′

2i−1 ≤ −2c

Thus, a conjunction of octagonal constraints on V can be represented
as a DBM of dimension 2n, that is, a 2n × 2n matrix with elements
in I = I ∪ {+∞} or, equivalently, a potential graph with nodes
in V ′ and weights in I. In contrast to DBMs representing potential
constraints, interval constraints can be directly encoded without the
need of an extra variable representing the constant zero. Our encoding
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−V1 − V2 ≤ 3

V1

V2

V1 + V2 ≤ 3

−2V2 ≤ 8

2V2 ≤ 2

V2 − V1 ≤ 3

V1 − V2 ≤ 3

Figure 3. A conjunction of octagonal constraints (a), its encoding as a coherent
DBM (b), and potential graph on V ′ (c), and the octagon it defines (d).

is exemplified in Fig. 3. This encoding may seem complex at first,
but it serves an important purpose. Most of our operations will be
constructed by considering, as a first approximation, that V ′

1 to V ′
2n

are distinct variables. Then, some correcting term is applied to take
into account the fact that variables in V ′ are related by the constraints
∀i, V ′

2i−1 = −V ′
2i. This way, we benefit from many existing properties

and operators on potential constraints and DBMs.

Revised Concretization. Given a DBM m of dimension 2n, we can
define formally the octagon described by m using the following con-
cretization γOct : DBM→ P(V → I):

γOct(m)
def
= { (v1, . . . , vn) ∈ In | (v1,−v1, . . . , vn,−vn) ∈ γPot (m) } .

γOct refines the semantics of potential constraints, expressed using γPot ,
with constraints inherent to our encoding, that is, ∀i ≥ 1, V ′

2i−1 = −V ′
2i.

If we denote by Π the plane { (v′
1, . . . , v

′
2n) ∈ I2n | ∀i, v′2i−1 = −v′2i },

then there is a bijection between γPot (m) ∩Π and γOct(m).

Coherence. Some octagonal constraints have two different encodings
as potential constraints in V ′, and hence, are defined by two elements in
the DBM. For instance, Vi +Vj ≤ c can be described by both potential
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constraints V ′
2i−1−V ′

2j ≤ c (that is, m(2j) (2i−1) = c) and V ′
2j−1−V ′

2i ≤ c
(that is, m(2i) (2j−1) = c). We will say that a DBM is coherent if each
constraint in such a related pair is equivalent to the other one. More
formally:

m is coherent
def⇐⇒ ∀i, j, mij = m ı

where the · operator on indices is defined as:

ı
def
=

{

i + 1 if i is odd
i− 1 if i is even

Intuitively, the · operator corresponds to switching between the pos-
itive and the negative forms of a variable. Obviously, ı = i. Also, the
· operator can be easily implemented using the xor bit-wise exclusive
or operator as ı − 1 = (i− 1) xor 1. The set of coherent DBMs will be
denoted by CDBM. From now on, we will only consider coherent DBMs
when representing octagons.

2.3. Lattice Structure and Galois Connection

Let us consider the total order≤ on I, extended to I by ∀x, x ≤ +∞. Its
point-wise extension to matrices gives a partial order denoted by vDBM

on the set DBM of Difference Bound Matrices. Intuitively, m vDBM n

means that each constraint in m is tighter than the corresponding
constraint in n. The order vDBM corresponds to the subset inclusion
of octagons in the sense that m vDBM n =⇒ γOct(m) ⊆ γOct(n). The
converse is, however, not true. We can have γOct(m) ⊆ γOct(n) while
m and n are incomparable with respect to vDBM. Moreover, γOct is
not one-to-one: we can have several DBM representations for a single
octagon. Sect. 3 will be devoted entirely to studying this problem.

The set DBM has a greatest element >DBM for vDBM, defined as

∀i, j, >DBM
ij

def
= +∞. It is the only DBM representing the whole space:

γOct(>DBM) = In.
Many DBMs correspond to unsatisfiable constraint sets, and hence,

represent the empty set ∅ via γOct . However, DBM has no smallest
element for vDBM. We now enrich DBM with a new smallest element,
denoted by ⊥DBM, to obtain a lattice (DBM, vDBM, tDBM, uDBM,
⊥DBM, >DBM). This lattice is defined as follows:

∀m,n, m vDBM n
def⇐⇒ ∀i, j, mij ≤ nij

∀m,n, (m tDBM n)ij
def
= max(mij ,nij)

∀m,n, (m uDBM n)ij
def
= min(mij ,nij)
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∀X], ⊥DBM vDBM X]

∀X], ⊥DBM tDBM X] def
= X] tDBM ⊥DBM def

= X]

∀X], ⊥DBM uDBM X] def
= X] uDBM ⊥DBM def

= ⊥DBM

where we use bold letters, such as m, to refer to matrices in DBM

and letters with a ] exponent, such as X ], to refer to any element in
DBM—a matrix or ⊥DBM. If we are interested in DBMs representing
octagons, we can consider only the restriction of the lattice DBM to
the subset CDBM of coherent matrices, extended with ⊥DBM. It also
forms a lattice.

By extending γOct so that γOct(⊥DBM) = ∅ we obtain a monotonic
concretization on CDBM. Also, γOct is a complete uDBM−morphism—
that is, whenever uDBM B exists, then γOct(uDBM B) =

⋂ { γOct(b) | b ∈
B }. When I ∈ {Z, R}, the lattice is moreover complete, and hence, we
can define a canonical abstraction function α : P(V → I)→ CDBM that
returns the best—i.e., smallest for vDBM—DBM over-approximating a
concrete set of points, following Cousot and Cousot in [19, §4.2.2]:

− αOct(R)
def
= ⊥DBM if R = ∅

−
(

αOct(R)
)

ij

def
=















max { ρ(Vl)− ρ(Vk) | ρ ∈ R } when i = 2k − 1, j = 2l − 1
or i = 2l, j = 2k

max { ρ(Vl) + ρ(Vk) | ρ ∈ R } when i = 2k, j = 2l − 1
max { −ρ(Vl)− ρ(Vk) | ρ ∈ R } when i = 2k − 1, j = 2l

if R 6= ∅.
The function pair (αOct , γOct) forms a Galois connection, as introduced
by Cousot and Cousot in [18], which is denoted as:

P(V → I) −−−−−→←−−−−−
αOct

γOct

CDBM .

When I = Q, the lattice is not complete. One can indeed construct
a sequence of octagons with increasing rational bounds for a variable,
such that the limit bound is no longer rational. Moreover, αOct(R) is
not defined for every subset R of In—consider, for instance, n = 1 and

R
def
= { x ∈ Q | x2 ≤ 2 }; then, (αOct(R))10 = 2max R = 2

√
2 which is

not rational. Thus, αOct is a partial function, and we will say that the
pair (αOct , γOct) forms a partial Galois connection.
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3. Normalization Algorithm

One must not confuse octagons, which are sets of points in P(V → I),
and coherent DBMs, that serve to represent octagons as sets of octag-
onal constraints. In particular, as γOct is not one-to-one, one octagon
can have several distinct representations in CDBM. In this section we
present a normal form for DBMs representing octagons. This normal
form will be central for equality testing, but will also be used in many
other abstract operations.

Related Work. The γPot function is not one-to-one either and the
problem of computing a normal form for DBMs representing potential
sets has been well-studied in the model-checking community [54, 40].
We build upon this work to construct our normalization for DBMs rep-
resenting octagons but, as we will see, the adaptation is quite complex.

In contrast to DBMs representing potential sets, the case I = Z is
more complex than the cases I = Q and I = R. We can only provide a
normalization algorithm with a O(n4) time cost for the former, while
there exists a cubic algorithm for the latter. We will first focus on the
rational and real cases, in Sects. 3.1 to 3.4, and devote Sect. 3.5 entirely
to the integer case.

3.1. Emptiness Testing

We first consider the simpler case of determining whether γOct(m) is
empty. A classical property of potential constraints, discovered by Bell-
man [7], is that their satisfiability can be tested by simply examining
the simple cycles of the corresponding potential graph:

THEOREM 1. γPot (m) = ∅ ⇐⇒ G(m) has a simple cycle with a
strictly negative total weight [14, Thm. 25.17].

When I 6= Z, this theorem can be used directly to test the satisfia-
bility of a conjunction of octagonal constraints, thanks to the following
theorem:

THEOREM 2. When I ∈ {Q, R}, γOct(m) = ∅ ⇐⇒ γPot (m) = ∅ .

Several algorithms exist to test for the existence of cycles with a
strictly negative weight, such as the Bellman–Ford algorithm running
in O(n × s + n2) time, where n is the number of nodes and s is the
number of arcs in the graph—see, for instance, the classical textbook
[14, §25.5]. We do not insist on using such techniques as we are about
to provide an algorithm that will provide the emptiness information as
a side-effect of solving a more complex problem.

article-mine.tex; 13/04/2006; 14:18; p.12



13

V ′
1

0
��

V ′
4

0
��

3oo

V ′
3

−3

??���������
V ′

23
oo �����������

�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
����������������������������������������������������

�����������������������������������������
�����������������������������������������

�����������������������������������������
�����������������������������������������
�����������������������������������������

V2

2V2 ≥ 3

V1

V2 − V1 ≤ 0 V1 + V2 ≤ 3

(a) (b)

Figure 4. A potential graph G(m) in Z with no strictly negative cycle (a) and the
corresponding octagon (b). γOct (m) = {( 3

2
, 3

2
)}, which is empty in Z2.

(a)

j

1 2 3

1 +∞ 4 3

i 2 −1 +∞ +∞
3 −1 1 +∞

(b)

j

1 2 3

1 0 5 3

i 2 −1 +∞ +∞
3 −1 1 +∞

(c)

j

1 2 3

1 0 4 3

i 2 −1 0 +∞
3 −1 1 0

Figure 5. Three different DBMs with the same potential set concretization, which
is also the same as in Fig. 2. Note that (a) and (b) are not even comparable with
respect to vDBM. Their closure is presented in (c).

When I = Z, Thm. 2 does not hold: we have γPot (m) = ∅ =⇒
γOct(m) = ∅ but the converse is not true. Indeed, a conjunction of
integer octagonal constraints may have only non-integer solutions, as
exemplified in Fig. 4, which is not possible for conjunctions of integer
potential constraints. We postpone the presentation of a solution to the
integer case to Sect. 3.5.
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3.2. Shortest-Path Closure

We now recall classical results on the normal form of Difference Bound
Matrices representing potential sets. As exemplified in Fig. 5, different
(possibly incomparable for vDBM) DBMs can represent the same po-
tential set. Whenever γPot (m) is not empty, G(m) has no cycle with
a strictly negative weight, and hence, we can define the shortest-path
closure—or, more concisely, closure—m∗ of m as follows:























m∗
ii

def
= 0

m∗
ij

def
= min

all path from i to j
〈i = i1, i2, . . . , im = j〉

m−1
∑

k=1

mikik+1
if i 6= j

where the min and + operators are extended to I as usual:

min(x,+∞)
def
= min(+∞, x)

def
= x

x + (+∞)
def
= (+∞) + x

def
= +∞

The closure m∗ of m corresponds exactly to the smallest DBM repre-
senting the potential-set γPot (m). Whenever γPot (m) = ∅, the closure
m∗ is not well-defined but a smallest element in DBM representing
γPot(m) still exists; it is not a matrix but ⊥DBM. By extending the ∗
operator so that m∗ = ⊥DBM whenever G(m) has a cycle with a strictly
negative weight, we have in all cases:

m∗ = infvDBM { X] ∈ DBM | γPot (m) = γPot (X]) } .

Floyd–Warshall Algorithm. One way of computing m∗, when γPot (m)
is not empty, is given by the classical Floyd–Warshall algorithm—see,
for instance, [14, §26.2]. This algorithm has a cubic time cost with
respect to the number of variables n . We now recall this algorithm. It
is basically a loop computing n matrices, m1 to mn, as follows:







































m0 def
= m

mk
ij

def
= min(mk−1

ij , mk−1
ik + mk−1

kj ) if 1 ≤ i, j, k ≤ n

m∗
ij

def
=

{

mn
ij if i 6= j

0 if i = j

A nice property of the Floyd–Warshall algorithm is that, whenever
γPot(m) = ∅, the computed matrix mn has at least one strictly negative
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V ′
k

mkj

��?
??

??
??

??

V ′
i

mik

??���������

mij

// V ′
j

=⇒

V ′
k

mkj

��?
??

??
??

??

V ′
i

mik

??���������

min( mij ,

mik+mkj)

// V ′
j

Figure 6. One step of propagation in the Floyd–Warshall algorithm.

diagonal coefficient, and hence, it solves both problems of checking for
infeasibility and computing the closure when it exists.

Implicit Constraints. The Floyd–Warshall algorithm has an interpre-
tation in terms of local constraints propagation. For each node Vk in
turn, it checks, for all pairs (Vi, Vj) in parallel, whether it would be
shorter to pass through Vk instead of taking the direct arc from Vi to Vj .
This can be depicted as a local transformation on the potential graph,
as shown in Fig. 6. This also corresponds to adding the constraints:

Vj − Vk ≤ c and Vk − Vi ≤ d

to derive the constraint:

Vj − Vi ≤ c + d .

Such derived constraints, that are not explicitly encoded in the original
DBM, will be called implicit constraints. Effectively, the closure makes
all implicit constraints explicit.

3.3. Strong Closure

We now extend the closure to coherent DBMs representing octagons.
Let us consider a DBM m such that γOct(m) 6= ∅. It is easy to see
that, if m is coherent, so is m∗. Moreover, γPot (m) = γPot(n) =⇒
γOct(m) = γOct(n), but the converse is not true: m∗ may not be m’s
canonical representation for γOct(m). Indeed, Fig. 7 presents two closed
DBMs representing the same octagon but different potential sets.

Intuition. As explained before, we can view the Floyd–Warshall algo-
rithm as performing local constraints propagations of the form:

V ′
j − V ′

k ≤ c and V ′
k − V ′

i ≤ d =⇒ V ′
j − V ′

i ≤ c + d
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V ′
1 V ′
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V ′
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V ′
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V ′
1 V ′
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��

3oo

V ′
2

2

OO

3
// V ′

3

Figure 7. Two different closed potential graphs that represent the same octagon:
V1 ≤ 1 ∧ V2 ≤ 2.

V ′
j V ′

i

mi ı

��

mijoo

V ′


mj

OO

m ı

// V ′
ı

=⇒

V ′
j V ′

i

mi ı

��

min( mij ,

(mi ı +mj)/2)
oo

V ′


mj

OO

min( m ı ,

(mi ı +mj)/2)

// V ′
ı

Figure 8. Additional propagation step performed by the strong closure.

on V ′ until no further propagation can be done. Our idea is to add a
second form of local constraints propagation:

V ′
j − V ′

 ≤ c and V ′
ı − V ′

i ≤ d =⇒ V ′
j − V ′

i ≤ (c + d)/2

that is, replacing mij with min(mij , (miı +mj)/2). This second trans-

formation is valid because we are interested only in points in IV
′
such

that V ′
i = −V ′

ı . On V, it corresponds to adding the two unary con-
straints −2Vi ≤ c and 2Vj ≤ d to derive the binary constraint Vj−Vi ≤
(c+d)/2. Also, the second transformation works on pairs of edges that
do not form a path in the potential graph, and hence, cannot be reduced
to the first transformation. This is exemplified in Fig. 8.

Formalization. A DBM in R or Q that is stable by our two local
transformations will be said to be strongly closed. This is formalized as
follows:
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DEFINITION 1. m is strongly closed if and only if:







∀i, j, k mij ≤mik + mkj

∀i, j mij ≤ (miı + mj)/2
∀i mii = 0

As for the emptiness test of Thm. 2, we restrict ourselves to the
case I 6= Z. Indeed, our definition of strong closure uses a division by 2
which is ill-defined on integers. The precise treatment of the case I = Z

is postponed to Sect. 3.5.

Saturation. Strongly closed DBMs exhibit a saturation property, that
is, every octagonal constraint in a strongly closed DBM defines a half-
space that actually touches the octagon:

THEOREM 3. If I ∈ {Q, R} and m is strongly closed, then:

1. ∀i, j, if mij < +∞, then ∃(v1, . . . , vn) ∈ γOct(m)
such that v′j − v′i = mij, and

2. ∀i, j, if mij = +∞, then ∀M < +∞, ∃(v1, . . . , vn) ∈ γOct(m)
such that v′j − v′i ≥M ,

where the v′k are derived from the vk by v′2k−1
def
= vk and v′2k

def
= −vk.

This property of strongly closed DBMs will be used pervasively in
our subsequent proofs: it provides a strong link between octagons and
their representations.

Best Representation. A first consequence of the saturation property is
that there is a unique strongly closed DBM for any non-empty octagon
γOct(m). We will denote it by m• and call it m’s strong closure. It is
the normal form we seek:

THEOREM 4. If I ∈ {Q, R} and γOct(m) 6= ∅, then:

m• = (αOct ◦ γOct)(m)
= infvDBM { X] ∈ DBM | γOct(m) = γOct(X]) } .

In the following section, we will see that m• always exists and can
be computed in cubic time whenever γOct(m) 6= ∅. If we take care to
extend • so that m• = ⊥DBM whenever γOct(m) = ∅, then Thm. 4
is true for all elements in CDBM. It is important to note that, while
αOct is only a partial function when I = Q, αOct ◦ γOct is still always
well-defined.
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Representation Redundancy. As for the shortest-path closure of DBMs
representing potential sets, the effect of the strong closure is to make
explicit all the implicit constraints. Thus, the normal form we choose
to represent an octagon may contain many redundant constraints, and
very few +∞ matrix elements. This is unlike other relational abstract
domains, such as Karr’s linear equality domain [35] or the polyhedron
domain [22], that always choose to remove as many redundant con-
straints as possible. This explains why, in some cases where a small
number of linear constraints is sufficient to perform a program analy-
sis, the polyhedron domain may use less memory and be faster than
the octagon domain. Experience shows, however, that, in many cases,
the polyhedron representations grow exponentially, while the octagon
domain guarantees a quadratic representation size in the worst case.

3.4. Floyd–Warshall Algorithm for Strong Closure

We now present a modified version of the Floyd–Warshall algorithm
that uses our two local transformations to compute m• in cubic time:

DEFINITION 2. The modified Floyd–Warshall algorithm is defined as
follows:

(m•)ij
def
=

{

0 if i = j
mn

ij if i 6= j

where mk def
=

{

m if k = 0
S(C2k−1(mk−1)) if 1 ≤ k ≤ n

and (S(n))ij
def
= min(nij , (niı + nj)/2)

and
(

Ck(n)
)

ij

def
= min ( nij , nik + nkj, nik + nkj ,

nik + nkk + nkj, nik + nkk + nkj )

As the classical Floyd–Warshall algorithm, this algorithm performs
n steps. Each step computes a new matrix in quadratic time. However,
each step now uses two passes: a S pass and a Ck pass. We recognize in
S our second local transformation, pictured in Fig. 8. C k looks like an
inflated version of the classical Floyd–Warshall local transformation of
Fig. 6. We check whether there is a shorter path from i to j via k. We
also check for a shorter path via k. Finally we check for a shorter path
via k and then k, and also via k and then k. This increase in complexity
as well as the interleaving of the S and Ck passes is important to ensure
that the local characterization of the strong closure is attained for more
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and more elements; that is, to ensure that what is enforced by one pass
is not destroyed by a later one. Alas, there does not seem to exist a
simple and intuitive reason for the exact formulas presented in Def. 2.1

It should be considered as a necessary technicality for the proof of the
following theorem:

THEOREM 5. If γOct(m) 6= ∅ then m• computed by Def. 2 is the
strong closure as defined by Def. 1.

Not only does this algorithm compute the strong closure m• for any
DBM m that represents a non-empty octagon, but it can also be used
to determine whether a DBM represents an empty octagon:

THEOREM 6. γOct(m) = ∅ ⇐⇒ ∃i, mn
ii < 0, where mn is defined

as in Def. 2.

In-Place Implementation. In Def. 2, m• is defined using 2n inter-
mediate matrices: mk and C2k−1(mk) for each 1 ≤ k ≤ n. From a
practical implementation point of view, allocating all these 2n DBMs
is a waste of memory. A first optimization lies in the observation that
only two matrices are needed at any given time as each intermediate
matrix is defined solely using the last computed one. We can do even
better: we can update the initial matrix in-place without any extra
storage requirement, as implemented by the algorithm of Fig. 9. The
intermediate matrix at step k may be different from the corresponding
one in Def. 2, but the overall result m• is indeed the same. Although
this new algorithm is much nicer from an implementation point of view,
we will keep reasoning using the original version of Def. 2 which is much
simpler to describe mathematically.

Incremental Version. We now propose an incremental version of our
modified Floyd–Warshall algorithm that is able to quickly compute
the strong closure of matrices that are “almost” strongly closed. Sup-
pose that m is strongly closed and that nij = mij for all i, j ≤ 2c,
which is sketched in Fig. 10. From a constraint point of view, this
means that we may only have altered unary constraints on variables in
Vc+1, . . . , Vn and binary constraints such that one or both variables are
in Vc+1, . . . , Vn. Then, many computations in Def. 2 are useless and we
can use the following faster algorithm to compute n•:

1 During the final writing of the present paper, a simpler—yet still cubic—strong
closure algorithm has been proposed by Bagnara et al. [5].
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StrongClosure (DBM m of size 2n× 2n)

for k = 1 to n {
for i = 1 to 2n

for j = 1 to 2n

mij ← min ( mij , mi (2k−1) + m(2k−1) j , mi (2k) + m(2k) j ,

mi (2k−1) + m(2k−1) (2k) + m(2k) j ,

mi (2k) + m(2k) (2k−1) + m(2k−1) j )

for i = 1 to 2n

for j = 1 to 2n

mij ← min(mij , (mi ı + mj)/2)

}

for i = 1 to 2n

if mii < 0 then return(⊥DBM) else mii ← 0

return(m)

Figure 9. In-place modified Floyd–Warshall algorithm to compute the strong closure
of a DBM.
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Figure 10. A matrix equal to m• except for the last 2(n − c) lines and columns.

(n•)ij
def
=

{

0 if i = j
nn

ij if i 6= j

where nk def
=

{

n if k = 0
S′2k−1(C ′2k−1(nk−1)) if 1 ≤ k ≤ n
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and
(

S′k(n)
)

ij

def
=

{

nij if i, j, k ≤ 2c
min(nij , (niı + nj)/2) otherwise

and
(

C ′k(n)
)

ij

def
=



























nij if i, j, k ≤ 2c
min ( nij , nik + nkj,

nik + nkj,

nik + nkk + nkj ,

nik + nkk + nkj )

otherwise

As the sub-matrix from indices (1, 1) to (2c, 2c) is left unmodified for
the first c iterations, we have a time cost proportional to (n− c)× n2.
By virtually switching columns and lines, this algorithm extends to the
case where the n−c pairs of modified lines and columns are anywhere in
the matrix, not necessarily at the end. We will denote by Inc•

i1,...,ik
(n)

the result of the algorithm when the modified lines and columns corre-
spond to variables Vi1 to Vik . One particularly useful instance is Inc•

i

that recovers, in quadratic time, the strong closure after one or several
constraints involving Vi have been modified. It is important to remark
that Inc•i1,i2 is not equivalent to Inc•i1 ◦ Inc•i2 : our incremental strong
closure must treat all the modified lines and columns at once. Finally,
note that an in-place version of this incremental algorithm, in the spirit
of Fig. 9, may be easily designed.

3.5. Integer Case

Whenever I = Z, the emptiness test of Thm. 2 no longer works. More-
over, the strong closure of Def. 1 does no longer correspond to a normal
form enjoying the saturation property, neither does the result of the
modified Floyd–Warshall algorithm of Def. 2.

In [33], Jaffar et al. propose to consider constraint conjunctions
that are not only closed by transitivity (that is, the addition of two
constraints) but also by tightening, a new operation that allows de-
riving the constraint x ≤ bc/2c from the constraint 2x ≤ c. They
prove that constraint systems closed by transitivity and tightening are
satisfiable if and only if no trivially unsatisfiable constraint appears in
the system—such as 0 ≤ c, where the constant c is strictly negative.
Later, in [32], Harvey and Stuckey propose a practical algorithm to
maintain the tightened transitive closure of a constraint system when
new constraints are added. Even though [33, 32] are only interested in
checking the satisfiability of constraint systems and not in constructing
abstract domains, their ideas can be of use to construct a normal form
enjoying the saturation property, which will prove sufficient for our
needs.
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Strong Closure with Tightening. We first restate the notion of tight-
ened transitive closure from [33, 32] using our encoding of constraint
conjunctions as DBMs:

DEFINITION 3. A coherent DBM m in Z is tightly closed if and
only if:















∀i, j, k, mij ≤mik + mkj

∀i, j, mij ≤ (miı + mj)/2
∀i, miı is even
∀i, mii = 0

This simply amounts to stating that m is strongly closed with the extra
requirement that all the elements miı are even. Indeed, such elements
correspond to bounds of expressions of the form ±2Vk.

An important theoretical contribution of this article is the saturation
property of tightly closed DBMs in Z and, as a consequence, its normal
form property:

THEOREM 7. Thms. 3 and 4 are true on tightly closed DBMs.

Harvey and Stuckey Algorithm. We now discuss the algorithm pro-
posed by Harvey and Stuckey in [32] to compute the tight closure. It is
an incremental algorithm: given a tightly closed set of octagonal con-
straints and an additional octagonal constraint, it is able to compute,
in quadratic time, the tight closure of the set enriched with the new
constraint. Note that this incremental algorithm is less powerful than
our incremental strong closure algorithm Inc•. Indeed, Inc• was able to
recover, in quadratic time, the strong closure of a constraint set after
all constraints related to one variable have been changed, not just one.

We now adapt the algorithm by Harvey and Stuckey to our encoding
of octagonal constraints as DBMs. Suppose that the coherent DBM m

is equal to a tightly closed DBM, except for the element at position
(i0j0)—and, by coherence, the element at position (0 ı0 ). Moreover,
suppose that, if i0 = 0 , then the changed element mi0j0 = m0 ı0 is
even. The incremental tight closure on m with respect to the position
(i0, j0) is denoted by IncT

i0j0(m) and defined as follows:

DEFINITION 4.
(

IncT
i0j0(m)

)

ij

def
= min (m′

ij , (m′
iı + m′

j)/2)

where
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m′
ij

def
= min (mij , mii0 + mi0j0 + mj0j,

mi0 + m0 ı0 + m ı0 j )

if i 6= 

m′
ij

def
= min (mij , 2(mi0j0 + mi0 + (m ı0 i0/2)),

2(mi0j0 + mii0 + (mj0 0 /2)),

2b(mii0 + mi0j0 + mj0 ı )/2c )

if i = 

In IncT
i0j0 , we first propagate the new constraint mi0j0 to obtain

new unary and binary constraints in m′. Note that the terms 2(mi0j0+
mi0 + (m ı0 i0/2)) and 2(mi0j0+ mii0+ (mj0 0 /2)) correspond respec-
tively to the sum along the paths 〈i, 0 , ı0 , i0, j0, ı〉 and 〈i, i0,
j0, 0 , ı0 , ı〉. We use tightening for the third derived unary con-
straint: m′

iı ≤ 2b(mii0+ mi0j0+ mj0 ı )/2c. In m′, all the derived matrix
coefficients corresponding to unary constraints are even. Finally, the
new unary constraints are combined to derive new binary constraints:
(IncT

i0j0(m))ij ≤ (m′
iı+ m′

j)/2. Whenever the result of a division by
2 is not fed to the floor operator b·c, it means that the division cannot
produce half-integers.

Cost Considerations. The incremental tight closure algorithm has a
O(n2) cost. In order to obtain the tight closure of an arbitrary DBM
m, we must start from >DBM and add all the constraints mij one by
one and perform an incremental tight closure IncT

ij after each addition.

This leads to a O(n4) total cost while our strong closure algorithm had
a O(n3) cost. It is not known to the author whether a better cost than
O(n4) can be achieved. This may be impossible as integer problems
tend to be strictly more difficult than problems involving rationals or
reals. Recall, for instance, that integer linear programming problems
are NP-complete while rational linear programming problems have a
polynomial complexity.

If time cost is a concern, one may consider using the original strong
closure algorithm—without tightening—where the S pass has been
changed into:

(S(n))ij
def
= min(nij , b(niı + nj)/2c) (1)

or, better, into:

(S(n))ij
def
=

{

min(nij , b(niı + nj)/2c) if i 6= 
2bnij/2c if i = 

(2)

which is more precise than (1) and ensures that unary constraints are
tight. Both resulting strong closure algorithms indeed return a DBM
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m• in Z such that γOct(m•) = γOct(m) and which is much smaller
than m with respect to vDBM. However, they do not return the smallest
one as none of the modified S functions preserve the transitive closure
property enforced by the C steps. As a consequence, the saturation
property is not attained. This will affect most of the operators and
transfer functions that will be presented in the rest of the paper. Our
inclusion and equality tests will become semi-tests that can fail to de-
tect that γOct(m) ⊆ γOct(n) or γOct(m) = γOct(n). Our abstractions
for the union and the forget operators—among others—will not be the
best ones, etc. They will remain sound in every situation, but they will
not be as precise as they might be. This loosely amounts to abstracting
integers as rationals by forgetting their “integral property”, something
which is commonly done in the polyhedron abstract domain. Whether
to choose the strong closure or the tight closure when I = Z becomes
a cost versus precision trade-off.

In our practical experiments, we have opted in favour of running
time: we use the modified strong closure (1) instead of the tight clo-
sure. We have yet to find a real-life example where the tight closure is
needed to prove a meaningful invariant. In the following, we will focus
on properties of strongly closed matrices on Q and R, and leave implicit
the fact that all these properties are also true for tightened matrices on
Z, thanks to Thm. 7, but not if the cubic strong closure is used when
I = Z.

3.6. Summary of the Closure Operators

We have introduced several closure operators, with different scopes and
costs. Some work on rationals and reals while others work on integers.
Some are incremental, others are not. We recall them in the following
table. For comparison purposes, we have also included the correspond-
ing operators on DBMs representing potential sets. For each operator,
we include, in order, the cost of incrementally updating one constraint,
of incrementally updating all constraints relating to one variable, and
of updating all constraints.

operator domain I costs

closure potential sets Z, R, Q O(n2) / O(n2) / O(n3)

strong closure octagons R, Q O(n2) / O(n2) / O(n3)

tight closure octagons Z O(n2) / O(n3) / O(n4)
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3.7. Equality and Inclusion Testing

We are able to compare two DBMs m and n using the vDBM order, but
this does not always allow comparing two octagons as γOct is not one-
to-one. The following theorems use the properties of the strong closure
to solve this problem:

THEOREM 8. m• = n• ⇐⇒ γOct(m) = γOct(n) .

THEOREM 9. m• vDBM n ⇐⇒ γOct(m) ⊆ γOct(n) .

Note that, when testing for inclusion, it is not necessary to close the
right argument. Testing for equality or inclusion is done point-wise, and
hence, has a quadratic cost, not counting the cost of the strong closure.

4. Abstract Transfer Functions

The concrete semantics of a program is the most precise formal ex-
pression of its behavior. It is generally not computable and defined by
combining a small fixed set of generic semantical functions, so-called
transfer functions, that model the effect on sets of environments of
basic instructions such as assignments, tests, and control-flow joins. In
order to derive a computable static analysis, we need to define a sound
abstract counterpart in our octagon domain for each of these transfer
functions. More formally, if F is a n−array transfer function in the
set of concrete environments P(V → I), we must design an abstract
counterpart F ] in CDBM such that:

∀X]
1, . . . , X

]
n ∈ CDBM,

F (γOct(X]
1), . . . , γ

Oct(X]
n)) ⊆ (γOct ◦ F ])(X]

1, . . . , X
]
n) .

Whenever the inclusion is an equality, we say that the abstraction
is exact. This is seldom the case because the result of a concrete op-
erator is rarely exactly representable in the octagon abstract domain,

even when all its argument are. Whenever (αOct ◦ F ) (γOct(X]
1), . . . ,

γOct(X]
n)) exists–which may not always be the case when I = Q as

αOct is partial—it defines the best abstraction. It is the smallest DBM
with respect to vDBM that over-approximates the result of F . As a
consequence, it represents the smallest octagon encompassing the con-
crete result and induces as few spurious program behaviors as possible.
Sometimes, however, even when the best abstraction exists, it may be
too costly or too complex to compute. In that case, one can settle for a
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Figure 11. Abstract union of octagons, based on tDBM. DBMs should be strongly
closed for best precision. This also ensures that the result is strongly closed.

non-optimal abstraction. A table of all the abstract transfer functions
introduced in this section, together with a summary of their properties,
is available in Sect. 4.8.

4.1. Abstract Union and Intersection

We start with abstractions of set-theoretic operators. The abstract
union of environments is particularly important as it is used to model
control-flow joins occurring when the two branches of a conditional
meet and in loops.

Union Abstraction. The union ∪ of two octagons may not be an oc-
tagon. Indeed, octagons are always convex, which is not a property
preserved by union. By monotonicity of γOct , mtDBM n gives a sound
abstraction of γOct(m) ∪ γOct(n). A less obvious fact is that the pre-
cision of this operator greatly depends on which DBM arguments are
used among all DBMs that represent the same octagons. In particular,
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Figure 12. Exact intersection of octagons, based on uDBM. The arguments do not
need to be strongly closed, and the result is seldom strongly closed.

the best abstraction for the union is only reached when the arguments
are strongly closed DBMs, as illustrated in Fig. 11. Thus, we define our
union abstraction as follows:

m ∪Oct n
def
= (m•) tDBM (n•) .

and we have the following theorem:

THEOREM 10.

γOct(m ∪Oct n) = inf⊆ { S ∈ Oct | S ⊇ γOct(m) ∪ γOct(n) } .

Another remarkable property is that tDBM preserves the strong
closure property:

THEOREM 11. m ∪Oct n is strongly closed.

Exact Intersection. The intersection of two octagons is always an oc-
tagon. The uDBM operator always computes a DBM representing the
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exact intersection of two octagons, even when the DBM arguments are
not strongly closed, as shown in Fig. 12, so, we define ∩Oct as uDBM

and we have:

THEOREM 12. γOct(m ∩Oct n) = γOct(m) ∩ γOct(n) .

It is important to remark that the result of an intersection is seldom
closed, even when the arguments are, as demonstrated in Fig. 12.

Comparison with Other Work. The intersection of DBMs representing
potential sets has been used for a long time by the model-checking
community, but no abstract union operator was defined. The idea of
computing the point-wise maximum of upper bounds to compute the
union of octagons is already present in the work of Balasundaram and
Kennedy [6]. Although the authors remark that the bounds should be
the tightest possible for the union to be precise while the result of an
intersection may have loose bounds, they do not propose any way to
actually “tighten” them. Thus, our strong closure algorithm is the key
to obtaining an effective best union approximation.

Note that, in the model-checking community, it is traditional to
perform only exact computations on a computable abstract model of
the chosen program. In order to do this, one must represent exactly
both conjunctions and disjunctions of potential constraints. One naive
solution [24, 54] is to use a set of DBMs to represent a symbolic union
of potential sets. The problem is that such explicit representations
tend to grow very large, and testing the inclusion and equality of
two representations is costly. To address these problems, several al-
ternate data structures have been proposed, based on the concept of
decision diagrams. Two examples are Clock Difference Diagrams [36]
and Difference Decision Diagrams [47]. Despite the lack of a canonical
form for both data structures, inclusion, equality, and emptiness testing
algorithms are proposed. It might be interesting, from a theoretical
point of view, to see if these data-structures can be adapted to oc-
tagonal constraints. Another issue is the adaptation, to these decision
diagrams, of the extra abstract transfer functions not provided by the
model-checking community but required by an abstract domain—such
as general assignments (Sect. 4.4) or widenings (Sect. 4.7). Alas, exact
unions mean unbounded memory and time costs, regardless on how
clever the chosen representation is. Recall, however, that we do not
seek here exactness at any cost, but we strive for scalability. Instead
of representing unions exactly, we advocate for the use of partitioning
techniques. They can lessen the precision degradation due to inexact
abstract unions by performing case analyses, while having a bounded
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Figure 13. Forget operator on octagons—the potential graph parts involving V ′
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6 , and V ′
8 have been omitted for the sake of conciseness but can be easily recovered

by coherence.

and predictable cost. Also, they do not require any change in the ab-
stract element representation nor the abstract transfer functions. Such
techniques were successfully used within the Astrée analyzer. We will
not develop further this topic and refer the reader to [39] for more
information. Other works on partitioning techniques include that of
Handjieva and Tzolovski [31], and that of Bourdoncle [10].

4.2. Forget Operator

From now on and up to Sect. 4.6, included, all the operators and trans-
fer functions presented on octagons will abstract strict concrete ones.
To simplify our presentation, we will thus present the image of non-
⊥DBM octagons, silently assuming that the image of ⊥DBM is always
⊥DBM.

Given a concrete set of environments R ∈ P(V → I) and a variable
Vf ∈ V, the forget operator {| Vf ← ? |} models the assignment of a
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non-deterministic value into Vf :

{| Vf ← ? |}(R)
def
= { ρ[Vf 7→ v] | ρ ∈ R, v ∈ I }
= { ρ | ∃v ∈ I, ρ[Vf 7→ v] ∈ R }

where ρ[Vf 7→ v] is the function equal to ρ except that it maps Vf to
v instead of ρ(v). Geometrically, this corresponds to a projection on
V \ {Vf}, followed by an extrusion along the dimension of Vf .

In order to implement an abstract counterpart {| Vf ← ? |}Oct in the
octagon domain for the forget operator, a first idea is to simply remove
all constraints involving Vf . Using our octagon encodings in terms of
potential constraints, this amounts to removing all constraints involving
V ′

2f−1 and V ′
2f :

({| Vf ← ? |}Oct(m))ij
def
=







mij if i 6= 2f − 1, 2f and j 6= 2f − 1, 2f
0 if i = j = 2f − 1 or i = j = 2f
+∞ otherwise

This operator is always sound, as proved by the following theorem:

THEOREM 13. γOct({| Vf ← ? |}Oct(m)) ⊇ {| Vf ← ? |}(γOct(m)) .

Moreover, when the argument is strongly closed, it is exact:

THEOREM 14. γOct({| Vf ← ? |}Oct(m•)) = {|Vf ← ? |}(γOct(m)) .

Whenever the argument is not strongly closed, the result may not
be as good. The intuitive reason is that, by forgetting constraints in-
volving V ′

2f−1 and V ′
2f , we may also forget some implicit constraints

on unmodified variables as we break all former paths passing through
V ′

2f−1 or V ′
2f . If the argument is strongly closed, however, all implicit

constraints have been made explicit and this problem does not occur.
This is exemplified in Fig. 13. A final remark is that the forget operator
preserves the strong closure:

THEOREM 15. {| Vf ← ? |}Oct(m) is strongly closed whenever m is.

The forget operator is quite useful as a fall-back assignment oper-
ator: {| Vi ← ? |}Oct is always a sound abstraction for any assignment
{| Vi ← expr |}, regardless of the assigned expression expr . It is also
a sound abstraction for any backward assignment {| Vi → expr |}—see
Sect. 4.6. Finally, it can be used directly to abstract soundly the effect
of unknown code portions—e.g., unknown libraries—or inputs from the
environment—e.g., file data or key strokes.
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4.3. Conversion Operators

We now present operators for converting between octagons, intervals,
and polyhedra. One application is to allow a static analyzer to switch
dynamically between these abstract domains to adjust the cost versus
precision trade-off. Another application is to design octagon trans-
fer functions by switching momentarily into another abstract domain
where this transfer function already exists and converting the result
back into the octagon domain. Conversions from intervals to octagons,
and from octagons to polyhedra, are exact. Conversions from polyhe-
dra to octagons and from octagons to intervals cannot be exact and
generally induce an over-approximation.

From Intervals to Octagons. All interval abstract domain elements are
exactly representable as octagons. Given an interval element X ] : V →
((I ∪ {−∞})× (I ∪ {+∞})) that maps each variable to a lower bound
and an upper bound, we construct the following DBM containing only
unary constraints:

(Oct(X]))ij
def
=







2× snd (X](Vk)) if i = 2k, j = 2k − 1
−2× fst (X](Vk)) if j = 2k, i = 2k − 1

+∞ elsewhere

where the fst and snd operators extract respectively the first and second
component of a pair, that is, the lower and upper bounds of an interval.

From Octagons to Intervals. A straightforward application of the sat-
uration property of the strong closure is the ability to easily project
an octagon m onto any variable Vi to obtain an interval, denoted by
πi(m) and defined as follows:

πi(m)
def
=

{

∅ if m• = ⊥DBM

[−m•
(2i−1) (2i)/2, m•

(2i) (2i−1)/2] if m• 6= ⊥DBM

We then have:

THEOREM 16. πi(m) = { v ∈ I | ∃(v1, . . . , vn) ∈ γOct(m), vi = v } .

An interval abstract domain element, that maps an interval to each
variable, is obtained by projecting each variable independently. The
result will be denoted by Int(m). If we do not use the strong closure in
all the πi, we obtain sound intervals that are not as tight as possible.
Otherwise, we obtain the best interval abstraction of an octagon.
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From Octagons to Polyhedra. Converting a DBM m representing an
octagon into a polyhedron is quite easy as a polyhedron can be repre-
sented internally as a list of linear inequality constraints. The resulting
polyhedron will be denoted by Poly(m).

From Polyhedra to Octagons. Converting a non-empty polyhedron P
in Rn or Qn into an octagon is more subtle. Surprisingly, the frame
representation of P is more handy here than the constraint list rep-
resentation. We recall that a frame consists in a finite set of vertices
V = (V1, . . . , Vk) and a finite set of rays R = (R1, . . . , Rl) in In that
represent the polyhedron:

{

k
∑

i=1

λiVi +
l
∑

i=1

µiRi | λi ≥ 0, µi ≥ 0,
k
∑

i=1

λi = 1

}

.

The intuition behind our conversion is to first consider the smallest
octagon containing all vertices in V. This is simply the abstract union
∪Oct of k octagons reduced to a single point. Then, we set to +∞ the
upper bound of any constraint not stable under translation in the direc-
tion of all rays in R. For instance, if there is ray with a strictly positive
i−th coordinate, then the upper bound of all constraints involving +Vi

are set to +∞.
More formally, let vi and ri denote respectively the i−th coordinate

of a vertex V ∈ V and of a ray R ∈ R. We generate a DBM m by
applying the following rules, for every i and j 6= i:

− if ∃R ∈ R such that ri > 0, we set m(2i) (2i−1) = +∞,
otherwise, we set m(2i) (2i−1) = 2max { vi | V ∈ V };

− if ∃R ∈ R such that ri < 0, we set m(2i−1) (2i) = +∞,
otherwise, we set m(2i−1) (2i) = −2min { vi | V ∈ V };

− if ∃R ∈ R such that ri > rj , we set

m(2i−1) (2j−1) = m(2j) (2i) = +∞

otherwise, we set

m(2i−1) (2j−1) = m(2j) (2i) = max { vj − vi | V ∈ V }

− if ∃R ∈ R such that ri > −rj, we set m(2i−1) (2j) = +∞,
otherwise, we set m(2i−1) (2j) = max { −vj − vi | V ∈ V };

− if ∃R ∈ R such that −ri > rj, we set m(2i) (2j−1) = +∞,
otherwise, we set m(2i) (2j−1) = max { vj + vi | V ∈ V };
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J expr K : (V → I)→ P(I)

JX K(ρ)
def
= { ρ(X) }

J [a, b] K(ρ)
def
= { x ∈ I | a ≤ x ≤ b }

J−e K(ρ)
def
= { −x | x ∈ J e K(ρ) }

J e1 · e2 K(ρ)
def
= { x · y | x ∈ J e1 K(ρ), y ∈ J e2 K(ρ) } · ∈ {+,−,×}

Figure 14. Semantics of numerical expressions J expr K.

− otherwise we set mii = 0.

This results in a strongly closed DBM representing the smallest octagon
enclosing the polyhedron, and it is computed in O(n2 × (|R| + |V|))
time. We denote this octagon by m

def
= Oct(P ). Note that whether the

Oct operation stands for a conversion from intervals or from polyhedra
will always be obvious by the context.

The case I = Z is a little more subtle. Indeed, the polyhedron do-
main in Z generally uses the same representation—and algorithms—as
rational polyhedra, but with an altered semantics. Only the points with
integer coordinates inside the rational polyhedron are considered. For-
mally, the concretization γPoly (P ) of P is replaced with γPoly (P )∩Zn.
With respect to this semantics, the classical polyhedron operators re-
main sound, but lose some precision (in particular, they are no longer
best or exact abstractions). The above conversion algorithm would
generate a DBM with non-integer elements when I = Z. We argue
that it is safe to simply use this algorithm and round each mij to
bmijc. We may miss points in γPoly (P ) but no point in γPoly(P ) ∩Zn.
Consider, for instance, the one-dimensional polyhedron P such that
γPoly(P ) = {(0.25)}, then the constructed DBM will be:

m =
V ′

1 V ′
2

V ′
1 0 b−0.5c

V ′
2 b0.5c 0

=
V ′

1 V ′
2

V ′
1 0 −1

V ′
2 0 0

and m 6= m• = ⊥DBM. The conversion has discovered that γPoly (P ) ∩
Zn = ∅. Note that the rounded matrix is not generally strongly closed.
Our algorithm is not complete as it may not always return the smallest
octagon that encompasses γPoly (P ) ∩ Zn.
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4.4. Abstract Assignment

Given a numerical expression expr , the effect of an assignment X ←
expr on a set of environments R is given by the following concrete
function:

{|X ← expr |}(R)
def
= { ρ[X 7→ v] | ρ ∈ R, v ∈ J expr K(ρ) }

where J expr K(ρ) ∈ P(I) is the set of possible values taken by the ex-
pression expr in the environment ρ. Our numerical expressions include,
but are not limited to, constants c ∈ I, variables V ∈ V, and unary
and binary arithmetic operators +, −, and ×. A convenient trick is to
enhance constants c into constant intervals [a, b], where a ∈ I ∪ {−∞}
and b ∈ I ∪ {+∞}. Each time the interval is evaluated, a new value
within the specified bounds is randomly chosen. This allows modeling
non-deterministic behaviors, such as inputs from physical sensors with
a known limited range. It also allows feeding the octagon domain with
simplified expressions where complex, non-linear parts have been ab-
stracted away into intervals. Finally, it is quite useful to account for
rounding errors appearing when modeling floating-point expressions
into real expressions, as performed in [45, 46]. All three techniques
are used in the Astrée static analyzer [3, 9]. A class of expressions
that appears frequently is that of linear expressions with interval con-
stant coefficients: [a0, b0] +

∑

k[ak, bk] × Vk, where ai ∈ I ∪ {−∞} and
bi ∈ I∪{+∞}, so-called interval linear forms, for which we will provide
specifically tailored transfer functions. The concrete evaluation J expr K
of a numerical expression expr is defined by structural induction in
Fig. 14.

Note that we suppose that our programs manipulate perfect integer,
rational, or real numbers. We do not take into account the semantics
of machine-integers—that can overflow or wrap-around—nor that of
floating-point numbers—where each operation induces some rounding
error. As explained in our PhD [46], these problems can be treated
separately from the design of an abstract domain on perfect numbers.

Simple and Exact Abstractions. Only a few simple assignment forms
have an exact abstraction in the octagon domain: X ← [a, b] and X ←
±Y + [a, b]. Their abstractions are defined in Fig. 15. Assignments
Vj0 ← Vj0 + [a, b] and Vj0 ← −Vj0 + [a, b] do not require strongly
closed matrix arguments but preserve the strong closure. They are said
to be invertible because there exists backward assignments with the
exact same semantical effect, as we will see in Sect. 4.6. Other, non-
invertible assignments in Fig. 15, such as Vj0 ← ±Vi0 + [a, b] when
i0 6= j0, require a strong closure argument due to the embedded forget
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• ({| Vj0 ← [a, b] |}Oct
exact(m))ij

def
=















−2a if i = 2j0 − 1, j = 2j0

2b if i = 2j0, j = 2j0 − 1

({| Vj0 ← ? |}Oct(m•))ij otherwise

• ({| Vj0 ← Vj0 + [a, b] |}Oct
exact(m))ij

def
=



































































mij − a if i = 2j0 − 1, j 6= 2j0 − 1, 2j0

or j = 2j0, i 6= 2j0 − 1, 2j0

mij + b if i 6= 2j0 − 1, 2j0, j = 2j0 − 1

or j 6= 2j0 − 1, 2j0, i = 2j0

mij − 2a if i = 2j0 − 1, j = 2j0

mij + 2b if i = 2j0, j = 2j0 − 1

mij otherwise

• ({| Vj0 ← Vi0 + [a, b] |}Oct
exact(m))ij

def
=







































−a if i = 2j0 − 1, j = 2i0 − 1

or i = 2i0, j = 2j0

b if i = 2i0 − 1, j = 2j0 − 1

or i = 2j0, j = 2i0

({| Vj0 ← ? |}Oct(m•))ij otherwise

• ({| Vj0 ← −Vj0 |}Oct
exact(m))ij

def
=























m ıj if i ∈ {2j0 − 1, 2j0} and j /∈ {2j0 − 1, 2j0}
mi if i /∈ {2j0 − 1, 2j0} and j ∈ {2j0 − 1, 2j0}
m ı  if i ∈ {2j0 − 1, 2j0} and j ∈ {2j0 − 1, 2j0}
mij if i /∈ {2j0 − 1, 2j0} and j /∈ {2j0 − 1, 2j0}

• {| Vj0 ← −Vi0 |}Oct
exact

def
= {| Vj0 ← −Vj0 |}Oct

exact ◦ {| Vj0 ← Vi0 |}Oct
exact

• {| Vj0 ← −Vj0 + [a, b] |}Oct
exact

def
=

{| Vj0 ← Vj0 + [a, b] |}Oct
exact ◦ {| Vj0 ← −Vj0 |}Oct

exact

• {| Vj0 ← −Vi0 + [a, b] |}Oct
exact

def
=

{| Vj0 ← Vj0 + [a, b] |}Oct
exact ◦ {| Vj0 ← −Vi0 |}Oct

exact

Figure 15. Exact abstract assignments. We suppose that i0 6= j0.
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operator. The result is not strongly closed, but can be strongly closed
by merely performing an incremental strong closure with respect to
the assigned variable Vj0 : Inc•j0 . Thus, a transfer function that keeps
matrices in strongly closed form can be computed in quadratic time,
in the worst case.

In order to deal with assignments that cannot be exactly modeled in
the octagon domain, we propose several definitions, in increasing order
of precision and cost. The most precise versions only work for limited
subsets of assigned expressions.

Interval-Based Abstraction. A coarse method is to perform the assign-
ment Vi ← expr as in the interval domain. We first extract an interval
abstract environment from the octagon. Then, we evaluate expr using
interval arithmetics. Finally, we feed the obtained interval [a, b] to the
exact transfer function for X ← [a, b] presented above. This can be
formalized as:

{| Vi ← expr |}Oct
nonrel (m)

def
= {| Vi ← (J expr KInt(Int(m))) |}Oct

exact(m)

where J expr KInt (X]) denotes the evaluation of the expression expr in
the interval abstract domain, on the interval abstract environment X ],
as derived from regular interval arithmetics [48].

The low precision of this transfer function stems from two facts.
Firstly, we do not infer any relational information of the form ±Vi±Vj.
Secondly, we do not use the existing relational information in m when
computing the bounds of expr .

Deriving New Relational Constraints. Our idea here is to solve the
first cause of precision loss in the interval-based assignment, while not
handling the second one. We still use interval arithmetics to compute
bounds of expressions using only the information available in Int(m).
However, we compute the bounds of ±expr ± Vj for all i 6= j to infer
constraints of the form ±Vi±Vj . For instance, in the assignment X ←
Y +Z, we would infer relations such as min(Z) ≤ X−Y ≤ max(Z) and
min(Y ) ≤ X −Z ≤ max(Y ). In order to obtain that much precision, it
is important to simplify formally each ±expr ± Vj before evaluating it
using interval arithmetics. In our example, (Y + Z)− Y , whose upper
bound evaluates to max(Y )+max(Z)−min(Y ), has been replaced with
Z, that has a tighter upper bound whenever min(Y ) 6= max(Y ). As
another example, consider the assignment X ← 2Y . Then, we can infer
the relation X − Y ≤ max(Y ) instead of X − Y ≤ 2max(Y )−min(Y )
because the expression 2Y −Y has been simplified into Y before being
evaluated using interval arithmetics.
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({| Vj0 ← expr |}Oct
rel (m)))ij

def
=































































































2max (Int(expr )) if i = 2j0 and j = 2j0 − 1

−2min (Int(expr )) if i = 2j0 − 1 and j = 2j0

max (Int(expr � Vi0)) if i = 2i0 − 1, j = 2j0 − 1, i0 6= j0

or i = 2j0, j = 2i0, i0 6= j0

max (Int(expr � Vi0)) if i = 2i0, j = 2j0 − 1, i0 6= j0

or i = 2j0, j = 2i0 − 1, i0 6= j0

max (Int(Vi0 � expr)) if i = 2j0 − 1, j = 2i0 − 1, i0 6= j0

or i = 2i0, j = 2j0, i0 6= j0

max (Int(�expr � Vi0)) if i = 2i0 − 1, j = 2j0, i0 6= j0

or i = 2j0 − 1, j = 2i0, i0 6= j0

m•
ij otherwise

Figure 16. Abstract assignment of interval linear forms. � and � are defined in
Fig. 17, while Int(expr ) is the evaluation of expr using interval arithmetics.

([a0, b0] +
∑

k ([ak, bk]× Vk)) � ([a′0, b
′
0] +

∑

k ([a′k, b′k]× Vk))
def
=

([a0 + a′0, b0 + b′0] +
∑

k ([ak + a′k, bk + b′k]× Vk))

� ([a0, b0] +
∑

k ([ak, bk]× Vk))
def
=

([−b0,−a0] +
∑

k ([−bk,−ak]× Vk))

Figure 17. Addition and opposite of interval linear forms.

We now propose a full formal definition of this idea, including the
simplification step, but only in the simpler yet useful case of the assign-
ment of interval linear forms. The transfer function is shown in Fig. 16,
denoting J expr KInt(Int(m)) by Int(expr ) for the sake of conciseness.
The interval linear form operators � and � used in Fig. 16 are defined
by respectively adding and subtracting the interval coefficients corre-
sponding to the same variable. These operators are formally presented
in Fig. 17. They actually perform the required expression simplifica-
tion by allowing several occurrences of the same variable to cancel one
another.

This assignment definition is more precise than the interval-based
one at the cost of more evaluations of interval arithmetic expressions.
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It is not the best abstraction as we still do not use the relational infor-
mation in the octagon when computing the bounds for each ±expr ±
Vj.

For the sake of efficiency, a practical implementation would avoid
evaluating all these 4n very similar interval linear forms. It is possible
to compute once and for all both bounds of expr , and then derive
bounds for ±expr ± Vj by removing the contribution of Vj. Suppose,

for instance, that expr
def
= [a0, b0] +

∑

j [aj , bj ] × Vj , each variable Vj

has range [xj, yj ], and expr evaluates in the interval domain to [x, y].
We suppose, moreover, that ∀j, xj 6= −∞, yj 6= +∞ and x 6= −∞, y 6=
+∞. Then, for every j 6= i such that aj ≥ 1, the upper bound for
Vi − Vj after the assignment Vi ← expr is exactly y − yj and the lower
bound for Vi + Vj is exactly x + xj . Occurrences of +∞ and −∞ in
bounds add some more complexity. For instance, if y = +∞, then we
cannot find a finite upper bound for Vi, but we may still be able to
compute a finite upper bound for some ±Vi ± Vj . As there are many
similar cases to consider, we chose not to present this optimization
fully formally here. It suffices to say that a careful implementation of
this assignment operator leads to a cost similar to that of the plain
interval-based assignment.

Polyhedron-Based Best Abstraction. One can consider using the poly-
hedron abstract domain temporarily to perform the assignment transfer
function, and convert the result back into an octagon, as follows:

{| Vi ← expr |}Oct
poly (m)

def
= (Oct ◦ {| Vi ← expr |}Poly ◦ Poly)(m) .

The use of this definition is limited because the polyhedron domain
can only deal with assignments of linear expressions. The definition of
{| Vi ← expr |}Poly can be found, for instance, in [22]. Whenever I 6= Z,
the conversion to a polyhedron and the polyhedron assignment are
exact while the conversion back to an octagon is a best abstraction, and
hence, we obtain the best abstract assignment in the octagon domain.

The high precision attained by {| Vi ← expr |}Oct
poly calls for a great

cost. Because of the way our conversion operators work, the assignment
transfer function on the polyhedron domain is fed with a constraint
representation, while we require its output in a frame representation.
This means that at least one representation conversion will occur. This
incurs an exponential cost at worse—consider, for instance, translating
the box ∀i, Vi ∈ [0, 1] by the assignment V1 ← V1 + 1; it requires the
computation of a frame representation containing 2n vertices.

Which Operator to Choose. Fig. 18 presents a comparison of our three
abstract assignments on a “complex” assignment example: X ← Y −Z.
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0 ≤ Y ≤ 10

0 ≤ Z ≤ 10

0 ≤ Y − Z ≤ 10



































−10 ≤ X ≤ 10

−20 ≤ X − Y ≤ 10

−10 ≤ X + Y ≤ 20

−20 ≤ X − Z ≤ 10

−10 ≤ X + Z ≤ 20

m {|X ← Y − Z |}Oct
nonrel (m)



































−5 ≤ X ≤ 10

−10 ≤ X − Y ≤ 0

0 ≤ X + Y ≤ 20

−10 ≤ X − Z ≤ 10

0 ≤ X + Z ≤ 10



































0 ≤ X ≤ 10

−10 ≤ X − Y ≤ 0

0 ≤ X + Y ≤ 20

−10 ≤ X − Z ≤ 10

0 ≤ X + Z ≤ 10

{|X ← Y − Z |}Oct
rel (m) {|X ← Y − Z |}Oct

poly (m) (best)

Figure 18. Constraints on variable X derived after the assignment X ← Y − Z

using three different assignment transfer functions. Non-optimal bounds are shown
in boldface.

We have closed the three results and presented only the constraints in-
volving the variable X to allow an easier comparison. As the assignment
X ← Y −Z enforces invariants such as X−Y +Z = 0, involving three
variables, its effect on an octagon cannot always be exactly represented.
The polyhedron-based abstract assignment {|X ← Y −Z |}Oct

poly gives the

best result possible. Arguably, {|X ← Y − Z |}Oct
rel is less precise: it is

not able to use the constraint 0 ≤ Y − Z to infer the information
0 ≤ X. Yet, it is much more precise than the interval-based abstract
assignment {|X ← Y − Z |}Oct

nonrel . In Sect. 5.4, we will see an example
where this extra precision is necessary and sufficient to perform an
accurate analysis. If this precision is not sufficient, it is always possible
to design other, more specialised, abstract transfer functions, adapted
to selected expression forms and some precision versus cost trade-off.

In our implementation, we chose to use exact assignments {| · |}Oct
exact

when possible, {| · |}Oct
rel when assigning an interval linear form, and

{| · |}Oct
nonrel as a last resort. As the cost of the polyhedron-based as-

signment somewhat nullifies the gain, in time cost and ease of imple-
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J test K : (V → I)→ P({T,F})

J e1 ./ e2 K(ρ)
def
= { T if ∃v1 ∈ J e1 K(ρ), v2 ∈ J e2 K(ρ), v1 ./ v2 } ∪
{ F if ∃v1 ∈ J e1 K(ρ), v2 ∈ J e2 K(ρ), v1 6./ v2 }
./ ∈ {=, 6=, <,>,≤,≥}

J t1 and t2 K(ρ)
def
= { v1 ∧ v2 | v1 ∈ J t1 K(ρ), v2 ∈ J t2 K(ρ) }

J t1 or t2 K(ρ)
def
= { v1 ∨ v2 | v1 ∈ J t1 K(ρ), v2 ∈ J t2 K(ρ) }

J not t K(ρ)
def
= { ¬v | v ∈ J t K(ρ) }

Figure 19. Semantics of boolean expressions J test K.

mentation, obtained by choosing the octagon domain instead of the
polyhedron domain, we do not use it in actual static analyses. How-
ever, it is useful to perform regression tests and experimental studies
of precision losses incurred when using non-optimal abstractions.

4.5. Abstract Test

Given a boolean expression test , the effect of a test on a set of envi-
ronments R is to keep only the environments that can satisfy the given
expression. It is given by the following concrete transfer function:

{| test ? |}(R)
def
= { ρ | ρ ∈ R, T ∈ J test K(ρ) }

where J test K(ρ) ∈ P({T,F}) evaluates boolean expressions in a way
similar to numerical expressions, except that it outputs a subset of
booleans {T,F}, where T means “true” and F means “false”. Tests in-
clude atomic comparisons of numerical expressions expr ./ expr , where
./ ∈ {=, 6=, <, >, ≤, ≥}, linked using the and, or, and not boolean
operators. The evaluation of a boolean expression J test K is defined
in Fig. 19 using the boolean operators ∧, ∨, and ¬ that correspond
respectively to the logical “and”, “or”, and “not” operators on {T,F}.

Preprocessing. In order to simplify our definitions, we first show how
the analysis of any test can be reduced to the analysis of atomic tests
of the form (e ≤ 0 ?). A first step is to transform our test into an
equivalent test that does not use the not operator. This is done by
“pushing” the not operators into the and and or operators using the
De-Morgan laws, and reversing the comparison operators:
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not(t1 and t2) → (not t1) or (not t2)
not(t1 or t2) → (not t1) and (not t2)
not(not t) → t
not(e1 ≤ e2) → e1 > e2

etc. . .

Then, provided that we have a transfer function for atomic tests
(e1 ./ e2 ?), all not-free tests can be computed by structural induction
using the already available ∪Oct and ∩Oct operators as follows:

{| (t1 and t2) ? |}Oct(m)
def
= {| t1 ? |}Oct(m) ∩Oct {| t2 ? |}Oct(m)

{| (t1 or t2) ? |}Oct(m)
def
= {| t1 ? |}Oct(m) ∪Oct {| t2 ? |}Oct(m)

Finally, given an atomic test of the form (e1 ./ e2 ?), we group the
expressions on the left side as follows: (e1− e2 ./ 0 ?) and, whenever ./
is not ≤, we do one of the following:

− If ./ is =, our test will be abstracted as:

{| e1 − e2 ≤ 0 ? |}Oct(m) ∩Oct {| e2 − e1 ≤ 0 ? |}Oct(m) .

− If ./ is < and I = Z, then we can use the test:

{| e1 − e2 + 1 ≤ 0 ? |}Oct(m) .

− If ./ is < and I 6= Z, as we have no way to represent strict
inequalities exactly, we relax the test as a regular inequality:

{| e1 − e2 ≤ 0 ? |}Oct(m) .

− The cases where ./ ∈ {>,≥} reduce to the cases < and ≤ by
exchanging e1 and e2.

− If ./ is 6= and I = Z, we combine two inequalities:

{| e1 − e2 + 1 ≤ 0 ? |}Oct(m) ∪Oct {| e2 − e1 + 1 ≤ 0 ? |}Oct(m) .

− If ./ is 6= and I 6= Z, there is generally no better abstraction than
the identity, so, we choose:

{| t ? |}Oct(m)
def
= m .

We now explain how to abstract atomic tests (e ≤ 0 ?) using ideas
similar to our assignment transfer functions.
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• ({| Vj0 + [a, b] ≤ 0 ? |}Oct
exact(m))ij

def
=

{

min(mij ,−2a) if i = 2j0, j = 2j0 − 1

mij otherwise

• ({| − Vj0 + [a, b] ≤ 0 ? |}Oct
exact(m))ij

def
=

{

min(mij ,−2a) if i = 2j0 − 1, j = 2j0

mij otherwise

• ({| Vj0 − Vi0 + [a, b] ≤ 0 ? |}Oct
exact(m))ij

def
=















min(mij ,−a) if i = 2i0 − 1, j = 2j0 − 1

or i = 2j0, j = 2i0

mij otherwise

• ({| Vj0 + Vi0 + [a, b] ≤ 0 ? |}Oct
exact(m))ij

def
=















min(mij ,−a) if i = 2i0, j = 2j0 − 1

or i = 2j0, j = 2i0 − 1

mij otherwise

• ({| − Vj0 − Vi0 + [a, b] ≤ 0 ? |}Oct
exact(m))ij

def
=















min(mij ,−a) if i = 2i0 − 1, j = 2j0

or i = 2j0 − 1, j = 2i0

mij otherwise

Figure 20. Exact abstract tests. We suppose that i0 6= j0.

Simple and Exact Abstractions. If the test has the shape of an oc-
tagonal constraint, it can be modeled exactly by simply adding the
constraint to the DBM, as presented in Fig. 20. This test transfer
function does not require a strongly closed argument. If, however, the
argument is strongly closed, the result can be made strongly closed
in quadratic time by applying the incremental strong closure with
respect to any of the variables appearing in the test—even when the
test involves two variables, the incremental strong closure needs to be
performed with respect to only one of them.
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Interval-Based Abstraction. When e has an arbitrary form, it is always
possible to fall back to the test transfer function in the interval domain:

{| e ≤ 0 ? |}Oct
nonrel (m)

def
= (Oct ◦ {| e ≤ 0 ? |}Int ◦ Int)(m) ∩Oct m

where {| e ≤ 0 ? |}Int is the classical test abstraction in the interval
domain—see [15] on how to derive test abstractions for generic non-
relational domains. Because tests only filter out environments, it is
safe to keep all the constraints of the argument DBM in the result,
hence the intersection with m in our formula. This is quite convenient
because (Oct◦{| expr ≤ 0 ? |}Int◦Int)(m) does not contain any relational
constraint by itself. As a conclusion, we do not infer any new relational
constraint but, at least, we keep all the ones that were valid before the
test.

Due to the conversion to intervals, it is necessary for the argument m

to be in strongly closed form to obtain maximum accuracy. In contrast
to the interval-based assignment, one pass of incremental closure is
not sufficient to obtain a strongly closed result as potentially all lines
and columns may be modified. This gives a total cost which is, in
the worst case, cubic in the number of variables, plus the cost of the
transfer function in the interval domain—which is linear in the size of
e—without much room for improvement.

Deriving New Relational Constraints. The interval-based abstraction
is very poor. For instance, it is not able to prove that the constraint
X ≤ Y holds after the test (X − Y ≤ 0 ?), while our abstraction

of simple tests {| e ≤ 0 ? |}Oct
exact can. In order to solve this problem, we

propose an improvement of the interval-based abstraction able to derive
new relational constraints. However, unlike the simple test abstraction,
it will work on all interval linear forms, and not only tests involving
octagonal constraints. For instance, it will be able to prove that, after
the test (X ≤ Y + Z ?), X − Y is smaller than the upper bound of Z.

In order to derive some new relational constraints, we can remark
that e ≤ 0 implies Vj − Vi ≤ Vj − Vi− e. Whenever Vi or Vj appears in
e, there is a possibility that Vj − Vi − e might be simplified and, once
evaluated in the interval domain, gives a more precise upper bound for
Vj −Vi than the interval-based test. A formalization of this idea, when
e is an interval linear form, is presented in Fig. 21. The introduced
operator, {| e ≤ 0 ? |}Oct

rel , has a quadratic cost. It uses the � and �

operators, introduced in Fig. 17, as well as the Int(expr ) shortcut.

Polyhedron-Based Best Abstraction. As for the assignment, whenever
e is a linear expression, the best abstraction can be computed at great
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({| e ≤ 0 ? |}Oct
rel (m))ij

def
= min (mij ,m

′
ij)

where m′
ij is defined as:



































































2max (Int(Vj0 � e)) if ∃j0, i = 2j0, j = 2j0 − 1

−2max (Int(�Vj0 � e)) if ∃j0, i = 2j0 − 1, j = 2j0

max (Int(Vj0 � Vi0 � e)) if ∃i0 6= j0, i = 2i0 − 1, j = 2j0 − 1

or ∃i0 6= j0, i = 2j0, j = 2i0

max (Int(Vj0 � Vi0 � e)) if ∃i0 6= j0, i = 2i0, j = 2j0 − 1

max (Int(�Vj0 � Vi0 � e)) if ∃i0 6= j0, i = 2i0 − 1, j = 2j0

mij otherwise

Figure 21. Abstract test of interval linear forms. � and � are defined in Fig. 17,
while Int(expr ) is the evaluation of expr using interval arithmetics.

cost by switching momentarily to the polyhedron abstract domain as
follows:

{| e ≤ 0 ? |}Oct
poly (m)

def
= (Oct ◦ {| e ≤ 0 ? |}Poly ◦ Poly)(m)

where the classical test transfer function {| e ≤ 0 ? |}Poly for linear
expressions in the polyhedron abstract domain is described, for in-
stance, in [22]. This has an exponential worst-case behavior. As for the
polyhedron-based assignment, we will refrain from using it in practice.
It is presented here merely for the sake of completeness.

It is useful to compare, on theoretical examples, the previous two
methods with the best possible abstraction. Such an example is pro-
vided by Fig. 22. Note that {| e ≤ 0 ? |}Oct

rel is not guaranteed to be always

at least as precise as the interval-based solution {| e ≤ 0 ? |}Oct
nonrel—even

though this is the case for the example of Fig. 22—so, it can be worth
actually computing both and returning their intersection.

4.6. Abstract Backward Assignment

The backward assignment transfer function {|X → expr |}(R) maps a
set of environments R to the set of environments that can lead to R
via an assignment X ← expr :

{|X → expr |}(R)
def
= { ρ | ∃v ∈ J expr K(ρ), ρ[X 7→ v] ∈ R } .
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5 ≤ X ≤ 25

0 ≤ Y ≤ 10

0 ≤ Z ≤ 10

0 ≤ X − Y ≤ 20

5 ≤ X + Y ≤ 35

−5 ≤ X − Z ≤ 25

5 ≤ X + Z ≤ 35

−10 ≤ Y − Z ≤ 10

0 ≤ Y + Z ≤ 20











































































5 ≤ X ≤ 10

5 ≤ Y ≤ 10

0 ≤ Z ≤ 5

0 ≤ X − Y ≤ 5

10 ≤ X + Y ≤ 20

0 ≤ X − Z ≤ 10

5 ≤ X + Z ≤ 15

0 ≤ Y − Z ≤ 10

5 ≤ Y + Z ≤ 15

m {|X ≤ Y − Z ? |}Oct
nonrel (m)











































































5 ≤ X ≤ 10

5 ≤ Y ≤ 10

0 ≤ Z ≤ 5

X − Y = 0

10 ≤ X + Y ≤ 20

0 ≤ X − Z ≤ 10

5 ≤ X + Z ≤ 10

0 ≤ Y − Z ≤ 10

5 ≤ Y + Z ≤ 10











































































5 ≤ X ≤ 10

5 ≤ Y ≤ 10

Z = 0

X − Y = 0

10 ≤ X + Y ≤ 20

5 ≤ X − Z ≤ 10

5 ≤ X + Z ≤ 10

5 ≤ Y − Z ≤ 10

5 ≤ Y + Z ≤ 10

{|X ≤ Y − Z ? |}Oct
rel (m) {|X ≤ Y − Z ? |}Oct

poly (m) (best)

Figure 22. Constraints derived after the test (X ≤ Y − Z ?) using three different
abstract transfer functions. Non-optimal bounds are shown in boldface.

Viewing transfer functions as relations between environments, each
backward assignment is really the inverse relation of the corresponding
forward assignment. Backward assignment transfer functions are not
generally used directly to define the concrete semantics of a program.
Yet, they can be quite useful once abstracted. One classical application
is to refine a static analysis by performing combined forward and back-
ward passes, as proposed by Cousot and Cousot in [19, §6]. Another
one is to backtrack from a user-specified program behavior to its origin,
such as in Bourdoncle’s abstract debugging [11].
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We did not experiment with backward assignments yet. However, for
the sake of completeness, we provide a few abstractions of backward
assignments so that the octagon domain can be plugged as-is into
existing or future backward-able analyzers. There are also plans to
include these transfer functions within the Astrée analyzer presented
in Sect. 6.

Simple and Exact Abstractions. The backward assignments that can
be modeled exactly are similar to the exact assignments {| · |}Oct

exact . They
are presented in Fig. 23. The backward assignments Vj0 → Vj0 + [a, b]
and Vj0 → −Vj0 +[a, b] are invertible. They are semantically equivalent
to, respectively, the forward assignments Vj0 ← Vj0 − [a, b] and Vj0 ←
−Vj0+[a, b]. They do not require strongly closed arguments but preserve
the strong closure. Other, non-invertible backward assignments, such
as Vj0 → ±Vi0 +[a, b] when i0 6= j0, correspond to substituting Vj0 with
the assigned expression in all the constraints in m. This generates new
constraints that refine all the constraints related to Vi0 but remove all
information about Vj0 . Also, we may discover a trivially unsatisfiable
constraint and return⊥DBM directly. To obtain the maximum precision,
the argument matrix must be strongly closed. The resulting matrix can
then be strongly closed in quadratic time by invoking the incremental
strong closure procedure Inc•

i0,j0 . Indeed, all elements unrelated to Vi0

or Vj0 are left intact.

Interval-Based Abstraction. As for tests, we can use the backward
assignment on the interval domain to discover interval information, but
we need a way to recover some relational information as well. The idea
is to keep in m all the constraints that are not invalidated by the back-
ward assignment. Thus, we combine the interval transfer function to-
gether with the forget operator that abstracts non-deterministic back-
ward assignments as well as non-deterministic forward assignments:

{| Vi → e |}Oct
nonrel (m)

def
=

(Oct ◦ {| Vi → e |}Int ◦ Int)(m) ∩Oct {| Vi ← ? |}Oct(m•) .

Deriving New Relational Constraints. For assignments and tests in-
volving interval linear forms, we were able to refine the interval-based
transfer functions by inferring some new relational constraints. This
idea can be adapted here. Given the backward assignment Vi → e on m,
we can derive, for each variable Vj 6= Vi, four interval linear constraints
by substitution: e−Vj ≤m(2j−1) (2i−1), e+Vj ≤m(2j) (2i−1), −e−Vj ≤
m(2j−1) (2i), and −e + Vj ≤ m(2j) (2i). The resulting transfer function
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• {| Vj0 → Vj0 + [a, b] |}Oct
exact

def
= {| Vj0 ← Vj0 + [−b,−a] |}Oct

exact

• {| Vj0 → −Vj0 + [a, b] |}Oct
exact

def
= {| Vj0 ← −Vj0 + [a, b] |}Oct

exact

• if m•
(2j0) (2j0−1) ≥ 2a and m•

(2j0−1) (2j0)
≥ −2b, then

({| Vj0 → [a, b] |}Oct
exact(m))ij

def
=







































min (m•
ij , 2(m•

i (2j0−1) − a), if i = , i /∈ {2j0 − 1, 2j0}
2(m•

i (2j0) + b) )

+∞ if i ∈ {2j0 − 1, 2j0}
or j ∈ {2j0 − 1, 2j0}

m•
ij otherwise

otherwise, {| Vj0 → [a, b] |}Oct
exact(m) = ⊥DBM

• if m•
(2i0−1) (2j0−1) ≥ a and m•

(2j0−1) (2i0−1) ≥ −b, then

({| Vj0 → Vi0 + [a, b] |}Oct
exact(m))ij

def
=



































































































































min (m•
ij , m•

(2j0−1) j + b)

if i = 2i0 − 1, j /∈ {2i0 − 1, 2j0 − 1, 2i0, 2j0}
min (m•

ij , m•
i (2j0) + b)

if j = 2i0, i /∈ {2i0 − 1, 2j0 − 1, 2i0, 2j0}
min (m•

ij , m•
(2j0) j − a)

if i = 2i0, j /∈ {2i0 − 1, 2j0 − 1, 2i0, 2j0}
min (m•

ij , m•
i (2j0−1) − a)

if j = 2i0 − 1, i /∈ {2i0 − 1, 2j0 − 1, 2i0, 2j0}
min (m•

ij , m•
(2j0) (2j0−1) − 2a) if i = 2i0, j = 2i0 − 1

min (m•
ij , m•

(2j0−1) (2j0) + 2b) if i = 2i0 − 1, j = 2i0

+∞ if i ∈ {2j0 − 1, 2j0}
or j ∈ {2j0 − 1, 2j0}

m•
ij otherwise

otherwise, {| Vj0 → Vi0 + [a, b] |}Oct
exact(m) = ⊥DBM

• {| Vj0 → −Vi0 + [a, b] |}Oct
exact

def
=

{| Vj0 → Vi0 |}Oct
exact ◦ {| Vj0 → −Vj0 + [a, b] |}Oct

exact

Figure 23. Exact abstract backward assignments. We suppose that i0 6= j0.
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{| Vi → e |}Oct
rel

def
=

({| e ≤m(2i) (2i−1)/2 ? |}Oct
rel ◦ {| Vi ← ? |}Oct)(m) ∩Oct

({| e ≥ −m(2i−1) (2i)/2 ? |}Oct
rel ◦ {| Vi ← ? |}Oct)(m) ∩Oct

⋂Oct
i6=j ({| e � Vj ≤m(2j−1) (2i−1) ? |}Oct

rel ◦ {| Vi ← ? |}Oct)(m) ∩Oct

⋂Oct
i6=j ({| e � Vj ≤m(2j) (2i−1) ? |}Oct

rel ◦ {| Vi ← ? |}Oct)(m) ∩Oct

⋂Oct
i6=j ({| � e � Vj ≤m(2j−1) (2i) ? |}Oct

rel ◦ {| Vi ← ? |}Oct)(m) ∩Oct

⋂Oct
i6=j ({| � e � Vj ≤m(2j) (2i) ? |}Oct

rel ◦ {| Vi ← ? |}Oct)(m)

Figure 24. Abstract backward assignment of interval linear forms.

is denoted by {| Vi → e |}Oct
rel and defined formally in Fig. 24. We start

from a coarse abstraction of the backward assignment, {| Vi ← ? |}Oct ,
and then add all these constraints using the test transfer function for
interval linear forms, {| expr ≤ 0 ? |}Oct

rel , presented in the preceding sec-
tion. Note that each of the 4n test transfer functions applied will derive
a quadratic number of constraints, and so, we generate a cubic total
number of constraints. Hence, our transfer function has an unavoidable
cubic cost. Moreover, our operator requires a strongly closed argument
for best precision and it does not preserve the closure.

Polyhedron-Based Best Abstraction. As for the test and assignment
transfer functions, whenever the expression e is linear, a best abstrac-
tion can be computed with exponential worst-case cost using momen-
tarily the polyhedron abstract domain as follows:

{| Vi → e |}Oct
poly (m)

def
= (Oct ◦ {| Vi → e |}Poly ◦ Poly)(m) .

Invertible Assignments. An assignment is said to be invertible when-
ever there exists a backward assignment with the exact same semantical
effect. We have already seen simple examples of invertible assignments,
such as Vi ← Vi + [a, b], which has the same concrete semantics as
Vi → Vi − [a, b]. It is possible to exploit this fact and abstract an
assignment using an abstract backward assignment transfer function
or, conversely, to abstract a backward assignment using one of our
abstractions for forward assignments.

We will now consider more closely the case of backward assignments
of interval linear forms: Vi → [a0, b0] +

∑

j [aj , bj ]× Vj . It is easy to see
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that, if ai = bi and ai 6= 0, then this backward assignment is invertible
and has the exact same effect as the forward assignment:

Vi ← (1/ai)× Vi − ([a0, b0]/ai) −
∑

j 6=i

([aj , bj ]/ai)× Vj .

If ai 6= bi and 0 /∈ [ai, bi], the backward assignment may not be invert-
ible. Indeed the inverse relation of the concrete semantics associates to
Vi the set { (1/x) × Vi − ([a0, b0]/x) − ∑

j 6=i ([aj , bj ]/x) × Vj | x ∈
[ai, bi] }, which may not be expressible as an interval linear form. Still,
we can model it using the following forward assignment:

Vi ← (1/[ai, bi])× Vi − ([a0, b0]/[ai, bi]) −
∑

j 6=i

([aj , bj ]/[ai, bi])× Vj

where the division of two intervals is defined as usual in interval arith-
metics [48]. In this second case, the forward assignment may yield
more behaviors than the original backward assignment because we have
forgotten some relationships—namely, between the choices of values
within the intervals [ai, bi] when evaluating the right-hand side. Yet,
this is a sound abstraction and we can use our linear cost abstract
assignment for interval linear forms {| Vi ← e |}Oct

rel of Fig. 16 instead of
the cubic cost abstract backward assignment for interval linear forms
{| Vi → e |}Oct

rel of Fig. 24. We gain much time. However, it is not clear
which operator gives the most precise answers. Indeed, both operators
perform some abstractions which are difficult to compare in general. If
precision is a concern and not cost, one can perform both operations
and return the intersection of the results.

4.7. Extrapolation Operators

Due to loops and recursive functions, the control-flow graph of a pro-
gram generally contains cycles, which leads to computing least-fixpoints
in the concrete semantics. In order to over-approximate such concrete
fixpoints, one idea is to compute fixpoints in the abstract domain. Alas,
abstract fixpoints are in general not computable if the abstract domain
has an infinite height, which is the case of the octagon domain. In order
to effectively compute abstractions of concrete least-fixpoints, Cousot
and Cousot propose, in [17], to design so-called widening and narrowing
extrapolation operators.

Increasing Iterations. We recall from [17] that a binary operator O in
an abstract domain D

] that is partially ordered by v] is a widening if
and only if:

1. ∀X], Y ] ∈ D
], (X]

O Y ]) w] X], Y ], and
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2. for every chain (X ]
i )i∈N, the increasing chain (Y ]

i )i∈N defined by











Y ]
0

def
= X]

0

Y ]
i+1

def
= Y ]

i O X]
i+1

is stable after a finite time, i.e., ∃n < ω, Y ]
n+1 = Y ]

n .

Then, if F ] is a sound abstraction of the operator F , the sequence

X]
0

def
= ⊥], X]

i+1
def
= X]

i O F ](X]
i ) reaches, in finite time, a stable

iterate. This iterate is an abstract post-fixpoint, and hence, it is a
sound abstraction of F ’s least-fixpoint.

In order to design a widening for octagons, we use the same idea
as for the standard widening in the interval [17] and the polyhedron
domains [30]: we remove unstable constraints. The resulting standard
octagon widening O

Oct
std is defined point-wise on DBMs as follows:

(m O
Oct
std n)ij

def
=

{

mij if mij ≥ nij

+∞ otherwise

More generally, any widening on initial segments, that is, intervals
of the form [−∞, a], a ∈ I, gives rise to a widening on octagons by
point-wise extension. For instance, Cousot and Cousot propose in [21,
§8] to improve the standard interval widening in order to infer sign
information. If an interval not containing 0 is not stable, they first try
to see if 0 is a stable bound instead of deciding it should be set to ±∞.
A further generalisation, presented in [21] and widely used in [8], is to
design a widening parametrized by a finite set T ⊆ I of thresholds. Each
bound is enlarged to the threshold immediately greater. We bail out to
±∞ only when we are out of thresholds. This adapts nicely and gives
a family of octagon widenings with thresholds O

Oct
th parameterized by

T as follows:

(m O
Oct
th n)ij

def
=







mij if mij ≥ nij

min { x | x ∈ T ∪ {+∞}, x ≥ nij } otherwise when i 6= 
min { 2x | x ∈ T ∪ {+∞}, 2x ≥ nij } otherwise when i = 

Note that, when i = , we use the set of thresholds 2T instead of T.
This is because such matrix positions correspond to upper bounds of
constraints of the form ±2Vdi/2e ≤ mi . We can prove the following
property:

THEOREM 17. O
Oct
std and O

Oct
th are indeed widenings.

article-mine.tex; 13/04/2006; 14:18; p.50



51

Decreasing Iterations. Once an abstract post-fixpoint is found, it is
often possible to refine it to get a smaller abstraction of the con-
crete least-fixpoint using decreasing iterations. We recall here the re-
quired properties of a narrowing operator M as proposed by Cousot and
Cousot in [17] to compute, in finite time, limits of sound decreasing
iterations:

1. ∀X], Y ] ∈ D
], (X] u] Y ]) v] (X]

M Y ]) v] X]—where u] is the
greatest lower bound with respect to v]—and

2. for every chain (X ]
i )i∈N, the chain (Y ]

i )i∈N defined by:











Y ]
0

def
= X]

0

Y ]
i+1

def
= Y ]

i M X]
i+1

is ultimately stationary after a finite time, i.e., ∃n < ω, Y ]
n+1 = Y ]

n .

Then, the sequence Y ]
0

def
= X], Y ]

i+1
def
= Y ]

i M F ](Y ]
i ) converges in

finite time towards an abstraction of F ’s least-fixpoint smaller than
X], provided that X ] is itself an abstraction of F ’s least-fixpoint.

As for the widening, any narrowing on initial segments gives rise to a
narrowing on the octagon domain by point-wise extension. We present
here a “standard” narrowing based on the standard interval narrowing.
It only refines constraints involving +∞:

(m M
Oct
std n)ij

def
=

{

nij if mij = +∞
mij otherwise

We can prove the following property:

THEOREM 18. M
Oct
std is indeed a narrowing.

Widening Limitation. It is important to remark that, even though,

by definition of widenings, the sequence mi+1 def
= mi

O
Oct ni+1 al-

ways converges in finite time, the sequence mi+1 def
= (mi)• O

Oct ni+1

may not. Fig. 25 gives an example of such a diverging sequence. It
corresponds to searching for a loop invariant in the program of Fig. 26
(where the calls to random() denote non-deterministic loop exit and
test conditions) using the standard widening O

Oct
std .

This behavior is unlike that of most operators and transfer functions
we presented earlier. Indeed, other operators could be safely used on
DBMs that are either strongly closed or not, generally at the cost of
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V ′
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OO

1
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xx
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V ′
2
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// V ′
4

m0 ni

V ′
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xx
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V ′
2
OO
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V ′
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2
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V ′
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// V ′
4

m2i m2i+1

Figure 25. Example of infinite increasing chain defined by mi+1 def
= (mi)•OOct

std ni+1.

V1 := 0

V2 := [−1, 1]

while random() {
if V1=V2 {

if random() { V2 := V1+[−1, 1] }
else { V1 := V2+[−1, 1] }

}
}

Figure 26. A program whose analysis leads to the infinite increasing chain of Fig. 25
if we wrongly close the widened iterates.
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the some precision degradation. Closing the arguments of a widened
sequence, on the other hand, jeopardizes the fixpoint computation. An
intuitive explanation for this problem is that the proof of termination

for the sequence mi+1 def
= mi

O
Oct ni+1 relies on replacing more and

more matrix coefficients with +∞, while the strong closure tends to
reduce the number of +∞ coefficients. More generally, it is know that
widenings cannot be applied point-wise in reduced products of abstract
domains. Indeed, our octagon domain can be seen as the reduced prod-
uct of 2n2 abstract domains, each one of them focusing on an invariant
of the form ±X±Y ≤ c. While many operators—such as the union and
the widening—perform point-wise on these domains, the strong closure
plays the role of a 2n2−way reduction between them.

Our solution to this problem is to always feed the result of the
previous widening application mi unchanged as left argument to the

next widening application mi+1 def
= mi

O
Oct ni+1. Of course, the strong

closure of the widened iterate (mi)• can be safely used to compute

the right argument of the next widening application, as in ni+1 def
=

F ((mi)•). Although this works perfectly well, having the correctness of
an operator depend on which DBM m is used among all those repre-
senting the same concrete element γOct(m) is not fully satisfactory. As
an illustration, the original polyhedron widening proposed in [22] also
depended on the set of inequalities chosen to represent the arguments,
but this was subsequently corrected by Halbwachs in [30]. The design
of such a semantical, yet precise, widening for the octagon domain is a
future work.2

Note that our narrowing does not suffer from the same limitation:
any argument can be safely strongly closed. Moreover the right argu-
ment of the widening can be safely strongly closed; we thus compute

mi+1 def
= mi

O
Oct (ni+1)•. In contrast to the abstract union ∪Oct ,

strongly closed arguments do not always give a more precise result as
extrapolation operators are naturally non-monotonic—and the result
of nested iterations with widening is even less predictable.

4.8. Summary

We have introduced quite a lot of abstract transfer functions with
different precision versus cost trade-offs. Also, some functions require
strongly closed arguments for best precision. Some functions preserve
the strong closure, while others do not. For some functions, an incre-
mental strong closure is sufficient to get the result in strongly closed

2 See [5] for novel widening ideas proposed by Bagnara et al. during the writing
of the present article.
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transfer
cost precision

arg. should result

function be closed? is closed?

set-theoretic (Sect. 4.1)

∩Oct n2 exact no no

∪Oct n2 best yes yes

assignment (Sects. 4.2, 4.4)

{|V ← ? |}Oct
n exact yes yes

{|V ← e |}Oct

exact n exact may via Inc•

{|V ← e |}Oct

nonrel n poor yes via Inc•

{|V ← e |}Oct

rel n medium yes via Inc•

{|V ← e |}Oct

poly en best no yes

test (Sect. 4.5)

{| test ? |}Oct

exact 1 exact no via Inc•

{| test ? |}Oct

nonrel n2 poor yes no

{| test ? |}Oct

rel n2 medium yes no

{| test ? |}Oct

poly en best no yes

backward assignment (Sect. 4.6)

{|V → e |}Oct

exact n exact may via Inc•

{|V → e |}Oct

nonrel n2 poor yes no

{|V → e |}Oct

rel n3 medium yes no

{|V → e |}Oct

poly en best no yes

extrapolation (Sect. 4.7)

O
Oct
std n2, n2 medium NO no

O
Oct
th n2, |T| × n2 medium NO no

M
Oct
std n2, n2 medium no no

Figure 27. Summary of our abstract transfer functions and their properties.

form. The table in Fig. 27 tries to sum-up all these properties. Note
that, in this table, the cost is given without that of the strong closure
that may be required to get the expected precision or a strongly closed
result. Likewise, the cost of the incremental strong closure that may be
required to obtain a strongly closed result is omitted. Thus, depending
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on the case, you may have to add a cubic cost (for strong closure) or
quadratic cost (for incremental strong closure).

Finally, we recall that some transfer functions are limited to certain
expression forms:

− the exact assignments, tests, and backward assignments are limited
to expressions involving at most two variables (including the left-
hand variable for assignments and backward assignments) and unit
coefficients;

− the poly assignments, tests, and backward assignments are limited
to linear forms;

− the rel assignments and tests are limited to interval linear forms.

Finally, for the extrapolation operators, two costs are given. The first
one is the cost per operator application. The second one is an upper
bound on the number of iterations before stabilisation—so-called the
maximal height of ascending and descending chains. It is also recalled
that widening arguments should not be strongly closed, as this disrupts
the stabilisation of iterates.

5. Analysis Examples

In this section, we provide various example analyses on program frag-
ments to illustrate the usefulness of the octagon domain when analysing
loops and numerical programs. These examples cannot be precisely
analyzed with a non-relational abstract domain, such as the interval
domain. Some of them require inferring bounds on variable sums, and
hence, cannot be analyzed using the zone abstract domain we proposed
in previous work [43]—the zone domain can only infer constraints of
the form X − Y ≤ c and ±X ≤ c. In all but the last example, the
octagon domain gives the expected, most precise, answer. The polyhe-
dron domain gives strictly better results only in the last example, and
the result obtained by the octagon domain in that case is still good.

5.1. Increasing Loop Counter

We first consider the following loop that iterates from 0 to N :

X := 0

N := [0, +∞]

while ① X < N {
X := X+1

} ②
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We suppose that our analysis performs a standard widening at the
program point ①, between the while keyword and the loop condition.
This point is traversed when we first enter the loop and after each loop
iteration, just before we test whether we should stay in the loop or
exit. An interval analysis would only discover that X ∈ [0,+∞] as the
constraint X ≥ 0 is stable while the upper bound of X is not. The octagon
domain will discover that the more precise, relational, constraint X ≤ N

holds within the loop. Combined with the loop exit condition X ≥ N, this
allows proving that, at the end of the program ②, X=N. The polyhedron
domain would find the very same invariants.

5.2. Decreasing Loop Counter

Consider now the following example where the loop counter I is decre-
mented at each loop iteration while the index X is incremented:

I := 16

X := 1

while I > 0 {
X := X+1

I := I−1

}

Iterations with the standard widening in the octagon domain are able
to prove that X+I = 17 is a loop invariant. However, as I’s lower bound
decreases at each iteration, the widening will only be able to infer that
I ∈ [−∞, 16]. Decreasing iterations with the standard narrowing are
required to prove that, within the loop, I ≥ 0. Alternatively, we can use
a widening with thresholds instead of the standard widening, provided
that 0 ∈ T. Combined with the loop exit condition I ≤ 0, this gives
I = 0, and so, X = 17 at the end of the program.

As in the preceding example, the interval domain is not able to find
a precise upper bound for X. The polyhedron domain would find the
very same invariants as the octagon domain. It would also require the
use of either a narrowing or a widening with thresholds.

5.3. Absolute Value

Consider the following code that computes the absolute value Y of X
before testing whether it is smaller than 69:
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X := [−100, 100]

Y := X

if Y ≤ 0 { ① Y := −Y ② } else { ③ }
④

if Y ≤ 69 { ⑤ }

Program points of interest have been numbered from ① to ⑤. In par-
ticular, at ⑤, we have −69 ≤ X ≤ 69, because the absolute value Y of X
is assumed to be less than 69. The invariants computed in the octagon
domain are:

① −100 ≤ X ≤ 0 ∧ −100 ≤ Y ≤ 0 ∧ X− Y = 0 ∧ −200 ≤ X+ Y ≤ 0

② −100 ≤ X ≤ 0 ∧ 0 ≤ Y ≤ 100 ∧ −200 ≤ X− Y ≤ 0 ∧ X + Y = 0

③ 0 ≤ X ≤ 100 ∧ 0 ≤ Y ≤ 100 ∧ X− Y = 0 ∧ 0 ≤ X + Y ≤ 200

④ −100 ≤ X ≤ 100 ∧ 0 ≤ Y ≤ 100 ∧ −200 ≤ X− Y ≤ 0 ∧
0 ≤ X + Y ≤ 200

⑤ −69 ≤ X ≤ 69 ∧ 0 ≤ Y ≤ 69 ∧ −138 ≤ X− Y ≤ 0 ∧
0 ≤ X + Y ≤ 138

Intuitively, one may think that the most precise bounds for X at ⑤
can only be discovered by an abstract domain able to represent the con-
straint Y = |X|. In fact, this intuition is false and the octagon domain,
which cannot represent such a non-linear and non-convex constraint,
finds the most precise bounds for X. The important point is that, at ④,
we are able to infer the information −Y ≤ X ≤ Y that will be combined
by strong closure with the information Y ≤ 69 at ⑤. This analysis works
equally well if we modify the 100 and 69 constants. The same bounds
can be found by the polyhedron domain, but not the interval domain
or the zone abstract domain.

5.4. Rate Limiter

Our last example is the following code implementing a rate limiter :
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Y := 0

while random() {
X := [−128, 128]

D := [0, 16]

S := Y

①

R := X−S
Y := X

if R ≤ −D { ② Y := S−D ③ } else

if D ≤ R { ④ Y := S+D ⑤ }
}

At each loop iteration, a new value for the entry X is fetched within
[−128, 128] and a new maximum rate D is chosen in [0, 16]. The program
then computes an output Y that tries to follow X but is forced to change
slowly. The absolute difference between Y and its value in the preceding
iteration is bounded by the current value of D. The variable S is used to
store the value of Y from the previous iteration while R is a temporary
variable used to avoid computing the difference X− S twice.

The output Y is bounded by the range of X, that is, Y∈ [−128, 128].
To prove this, suppose that Y ∈ [−128, 128] at the start of a loop
iteration. One of the three following cases may occur at the end of the
same loop iteration:

− If −D < R < D, then Y = X.

− If R ≤ −D, then Y = S− D. As R = X− S, we have X− S ≤ −D, so,
S− D ≥ X. Thus, X ≤ Y ≤ S, so, Y ∈ [−128, 128].

− If R ≥ D, then Y = S + D. As R = X − S, we have X − S ≥ D, so,
S + D ≤ X. Hence, S ≤ Y ≤ X, so, Y ∈ [−128, 128].

Interval Analysis. The interval analysis is not able to keep any re-
lationship between R, X, and S. As a consequence, the tests R ≤ −D
and R ≥ D do not refine the bounds for S − D nor S + D. The anal-
ysis behaves exactly as if these tests were ignored, that is, as if Y

was non-deterministically incremented or decremented by D at each
loop iteration. An abstract semantics using the best interval transfer
functions and exact fixpoint computations without widening would find
that Y is unbounded, thus, no computable fixpoint abstraction can find
finite bounds for Y.

Octagonal Analysis. In order to find the most precise bounds for Y,
that is Y ∈ [−128, 128], one needs to exactly represent the constraint
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R = X − S, which is not possible in the octagon domain. Nevertheless,
our non-optimal assignment transfer function for interval linear forms,
{| V ← e |}Oct

rel , is powerful enough to derive the constraint R + S ∈
[−128, 128]. Suppose that Y ∈ [−M,M ] at the beginning of the current
abstract loop iteration. Then, at ①, we also have S ∈ [−M,M ] and the
following computation occurs:

− At ②, the test implies R + D ≤ 0, which implies −R ≥ 0 and S=
(S+ R)− R ≥ −128, so, S ∈ [−128,M ]. At ③, Y− S=−D ∈ [−16, 0],
which gives Y=(Y− S) + S ∈ [−144,M ].

− At ④, the test implies R − D ≥ 0, which implies −R ≤ 0 and S=
(S+ R)− R ≤ 128, so, S ∈ [M, 128]. At ⑤, Y− S=D ∈ [0, 16], which
gives Y=(Y− S) + S ∈ [−M, 144].

− At the end of the current loop iteration, by union, we get Y ∈
[−max(M, 144),max(M, 144)].

Thus, the iteration is stable if and only if M ≥ 144. As a conse-
quence, a static analysis using the widening with thresholds O

Oct
th on

the octagonal domain will find as bound for Y the smallest threshold
greater than 144. Even though this result is not optimal, we are still
able to derive finite bounds for Y provided the widening we use has
sufficiently many steps.

Finally, it is important to remark that, if we had used the less precise
interval-based abstraction {| V ← e |}Oct

nonrel instead of {| V ← e |}Oct
rel for

the assignments R := X − S, Y := S − D, and Y := S + D, we would not
have been able to find any bound at all. Also, the much more costly
polyhedron-based abstraction {| V ← e |}Oct

poly would not have given any

increase in precision with respect to {| V ← e |}Oct
rel on this example.

Polyhedron Analysis. Unlike the three preceding examples, the poly-
hedron domain performs here strictly better than the octagon domain.
Indeed, as it is able to manipulate constraints with three variables, it
is able to prove the most precise invariant: Y ∈ [−128, 128]. Moreover,
the octagon domain required the use of a custom widening with a user-
supplied threshold, while the polyhedron domain can find the most
precise result using the standard widening, without any external help.
If one is only interested in finding some bound for Y, and not finding
the tightest one, the octagon domain is still sufficient.
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6. Application to the Astrée Analyzer

The octagon abstract domain presented in this paper has been im-
plemented as a freely available general-purpose library [41]. A simple
academic analyzer using this library is included in the distribution and
also available on-line [42]. More importantly, the library was incorpo-
rated into the Astrée static analyzer [8, 9, 3] which is a joint work

by the Abstract Interpretation teams at the École Normale Supérieure
(ENS), in Paris, and the École Polytechnique, in Palaiseau.

6.1. Brief Presentation of Astrée

Astrée is an efficient static analyzer, written in OCaml [49], focusing
on the detection of run-time errors for programs written in a subset of
the C programming language. Due to abstractions, the issued warnings
may be either real bugs or spurious behaviors called “false alarms”. The
goal of Astrée is to prove the absence of run-time errors meaning that,
when analysing a correct program, the analyzer should issue very few
or no alarm at all. However, we require Astrée to be very precise only
when the analyzed program belongs to a certain program family, that
will be described bellow. Because we aim towards code certification,
not bug searching, each alarm must be thoughtfully inspected manu-
ally. Thus, only up to a dozen alarms is acceptable, while a so-called
selectivity of even 99% would require thousands of manual inspections
which would be far too prohibitive. To achieve this goal, several abstract
domains are used in combination during the analysis. They are written
as modules using a common interface and can be easily plugged into
the analyzer.

Currently, the family of programs considered by Astrée is that
of safety, critical, embedded, fly-by-wire software for Airbus planes
[2]. The considered subset of the C programming language excludes
recursion, union data-types, dynamic memory allocation, calls to the
C library, and multi-threaded programs. However, it includes arrays,
(possibly unbounded) loops, and floating-point computations. Run-
time errors we check for include integer and floating-point divisions
by zero, integer overflows, generation of floating-point +∞, −∞, or
NaN, and out of bound array accesses. The considered program family
has some features that make the analysis quite difficult:

− The considered programs are quite large: up to a few hundred
thousand lines.

article-mine.tex; 13/04/2006; 14:18; p.60



61

− There is a very large loop that runs for a long time (3.6 × 106

iterations) and executes most of the code at each iteration (some
parts get executed up to twelve times per iteration).

− There is a very large number of global variables (e.g., 14 000 global
variables in our 70 000 lines example). They store the information
for the current state and are read and written at least once per
iteration.

− A large part of the program is devoted to floating-point computa-
tions (half the global variables are floating-point).

− Computation paths from input values with known bounds can be
very long and may spread across many loop iterations, and hence,
rounding-errors accumulate easily.

6.2. Integration of the Octagon Domain

Even though the invariants required to express the absence of run-
time errors have an interval form, the interval domain is not sufficient
to infer precise enough inductive invariants to derive tight enough
bounds. Equivalently, the proof of absence of run-time error cannot
be encoded using solely the non-relational interval abstraction. Thus,
Astrée makes use of relational domains. In particular, the octagon
domain was key in the removal of hundreds of false alarms, some coming
from code fragments semantically similar to those of Sect. 5.

We will now focus solely on the influence of the octagon abstract
domain in Astrée and refer the reader to the papers [8, 9, 38, 39, 27,
28] and the web-page [3] for more general informations about Astrée

and the other abstract domains it includes.

Floating-Point Octagons. In order to soundly abstract floating-point
computations, we rely on the framework presented in [45, 46]. Floating-
point expressions are first transformed into interval linear forms on
reals by abstracting rounding errors as non-deterministic error inter-
vals. Then, in order to achieve maximal efficiency, all the algorithms
presented in the present paper have been implemented using floating-
point numbers instead of arbitrary precision rationals. The soundness
of our implementation is guaranteed by always rounding the manipu-
lated upper bounds towards +∞. Both steps result in some precision
degradation but allow constructing an abstract domain that abstracts
floating-point numbers using only floating-point computations. It is
quite important to note that, currently, the polyhedron domain does
not include abstract transfer functions to treat the interval linear forms
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that occur naturally when abstracting floating-point expressions. Also,
it does not provide sound algorithms using floating-point numbers only.
These facts, as well as the reduced algorithmic cost, advocated strongly
in favor of the octagon domain for the relational analysis of real-life
programs. It is interesting to note that we never encountered any false
alarm that could only be removed by using more general linear in-
variants than octagonal ones. Parts of the program that were out of
the reach of the octagon domain required the design of new abstract
domains for non-linear or temporal invariants [27, 28], as well as the
use of generic partitioning techniques.

Widening. In order to stabilise loop invariants in finite time, we use
the widening with thresholds O

Oct
th in the octagon domain. All the

invariants we encountered were in fact stable for bounds that are “large
enough”. More precisely, all abstract bounds stabilised to the smallest
threshold larger than the concrete bound—plus an extra rounding error
as the abstract computations are performed using floating-point arith-
metics. Thus, the exact concrete bounds never needed to be known
in advance nor inserted manually. Such an example is given by the
rate limiter of Sect. 5.4. As a consequence, the exact value of the
widening thresholds is of no importance to prove that our variables are
bounded and the thresholds do not need to be adapted from one pro-
gram to another. However, as our programs are composed of many such
computations in sequence, imprecision—that is, the difference between
the stable abstract bound found and the actual concrete fixpoint—
accumulates easily. Then, subsequent operations on stable but too
large bounds may result in false alarms. This means that the set of
thresholds should be sufficiently dense. It should not be much denser
than required, however, as the number of thresholds directly affects the
number of abstract iterations, and so, the analysis time. In Astrée,
we use, as set of thresholds, a simple piece-wise linear ramp with a
few dozen values only. By trial-and-error, it was not difficult to find a
ramp that is sufficiently precise for all the programs we analyze, and
yet provides reasonable analysis times.

Octagon Packing. Even though its cost is light compared to the poly-
hedron abstract domain, it would still be too costly to use the octagon
domain to relate all live program variables in one large octagon, as
there can be tens of thousands of them at any given program point.
We decided, instead, to break down our variable set into packs of a few
variables, each pack corresponding to variables that should be related
together.
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Given a fixed packing, an abstract environment then maps an oc-
tagon of the correct dimension to each pack. Transfer functions and
operators are applied point-wise. Note that a variable may belong to
several packs. Propagating information between the packs is possible
by using common variables as pivot. It would enhance the precision.
However, we found it easier, when extra precision was needed to remove
false alarms, to refine the automatic packing strategy instead. The cost
of the octagonal analysis depends on several parameters: the number of
octagon packs, the size of octagon packs, but also the number of times
the same variable appears in different octagons—this determines the
number of octagons updated by each transfer functions application.

Automatic Packing Technique. Which variables to pack together can
be specified manually in the analyzed program. After a few manual
experiments, we developed a packing algorithm to automate this task
for our considered program family. This algorithm traverses the code
syntax tree and maps a pack to each syntactic C block, that is, code
sequence bracketed within { and } but also bracketed and unbracketed
if-then-else branches and loop bodies. In order to fill the pack for a
given syntactic block with variables, we perform the following filtering
steps:

1. We first gather all statements in that block, excluding the state-
ments in its sub-blocks.

2. From these statements, we only keep simple C expressions. This
includes assignments but not if and while statements.

3. From each such expression, we extract the variables it uses but
ignore a variable if there is little chance that the expression behaves
linearly with respect to this variable. More precisely, we do not scan
the arguments of a bit-level C operator, a function call, an array
lookup, or an “address-of” operator, but we scan recursively both
arguments of the +, -, and * arithmetic operators, as well as the
&& and || logical operators and all comparison operators; we also
scan the left argument of a / operator.

4. For each expression, if the set of extracted variables contains at
least two variables, we add all extracted variables to the pack. If
it contains only one variable, we do not add it. For instance, the
assignment X=Y+(Z&2)will result in both X and Y being added to the
current pack, Z being ignored as argument to a bit-level operator.
As another example, X=3 does not contribute any variable to the
pack.
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In addition, steps 3 and 4 are executed on expressions appearing in an
if-then-else condition but the extracted variables are added to both the
block enclosing the if statement and the blocks in the then and else
branches. Variables are also extracted from each loop condition and
added to both the block enclosing the loop and the loop body block.
The effect of this filtering is to keep, for each assignment, only variables
that have an opportunity to generate linear relational invariants. If we
are to analyze the effect of a sequence of assignments and tests sharing
common variables with the best possible precision, it is necessary to put
all the variables of the involved expression in the same octagon pack as
there is no information transfer between distinct packs. As packing all
the extracted variables from all expressions in the same octagon would
result in a huge octagon, we relate together only variables from ex-
pressions in the same syntactic block and from conditional expressions
that relate the block to both its directly enclosing block and nested
blocks. This strategy could be extended by considering the expressions
in nested sub-blocks up to some nesting limit. This would result in
larger packs—but less of them. In addition to variables extracted from
expressions using steps 3 and 4, we add to the octagon pack of loop
bodies any variable that is either incremented or decremented, so that
we are able to infer relationship between loop counters, as shown in
Sects. 5.1 and 5.2. It is quite important, for the considered family of
programs, not to rely on variable declaration but on variable usage to
define packing. Otherwise, this would result in all global variables being
packed together in an octagon with thousands of variables.

We perform an optimization step before passing the packing in-
formation to the static analyzer. If the set of variables of a pack is
included in the set of variables of a larger pack, then the smaller pack
is discarded. We stress the fact that, even though we rely on a local
analysis of the syntax to determine which variables should be related
together, the packing is considered globally by the subsequent static
analysis. Octagons are no longer attached to syntactic blocks and live
throughout the abstract execution of the whole program.

The packing and automatic packing techniques are not tied to the
octagon domain and can be used to limit the cost of any relational
domain—indeed, in Astrée, a similar technique is used also in a
partitioning domain based on decision diagrams.

6.3. Results

We now present some experimental results with Astrée on a few
programs in the considered family, with varying code size.

article-mine.tex; 13/04/2006; 14:18; p.64



65

Packing Results. We first present statistics on the octagons selected
by our automatic packing strategy. Our family has been split into two
sub-families: the three lower, more recent, C programs have a slightly
different structure. The code size is computed as the number of indented
lines of C code after merging all the preprocessed source files together—
thus eliminating all useless or redundant declarations in headers. Next
to the number of variables, the number of octagons, and the average
number of variables per octagon, we give the percentage of octagons
that were proved useful a posteriori. More formally, we compare, after
each transfer function application, the result obtained in the interval
domain and in the octagon domain. If the bound for one variable in the
octagon is strictly tighter than the bound for the same variable in the
interval domain, the octagon is tagged as useful—it needs to be useful
only once to be tagged. As the memory consumption and the time cost
depend respectively on n2 and n3, we show not only the average number
of variables, but also the square—resp. cubic—root of the average of
the squared—resp. cubed—sizes.

code size # of # of average √

∑

n2 3

√

∑

n3
useful

in lines vars. packs size %

370 100 20 3.6 4.8 6.2 85 %

9 500 1 400 200 3.1 4.6 6.6 41 %

70 000 14 000 2 470 3.5 5.2 7.8 57 %

70 000 16 000 2 546 2.9 3.4 4.4 41 %

226 000 47 500 7 429 3.5 4.5 5.8 52 %

400 000 82 000 12 964 3.3 4.1 5.3 50 %

This table shows that the average size of the packs is almost constant
while the number of packs grows roughly linearly with the code size.
This means that the octagon domain with an adequate packing strategy
has a time and memory cost that is linear with respect to the program
size. Two other interesting pieces of information not presented in this
table are that the largest packs contain only up to a few dozen variables
and that a variable that is captured by a pack occurs on average one
more time in a different pack.

Analysis Results. We now compare the results of Astrée on the con-
sidered program family with and without the octagon domain, all other
abstract domains being enabled. We give, in both cases, the analysis
time, the maximum memory consumption, and the number of false
alarms. All the analyses have been carried on a 64-bit AMD Opteron
248 (2.2 GHz) workstation running Linux, using a single processor. We
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observed that, on a 32-bit architecture, the memory consumption is
roughly one third smaller, which is due to the large usage of pointers
in OCaml data-structures.

without octagons with octagons

code size analysis max. false analysis max. false

in lines time memory alarms time memory alarms

370 1.7s 14 MB 0 3.1s 16 MB 0

9 500 75s 75 MB 8 160s 80 MB 8

70 000 3h 17mn 537 MB 58 1h 16mn 582 MB 0

70 000 18mn 289 MB 4 30mn 378 MB 4

226 000 7h 28mn 1.0 GB 165 6h 36mn 1.3 GB 1

400 000 20h 31mn 1.7 GB 804 13h 52mn 2.2 GB 0

This table shows that the octagon domain is able to reduce the
number of false alarms to only a few ones, and even to zero in some
cases. Moreover, enabling the octagon domain adds roughly 30% to the
total memory consumption in the worst case, which is very reasonable
considering the precision gain. The analysis time does not seem to
follow a logical pattern. Sometimes the analysis is longer with the
octagon domain, which seems quite natural, but sometimes it is shorter.
In order to explain this fact, we need to take into account the number
of iterations with widening and narrowing of the main loop that are
needed to stabilize our invariants. This is presented in the following
table:

without octagons with octagons

code size number of time per number of time per

in lines iterations iteration iterations iteration

370 12 0.14s 17 0.18s

9 500 23 3.2s 39 4.1s

70 000 159 74s 44 104s

70 000 36 30s 38 49s

226 000 144 178s 86 276s

400 000 172 429s 96 520s

We now see clearly that the octagon domain makes each abstract
iteration up to 65% slower, which is due to the extra time spent in
octagon transfer functions and operators. The octagon domain also
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affects the number of required iterations, but in a non-easily predictable
way. Sometimes, more iterations are required because we are trying
to stabilize a greater amount of invariants. Sometimes, the octagon
information can prove the stability of some variable bound quickly and
save unstable widening steps in the interval domain. In our largest
examples, the decreased number of iterations is sufficient to reduce the
total analysis time even though each iteration takes longer. This shows
that using an abstract domain adapted to the invariants of a program
can increase both the precision and the efficiency of a static analysis at
the same time.

Octagon Cost. In order to determine more precisely which parts of the
octagon domain are responsible for the increased computation time per
iteration, we performed a few analyses using profiling. Unsurprisingly,
we spend most of the analysis time closing our matrices: over 6% of the
total analysis time is spent in the incremental strong closure. There is
only one function in which the analyzer spends more time: the mark
phase of OCaml’s garbage collector—10% of the total analysis time.
Also, the octagon algorithm coming right after the incremental strong
closure is the forget operator, and it accounts for only 0.35% of the
total analysis time. The non-incremental version of the strong closure
corresponds to a negligible fraction of the analysis time because it is
seldom called. We prefer to use the much faster incremental closure
whenever possible.

6.4. Future Work on Astrée

Astrée is currently limited to a small subset of the C programming
language. Although this is quite realistic for the class of embedded
command-control systems, it prevents us from exercising the octagon
domain on the vast majority of available software. Important unsup-
ported program features include pointer arithmetics, dynamic memory
allocation, recursive data-structures, multi-threading, and interactions
with operating systems via system and library calls. We plan to add
support for some of these features in Astrée. It will require a lot of
work in areas orthogonal to numerical abstract domains. We hope to be
able, in the future, to asses the usefulness of octagonal constraints for
a broader subset of C programs. We would also like to determine what
kinds of abstract transfer functions, widening operators, and packing
strategies provide the best precision for a reasonable cost.

Another open question is how the octagon and the polyhedra do-
main compare in practice. Alas, experimentation is not possible in the
context of Astrée, for two reasons. Firstly, we are not aware of any
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polyhedron library that can abstract floating-point expressions, nor
interval linear forms, which are critical to the sound and precise analysis
of our target software. Secondly, it would not be fair to compare the
speed and memory consumption of a polyhedron library implemented
using slow multi-precision rationals to the octagonal library imple-
mented using fast machine floating-point numbers. What we propose to
do, instead, is to plug the octagon abstract domain into other existing
analyzers currently using the polyhedron domain. There is currently
an ongoing effort to provide a common interface for both the octagon
and polyhedron abstract domains, within the Apron project [1].

7. Conclusion

We have presented an abstract domain that is able to discover in-
variants of the form ±X ± Y ≤ c for a quadratic memory cost per
abstract element and, in the worst case, a cubic time cost per abstract
operation. When I = Q and I = R, we have provided as many best
abstract transfer functions and operators as possible. When I = Z the
choice is given to either lose a little precision, or retain best operators
and transfer functions and have a O(n4) worst-case time cost. At the
crux of this construction lie modified versions of the Floyd–Warshall
shortest path algorithm and Harvey and Stuckey’s satisfiability testing
algorithm. We have proved that the output of these adapted algorithms
enjoys a saturation property which is fundamental to construct best
precision operators. In order to provide the user with some control on
the cost versus precision trade-off, we have provided several different
ways to abstract all the basic semantical operators.

The octagon abstract domain presented here has been implemented
as a robust and fast library in the C programming language and inte-
grated into the Astrée industrial-strength static analyzer [3]. Thanks
to experimentations on real-life program analyses, we are able to pro-
vide experimental proof that the octagon domain indeed scales up
to large programs while providing an important precision gain with
respect to non-relational analyses. This precision improvement was key
in the success of Astrée, that is, the proof of absence of run-time errors
in critical embedded fly-by-wire software found in Airbus planes.

Future Work. Our work on the octagon domain may be extended in
several directions. One issue is the closure algorithm for integer oc-
tagonal constraints. Unlike the rational and real octagonal constraints,
which enjoy Floyd–Warshall-related cubic-time algorithms, the only
closure algorithm for integer octagonal constraints we are aware of has
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a O(n4) cost. Determining the exact complexity of the closure problem
for integer octagonal constraints is interesting from a theoretic point-
of-view, even though, from a practical point-of-view, we can safely
use an incomplete closure if we do not mind a small precision loss.
A second issue is the design of new widening and narrowing operators,
possibly not based on point-wise extensions of interval-based operators.
In particular, it would be quite interesting if we could design a widening
operator that is insensitive to the chosen DBM representation of an
octagon, so that it is possible to close the iterates. A third issue is
the design of some more transfer functions. In particular, we designed
inexact transfer functions on interval linear forms that are able to derive
new relational constraints but only use non-relational information. New
transfer functions that are, in terms of precision and cost, between
these transfer functions and the costly polyhedron-based ones would
be welcome. One may investigate whether best linear assignments and
tests can be computed using a less costly technique than switching
temporarily into the polyhedron domain. It is also interesting to look
for new numerical abstract domains that are more expressive than the
octagon domain and still less costly than the polyhedron one. There
is already some research in this direction: the so-called Two Variables
per Linear Inequality domain by Simon et al. [52] for invariants of the
form αX + βY ≤ c and the octahedra domain by Clarisó et al. [12]
for invariants of the form

∑

i εiXi ≤ c, εi ∈ {−1, 0, 1}. Finally, further

work is pursued on the Astrée project at the ENS and the École
Polytechnique to extend our analyzer to other program families and
other kinds of properties to be proved and we are quite confident that
the octagon domain will be useful in the future of Astrée.
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45. Miné, A.: 2004, ‘Relational Abstract Domains for the Detection of Floating-
Point Run-Time Errors’. In: ESOP’04, Vol. 2986 of LNCS. pp. 3–17.
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Appendix

A. List of Symbols and Notations

A.1. Matrix-Related Definitions

DBM set of all Difference Bound Matrices § 2.1
CDBM set of coherent Difference Bound Matrices § 2.2

i 7→ ı switches between positive and negative variables in V ′ § 2.2

vDBM point-wise partial order § 2.3
tDBM least upper bound for vDBM § 2.3
uDBM greatest lower bound for vDBM § 2.3
>DBM greatest element for vDBM § 2.3
⊥DBM least element for vDBM § 2.3

∗ shortest-path closure § 3.2
• strong closure § 3.3
Inc• incremental strong closure § 3.4
IncT incremental tight closure § 3.5
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γPot potential set concretization § 2.1
γOct octagonal concretization § 2.2
αOct octagonal (partial) abstraction § 2.3

A.2. Concrete Semantic Operators

J expr K concrete expression evaluation Fig. 14
J test K concrete test evaluation Fig. 19

{| V ← ? |} concrete forget transfer function § 4.2
{| V ← e |} concrete assignment transfer function § 4.4
{| V → e |} concrete backward assignment transfer function § 4.6
{| test ? |} concrete test transfer function § 4.5

A.3. Octagon Abstract Operators

∩Oct intersection abstraction § 4.1
∪Oct union abstraction § 4.1

O
Oct
std standard widening § 4.7

M
Oct
std standard narrowing § 4.7

O
Oct
th widening with thresholds § 4.7

Oct conversion from intervals to octagons § 4.3
Oct conversion from polyhedra to octagons § 4.3
Int conversion from octagons to intervals § 4.3
Poly conversion from octagons to polyhedra § 4.3
πi extracts bounds of variable i from octagon § 4.3

{| V ← ? |}Oct forget abstraction § 4.2

{| V ← e |}Oct
exact simple assignment abstraction Fig. 15

{| V ← e |}Oct
nonrel interval-based assignment abstraction § 4.4

{| V ← e |}Oct
rel interval linear form assignment abstraction Fig. 16

{| V ← e |}Oct
poly polyhedron-based assignment abstraction § 4.4

{| test ? |}Oct
exact simple test abstraction Fig. 20

{| test ? |}Oct
nonrel interval-based test abstraction § 4.5

{| test ? |}Oct
rel interval linear form test abstraction Fig. 21

{| test ? |}Oct
poly polyhedron-based test abstraction § 4.5
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{| V → e |}Oct
exact simple backward abstraction Fig. 23

{| V → e |}Oct
nonrel interval-based backward abstraction § 4.6

{| V → e |}Oct
rel interval linear form backward abstraction Fig. 24

{| V → e |}Oct
poly polyhedron-based backward abstraction § 4.6

A.4. Other Semantical Operators

� addition of interval linear forms Fig. 17
� opposite of an interval linear form Fig. 17
J e KInt expression evaluation in the interval domain § 4.4

B. Proofs of Theorems

THEOREM 1. γPot (m) = ∅ ⇐⇒ G(m) has a simple cycle with a
strictly negative total weight [14, Thm. 25.17].

(Stated in Sect. 3.1.)

Proof.
See, for instance, [14, §25.5, Thm. 25.17]

�

THEOREM 2. When I ∈ {Q, R}, γOct(m) = ∅ ⇐⇒ γPot (m) = ∅ .

(Stated in Sect. 3.1.)

Proof.
If γPot (m) = ∅ then, obviously, γOct(m) = ∅ by definition of γOct .
Suppose conversely that γPot (m) 6= ∅. We prove that γOct(m) 6= ∅

as well. Let ~v ′ = (v′1, . . . , v
′
2n) ∈ γPot(m). We have ∀i, j, v′j − v′i ≤mij .

By coherence of m, this implies ∀i, j, v ′
ı − v′ ≤ m ı = mij , which

means that ~w ′ def
= (−v′2,−v′1, . . . ,−v′2n,−v′2n−1) ∈ γPot (m) as well. As

γPot(m) is defined by an intersection of half-spaces, it is convex, so, the

point ~z ′ def
= (~v ′ + ~w ′)/2 is also in γPot (m). Moreover, the coordinates

z′i of ~z ′ imply: ∀i, z′2i = (v′2i−v′2i−1)/2 = −z′2i−1. By definition of γOct ,

this means that (z1, z3, . . . , z2n−1) ∈ γOct(m).
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Note that, when I = Z, this proof does not hold because ~z ′ may not
be in γPot (m) whenever some v′2i − v′2i−1 is not even.
�

THEOREM 3. If I ∈ {Q, R} and m is strongly closed, then:

1. ∀i, j, if mij < +∞, then ∃(v1, . . . , vn) ∈ γOct(m)
such that v′j − v′i = mij, and

2. ∀i, j, if mij = +∞, then ∀M < +∞, ∃(v1, . . . , vn) ∈ γOct(m)
such that v′j − v′i ≥M ,

where the v′k are derived from the vk by v′2k−1
def
= vk and v′2k

def
= −vk.

(Stated in Sect. 3.3.)

Proof.

1. Let (i0, j0) be a pair such that mi0j0 < +∞.

The case i0 = j0 is trivial: as m is strongly closed, we have mi0j0 = 0
and any point (v1, . . . , vn) ∈ γOct(m) 6= ∅ is such that v′i0−v′i0 ≤ 0.

We now consider the much more complex case of i0 6= j0. We denote

by m′ the matrix equal to m except that m′
j0i0

def
= m′

ı0 0

def
=

−mi0j0 . It is a coherent DBM.

Let us define S by S
def
= { (v1, . . . , vn) ∈ γOct(m) | v′j0 − v′i0 =

mi0j0 } where the v′k are derived from the vk by stating that

v′2k−1
def
= vk and v′2k

def
= −vk. We first prove that γOct(m′) = S.

− As γOct(m) 6= ∅, there is no cycle with strictly negative weight
in m, so, mj0i0 ≥ −mi0j0 and, similarly, m ı0 0 ≥ −m0 ı0 .
This means that m′ vDBM m. Hence, γOct(m′) ⊆ γOct(m).

− Consider (v1, . . . , vn) ∈ γOct(m′). Then, −m′
j0i0 ≤ v′j0 − v′i0 ≤

m′
i0j0 , which, by definition of m′, implies v′j0 − v′i0 = m′

i0j0 .

Together with the preceding point, this implies γOct(m′) ⊆ S

− Conversely, if (v1, . . . , vn) ∈ S, then it is easy to see that
∀i, j, v′j − v′i ≤m′

ij.

To prove the desired property, it is now sufficient to check that
γOct(m′) is not empty, that is, that m′ has no simple cycle with
a strictly negative total weight. Suppose that there exists such a
simple cycle 〈i = k1, . . . , kl = i〉. We distinguish several cases that
all lead to a contradiction:
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− If neither the arc from j0 to i0 nor the arc from ı0 to 0 is in
this strictly negative cycle, this cycle also exists in G(m) and
γOct(m) = ∅, which is not true.

− Suppose now that the strictly negative cycle contains only one
of these two arcs, say, the arc from j0 to i0. It contains this arc
only once, as the cycle is simple. By adequately shifting the
indices of the cycle, we can assume the existence of a strictly
negative cycle of the form: 〈k1 = j0, k2 = i0, k3, . . . , kl = j0〉,
where 〈k2 = i0, k3, . . . , kl = j0〉 is a path in G(m). This path
is such that:

l−1
∑

x=2

mkxkx+1
< −m′

j0i0 = mi0j0

that is, there is a path in m from i0 to j0 with a weight
strictly smaller than mi0j0 , which is impossible because, m

being strongly closed, it is also closed.

− Finally, suppose that both arcs, from j0 to i0 and from ı0 to
0 , are in this cycle. Each can appear only once, so we can—
without loss of generality—rewrite the cycle as: 〈k1 = 0 , . . . ,
ka = j0, ka+1 = i0, . . . , kb = ı0 , kb+1 = 0 〉, where the sub-
paths 〈k1 = 0 , . . . , ka = j0〉 and 〈ka+1 = i0, . . . , kb = ı0 〉 are
in G(m). We then have:

(

a−1
∑

x=1

mkxkx+1

)

+ m′
j0i0 +





b−1
∑

x=a+1

mkxkx+1



+ m′
ı0 0 < 0 .

Because m is strongly closed, it is also closed, and we have:

m0 j0 ≤
a−1
∑

x=1

mkxkx+1
and mi0 ı0 ≤

b−1
∑

x=a+1

mkxkx+1

which can be combined with the preceding inequality to give:

m0 j0 + m′
j0i0 + mi0 ı0 + m′

ı0 0 < 0

that is:

mi0j0 > (m0 j0 + mi0 ı0 )/2

which contradicts the fact that m is strongly closed.

2. Let (i0, j0) be a pair such that mij = +∞ and M ∈ I. We denote

by m′ the DBM equal to m except that m′
j0i0

def
= m′

ı0 0

def
=
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min(mj0i0 ,−M). We can prove analogously to (1.) that γOct(m′) =
{ (v1, . . . , vn) ∈ γOct(m) | v′j0 − v′i0 ≥M } and γOct(m′) 6= ∅.

�

THEOREM 4. If I ∈ {Q, R} and γOct(m) 6= ∅, then:

m• = (αOct ◦ γOct)(m)
= infvDBM { X] ∈ DBM | γOct(m) = γOct(X]) } .

(Stated in Sect. 3.3.)

Proof.
This is directly implied by the previous theorem.

�

THEOREM 5. If γOct(m) 6= ∅ then m• computed by Def. 2 is the
strong closure as defined by Def. 1.

(Stated in Sect. 3.4.)

Proof.
Suppose that γOct(m) 6= ∅ and let m• be the result computed by

the modified Floyd–Warshall algorithm of Def. 2. We prove that m•

satisfies the three criteria of Def. 1.

By definition ∀i, m•
ii = 0.

We now prove that ∀i, j, m•
ij ≤ (m•

iı + m•
j)/2.

First of all, we prove that for any matrix n, S(n)ij ≤ (S(n)iı +
S(n)j)/2. Indeed, ∀i, S(n)iı = min(niı , (niı + niı )/2) = niı , so ∀i, j,
S(n)ij ≤ (niı + nj)/2 = (S(n)iı + S(n)j)/2. Applying this property

for n
def
= C2n−1(mn−1), we get that ∀i, j, mn

ij ≤ (mn
iı + mn

j)/2. This
implies that if i 6= j, then m•

ij ≤ (m•
iı + m•

j)/2. Whenever i = j,
m•

ii = 0 which is smaller than (m•
iı +m•

j)/2 = (mn
iı +mn

j)/2, or else,
there would be a cycle with strictly negative total weight in G(mn)
implying γOct(mn) = ∅ , and hence, γOct(m) = ∅, which is not true.

Finally, we prove that ∀i, j, k, m•
ij ≤ m•

ik + m•
kj. This is a difficult

property to prove which justifies the complexity of the modified Floyd–
Warshall algorithm of Def. 2. We will use several lemmas.

− Lemma 1.

Let n be a coherent DBM such that γOct(n) 6= ∅ and there exists
some k such that ∀i, j, nij ≤ nik + nkj and ∀i, j, nij ≤ nik + nkj .

We prove that ∀i, j, S(n)ij ≤ S(n)ik + S(n)kj.
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• Case 1: S(n)ik = nik and S(n)kj = nkj.

We have obviously:

S(n)ij ≤ nij (by def. of S(n))
≤ nik + nkj (by hypothesis)
= S(n)ik + S(n)kj (case hypothesis)

• Case 2: S(n)ik = (niı + nkk)/2 and S(n)kj = nkj (or the
symmetric case S(n)ik = nik and S(n)kj = (nkk + nj)/2).

Using the hypothesis twice, we get n j ≤ nk + nkj ≤ nk +

(nkk + nkj) (1), so, we obtain:

S(n)ij ≤ niı/2 + nj/2 (by def. of S(n))
≤ niı/2 + (nk + nkk + nkj)/2 (by (1))

≤ niı/2 + nkk/2 + nkj (by coherence)
= S(n)ik + S(n)kj (case hypothesis)

• Case 3: S(n)ik = (niı +nkk)/2 and S(n)kj = (nkk +nj)/2).

Now we use the fact that γOct(m) 6= ∅ so that the cycle
〈k, k, k〉 has a positive weight, so, 0 ≤ nkk + nkk (1) and:

S(n)ij ≤ (niı + nj)/2 (by def. of S(n))
≤ (niı + (nkk + nkk) + nj)/2 (by (1))
= S(n)ik + S(n)kj (case hypothesis)

− Lemma 2.

Let n be a coherent DBM such that γOct(n) 6= ∅ and there exists
some k such that ∀i 6= j, nij ≤ nik + nkj and ∀i 6= j, nij ≤
nik +nkj . We prove that ∀o,∀i 6= j, Co(n)ij ≤ Co(n)ik +Co(n)kj .

There are five different cases for the value of C o(n)ik and five cases
for the value of Co(n)kj :

1) Co(n)ik = nik 1) Co(n)kj = nkj

2) Co(n)ik = nio + nok 2) Co(n)kj = nko + noj

3) Co(n)ik = nio + nok 3) Co(n)kj = nko + noj

4) Co(n)ik = nio + noo + nok 4) Co(n)kj = nko + noo + noj

5) Co(n)ik = nio + noo + nok 5) Co(n)kj = nko + noo + noj

In the following, we will denote by (a, b) the case where the value
of Co(n)ik is defined by the ath case and the value of Co(n)kj is
defined by the bth case. We then have 25 different cases to inspect.
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To reduce the number of cases to elaborate on, we use the strong
symmetry of the definition of Co(n) with respect to o and o to-
gether with the symmetry of the hypotheses with respect to k and
k and the fact that ∀i, j, nij = n ı by coherence of n.

We also use the fact that the analysis of the case (a, b) for a 6= b
is very similar to the analysis of (b, a), so, we will suppose a ≤ b.

We will also often use the fact that ∀i, j, nij + nji ≥ 0, which is
the consequence of the fact that 〈i, j, i〉 is a cycle in n with positive
weight since γOct(n) 6= ∅.

• Case 1: (1, 1).

We have, by hypothesis, nij ≤ nik + nkj (1), so, obviously:

Co(n)ij ≤ nij (by def. of Co(n))
≤ nik + nkj (by (1))
= Co(n)ik + Co(n)kj (case hypothesis)

• Case 2: (1, 2) (and (1, 3) by (o, o) symmetry).

Sub-case 1: i 6= o.

We have, by hypothesis, nio ≤ nik + nko (1), so:

Co(n)ij ≤ nio + noj (by def. of Co(n))
≤ (nik + nko) + noj (by (1))
= Co(n)ik + Co(n)kj (case hypothesis)

Sub-case 2: i = o.

We know that nik + nko ≥ 0 (1), so:

Co(n)ij ≤ noj (by def. of Co(n))
≤ (nik + nko) + noj (by (1))
= Co(n)ik + Co(n)kj (case hypothesis)

• Case 3: (1, 4) (and (1, 5) by (o, o) symmetry).

Sub-case 1: i 6= o.

We have, by hypothesis, nio ≤ nik + nko (1), so:

Co(n)ij ≤ nio + noo + noj (by def. of Co(n))
≤ (nik + nko) + noo + noj (by (1))
= Co(n)ik + Co(n)kj (case hypothesis)

Sub-case 2: i = o.
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As in the second case, we have nik + nko ≥ 0 (1), so:

Co(n)ij ≤ nio + noj (by def. of Co(n))
≤ (nik + nko) + noo + noj (by (1))
= Co(n)ik + Co(n)kj (case hypothesis)

• Case 4: (2, 2) (and (3, 3) by (o, o) symmetry).

We know that nok + nko ≥ 0 (1), so:

Co(n)ij ≤ nio + noj (by def. of Co(n))
≤ nio + (nok + nko) + noj (by (1))
= Co(n)ik + Co(n)kj (case hypothesis)

• Case 5: (2, 3).

We have, by hypothesis, noo ≤ nok + nko (1), so:

Co(n)ij ≤ nio + noo + noj (by def. of Co(n))
≤ nio + (nok + nko) + noj (by (1))
= Co(n)ik + Co(n)kj (case hypothesis)

• Case 6: (2, 4) (and (3, 5) by (o, o) symmetry).

We use, as in the fourth case, nok + nko ≥ 0 (1), so:

Co(n)ij ≤ nio + noo + noj (by def. of Co(n))
≤ nio + (nok + nko) + noo + noj (by (1))
= Co(n)ik + Co(n)kj (case hypothesis)

• Case 7: (2, 5) (and (3, 4) by (o, o) symmetry).

We use the fact that noo + noo ≥ 0 (1), together with the
hypothesis noo ≤ nok + nko (2), so:

Co(n)ij ≤ nio + noj (by def. of Co(n))
≤ nio + (noo + noo) + noj (by (1))
≤ nio + ((nok + nko)+

noo) + noj (by (2))
= Co(n)ik + Co(n)kj (case hypothesis)

• Case 8: (4, 4) (and (5, 5) by (o, o) symmetry).

We use, as in the seventh case, noo + noo ≥ 0 (1), together
with the hypothesis noo ≤ nok + nko (2), so:

Co(n)ij ≤ nio + noo + noj (by def. of Co(n))
≤ nio + noo + (noo + noo) + noj (by (1))
≤ nio + noo + ((nok + nko)+

noo) + noj (by (2))
= Co(n)ik + Co(n)kj (case hypothesis)
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• Case 9: (4, 5).

We use, as in the seventh case, noo + noo ≥ 0 (1) and nok +
nko ≥ 0 (2), so:

Co(n)ij ≤ nio + noj (by def. of Co(n))
≤ nio + (noo + noo)+

(nok + nko) + noj (by (1) and (2))
= nio + noo + nok+

nko + noo + noj

= Co(n)ik + Co(n)kj (case hypothesis)

− Lemma 3.

We prove now that, given a coherent DBM n such that γOct(n) 6= ∅
and an index k, we have—without any other hypothesis—∀i 6=
j, Ck(n)ij ≤ Ck(n)ik + Ck(n)kj .

We have the same five different cases for the value of Ck(n)ik and
the same five cases for the value of Ck(n)kj as in the preceding
lemma, so we have the same 25 different cases to inspect.

In order to reduce the number of cases to elaborate on, observe that
nkk ≥ 0 and nkk+nkk ≥ 0 because n has no strictly negative cycle.

This means that, in fact, Ck(n)ik = min(nik,nik + nkk). Cases 2,

4 and 5 are not relevant for the value of Ck(n)ik. A similar result
holds for Ck(n)kj and we get Ck(n)kj = min(nkj ,nkk + nkj).

This means that we only have four different cases to study:

• Case 1: (1, 1).

We have:

Ck(n)ij ≤ nik + nkj (by def. of Ck(n))
= Ck(n)ik + Ck(n)kj (case hypothesis)

• Case 2: (1, 3).

We have:

Ck(n)ij ≤ nik + nkk + nkj (by def. of Ck(n))

= Ck(n)ik + Ck(n)kj (case hypothesis)

• Case 3: (3, 1).

We have:

Ck(n)ij ≤ nik + nkk + nkj (by def. of Ck(n))
= Ck(n)ik + Ck(n)kj (case hypothesis).
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• Case 4: (3, 3).

We have nkk + nkk ≥ 0 (1), so:

Ck(n)ij ≤ nik + nkj (by def. of Ck(n))

≤ nik + (nkk + nkk) + nkj (by (1))

= Ck(n)ik + Ck(n)kj (case hypothesis)

Now we use all three lemmas to prove by induction on o the following
property ∀ 1 ≤ k ≤ o, ∀i, j:

mo
ij ≤mo

i (2k−1) + mo
(2k−1) j and mo

ij ≤mo
i (2k) + mo

(2k) j.

− The case o = 0 is obvious.

− Suppose the property is true for o− 1 ≥ 0.

Using the second lemma with all 2k− 1 and 2k , for all k ≤ o− 1,
we obtain ∀i 6= j:

(C2o−1(mo−1))ij ≤ (C2o−1(mo−1))i (2k−1) + (C2o−1(mo−1))(2k−1) j

(C2o−1(mo−1))ij ≤ (C2o−1(mo−1))i (2k) + (C2o−1(mo−1))(2k) j.

Using the third lemma with 2o−1 and 2o and the observation that
∀m, ∀o, Co(m) = Co(m) we obtain ∀i 6= j:

(C2o−1(mo−1))ij ≤ (C2o−1(mo−1))i (2o−1) + (C2o−1(mo−1))(2o−1) j

(C2o−1(mo−1))ij ≤ (C2o−1(mo−1))i (2o) + (C2o−1(mo−1))(2o) j.

Recall that, by definition, (C2k−1(mo−1))ii = 0.

Obviously, γOct(C2k−1(mo−1)) = γOct(m) 6= ∅, so, for all k, the
cycle 〈i, k, i〉 has a positive weight which means that ∀k :

(C2k−1(mo−1))ii = 0 ≤ (C2o−1(mo−1))ik + (C2o−1(mo−1))ki

and we have ∀k ≤ o, ∀i, j:
(C2o−1(mo−1))ij ≤ (C2o−1(mo−1))i (2k−1) + (C2o−1(mo−1))(2k−1) j

(C2o−1(mo−1))ij ≤ (C2o−1(mo−1))i (2k) + (C2o−1(mo−1))(2k) j.

Now, we use the first lemma to obtain ∀k ≤ o and ∀i, j:
(S(C2o−1(mo−1)))ij ≤ (S(C2o−1(mo−1)))i (2k−1)+

(S(C2o−1(mo−1)))(2k−1) j

(S(C2o−1(mo−1)))ij ≤ (S(C2o−1(mo−1)))i (2k)+
(S(C2o−1(mo−1)))(2k) j .
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The property for o = n settles the proof.
�

THEOREM 6. γOct(m) = ∅ ⇐⇒ ∃i, mn
ii < 0, where mn is defined

as in Def. 2.

(Stated in Sect. 3.4.)

Proof.
We can prove by induction on k that, for all k ≤ n, γOct(mk) =

γOct(m). In particular, if ∃i, mn
ii < 0, then γOct(mn) = ∅, and hence,

γOct(m) is empty.
Suppose conversely that γOct(m) = ∅. By Thm. 2, we also have

γPot(m) = ∅. We will denote by m′k the DBM computed at the k−th
step of the regular Floyd–Warshall algorithm. γPot (m) = ∅ implies that
there is some x such that m′n

xx < 0. Now, we can prove by induction on
k that ∀i, j, mk

ij ≤ m′k
ij . As a consequence, mn

xx < 0, which concludes
the proof.
�

THEOREM 7. Thms. 3 and 4 are true on tightly closed DBMs.

(Stated in Sect. 3.5.)

Proof.
Suppose that m is tightly closed. We first prove the saturation

property:

1. ∀i, j, if mij < +∞, then ∃(v1, . . . , vn) ∈ γOct(m) such that v′j −
v′i = mij.

2. ∀i, j, if mij = +∞, then ∀M < +∞, ∃(v1, . . . , vn) ∈ γOct(m)
such that v′j − v′i ≥M.

as follows:

1. Let (i0, j0) be a pair. Let us consider a DBM n equal to m except

that nj0i0
def
= n ı0 0

def
= −mi0j0 . Analogously to Thm. 3, we prove

that γOct(n) = { (v1, . . . , vn) ∈ γOct(m) | v′j0 − v′i0 = mi0j0 }, and
hence, the proof of the desired property reduces to the proof that
γOct(n) 6= ∅.
Suppose that γOct(n) = ∅. As m is tightly closed, n can be tightly
closed by one application of the incremental tight closure algorithm,
at position (j0, i0). Let n′′ denote the matrix IncT

j0i0(n), and n′ the
intermediate matrix computed by Harvey and Stuckey’s algorithm
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stated in Def. 4. By Thm. 2 from [33] (or, equivalently, Thm. 1 in
[32]), we have ∃i, n′′

ii < 0. Several cases can occur, each one leading
to a contradiction:

− Suppose that n′′
ii = n′

ii. This means that min(nii, nij0 +nj0i0 +
ni0i, niı0 +n ı0 0 +n0 i) < 0. Thus, one of the three following
cases occurs: either 0 > nii = mii, 0 > nij0 + nj0i0 + ni0i =
mij0 − mi0j0 + mi0i, or 0 > niı0 + n ı0 0 + n0 i = miı0 −
m0 ı0 + m0 i. Each inequality contradicts the fact that m is
closed.

− If n′′
ii = (n′

iı + n′
ı i)/2, there are many cases depending on the

values of n′
iı and n′

ı i.

Suppose that no tightening is used to derive n′
iı nor n′

ı i, that
is, n′

iı ∈ {niı , 2(nj0i0 + niı0 + (n0 j0/2)), 2(nj0i0 + nij0 +
(ni0 ı0 /2)), nij0 +nj0i0 +ni0 ı} and n′

ı i ∈ {n ı i, 2(nj0i0 +n ı ı0 +
(n0 j0/2)), 2(nj0i0 +n ı j0 +(ni0 ı0 /2)), n ı j0 +nj0i0 +ni0i}. This
can be rewritten as: n′

iı ∈ {niı , niı0 +n ı0 0 +n0 j0 +nj0i0 +
ni0 ı , nij0 +nj0i0 +ni0 ı0 +n ı0 0 +n0 ı , nij0 +nj0i0 +ni0 ı} and
n′

ı i ∈ {n ı i, n ı ı0 + n ı0 0 + n0 j0 + nj0i0 + ni0i, n ı j0 + nj0i0 +
ni0 ı0 + n ı0 0 + n0 i, n ı j0 + nj0i0 + ni0i}. Then, n′

iı + n′
ı i

can be expressed as the sum along a cycle in m that passes
exactly zero times, once, or twice through nj0i0 = −mi0j0 .
If it does not pass through nj0i0 , then we have a cycle in m

with a strictly negative weight, which is impossible because
γOct(m) 6= ∅. If it passes once, then mi0j0 is strictly greater
than the sum along a path from i0 to j0 in m, which is also
impossible because m is closed. If it passes twice, then 2mi0j0

is strictly greater than the sum along two paths from i0 to j0

in m, which is only possible if mi0j0 is strictly greater than the
sum along at least one of these paths, which is also impossible.

Suppose now that nij0+ nj0i0+ ni0 ı = 2k + 1 is odd and,
by tightening, n′

iı = 2k, but no tightening is involved in the
computation of n′

ı i. As a first sub-case, suppose that n′
ı i =

n ı i. Then, we have (nij0+ nj0i0+ ni0 ı− 1)+ n ı i < 0, that is,
mi0j0+ 1 > mi0 ı+ m ı i+ mij0 . As mi0j0 ≤mi0 ı+ m ı i+ mij0 ,
by closure of m, we must have mi0j0 = mi0 ı+ m ı i+ mij0 . By
hypothesis, 2k + 1 = mij0− mi0j0+ mi0 ı , and hence, m ı i =
−2k−1. This is impossible. By tightness of m, m ı i cannot be
odd. Our second sub-case is: n′

ı i 6= n ı i. Then, n′
iı + n′

ı i can
be expressed as the sum minus one along a cycle in n that
passes exactly twice through nj0i0 = −mi0j0 . Thus, 2mi0j0 +1
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is strictly greater than the sum along two paths from i0 to j0.
Moreover, this sum along the two paths is odd, and hence, the
weight of the these two paths cannot be the same and 2mi0j0 is
strictly greater than twice the weight of the path with smallest
weight. We thus have proved that mi0j0 is strictly greater than
the weight of a path from i0 to j0 in m, which is impossible.
The situation where tightening is used for n′

ı i but not for n′
iı

is similar.

For our last case, we suppose that tightening is used in both
n′

iı and n′
ıi, that is, n′

iı = 2k and n′
ı i = 2l where nij0+ nj0i0+

ni0 ı = 2k + 1 and n ı j0+ nj0i0+ ni0i = 2l + 1. This means,
in particular, that mi0j0 = mij0+ mi0 ı− (2k + 1) = m ı j0+
mi0i− (2l+1), that is, mij0 +mi0 ı and m ı j0 +mi0i are either
both odd, or both even. Our hypothesis n′

iı + n′
ı i < 0 can be

rewritten as: 2mi0j0 + 2 > mij0+ mi0 ı+ m ı j0+ mi0i. As, by
closure, 2mi0j0 ≤mij0+ mi0 ı+ m ıj0+ mi0i and mij0+ mi0 ı+
m ı j0+ mi0i is even, we have 2mi0j0 = mij0+ mi0 ı+ m ı j0+
mi0i. If we had mi0i + mij0 6= mi0 ı + m ı j0 , we would have
mi0j0 > min(mi0i + mij0 , mi0 ı + m ı j0), which is impossible
because m is closed. We can now suppose that mi0i + mij0 =
mi0 ı + m ı j0 . This implies that mi0j0 = mi0i + mij0 = mi0 ı +
m ı j0 . On the one hand, (2k + 1) = mij0 −mi0j0 + mi0 ı =
mi0 ı−mi0i. On the other hand, (2l+1) = m ı j0−mi0j0+mi0i =
mi0i −mi0 ı . So, k = −l and n′

iı + n′
ı i = 2(k + l) = 0, which

is in contradiction with n′
iı + n′

ı i < 0.

2. The second point can be proved almost as the first one, except
that n is constructed by changing m’s elements (j0, i0) and (ı0 , 0 )

into nj0i0
def
= n ı0 0

def
= min(mj0i0 ,−M). Analogously, γOct(n) =

{ (v1, . . . , vn) ∈ γOct(m) | v′j0 − v′i0 ≥M } and γOct(m) 6= ∅.

As for Thm. 4, the normal form property is a consequence of the
saturation property.
�

THEOREM 8. m• = n• ⇐⇒ γOct(m) = γOct(n) .

(Stated in Sect. 3.7.)

Proof.
The =⇒ part is a consequence of the fact that ∀m, γOct(m•) =

γOct(m). To obtain the ⇐= part, we first apply αOct to obtain (αOct◦
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γOct) (m) = (αOct◦ γOct) (n), and then, use the fact that ∀m ∈ DBM,
m• = (αOct◦ γOct) (m) (Thm. 4).
�

THEOREM 9. m• vDBM n ⇐⇒ γOct(m) ⊆ γOct(n) .

(Stated in Sect. 3.7.)

Proof.
The =⇒ part is a consequence of the fact that ∀m, γOct(m•) =

γOct(m) and the monotonicity of γOct . To obtain the⇐= part, we first
apply the monotonic function αOct to obtain (αOct ◦ γOct)(m) vDBM

(αOct ◦γOct)(n), and then, use the fact that ∀m ∈ DBM, m• = (αOct ◦
γOct)(m), proved by Thm. 4, to obtain m• vDBM n•. We conclude by
remarking that n• vDBM n always holds.
�

THEOREM 10.

γOct(m ∪Oct n) = inf⊆ { S ∈ Oct | S ⊇ γOct(m) ∪ γOct(n) } .

(Stated in Sect. 4.1.)

Proof.
We first prove that m ∪Oct n = infvDBM{ o | γOct(o) ⊇ γOct(m) ∪

γOct(n) }, which is a stronger result.

Whenever γOct(m) = ∅, m• = ⊥DBM and the property is obvious.
The same holds when γOct(n) = ∅.

We now suppose that γOct(m), γOct(n) 6= ∅. Using ∀m, γOct(m•) =
γOct(m) and the monotonicity of γOct , we get that m∪Oct n effectively
over-approximates γOct(m) ∪ γOct(n) because γOct(m) ∪ γOct(n) =
γOct(m•) ∪ γOct(n•) ⊆ γOct(m• tDBM n•) = γOct(m ∪Oct n).

We now suppose that γOct(o) ⊇ γOct(m) ∪ γOct(n) and prove that
m∪Oct n vDBM o. Let i0 and j0 be two indices such that m•

i0j0 , n•
i0j0 <

+∞. Using the saturation property of the strong closure (Thm. 3)
we can find two points ~v m ∈ γOct(m) and ~v n ∈ γOct(n) such that
v′mj0 − v′mi0 = m•

i0j0
and v′nj0 − v′ni0 = n•

i0j0
, where primed versions of

coordinates are defined, as before, as x′
2i−1 = −x′

2i = xi. As both ~v m

and ~v n are also in γOct(o), we have v′mj0 − v′mi0 ≤ oi0j0 and v′nj0 − v′ni0 ≤
oi0j0 , which means that oi0j0 ≥ max(m•

i0j0 ,n
•
i0j0) = (m ∪Oct n)i0j0 .

Whenever m•
i0j0 = +∞ or n•

i0j0 = +∞, the same reasoning allows

proving that oi0j0 ≥ M for every M , that is oi0j0 = +∞ = (m ∪Oct

n)i0j0 . Because γOct is a complete uDBM−morphism, m∪Octn = infvDBM
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{ o | γOct(o) ⊇ γOct(m)∪ γOct(n) } implies γOct(m ∪Oct n) = inf⊆
{ S ∈ Oct | S ⊇ γOct(m)∪ γOct(n) }.
�

THEOREM 11. m ∪Oct n is strongly closed.

(Stated in Sect. 4.1.)

Proof.
This is a direct consequence of m ∪Oct n = infvDBM{ o | γOct(o) ⊇

γOct(m)∪ γOct(n) } which was proved in the previous theorem: m∪Oct

n is indeed the smallest of all DBMs representing γOct(m ∪Oct n).
�

THEOREM 12. γOct(m ∩Oct n) = γOct(m) ∩ γOct(n) .

(Stated in Sect. 4.1.)

Proof.
This is a consequence of the fact that γOct is a complete uDBM–

morphism.
�

THEOREM 13. γOct({| Vf ← ? |}Oct(m)) ⊇ {| Vf ← ? |}(γOct(m)) .

(Stated in Sect. 4.2.)

Proof.
The property to prove can be restated as γOct({| Vf ← ? |}Oct(m)) ⊇

{ ~v ∈ In | ∃t ∈ I, ~v[Vf 7→ t] ∈ γOct(m) }. Let us take t ∈ I and ~v =
(v1, . . . , vn) ∈ γOct(m). We want to prove that ~w = (v1, . . . , vf−1, t,

vf+1, . . . , vn) ∈ γOct({| Vf ← ? |}Oct(m)), that is to say, ∀i, j, w′
j−w′

i ≤
({| Vf ← ? |}Oct(m))ij , denoting by wi the i−th coordinate of ~w and
defining the primed coordinate versions as usual: w ′

2i−1 = −w′
2i = wi.

− If i, j /∈ {2f, 2f − 1}, we have w′
j = v′j and w′

i = v′i, so, w′
j − w′

i =

v′j − v′i ≤mij = ({| Vf ← ? |}Oct(m))ij .

− If i or j is in { 2f − 1, 2f }, but not both, then w′
j − w′

i ≤ +∞ =

({| Vf ← ? |}Oct(m))ij .

− Finally, if i = j ∈ { 2f − 1, 2f }, w′
j − w′

i = 0 = ({| Vf ← ? |}Oct

(m))ij .
�
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THEOREM 14. γOct({| Vf ← ? |}Oct(m•)) = {|Vf ← ? |}(γOct(m)) .

(Stated in Sect. 4.2.)

Proof.
First, the property is obvious if m• = ⊥DBM, that is, γOct(m) = ∅,

so, we will consider the case where m• 6= ⊥DBM. Using the preceding
theorem and the fact that γOct(m•) = γOct(m), we get the first part

of the equality: γOct({| Vf ← ? |}Oct(m•)) ⊇ { ~v ∈ In | ∃t ∈ I, ~v[Vf 7→
t] ∈ γOct(m•) } = { ~v ∈ In | ∃t ∈ I, ~v[Vf 7→ t] ∈ γOct(m) }.

For the converse inclusion, let us take ~v = (v1, . . . , vn) ∈ γOct

({| Vf ← ? |}Oct (m•)). We want to prove that there exists a t such
that ~v[Vf 7→ t] ∈ γOct(m). We first prove that:

max { v′j −m•
(2f−1) j, −m•

(2f−1) (2f)/2 | j 6= 2f − 1, 2f } ≤
min {m•

i (2f−1) + v′i, m•
(2f−1) (2f)/2 | i 6= 2f − 1, 2f }

where, as usual, v′2i−1 = −v′2i = vi. Suppose that this is not true. This
may be for one of the following reasons, each one of them leading to a
contradiction:

− If ∃i, j /∈ {2f − 1, 2f} such that v′
j −m•

(2f−1) j > m•
i (2f−1) + v′i,

then v′j − v′i > m•
i (2f−1)+ m•

(2f−1) j ≥ m•
ij by closure of m•. This

contradicts the fact that v′j − v′i ≤ ({| Vf ← ? |}Oct (m•))ij = m•
ij

when i, j /∈ {2f − 1, 2f}.

− If ∃j /∈ {2f − 1, 2f} such that v′
j −m•

(2f−1) j > m•
(2f) (2f−1) /2,

then 2v′j > m•
(2f) (2f−1)+ 2m•

(2f−1) j = m•
 (2f)+ m•

(2f) (2f−1)+

m•
(2f−1) j ≥ m•

j by closure of m•. This is also impossible.

− A similar situation is when ∃i /∈ {2f −1, 2f} such that m•
i (2f−1) +

v′i > m•
(2f−1) (2f)/2.

− The last possibility is to have −m•
(2f−1) (2f) /2 > m•

(2f) (2f−1)

/2, which would imply m•
(2f) (2f−1)+ m•

(2f−1) (2f) < 0, and hence,

γOct(m) = ∅, which contradicts our hypothesis.

Hence, there exists at least one t ∈ I such that:

maxj 6=2f−1,2f (v′j −m•
(2f−1) j) ≤ t ≤ mini6=2f−1,2f (v′i + m•

i (2f−1))

−m•
(2f−1) (2f)/2 ≤ t ≤ m•

(2f) (2f−1)/2

We now prove that any such t is a good choice, i.e., ~v[Vf 7→ t] ∈
γOct(m). We will denote (v1, −v1, . . . , vf−1, −vf−1, t, −t, vf+1, −vf+1,
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. . . , vn, −vn) by ~w ′, and by w′
k its k−th coordinate. We only need to

prove that ∀i, j, w′
j − w′

i ≤m•
ij :

− If i /∈ {2f − 1, 2f} and j /∈ {2f − 1, 2f}, then w′
j −w′

i = v′j − v′i ≤
({| Vf ← ? |}Oct (m•))ij = m•

ij .

− If i = j = 2f − 1 or i = j = 2f , then w′
j − w′

i = 0 = m•
ij .

− If i = 2f − 1 and j /∈ {2f − 1, 2f}, then w′
j − w′

i = v′j − t ≤ m•
ij

because t ≥ maxj 6=2f−1,2f (v′j −m•
(2f−1) j).

− If j = 2f − 1 and i /∈ {2f − 1, 2f}, then w′
j − w′

i = t − v′i ≤ m•
ij

because t ≤ mini6=2f−1,2f (v′i+ m•
i (2f)).

− If i = 2f and j /∈ {2f−1, 2f}, then w′
j−w′

i = v′j+ t ≤m•
 (2f−1) =

m•
ij using the case where i = 2f − 1 and the coherence.

− If j = 2f and i /∈ {2f−1, 2f}, then w′
j−w′

i = −t−v′i ≤m•
(2f−1) ı =

m•
ij using the case where j = 2f − 1 and the coherence.

− If j = ı = 2f − 1, then w′
j − w′

i = 2t ≤ m•
(2f) (2f−1) by definition

of t. The case i =  = 2f − 1 is similar.
�

THEOREM 15. {| Vf ← ? |}Oct(m) is strongly closed whenever m is.

(Stated in Sect. 4.2.)

Proof.
Suppose that m is strongly closed and let m′ denote the matrix

{| Vf ← ? |}Oct(m). By Def. 1, we must prove three properties on m′:

− We have easily ∀i, m′
ii = 0. When i ∈ { 2f, 2f−1 }, this is enforced

by the definition of m′ and otherwise we have m′
ii = mii which

also equals 0 because m is itself strongly closed.

− Let i, j, and k be three variables. If i, j, and k are all different
from 2f − 1 and 2f , then m′

ij = mij ≤ mik + mkj = m′
ik + m′

kj.

If i, j, and k are all in { 2f, 2f − 1}, then m′
ij = m′

ik + m′
kj = 0.

In all other cases, at least one of m′
ik and m′

kj is +∞, and hence,

m′
ij ≤m′

ik + m′
kj = +∞.

− Finally, we prove that ∀i, j, m′
ij ≤ (m′

iı +m′
j)/2. If i 6= 2f−1, 2f

and j 6= 2f − 1, 2f , then m′
ij = mij, m′

iı = miı and m′
j = mj ,

so, the property is a consequence of m being strongly closed. If
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i = 2f − 1 or i = 2f or j = 2f − 1 or j = 2f , then at least one of
m′

iı and m′
j is +∞, so (m′

iı + m′
j)/2 = +∞≥m′

ij .
�

THEOREM 16. πi(m) = { v ∈ I | ∃(v1, . . . , vn) ∈ γOct(m), vi = v } .

(Stated in Sect. 4.3.)

Proof.
This is an easy consequence of the saturation property of • (Thm. 3).

�

THEOREM 17. O
Oct
std and O

Oct
th are indeed widenings.

(Stated in Sect. 4.7.)

Proof.
First note that O

Oct
std is a special case of O

Oct
th where T = ∅, so, we

will only provide a proof for O
Oct
th .

The fact that m,n vDBM m O
Oct
th n is quite obvious. Consider a

sequence (mk)k∈N defined by mk+1 def
= mk

O
Oct
th nk+1. We can prove

by induction on k that, for each matrix position (i, j), i 6= , mk
ij can

only take values in the set T ∪ {+∞,m0
ij}, which is finite. A similar

property holds for elements at positions (i, ı). As a consequence, mk

can only take a value within a finite set of matrices and, as it is an
increasing sequence, it must be stable after some finite k.
�

THEOREM 18. M
Oct
std is indeed a narrowing.

(Stated in Sect. 4.7.)

Proof.
We obviously have m uDBM n vDBM m M

Oct
std n vDBM m. Consider

a sequence defined by mk+1 def
= mk

M
Oct
std nk+1. Consider the set Sk

of matrix positions (i, j) such that mk
ij = +∞. A consequence of the

definition of M
Oct
std is that Sk is decreasing for ⊆. So, there exists some

k such that Sk = Sk+1. For such a k, whenever mk
ij = +∞, we also

have mk+1
ij = +∞. If mk

ij 6= +∞, then, by definition of M
Oct
std , we have

mk+1
ij = mk

ij. We thus have proved that mk+1 = mk for this k.
�
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