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Abstract

These notes present principles and applications of static analysis of

programs. We cover type analysis, lattice theory, control flow graphs,

dataflow analysis, fixed-point algorithms, narrowing and widening, inter-

procedural analysis, control flow analysis, and pointer analysis. A tiny

imperative programming language with heap pointers and function point-

ers is subjected to numerous different static analyses illustrating the tech-

niques that are presented.

The style of presentation is intended to be precise but not overly for-

mal. The readers are assumed to be familiar with advanced programming

language concepts and the basics of compiler construction.
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1 Introduction

There are many interesting questions that can be asked about a given program:

• does the program terminate?

• how large can the heap become during execution?

• what is the possible output?

Other questions concern individual program points in the source code:

• does the variable x always have the same value?

• will the value of x be read in the future?

• can the pointer p be null?

• which variables can p point to?

• is the variable x initialized before it is read?

• is the value of the integer variable x always positive?

• what is a lower and upper bound on the value of the integer variable x?

• at which program points could x be assigned its current value?

• do p and q point to disjoint structures in the heap?

Rice’s theorem is a general result from 1953 that informally can be paraphrased
as stating that all interesting questions about the behavior of programs are
undecidable. This is easily seen for any special case. Assume for example the
existence of an analyzer that decides if a variable in a program has a constant
value. We could exploit this analyzer to also decide the halting problem by
using as input the program:

x = 17; if (TM(j)) x = 18;

Here x has a constant value if and only if the j’th Turing machine halts on
empty input.

This seems like a discouraging result. However, our real focus is not to decide
such properties but rather to solve practical problems like making the program
run faster or use less space, or finding bugs in the program. The solution is
to settle for approximative answers that are still precise enough to fuel our
applications.

Most often, such approximations are conservative, meaning that all errors
lean to the same side, which is determined by our intended application.

Consider again the problem of determining if a variable has a constant value.
If our intended application is to perform constant propagation, then the analysis
may only answer yes if the variable really is a constant and must answer no if
the variable may or may not be a constant. The trivial solution is of course to
answer no all the time, so we are facing the engineering challenge of answering
yes as often as possible while obtaining a reasonable performance.
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A different example is the question: to which variables may the pointer p

point? If our intended application is to replace *p with x in order to save a
dereference operation, then the analysis may only answer “&x” if p certainly
must point to x and must answer “?” if this is false or the answer cannot be
determined. If our intended application is instead to determine the maximal size
of *p, then the analysis must reply with a possibly too large set {&x,&y,&z,...}
that is guaranteed to contain all targets.

In general, all optimization applications need conservative approximations.
If we are given false information, then the optimization is unsound and changes
the semantics of the program. Conversely, if we are given trivial information,
then the optimization fails to do anything.

Approximative answers may also be useful for finding bugs in programs,
which may be viewed as a weak form of program verification. As a case in
point, consider programming with pointers in the C language. This is fraught
with dangers such as null dereferences, dangling pointers, leaking memory, and
unintended aliases. The standard compiler technology, based on type checking,
offers little protection from pointer errors. Consider the following small program
which performs every kind of error:

int main() {

char *p,*q;

p = NULL;

printf("%s",p);

q = (char *)malloc(100);

p = q;

free(q);

*p = ’x’;

free(p);

p = (char *)malloc(100);

p = (char *)malloc(100);

q = p;

strcat(p,q);

}

The standard tools such as gcc -Wall and lint detect no errors. If we had
even approximative answers to questions about null values and pointer targets,
then many of the above errors could be caught.

Exercise 1.1: Describe all the errors in the above program.

2 A Tiny Example Language

We use a tiny imperative programming language, called TIP, throughout the
following sections. It is designed to have a minimal syntax and yet to contain
all the constructions that make static analyses interesting and challenging.
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Expressions

The basic expressions all denote integer values:

E → intconst
→ id
→ E + E | E - E | E * E | E / E | E > E | E == E
→ ( E )

→ input

The input expression reads an integer from the input stream. The comparison
operators yield 0 for false and 1 for true. Pointer expressions will be added later.

Statements

The simple statements are familiar:

S → id = E;

→ output E;

→ S S
→ if (E) { S }
→ if (E) { S } else { S }
→ while (E) { S }
→ var id1,. . . ,,idn;

In the conditions we interpret 0 as false and all other values as true. The output
statement writes an integer value to the output stream. The var statement
declares a collection of uninitialized variables.

Functions

Functions take any number of arguments and return a single value:

F → id ( id,. . . ,id ) { var id,. . .,id; S return E; }

Function calls are an extra kind of expression:

E → id ( E,. . . ,E )

Pointers

Finally, to allow dynamic memory, we introduce pointers into a heap:

E → &id
→ malloc

→ *E
→ null
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The first expression creates a pointer to a variable, the second expression al-
locates a new cell in the heap, and the third expression dereferences a pointer
value. In order to assign values to heap cells we allow another form of assign-
ment:

S → *id = E;

Note that pointers and integers are distinct values, so pointer arithmetic is not
permitted. It is of course limiting that malloc only allocates a single heap cell,
but this is sufficient to illustrate the challenges that pointers impose.

We also allow function pointers to be denoted by function names. In order
to use those, we generalize function calls to:

E → (E)( E,. . .,E )

Function pointers serve as a simple model for objects or higher-order functions.

Programs

A program is just a collection of functions:

P → F . . .F

The final function is the main one that initiates execution. Its arguments are
supplied in sequence from the beginning of the input stream, and the value
that it returns is appended to the output stream. We make the notationally
simplifying assumption that all declared identifiers are unique in a program.

Exercise 2.1: Argue that any program can be normalized so that all declared
identifiers are unique.

Example Programs

The following TIP programs all compute the factorial of a given integer. The
first one is iterative:

ite(n) {

var f;

f = 1;

while (n>0) {

f = f*n;

n = n-1;

}

return f;

}

The second program is recursive:
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rec(n) {

var f;

if (n==0) { f=1; }

else { f=n*rec(n-1); }

return f;

}

The third program is unnecessarily complicated:

foo(p,x) { main() {

var f,q; var n;

if (*p==0) { f=1; } n = input;

else { return foo(&n,foo);

q = malloc; }

*q = (*p)-1;

f=(*p)*((x)(q,x));

}

return f;

}

3 Type Analysis

Our programming language is untyped, but of course the various operations are
intended to be applied only to certain arguments. Specifically, the following
restrictions seem reasonable:

• arithmetic operations and comparisons apply only to integers;

• only integers can be input and output;

• conditions in control structures must be integers;

• only functions can be called; and

• the * operator only applies to pointers.

We assume that their violation results in runtime errors. Thus, for a given
program we would like to know that these requirements hold during execution.
Since this is an interesting question, we immediately know that it is undecidable.

Instead of giving up, we resort to a conservative approximation: typability. A
program is typable if it satisfies a collection of type constraints that is systemat-
ically derived from the syntax tree of the given program. This condition implies
that the above requirements are guaranteed to hold during execution, but the
converse is not true. Thus, our type-checker will be conservative and reject some
programs that in fact will not violate any requirements during execution.

Types

We first define a language of types that will describe possible values:
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τ → int

→ &τ

→ (τ,. . . ,τ)->τ

The type terms describe respectively integers, pointers, and function pointers.
The grammar would normally generate finite types, but for recursive functions
and data structures we need regular types. Those are defined as regular trees
defined over the above constructors. Recall that a possibly infinite tree is regular
if it contains only finitely many different subtrees.

Exercise 3.1: Show how regular types can be represented by finite automata
so that two types are equal if their automata accept the same language.

Type Constraints

For a given program we generate a constraint system and define the program
to be typable when the constraints are solvable. In our case we only need to
consider equality constraints over regular type terms with variables. This class
of constraints can be efficiently solved using the unification algorithm.

For each identifier id we introduce a type variable [[id ]], and for each expres-
sion E a type variable [[E ]]. Here, E refers to a concrete node in the syntax
tree—not to the syntax it corresponds to. This makes our notation slightly
ambiguous but simpler than a pedantically correct approach. The constraints
are systematically defined for each construction in our language:

intconst : [[intconst ]] = int

E1 op E2: [[E1]] = [[E2]] = [[E1 op E2]] = int

E1==E2: [[E1]] = [[E2]] ∧ [[E1==E2]] = int

input: [[input]] = int

id = E : [[id ]] = [[E ]]
output E : [[E ]]= int

if (E) S : [[E ]]= int

if (E) S 1 else S 2: [[E ]]= int

while (E) S : [[E ]]= int

id(id1,. . . ,idn){ . . . return E; }: [[id ]] = ([[id1]],. . . ,[[idn]])->[[E ]]
id(E1,. . . ,En): [[id ]] = ([[E1]],. . . ,[[En]])->[[id(E1,. . .,En)]]

(E)(E1,. . . ,En): [[E ]] = ([[E1]],. . . ,[[En]])->[[(E)(E1,. . . ,En)]]
&id : [[&id ]]= &[[id ]]

malloc: [[malloc]]= &α

null: [[null]]= &α

*E : [[E ]]= &[[*E ]]
*id=E : [[id ]]= &[[E ]]

In the above, each occurrence of α denotes a fresh type variable. Note that
variable references and declarations do not yield any constraints and that paren-
thesized expression are not present in the abstract syntax.
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Thus, a given program gives rise to a collection of equality constraints on
type terms with variables.

Exercise 3.2: Explain each of the above type constraints.

A solution assigns to each type variable a type, such that all equality constraints
are satisfied. The correctness claim for this algorithm is that the existence of a
solution implies that the specified runtime errors cannot occur during execution.

Solving Constraints

If solutions exist, then they can be computed in almost linear time using the uni-
fication algorithm for regular terms. Since the constraints may also be extracted
in linear time, the whole type analysis is quite efficient.

The complicated factorial program generates the following constraints, where
duplicates are not shown:

[[foo]] = ([[p]],[[x]])->[[f]] [[*p==0]] = int

[[*p]] = int [[f]] = [[1]]
[[1]] = int [[0]] = int

[[p]] = &[[*p]] [[q]] = [[malloc]]
[[malloc]] = &α [[q]] = &[[(*p)-1]]
[[q]] = &[[*q]] [[*p]] = int

[[f]] = [[(*p)*((x)(q,x))]] [[(*p)*((x)(q,x))]] = int

[[(x)(q,x)]] = int [[x]] = ([[q]],[[x]])->[[(x)(q,x)]]
[[input]] = int [[main]] = ()->[[foo(&n,foo)]]
[[n]] = [[input]] [[&n]] = &[[n]]
[[foo]] = ([[&n]],[[foo]])->[[foo(&n,foo)]] [[*p]] = [[0]]

These constraints have a solution, where most variables are assigned int, except:

[[p]] = &int

[[q]] = &int

[[malloc]] = &int

[[x]] = φ

[[foo]] = φ

[[&n]] = &int

[[main]] = ()->int

where φ is the regular type that corresponds to the infinite unfolding of:

φ = (&int,φ)->int

Exercise 3.3: Draw a picture of the unfolding of φ.

Since this solution exists, we conclude that our program is type correct. Recur-
sive types are also required for data structures. The example program:
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var p;

p = malloc;

*p = p;

creates the constraints:

[[p]] = &α

[[p]] = &[[p]]

which has the solution [[p]] = ψ where ψ = &ψ. Some constraints admit infinitely
many solutions. For example, the function:

poly(x) {

return *x;

}

has type &α->α for any type α, which corresponds to the polymorphic behavior
it displays.

Slack and Limitations

The type analysis is of course only approximate, which means that certain
programs will be unfairly rejected. A simple example is:

bar(g,x) {

var r;

if (x==0) r=g; else r=bar(2,0);

return r+1;

}

main() {

return bar(null,1);

}

which never causes an error but is not typable since it among others generates
constraints equivalent to:

int = [[r]] = [[g]] = &α

which are clearly unsolvable.

Exercise 3.4: Explain the behavior of this program.

It is possible to use a more powerful polymorphic type analysis to accept the
above program, but many other examples will remain impossible.

Another problem is that this type system ignores several other runtime er-
rors, such as dereference of null pointers, reading of uninitialized variables,
division by zero, and the more subtle escaping stack cell demonstrated by this
program:
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baz() {

var x;

return &x;

}

main() {

var p;

p=baz(); *p=1;

return *p;

}

The problem is that *p denotes a stack cell that has escaped from the baz

function. As we shall see, these problems can instead be handled by more
ambitious static analyses.

4 Lattice Theory

The technique for static analysis that we will study is based on the mathematical
theory of lattices, which we first briefly review.

Lattices

A partial order is a mathematical structure: L = (S,⊑), where S is a set and
⊑ is a binary relation on S that satisfies the following conditions:

• reflexivity: ∀x ∈ S : x ⊑ x

• transitivity: ∀x, y, z ∈ S : x ⊑ y ∧ y ⊑ z ⇒ x ⊑ z

• anti-symmetry: ∀x, y ∈ S : x ⊑ y ∧ y ⊑ x⇒ x = y

Let X ⊆ S. We say that y ∈ S is an upper bound for X , written X ⊑ y, if we
have ∀x ∈ X : x ⊑ y. Similarly, y ∈ S is a lower bound for X , written y ⊑ X ,
if ∀x ∈ X : y ⊑ x. A least upper bound, written ⊔X , is defined by:

X ⊑ ⊔X ∧ ∀y ∈ S : X ⊑ y ⇒ ⊔X ⊑ y

Dually, a greatest lower bound, written ⊓X , is defined by:

⊓X ⊑ X ∧ ∀y ∈ S : y ⊑ X ⇒ y ⊑ ⊓X

A lattice is a partial order in which ⊔X and ⊓X exist for all X ⊆ S. Notice
that a lattice must have a unique largest element ⊤ defined as ⊤ = ⊔S and a
unique smallest element ⊥ defined as ⊥ = ⊓S.

Exercise 4.1: Show that ⊔S and ⊓S correspond to ⊤ and ⊥.

We will often look at finite lattices. For those the lattice requirements reduce
to observing that ⊥ and ⊤ exist and that every pair of elements x and y have
a least upper bound written x ⊔ y and a greatest lower bound written x ⊓ y.
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A finite partial order may be illustrated by a diagram in which the elements
are nodes and the order relation is the transitive closure of edges leading from
lower to higher nodes. With this notation, all of the following partial orders are
also lattices:

whereas these partial orders are not lattices:

Exercise 4.2: Why do these two diagrams not define lattices?

Every finite set A defines a lattice (2A,⊆), where ⊥ = ∅, ⊤ = A, x ⊔ y = x ∪ y,
and x⊓ y = x∩ y. For a set with four elements, the corresponding lattice looks
like:

{0,1}

{0} {1}

{}

{2} {3}

{1,3} {2,3}{1,2}{0,3}{0,2}

{0,1,2} {0,1,3} {0,2,3} {1,2,3}

{0,1,2,3}

The height of a lattice is defined to be the length of the longest path from ⊥ to
⊤. For example, the above powerset lattice has height 4. In general, the lattice
(2A,⊆) has height |A|.

Fixed-Points

A function f : L→ L is monotone when ∀x, y ∈ S : x ⊑ y ⇒ f(x) ⊑ f(y). Note
that this property does not imply that f is increasing (forallx ∈ S : x ⊆ f(x));
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for example, all constant functions are monotone. Viewed as functions ⊔ and
⊓ are monotone in both arguments. Note that the composition of monotone
functions is again monotone.

The central result we need is the fixed-point theorem. In a lattice L with
finite height, every monotone function f has a unique least fixed-point defined
as:

fix(f) =
⊔

i≥0

f i(⊥)

for which f(fix(f)) = fix(f). The proof of this theorem is quite simple. Observe
that ⊥ ⊑ f(⊥) since ⊥ is the least element. Since f is monotone, it follows that
f(⊥) ⊑ f2(⊥) and by induction that f i(⊥) ⊑ f i+1(⊥). Thus, we have an
increasing chain:

⊥ ⊑ f(⊥) ⊑ f2(⊥) ⊑ . . .

Since L is assumed to have finite height, we must for some k have that fk(⊥) =
fk+1(⊥). We define fix(f) = fk(⊥) and since f(fix(f)) = fk+1(⊥) = fk(⊥) =
fix(f), we know that fix (f) is a fixed-point. Assume now that x is another
fixed-point. Since ⊥ ⊑ x it follows that f(⊥) ⊑ f(x) = x, since f is monotone
and by induction we get that fix(f) = fk(⊥) ⊑ x. Hence, fix(f) is the least
fixed-point. By anti-symmetry, it is also unique.

The time complexity of computing a fixed-point depends on three factors:

• the height of the lattice, since this provides a bound for k;

• the cost of computing f ;

• the cost of testing equality.

The computation of a fixed-point can be illustrated as a walk up the lattice
starting at ⊥:
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Closure Properties

If L1, L2, . . . , Ln are lattices with finite height, then so is the product :

L1 × L2 × . . .× Ln = {(x1, x2, . . . , xn) | xi ∈ Li}
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where ⊑ is defined pointwise. Note that ⊔ and ⊓ can be computed pointwise
and that height(L1 × . . .×Ln) = height(L1) + . . .+ height(Ln). There is also a
sum operator:

L1 + L2 + . . .+ Ln = {(i, xi) | xi ∈ Li\{⊥,⊤}} ∪ {⊥,⊤}

where ⊥ and ⊤ are as expected and (i, x) ⊑ (j, y) if and only if i = j and x ⊑ y.
Note that height(L1 + . . .+ Ln) = max{height(Li)}. The sum operator can be
illustrated as follows:
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If L is a lattice with finite height, then so is lift(L), which can be illustrated by:
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and has height (lift(L)) = height(L) + 1. If A is a finite set, then flat(A) illus-
trated by:

a ...a a1 2 n

is a lattice with height 2. Finally, if A and L are defined as above, then we
obtain a map lattice with finite height as:

A 7→ L = {[a1 7→ x1, . . . , an 7→ xn] | xi ∈ L}
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ordered pointwise: f ⊑ g ⇔ ∀ai : f(ai) ⊑ g(ai). Note that height(A 7→ L) =
|A| · height(L).

Exercise 4.3: Verify the above claims about the heights of the lattices that
are constructed.

Equations and Inequations

Fixed-points are interesting because they allow us to solve systems of equations.
Let L be a lattice with finite height. An equation system is of the form:

x1 = F1(x1, . . . , xn)
x2 = F2(x1, . . . , xn)
...
xn = Fn(x1, . . . , xn)

where xi are variables and Fi : Ln → L is a collection of monotone functions.
Every such system has a unique least solution, which is obtained as the least
fixed-point of the function F : Ln → Ln defined by:

F (x1, . . . , xn) = (F1(x1, . . . , xn), . . . , Fn(x1, . . . , xn))

We can similarly solve systems of inequations of the form:

x1 ⊑ F1(x1, . . . , xn)
x2 ⊑ F2(x1, . . . , xn)
...
xn ⊑ Fn(x1, . . . , xn)

by observing that the relation x ⊑ y is equivalent to x = x⊓ y. Thus, solutions
are preserved by rewriting the system into:

x1 = x1 ⊓ F1(x1, . . . , xn)
x2 = x2 ⊓ F2(x1, . . . , xn)
...
xn = xn ⊓ Fn(x1, . . . , xn)

which is just a system of equations with monotone functions as before.

Exercise 4.4: Show that x ⊑ y is equivalent to x = x ⊓ y.

5 Control Flow Graphs

Type analysis started with the syntax tree of a program and defined constraints
over variables assigned to nodes. Analyses that work in this manner are flow
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insensitive, in the sense that the results remain the same if a statement sequence
S 1S 2 is permuted into S 2S 1. Analyses that are flow sensitive use a control flow
graph, which is a different representation of the program source.

For now, we consider only the subset of the TIP language consisting of a
single function body without pointers. A control flow graph (CFG) is a directed
graph, in which nodes correspond to program points and edges represent possible
flow of control. A CFG always has a single point of entry, denoted entry, and a
single point of exit, denoted exit.

If v is a node in a CFG then pred(v) denotes the set of predecessor nodes
and succ(v) the set of successor nodes.

Control Flow Graphs for Statements

For now, we only consider simple statements, for which CFGs may be con-
structed in an inductive manner. The CFGs for assignments, output, return
statements, and declarations look as follows:

EreturnEoutputid = E var id

For the sequence S 1 S 2, we eliminate the exit node of S 1 and the entry node of
S 2 and glue the statements together:

S

S

1

2

Similarly, the other control structures are modeled by inductive graph construc-
tions:

E

S S1 2

E

S

E

S
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Using this systematic approach, the iterative factorial function results in the
following CFG:

f=1

n>0

n = n−1

f = f*n

var f

return f

6 Dataflow Analysis

Classical dataflow analysis, also called the monotone framework, starts with a
CFG and a lattice L with finite height. The lattice may be fixed for all programs,
or it may be parameterized with the given program.

To every node v in the CFG, we assign a variable [[v]] ranging over the ele-
ments of L. For each construction in the programming language, we then define
a dataflow constraint that relates the value of the variable of the corresponding
node to those of other nodes (typically the neighbors).

As for type inference, we will ambiguously use the notation [[S]] for [[v]] if
S is the syntax associated with v. The meaning will always be clear from the
context.

For a complete CFG, we can systematically extract a collection of constraints
over the variables. If all the constraints happen to be equations or inequations
with monotone right-hand sides, then we can use the fixed-point algorithm to
compute the unique least solution.

The dataflow constraints are sound if all solutions correspond to correct
information about the program. The analysis is conservative since the solutions
may be more or less imprecise, but computing the least solution will give the
highest degree of precision.
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Fixed-Point Algorithms

If the CFG has nodes V = {v1, v2, . . . , vn}, then we work in the lattice Ln.
Assuming that node vi generates the dataflow equation [[vi]] = Fi([[v1]], . . . , [[vn]]),
we construct the combined function F : Ln → Ln as described earlier:

F (x1, . . . , xn) = (F1(x1, . . . , xn), . . . , Fn(x1, . . . , xn))

The naive algorithm is then to proceed as follows:

x = (⊥, . . . ,⊥);
do { t = x; x = F (x); }
while (x 6= t);

to compute the fixed-point x. A better algorithm, called chaotic iteration,
exploits the fact that our lattice has the structure Ln:

x1 = ⊥; . . .xn = ⊥;

do {
t1 = x1; . . . tn = xn;

x1 = F1(x1, . . . , xn);
. . .
xn = Fn(x1, . . . , xn);

} while (x1 6= t1 ∨ . . . ∨ xn 6= tn);

to compute the fixed-point (x1, . . . , xn).

Exercise 6.1: Why is chaotic iteration better than the naive algorithm?

Both algorithms are, however, clearly wasteful since the information for all
nodes is recomputed in every iteration, even though we may know that it cannot
have changed. To obtain an even better algorithm, we must study further the
structure of the individual constraints.

In the general case, every variable [[vi]] depends on all other variables. Most
often, however, an actual instance of Fi will only read the values of a few other
variables. We represent this information as a map:

dep : V → 2V

which for each node v tells us the subset of other nodes for which [[v]] occurs in
a nontrivial manner on the right-hand side of their dataflow equations. That is,
dep(v) is the set of nodes whose information may depend on the information of
v. Armed with this information, we can present the work-list algorithm:
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x1 = ⊥; . . .xn = ⊥;

q = [v1, . . . , vn];
while (q 6= []) {

assume q = [vi, . . .];
y = Fi(x1, . . . , xn);
q = q.tail();

if (y 6= xi) {

for (v ∈ dep(vi)) q.append(v);
xi = y;

}

}

to compute the fixed-point (x1, . . . , xn). The worst-case complexity has not
changed, but in practice this algorithm saves much time.

Exercise 6.2: Give an invariant that is strong enough to prove the correct-
ness of the work-list algorithm.

Further improvements are possible. It may be beneficial to handle in separate
turns the strongly connected components of the graph induced by the dep map,
and the queue could be changed into a priority queue allowing us to exploit
domain-specific knowledge about a particular dataflow problem.

Example: Liveness

A variable is live at a program point if its current value may be read during the
remaining execution of the program. Clearly undecidable, this property can be
approximated by static analysis.

We use a powerset lattice, where the elements are the variables occurring in
the given program. For the example program:

var x,y,z;

x = input;

while (x>1) {

y = x/2;

if (y>3) x = x-y;

z = x-4;

if (z>0) x = x/2;

z = z-1;

}

output x;

the lattice is thus:
L = (2{x,y,z},⊆)

The corresponding CFG looks as follows:
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z = x−4

z>0

z = z−1

output x

x = x−y

x = x/2

x = input x>1 y = x/2 y>3

var x,y,z

For every CFG node v we introduce a constraint variable [[v]] denoting the subset
of program variables that are live at the program point before that node. The
analysis wil be conservative, since the computed set may be too large. We use
the auxiliary definition:

JOIN (v) =
⋃

w∈succ(v)

[[w]]

For the exit node the constraint is:

[[exit]] = {}

For conditions and output statements, the constraint is:

[[v]] = JOIN (v) ∪ vars(E)

For assignments, the constraint is:

[[v]] = JOIN (v) \ {id} ∪ vars(E)

For a variable declaration the constraint is:

[[v]] = JOIN (v) \ {id1, . . . , idn}

Finally, for all other nodes the constraint is:

[[v]] = JOIN (v)

Here, vars(E) denote the set of variables occurring in E. These constraints
clearly have monotone right-hand sides.

Exercise 6.3: Argue that the right-hand sides of constraints define monotone
functions.

The intuition is that a variable is live if it is read in the current node, or it is
read in some future node unless it is written in the current node. Our example
program yields these constraints:
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[[var x,y,z;]] = [[x=input]] \ {x, y, z}
[[x=input]] = [[x>1]] \ {x}
[[x>1]] = ([[y=x/2]] ∪ [[output x]]) ∪ {x}
[[y=x/2]] = ([[y>3]] \ {y}) ∪ {x}
[[y>3]] = [[x=x-y]] ∪ [[z=x-4]] ∪ {y}
[[x=x-y]] = ([[z=x-4]] \ {x}) ∪ {x,y}
[[z=x-4]] = ([[z>0]] \ {z}) ∪ {x}
[[z>0]] = [[x=x/2]] ∪ [[z=z-1]] ∪ {z}
[[x=x/2]] = ([[z=z-1]] \ {x}) ∪ {x}
[[z=z-1]] = ([[x>1]] \ {z}) ∪ {z}
[[output x]] = [[exit ]] ∪ {x}
[[exit ]] = {}

whose least solution is:

[[entry]] = {}
[[var x,y,z;]] = {}
[[x=input]] = {}
[[x>1]] = {x}
[[y=x/2]] = {x}
[[y>3]] = {x, y}
[[x=x-y]] = {x, y}
[[z=x-4]] = {x}
[[z>0]] = {x, z}
[[x=x/2]] = {x, z}
[[z=z-1]] = {x, z}
[[output x]] = {x}
[[exit ]] = {}

From this information a clever compiler could deduce that y and z are never
live at the same time, and that the value written in the assignment z=z-1 is
never read. Thus, the program may safely be optimized into:

var x,yz;

x = input;

while (x>1) {

yz = x/2;

if (yz>3) x = x-yz;

yz = x-4;

if (yz>0) x = x/2;

}

output x;

which saves the cost of one assignment and could result in better register allo-
cation.

We can estimate the worst-case complexity of this analysis. We first observe
that if the program has n CFG nodes and k variables, then the lattice has
height k ·n which bounds the number of iterations we can perform. Each lattice
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element can be represented as a bitvector of length k. For each iteration we
have to perform O(n) intersection, difference, or equality operations which in
all takes time O(kn). Thus, the total time complexity is O(k2n2).

Example: Available Expressions

A nontrivial expression in a program is available at a program point if its current
value has already been computed earlier in the execution. The set of available
expressions for all program points can be approximated using a dataflow ana-
lysis. The lattice we use has as elements all expressions occurring in the program
and is ordered by reverse subset inclusion. For a concrete program:

var x,y,z,a,b;

z = a+b;

y = a*b;

while (y > a+b) {

a = a+1;

x = a+b;

}

we have 4 different nontrivial expressions, so our lattice is:

L = (2{a+b,a*b,y>a+b,a+1},⊇)

which looks like:

{a+b,a*b,y>a+b,a+1}

{a+b,a*b,y>a+b} {a+b,a*b,a+1} {a+b,y>a+b,a+1} {a*b,y>a+b,a+1}

{a+b,a*b} {a+b,y>a+b} {a+b,a+1} {a*b,y>a+b} {a*b,a+1} {y>a+b,a+1}

{a+b} {a*b} {y>a+b} {a+1}

{}

The largest element of our lattice is ∅ which corresponds to the trivial informa-
tion. The flow graph corresponding to the above program is:
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z = a+b

y > a+b

a = a+1

x = a+b

y = a*b

var x,y,z,a,b

For each CFG node v we introduce a constraint variable [[v]] ranging over L. Our
intention is that it should contain the subset of expressions that are guaranteed
always to be available at the program point after that node. For example, the
expression a+b is available at the condition in the loop, but it is not available
at the final assignment in the loop. Our analysis will be conservative since the
computed set may be too small. The dataflow constraints are defined as follows,
where we this time define:

JOIN (v) =
⋂

w∈pred(v)

[[w]]

For the entry node we have the constraint:

[[entry]] = {}

If v contains a condition E or the statement output E, then the constraint is:

[[v]] = JOIN (v) ∪ exps(E )

If v contains an assignment of the form id=E, then the constraint is:

[[v]] = (JOIN (v) ∪ exps(E ))↓ id

For all other kinds of nodes, the constraint is just:

[[v]] = JOIN (v)

Here the function ↓id removes all expressions that contain a reference to the
variable id, and the exps function is defined as:
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exps(intconst) = ∅
exps(id) = ∅
exps(input) = ∅
exps(E1opE2) = {E1opE2} ∪ exps(E1) ∪ exps(E2)

where op is any binary operator. The intuition is that an expression is available
in v if it is available from all incoming edges or is computed in v, unless its
value is destroyed by an assignment statement. Again, the right-hand sides
of the constraints are monotone functions. For the example program, we then
generate the following concrete constraints:

[[entry]] = {}
[[var x,y,z,a,b;]] = [[entry]]
[[z=a+b]] = exps(a+b) ↓z
[[y=a*b]] = ([[z=a+b]] ∪ exps(a*b)) ↓y
[[y>a+b]] = ([[y=a*b]] ∩ [[x=a+b]]) ∪ exps(y>a+b)
[[a=a+1]] = ([[y>a+b]] ∪ exps(a+1))↓a
[[x=a+b]] = ([[a=a+1]] ∪ exps(a+b))↓x
[[exit ]] = [[y>a+b]]

Using the fixed-point algorithm, we obtain the minimal solution:

[[entry]] = {}
[[var x,y,z,a,b;]] = {}
[[z=a+b]] = {a+b}
[[y=a*b]] = {a+b, a*b}
[[y>a+b]] = {a+b, y>a+b}
[[a=a+1]] = {}
[[x=a+b]] = {a+b}
[[exit ]] = {a+b}

which confirms our assumptions about a+b. Observe that the expressions avail-
able at the program point before a node v can be computed as JOIN (v). With
this knowledge, an optimizing compiler could systematically transform the pro-
gram into a (slightly) more efficient version:

var x,y,z,a,b,aplusb;

aplusb = a+b;

z = aplusb;

y = a*b;

while (y > aplusb) {

a = a+1;

aplusb = a+b;

x = aplusb;

}

while being guaranteed of preserving the semantics.
We can estimate the worst-case complexity of this analysis. We first observe

that if the program has n CFG nodes and k nontrivial expressions, then the

24



lattice has height k ·n which bounds the number of iterations we perform. Each
lattice element can be represented as a bitvector of length k. For each iteration
we have to perform O(n) intersection, union, or equality operations which in all
takes time O(kn). Thus, the total time complexity is O(k2n2).

Example: Very Busy Expressions

An expression is very busy if it will definitely be evaluated again before its
value changes. To approximate this property, we need the same lattice and
auxiliary functions as for available expressions. For every CFG node v the
variable [[v]] denotes the set of expressions that at the program point before the
node definitely are busy. We define:

JOIN (v) =
⋂

w∈succ(v)

[[w]]

The constraint for the exit node is:

[[exit ]] = {}

For conditions and output statements we have:

[[v]] = JOIN (v) ∪ exps(E)

For assignments the constraint is:

[[v]] = JOIN (v) ↓ id ∪ exps(E)

For all other nodes we have the constraint:

[[v]] = JOIN (v)

The intuition is that an expression is very busy if it is evaluated in the current
node or will be evaluated in all future executions unless an assignment changes
its value. On the example program:

var x,a,b;

x = input;

a = x-1;

b = x-2;

while (x>0) {

output a*b-x;

x = x-1;

}

output a*b;

the analysis reveals that a*b is very busy inside the loop. The compiler can
perform code hoisting and move the computation to the earliest program point
where it is very busy. This would transform the program into the more efficient
version:
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var x,a,b,atimesb;

x = input;

a = x-1;

b = x-2;

atimesb = a*b;

while (x>0) {

output atimesb-x;

x = x-1;

}

output atimesb;

Example: Reaching Definitions

The reaching definitions for a given program point are those assignments that
may have defined the current values of variables. For this analysis we need a
powerset lattice of all assignments (really CFG nodes) occurring in the program.
For the example program from before:

var x,y,z;

x = input;

while (x>1) {

y = x/2;

if (y>3) x = x-y;

z = x-4;

if (z>0) x = x/2;

z = z-1;

}

output x;

the lattice becomes:

L = (2{x=input,y=x/2,x=x-y,z=x-4,x=x/2,z=z-1},⊆)

For every CFG node v the variable [[v]] denotes the set of assignments that may
define values of variables at the program point after the node. We define

JOIN (v) =
⋃

w∈pred(v)

[[w]]

For assignments the constraint is:

[[v]] = JOIN (v)↓ id ∪ {v}

and for all other nodes it is simply:

[[v]] = JOIN (v)

This time the ↓ id function removes all assignments to the variable id. This
analysis can be used to construct a def-use graph, which is like a CFG except
that edges go from definitions to possible uses. For the example program, the
def-use graph is:
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x = input

x>1

y = x/2

y>3

z = x−4

z>0

z = z−1

output x

x = x−y

x = x/2

The def-use graph is a further abstraction of the program and is the basis of
optimizations such as dead code elimination and code motion.

Exercise 6.4: Show that the def-use graph is always a subgraph of the
transitive closure of the CFG.

Forwards, Backwards, May, and Must

The four classical analyses that we have seen so far can be classified in various
ways. They are all just instances of the general monotone framework, but their
constraints have a particular structure.

A forwards analysis is one that for each program point computes information
about the past behavior. Examples of this are available expressions and reaching
definitions. They can be characterized by the right-hand sides of constraints
only depending on predecessors of the CFG node. Thus, the analysis starts at
the entry node and moves forwards in the CFG.

A backwards analysis is one that for each program point computes informa-
tion about the future behavior. Examples of this are liveness and very busy
expressions. They can be characterized by the right-hand sides of constraints
only depending on successors of the CFG node. Thus, the analysis starts at the
exit node and moves backwards in the CFG.

A may analysis is one that describes information that may possibly be true
and, thus, computes an upper approximation. Examples of this are liveness
and reaching definitions. They can be characterized by the right-hand sides of
constraints using a union operator to combine information.

A must analysis is one that describes information that must definitely be
true and, thus, computes a lower approximation. Examples of this are available
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expressions and very busy expressions. They can be characterized by the right-
hand sides of constraints using an intersection operator to combine information.

Thus, our four examples show every possible combination, as illustrated by
this diagram:

Forwards Backwards
May Reaching Definitions Liveness
Must Available Expressions Very Busy Expressions

These classifications are mostly botanical in nature, but awareness of them may
provide inspiration for constructing new analyses.

Example: Initialized Variables

Let us try to define an analysis that ensures that variables are initialized before
they are read. This can be solved by computing for every program point the set
of variables that is guaranteed to be initialized, thus our lattice is the powerset
of variables occurring in the given program. Initialization is a property of the
past, so we need a forwards analysis. Also, we need definite information which
implies a must analysis. This means that our constraints are phrased in terms of
predecessors and intersections. On this basis, they more or less give themselves.
For the entry node we have the constraint:

[[entry ]] = {}

for assignments we have the constraint:

[[v]] =
⋂

w∈pred(v)

[[w]] ∪ {id}

and for all other nodes the constraint:

[[v]] =
⋂

w∈pred(v)

[[w]]

The compiler could now check for every use of a variable that it is contained in
the computed set of initialized variables.

Example: Sign Analysis

We now want to determine the sign (+,0,-) of all expressions. So far, every
lattice has been the powerset of something, but for this analysis we start with
the following tiny lattice Sign:

?

+ 0 −
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Here, ? denotes that the sign value is not constant and ⊥ denotes that the value
is unknown. The full lattice for our analysis is the map lattice:

Vars 7→ Sign

where Vars is the set of variables occurring in the given program. For each
CFG node v we assign a variable [[v]] that denotes a symbol table giving the
sign values for all variables at the program point before the node. The dataflow
constraints are more involved this time. For variable declarations we update
accordingly:

[[v]] = JOIN (v) [id1 7→ ?, . . . , idn 7→ ?]

For an assignment we use the constraint:

[[v]] = JOIN (v) [id 7→ eval (JOIN (v), E)]

and for all other nodes the constraint:

[[v]] = JOIN (v)

where:
JOIN (v) =

⊔

w∈pred(v)

[[w]]

and eval performs an abstract evaluation of expressions:

eval (σ, id ) = σ(id )
eval (σ, intconst) = sign(intconst)
eval (σ,E1 opE2) = op(eval (σ,E1), eval(σ,E2))

where σ is the current environment, sign gives the sign of an integer constant
and op is an abstract evaluation of the given operator, defined by the following
collection of tables:

+ ⊥ 0 - + ?

⊥ ⊥ ⊥ ⊥ ⊥ ⊥

0 ⊥ 0 - + ?

- ⊥ - - ? ?

+ ⊥ + ? + ?

? ⊥ ? ? ? ?

- ⊥ 0 - + ?

⊥ ⊥ ⊥ ⊥ ⊥ ⊥

0 ⊥ 0 + - ?

- ⊥ - ? - ?

+ ⊥ + + ? ?

? ⊥ ? ? ? ?

* ⊥ 0 - + ?

⊥ ⊥ 0 ⊥ ⊥ ⊥

0 0 0 0 0 0

- ⊥ 0 + - ?

+ ⊥ 0 - + ?

? ⊥ 0 ? ? ?

/ ⊥ 0 - + ?

⊥ ⊥ ⊥ ⊥ ⊥ ⊥

0 ⊥ ? 0 0 ?

- ⊥ ? ? ? ?

+ ⊥ ? ? ? ?

? ⊥ ? ? ? ?
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> ⊥ 0 - + ?

⊥ ⊥ ⊥ ⊥ ⊥ ⊥

0 ⊥ 0 + 0 ?

- ⊥ 0 ? 0 ?

+ ⊥ + + ? ?

? ⊥ ? ? ? ?

== ⊥ 0 - + ?

⊥ ⊥ ⊥ ⊥ ⊥ ⊥

0 ⊥ + 0 0 ?

- ⊥ 0 ? 0 ?

+ ⊥ 0 0 ? ?

? ⊥ ? ? ? ?

It is not obvious that the right-hand sides of our constraints correspond to
monotone functions. However, the ⊔ operator and map updates clearly are, so
it all comes down to monotonicity of the abstract operators on the sign lattice.
This is best verified by a tedious manual inspection. Notice that for a lattice
with n elements, monotonicity of an n × n table can be verified automatically
in time O(n3).

Exercise 6.5: Describe the O(n3) algorithm for checking monotonicity of
an operator given by an n× n table.

Exercise 6.6: Check that the above tables indeed define monotone operators
on the Sign lattice.

We lose some information in the above analysis, since for example the expression
(2>0)==1 is analyzed as ?, which seems unnecessarily coarse. Also, +/+ results
in ? rather than + since e.g. 1/2 is rounded down to zero. To handle these
situations more precisely, we could enrich the sign lattice with element 1 (the
constant 1), +0 (positive or zero), and -0 (negative or zero) to keep track of
more precise abstract values:

?

1

+ 0 −

+0 −0
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and consequently describe the abstract operators by 8 × 8 tables.

Exercise 6.7: Define the six operators on the extended Sign lattice by
means of 8 × 8 tables. Check that they are properly monotone.

The results of a sign analysis could in theory be used to eliminate division by
zero errors by only accepting programs in which denominator expressions have
sign +, -, or 1. However, the resulting analysis will probably unfairly reject too
many programs to be practical.

Example: Constant Propagation

A similar analysis is constant propagation, where we for every program point
want to determine the variables that have a constant value. The analysis is
structured just like the sign analysis, except that the basic lattice is replaced
by:

0 1 2 3−3 −2 −1

?

and that operators are abstracted in the following manner for e.g. addition:

λnλm.if (n 6= ? ∧m 6= ?) {n+m} else {?}

Based on this analysis, an optimizing compiler could transform the program:

var x,y,z;

x = 27;

y = input;

z = 2*x+y;

if (x < 0) { y = z-3; } else { y = 12; }

output y;

into:

var x,y,z;

x = 27;

y = input;

z = 54+y;

if (0) { y = z-3; } else { y = 12; }

output y;

which, following a reaching definitions analysis and a dead code elimination, can
be reduced to:
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var y;

y = input;

output 12;

7 Widening and Narrowing

An interval analysis computes for every integer variable a lower and an upper
bound for its possible values. The lattice describing a single variable is defined
as:

Interval = lift({[l, h] | l, h ∈ N ∧ l ≤ h})

where:
N = {−∞, . . . ,−2,−1, 0, 1, 2, . . . ,∞}

is the set of integers extended with infinite endpoints and the order on intervals
is:

[l1, h1] ⊑ [l2, h2] ⇔ l2 ≤ l1 ∧ h1 ≤ h2

corresponding to inclusion of points. This lattice looks as follows:

[−2,−2] [−1,−1] [0,0] [1,1] [2,2]

[1,2][0,1][−1,0]

[−  ,−2]

[−  ,−1]

[−  ,0]

[−2,0] [−1,1] [0,2]

[2,  ]

[1,  ]

[−2,2]

[−2,1] [−1,2]

[−  ,  ]8 8

8

8

8

8

8

8

[0,  ]

[−2,−1]

It is clear that we do not have a lattice of finite height, since it contains for
example the infinite chain:

[0, 0] ⊑ [0, 1] ⊑ [0, 2] ⊑ [0, 3] ⊑ [0, 4] ⊑ [0, 5] . . .

This carries over to the lattice we would ultimately use, namely:

L = Vars 7→ Interval
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where for the entry node we use the constant function returning the ⊤ element:

[[entry]] = λx.[−∞,∞]

for an assignment the constraint:

[[v]] = JOIN (v) [id 7→ eval (JOIN (v), E)]

and for all other nodes the constraint:

[[v]] = JOIN (v)

where:
JOIN (v) =

⊔

w∈pred(v)

[[w]]

and eval performs an abstract evaluation of expressions:

eval (σ, id ) = σ(id )
eval (σ, intconst) = [intconst , intconst ]
eval (σ,E1 opE2) = op(eval (σ,E1), eval(σ,E2))

where the abstract operators all are defined by:

op([l1, h1], [l2, h2]) = [ min
x∈[l1,h1],y∈[l2,h2]

x op y, max
x∈[l1,h1],y∈[l2,h2]

x op y]

For example, +([1, 10], [−5, 7]) = [1 − 5, 10 + 7] = [−4, 17].

Exercise 7.1: Argue that these definitions yield monotone operators on the
Interval lattice.

The lattice has infinite height, so we are unable to use the monotone framework,
since the fixed-point algorithm may never terminate. This means that for the
lattice Ln the sequence of approximants:

F i(⊥, . . . ,⊥)

need never converge. Instead of giving up, we shall use a technique called
widening which introduces a function w : Ln → Ln so that the sequence:

(w ◦ F )i(⊥, . . . ,⊥)

now converges on a fixed-point that is larger than every F i(⊥, . . . ,⊥) and thus
represents sound information about the program. The widening function w will
intuitively coarsen the information sufficiently to ensure termination. For our
interval analysis, w is defined pointwise down to single intervals. It operates
relatively to a fixed finite subset B ⊂ N that must contain −∞ and ∞. Typ-
ically, B could be seeded with all the integer constants occurring in the given
program, but other heuristics could also be used. On a single interval we have:

w([l, h]) = [max{i ∈ B | i ≤ l},min{i ∈ B | h ≤ i}]
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which finds the best fitting interval among the ones that are allowed.

Exercise 7.2: Show that since w is an increasing monotone function and
w(Interval) is a finite lattice, the widening technique is guaranteed to work
correctly.

Widening shoots above the target, but a subsequent technique called narrowing
may improve the result. If we define:

fix =
⊔

F i(⊥, . . . ,⊥) fixw =
⊔

(w ◦ F )i(⊥, . . . ,⊥)

then we have fix ⊑ fixw . However, we also have that fix ⊑ F (fixw) ⊑ fixw ,
which means that a subsequent application of F may refine our result and still
produce sound information. This technique, called narrowing, may in fact be
iterated arbitrarily many times.

Exercise 7.3: Show that fix ⊑ F i+1(fixw) ⊑ F i(fixw) ⊑ fixw .

An example will demonstrate the benefits of these techniques. Consider the
program:

y = 0; x = 8;

while (input) {

x = 7;

x = x+1;

y = y+1;

}

Without widening, the analysis will produce the following diverging sequence of
approximants for the program point after the loop:

[x 7→ ⊥, y 7→ ⊥]
[x 7→ [8, 8], y 7→ [0, 1]]
[x 7→ [8, 8], y 7→ [0, 2]]
[x 7→ [8, 8], y 7→ [0, 3]]
...

If we apply widening, based on the set B = {−∞, 0, 1, 7,∞} seeded with the
constants occurring in the program, then we obtain a converging sequence:

[x 7→ ⊥, y 7→ ⊥]
[x 7→ [7,∞], y 7→ [0, 1]]
[x 7→ [7,∞], y 7→ [0, 7]]
[x 7→ [7,∞], y 7→ [0,∞]]

However, the result for x is discouraging. Fortunately, a single application of
narrowing refines the result to:
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[x 7→ [8, 8], y 7→ [0,∞]]

which is really the best we could hope for. Correspondingly, further narrowing
has no effect. Note that the decreasing sequence:

fixw ⊒ F (fixw) ⊒ F 2(fixw) ⊒ F 3(fixw) . . .

is not guaranteed to converge, so heuristics must determine how many times to
apply narrowing.

8 Conditions and Assertions

Until now, we have ignored the values of conditions by simply treating if- and
while-statements as a nondeterministic choice between the two branches. This
technique fails to include some information that could potentially be used in a
static analysis. Consider for example the following program:

x = input;

y = 0;

z = 0;

while (x > 0) {

z = z+x;

if (17 > y) { y = y+1; }

x = x-1;

}

The previous interval analysis (with widening) will conclude that after the
while-loop the variable x is in the interval [−∞,∞], y is in the interval [0,∞],
and z is in the interval [−∞,∞]. However, in view of the conditionals being
used, this result seems too pessimistic.

To exploit the available information, we shall extend the language with two
artificial statements: assert(E) and refute(E), where E is a condition from
our base language. In the interval analysis, the constraints for these new state-
ment will narrow the intervals for the various variables by exploiting the infor-
mation that E must be true respectively false.

The meanings of the conditionals are then encoded by the following program
transformation:

x = input;

y = 0;

z = 0;

while (x > 0) {

assert(x > 0);

z = z+x;

if (17 > y) { assert(17 > y); y = y+1; }

x = x-1;

}

refute(x > 0);

35



Constraints for a node v with an assert or refute statement may trivially be
given as:

[[v]] = JOIN (v)

in which case no extra precision is gained. In fact, it requires insight into
the specific static analysis to define non-trivial and sound constraints for these
constructs.

For the interval analysis, extracting the information carried by general con-
ditions such as E1 > E2 or E1 == E2 is complicated and in itself an area of
considerable study. For our purposes, we need only consider conditions of the
two kinds id > E or E > id , the first of which for the case of assert can be
handled by:

[[v]] = JOIN (v)[id 7→ gt(JOIN (v)(id ), eval(JOIN (v), E))]

where:
gt([l1, h1], [l2, h2]) = [l1, h1] ⊓ [l2,∞]

The cases of refute and the dual condition are handled in similar fashions, and
all other condtions are given the trivial, but sound identity constraint.

With this refinement, the interval analysis of the above example will conclude
that after the while-loop the variable x is in the interval [−∞..0], y is in the
interval [0, 17], and z is in the interval [0,∞].

Exercise 8.1: Discuss how more conditions may be given non-trivial con-
straints for assert and refute.

9 Interprocedural Analysis

So far, we have only analyzed the body of a single function, which is called an
intraprocedural analysis. When we consider whole programs containing func-
tion calls as well, the analysis is called interprocedural. The alternative to this
technique is to analyze each function in isolation with maximally pessimistic
assumptions about the results of function calls.

Flow Graphs for Programs

We now consider the subset of the TIP language containing functions, but still
ignore pointers. The CFG for an entire program is actually quite simple to
obtain, since it corresponds to the CFG for a simple program that can be sys-
tematically obtained.

First we construct the CFGs for all individual function bodies. All that
remains is then to glue them together to reflect function calls properly. This
task is made simpler by the fact that we assume all declared identifiers to be
unique.
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We start by introducing a collection of shadow variables. For every function
f we introduce the variable ret-f, which corresponds to its return value. For
every call site we introduce a variable call-i, where i is a unique index, which
denotes the value computed by that function call. For every local variable or
formal argument named x in the calling function and every call site, we introduce
a variable save-i-x to preserve its value across that function call. Finally, for
every formal argument named x in the called function and every call site, we
introduce a temporary variable temp-i-x.

For simplicity we assume that all function calls are performed in connection
with assignments:

x = f(E1,. . . ,,En);

Exercise 9.1: Show how any program can be rewritten to have this form
by introducing new temporary variables.

Consider now the CFGs for the calling and the called function:
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x = f(E ,...,E )

return E

n1

kvar x ,...,x ;1

If the formal arguments of the called function are named a1,. . . ,an and those of
the calling function are named b1,. . . ,bm, then the function call transforms the
graphs as follows:
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call−i=ret−f

ret−f = E

save−i−b = bj j

j j

b = save−i−b

x = save−i−x

x = call−i

j j

j j

temp−i−a =E

a =temp−i−a
j j

jj

save−i−x = x

which reflects the flow of values during the function call. As a simple example,
consider the following program:

foo(x,y) {

x = 2*y;

return x+1;

}

main() {

var a,b;

a = input;

b = foo(a,17);

return b;

}

The resulting CFG looks as follows:
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call−1=ret−foo

ret−main=b

b = call−1

b = save−1−b

a = save−1−a

save−1−b = b

save−1−a = a

temp−1−x = a

temp−1−y = 17

x = temp−1−x

y = temp−1−y

x = 2*y

ret−foo=x+1

var a,b

a = input

and can now be analyzed using the standard monotone framework. Note how
this construction implies that function arguments are evaluated from left to
right. In future examples, the temporary variables will only be used when
necessary.

Exercise 9.2: How many edges may the interprocedural CFG contain?

Polyvariance

The interprocedural analysis we have presented so far is called monovariant,
since each function body is represented only once for every call site. A poly-
variant analysis will perform context-dependent analysis of function calls. As
an example, consider the following program:

foo(a) {

return a;

}

bar() { baz() {

var x; var y;

x = foo(17); y = foo(18);

return x; return y;

} }

which is modeled by this CFG:
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a = 17 a = 18

call−1=ret−foo

ret−bar=x ret−baz=y

x = call−1 y = call−2

x = save−1−x y = save−2−y

call−2=ret−fooret−foo=a

save−1−x = x save−2−y = y

var x var y

If we subsequently perform a constant propagation analysis, then the return
values from both bar and baz are deemed to be non-constant. The problem is
that the CFG merges both calls to foo.

The analysis can be made polyvariant by creating multiple copies of the CFG
for the body of the called function. There are numerous strategies for deciding
how many copies to create. The simplest is to create one copy for every call
site, which handles the above problem with constant propagation:

a = 17

call−1=ret−foo

ret−bar=x

x = call−1

x = save−1−x

ret−foo=a

save−1−x = x

a = 18

ret−baz=y

y = call−2

y = save−2−y

call−2=ret−foo

save−2−y = y

ret−foo=a

var x var y

If, however, the call to foo was wrapped in a further layer of function calls,
then nothing would have been gained. Similarly, recursive functions are not
benefited much by this technique. The best approach is to employ heuristics
that are specific to the intended analysis. It is of course important to ensure
that only finitely many copies can be created.

Example: Tree Shaking

An example of an interprocedural analysis is tree shaking, where we want to
identify those functions that are never called and safely can be removed from the
program. This is particularly useful if the program is being compiled together
with a large function library.

The analysis takes place on the monovariant interprocedural CFG but is
otherwise phrased just like the other analyses we have seen. The lattice is the
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powerset of function names occurring in the given program, and for every CFG
node v we introduce a constraint variable [[v]] denoting the set of functions that
could possibly be called in the future. We use the notation entry(id) for the
entry node of the function named id. For assignments, conditions, and output

statements the constraint is:

[[v]] =
⋃

w∈succ(v)

[[w]] ∪ funcs(E) ∪
⋃

f∈funcs(E)

[[entry(f)]]

and for all other nodes just:

[[v]] =
⋃

w∈succ(v)

[[w]]

where funcs is defined as:

funcs(id) = funcs(intconst) = funcs(input) = ∅
funcs(E1 opE2) = funcs(E1) ∪ funcs(E2)
funcs(id(E1, . . . , En)) = {id} ∪ funcs(E1) ∪ . . . ∪ funcs(En)

As usual, these constraints can be seen to be monotone. Every function that is
not mentioned in the resulting value of [[entry(main)]] is guaranteed to be dead.

10 Control Flow Analysis

Interprocedural analysis is fairly straightforward in a language with only first-
order functions. If we introduce higher-order functions, objects, or function
pointers, then control flow and dataflow suddenly becomes intertwined. The
task of control flow analysis is to approximate conservatively the control flow
graph for such languages.

Closure Analysis for the λ-calculus

Control flow analysis in its purest form can best be illustrated by the classical
λ-calculus:

E → λid.E
→ id
→ E E

and later we shall generalize this technique to the full TIP language. For sim-
plicity we assume that all λ-bound variables are distinct. To construct a CFG
for a term in this calculus, we need to compute for every expression E the set
of closures to which it may evaluate. A closure is in our setting a symbol of the
form λid that identifies a concrete λ-abstraction. This problem, called closure
analysis, can be solved using a variation of the monotone framework. However,
since the CFG is not available, the analysis will take place on the syntax tree.
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The lattice we use is the powerset of closures occurring in the given term
ordered by subset inclusion. For every syntax tree node v we introduce a con-
straint variable [[v]] denoting the set of resulting closures. For an abstraction
λid.E we have the constraint:

{λid} ⊆ [[λid .E]]

(the function may certainly evaluate to itself) and for an application E1E2 the
conditional constraint:

λid ∈ [[E1]] ⇒ [[E2]] ⊆ [[id ]] ∧ [[E]] ⊆ [[E1E2]]

for every closure λid.E (the actual argument may flow into the formal argument
and the value of the function body is among the possible results of the function
call). Note that this is a flow insensitive analysis.

Exercise 10.1: Show how the resulting constraints can be transformed into
standard monotone inequations and solved by a fixed-point computation.

The Cubic Algorithm

The constraints for closure analysis are an instance of a general class that can be
solved in cubic time. Many problems fall into this category, so we will investigate
the algorithm more closely.

We have a set of tokens {t1, . . . , tk} and a collection of variables x1, . . . , xn

whose values are subsets of token. Our task is to read a sequence of constraints
of the form {t}⊆x or t∈x ⇒ y⊆z and produce the minimal solution.

Exercise 10.2: Show that a unique minimal solution exists, since solutions
are closed under intersection.

The algorithm is based on a simple data structure. Each variable is mapped to a
node in a directed acyclic graph (DAG). Each node has an associated bitvector
belonging to {0, 1}k, initially defined to be all 0’s. Each bit has an associated
list of pairs of variables, which is used to model conditional constraints. The
edges in the DAG reflect inclusion constraints. The bitvectors will at all times
directly represent the minimal solution. An example graph may look like:
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Constraints are added one at a time. A constraint of the form {t} ⊆ x is handled
by looking up the node associated with x and setting the corresponding bit to 1.
If its list of pairs was not empty, then an edge between the nodes corresponding
to y and z is added for every pair (y, z). A constraint of the form t ∈ x⇒ y ⊆ z

is handled by first testing if the bit corresponding to t in the node corresponding
to x has value 1. If this is so, then an edge between the nodes corresponding to
y and z is added. Otherwise, the pair (y, z) is added to the list for that bit.

If a newly added edge forms a cycle, then all nodes on that cycle are merged
into a single node, which implies that their bitvectors are unioned together and
their pair lists are concatenated. The map from variables to nodes is updated
accordingly. In any case, to reestablish all inclusion relations we must propagate
the values of each newly set bit along all edges in the graph.

To analyze this algorithm, we assume that the numbers of tokens and con-
straints are both O(n). This is clearly the case when analyzing programs, where
the numbers of variables, tokens, and constraints all are linear in the size of the
program.

Merging DAG nodes on cycles can be done at most O(n) times. Each merger
involves at most O(n) nodes and the union of their bitvectors is computed in
time at most O(n2). The total for this part is O(n3).

New edges are inserted at most O(n2) times. Constant sets are included at
most O(n2) times, once for each {t} ⊆ x constraint.

Finally, to limit the cost of propagating bits along edges, we imagine that
each pair of corresponding bits along an edge are connected by a tiny bitwire.
Whenever the source bit is set to 1, that value is propagated along the bitwire
which then is broken:

1 1

0

0

0

0

1

0

0

1

0

1

Since we have at most n3 bitwires, the total cost for propagation is O(n3).
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Adding up, the total cost for the algorithm is also O(n3). The fact that this
seems like a lower bound as well is referred to as the cubic time bottleneck.

The kinds of constraints covered by this algorithm is a simple case of the
more general set constraints, which allows richer constraints on sets of finite
terms. General set constraints are also solvable but in time O(22n

).

Control Flow Graphs for Function Pointers

Consider now our tiny language where we allow functions pointers. For a com-
puted function call:

E → (E)(E1,. . . ,En)

we cannot see from the syntax which functions may be called. A coarse but
sound CFG could be obtained by assuming that any function with the right
number of arguments could be called. However, we can do much better by
performing a control flow analysis. Note that a function call id(E1,. . . ,En)

may be seen as syntactic sugar for the general notation (id)(E1,. . . ,En).
Our lattice is the powerset of the set of tokens containing &id for every

function name id, ordered by subset inclusion. For every syntax tree node v
we introduce a constraint variable [[v]] denoting the set of functions or function
pointers to which v could evaluate. For a constant function name id we have
the constraint:

{&id} ⊆ [[id ]]

for assignments id=E we have the constraint:

[[E ]] ⊆ [[id ]]

and, finally, for computed function calls we have for every definition of a function
f with arguments a1, . . . , an and return expression E′ the constraint:

&f ∈ [[E]] ⇒ [[Ei]] ⊆ [[ai]] ∧ [[E′]] ⊆ [[(E)(E1, . . . ,En)]]

A still more precise analysis could be obtained if we restricted ourselves to
typable programs and only generated constraints for those functions f for which
the call would be type correct.

Given this inferred information, we construct the CFG as before but with
edges between a call site and all possible target functions according to the control
flow analysis. Consider the following example program:
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inc(i) { return i+1; }

dec(j) { return j-1; }

ide(k) { return k; }

foo(n,f) {

var r;

if (n==0) { f=ide; }

r = (f)(n);

return r;

}

main() {

var x,y;

x = input;

if (x>0) { y = foo(x,inc); } else { y = foo(x,dec); }

return y;

}

The control flow analysis generates the following constraints:

{&inc} ⊆ [[inc]]
{&dec} ⊆ [[dec]]
{&ide} ⊆ [[ide]]
[[ide]] ⊆ [[f]]
[[(f)(n)]] ⊆ [[r]]
&inc ∈ [[f]] ⇒ [[n]] ⊆ [[i]] ∧ [[i+1]] ⊆ [[(f)(n)]]
&dec ∈ [[f]] ⇒ [[n]] ⊆ [[j]] ∧ [[j-1]] ⊆ [[(f)(n)]]
&ide ∈ [[f]] ⇒ [[n]] ⊆ [[k]] ∧ [[k]] ⊆ [[(f)(n)]]
[[input]] ⊆ [[x]]
[[foo(x,inc)]] ⊆ [[y]]
[[foo(x,dec)]] ⊆ [[y]]
{&foo} ⊆ [[foo]]
&foo ∈ [[foo]] ⇒ [[x]] ⊆ [[n]] ∧ [[inc]] ⊆ [[f]] ∧ [[r]] ⊆ [[foo(x,inc)]]
&foo ∈ [[foo]] ⇒ [[x]] ⊆ [[n]] ∧ [[dec]] ⊆ [[f]] ∧ [[r]] ⊆ [[foo(x,dec)]]

The non-empty values of the least solution are:

[[inc]] = {&inc}
[[dec]] = {&dec}
[[ide]] = {&ide}
[[f]] = {&inc, &dec, &ide}
[[foo]] = {&foo}

On this basis, we can construct the following monovariant interprocedural CFG
for the program:
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var x,y

x = input

x > 0

save−1−x=x save−2−x=x

save−1−y=y save−2−y=y

n = x n = x

f = inc f = dec

x=save−1−x x=save−2−x

y=save−1−y y=save−2−y

y = call−1 y = call−2

ret−main=y

call−1=ret−foo

call−2=ret−foo

var r

n==0

f = ide

save−3−r=r

r=save−3−r

r = call−3

ret−foo=r

ret−inc=i+1 ret−dec=j−1 ret−ide=k

call−3=ret−inc call−3=ret−dec call−3=ret−ide

which then can be used as basis for subsequent interprocedural static analyses.

Class Hierarchy Analysis

A language with function pointers or higher-order functions must use this kind
of control flow analysis to obtain a reasonably precise CFG. For object-oriented
language it is also useful, but the added structure provided by the class hierarchy
and the type system permits some simpler alternatives. In the object-oriented
setting the question is which method implementations may be executed at a
given method invocation site:

x.m(a,b,c)

The simplest solution is to scan the class library and select any method named
m whose signature accepts the types of the actual arguments. A better choice,
called Class Hierarchy Analysis (CHA), is to consider only the part of the class
hierarchy that is spanned by the declared type of x. A further refinement,
called Rapid Type Analysis (RTA), is to restrict further to the classes of which
objects are actually allocated. A final technique, called Variable Type Analysis
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(VTA), performs intraprocedural control flow analysis while making conservative
assumptions about the remaining program.

These techniques are of course much faster than full-blown control flow anal-
ysis, and for real-life programs they are also sufficiently precise.

11 Pointer Analysis

The final extension of the TIP language introduces simple pointers and dynamic
memory. Since our toy version of malloc only allocates a single cell, we can-
not build arbitrary structures in the heap. However, the main problems with
pointers are amply represented in the language fragment that we consider.

Points-To Analysis

The most important information that must be obtained is the set of possible
targets of pointers. There are of course infinitely many possible targets during
execution, so we must select some finite representatives. The canonical choice
is to introduce a target &id for every variable named id and a target malloc-i,
where i is a unique index, for each different allocation site (program point that
performs a malloc operation). We use Targets to denote the set of pointer
targets for a given program.

Points-to analysis takes place on the syntax tree, since it will happen before
or simultaneously with the control flow analysis. The end result of a points-to
analysis is a function pt that for each (pointer) variable p returns the set pt(p)
of possible pointer targets to which it may evaluate. We must of course perform
a conservative analysis, so these sets will in general be too large.

Given this information, many other facts can be approximated. If we wish
to know whether pointer variables p and q may be aliases, then a safe answer
is obtained by checking whether pt(p) ∩ pt(q) is non-empty.

The simplest analysis possible, called address taken, is to use all possible
targets, except that &id is only included if this construction occurs in the given
program. This only works for very simple applications, so more ambitious ap-
proaches are usually preferred. If we restrict ourselves to typable programs,
then any points-to analysis could be improved by removing those targets whose
types are not equal to that of the pointer variable.

Andersen’s Algorithm

One approach to points-to analysis is quite similar to control flow analysis. For
each variable named id we introduce a set variable [[id ]] ranging over the possible
pointer targets in the given program.

The analysis assumes that the program has been normalized so that every
pointer manipulation is of one of the six kinds:

1) id = malloc

2) id1 = &id2
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3) id1 = id2

4) id1 = *id2

5) *id1 = id2

6) id = null

Exercise 11.1: Show how this normalization can be performed systemati-
cally by introducing fresh temporary variables.

For each of these pointer manipulations we then generate the following con-
straints:

id = malloc: {malloc-i} ⊆ [[id ]]
id1 = &id2: {&id2} ⊆ [[id1]]
id1 = id2: [[id2]] ⊆ [[id1]]

id1 = *id2: &id ∈ [[id2]] ⇒ [[id ]] ⊆ [[id1]]
*id1 = id2: &id ∈ [[id1]] ⇒ [[id2]] ⊆ [[id ]]

The last two constraints are generated for every variable named id, but we
need in fact only consider those whose addresses are actually taken in the given
program. The null assignment is ignored, since it corresponds to the constraint
∅ ⊆ [[id ]]. Since these constraints match the requirements of the cubic algorithm,
they can be solved in time O(n3). The resulting points-to function is defined
as:

pt(p) = [[p]]

Consider the following example program:

var p,q,x,y,z;

p = malloc;

x = y;

x = z;

*p = z;

p = q;

q = &y;

x = *p;

p = &z;

Andersen’s algorithm generates these constraints:

malloc-1 ⊆ [[p]]
[[y]] ⊆ [[x]]
[[z]] ⊆ [[x]]
&y ∈ [[p]] ⇒ [[z]] ⊆ [[y]]
&z ∈ [[p]] ⇒ [[z]] ⊆ [[z]]
[[q]] ⊆ [[p]]
{&y} ⊆ [[q]]
&y ∈ [[p]] ⇒ [[y]] ⊆ [[x]]
&z ∈ [[p]] ⇒ [[z]] ⊆ [[x]]
{&z} ⊆ [[p]]
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The non-empty values in the least solution are:

pt(p) = [[p]] = {malloc-1, &y, &z}
pt(q) = [[q]] = {&y}

which gives a really precise result. Note that while this algorithm is flow in-
sensitive, the directionality of the constraints implies that the dataflow is still
modeled with some accuracy.

Steensgaard’s Algorithm

A popular alternative performs a coarser analysis essentially by viewing assign-
ments as being bidirectional. This time we use a set consisting of the malloc-i

tokens and two tokens of the form id and *id for each variable named id. We use
the same normalized program as before, but this time we generate equivalence
constraints on tokens:

id = malloc: *id ∼ malloc-i

id1 = &id2: *id1 ∼ id2

id1 = id2: id1 ∼ id2

id1 = *id2: id1 ∼ *id2

*id1 = id2: *id1 ∼ id2

The generated constraints induce an equivalence relation on the tokens, which
can be computed in almost linear time. The resulting points-to function is
defined as:

pt(p) = {&id | *p ∼ id} ∪ {malloc-i | *p ∼ malloc-i}

Again, we might as well restrict ourselves to those instances of &id that occur in
the given program. If we only consider typable programs, then we can further
eliminate those targets whose types do not match.

For the previous example program, Steensgaard’s algorithm generates the
constraints:

*p ∼ malloc-1 p ∼ q

x ∼ y *q ∼ y

x ∼ z x ∼ *p

*p ∼ z *p ∼ z

These constraints induce the following equivalence relation:

malloc−1

*p

*q

x y

z
p

q

*x

*y

*z
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This in turn implies that:

pt(p) = pt(q) = {malloc-1, &x, &y, &z}

which is significantly less precise than Andersen’s algorithm. Restricting to the
addresses that are actually taken, we obtain:

pt(p) = pt(q) = {malloc-1, &y, &z}

which for p is as precise as Andersen’s algorithm, but still is worse for q.

Interprocedural Points-To Analysis

If function pointers are distinguished from other pointers, then we can perform
an interprocedural points-to analysis by first computing an interprocedural CFG
as described earlier and then running either Andersen’s or Steensgaard’s algo-
rithm. If, however, function pointers may have indirect references as well then
we need to perform the control flow analysis and the points-to analysis simul-
taneously to resolve for example the function call:

(***x)(1,2,3);

To express the combined algorithm, we make the syntactic simplification that
all function calls are of the form:

id1 = (id2)(a1,. . . , an);

where id i and ai are variables. Similarly, all return expressions are assumed to
be just variables.

Exercise 11.2: Show how to perform these simplifications in a systematic
manner.

Andersen’s algorithm is already similar to control flow analysis, and it can
simply be extended with the appropriate constraints. A reference to a constant
function f generates the constraint:

{&f } ⊆ [[f ]]

The computed function call generates the constraint:

&f ∈ [[id2]] ⇒ [[a1]] ⊆ [[x1]] ∧ . . . ∧ [[an]] ⊆ [[xn]] ∧ [[id ]] ⊆ [[id1]]

for every occurrence of a function definition:

f (x 1,. . . ,xn) { . . .return id; }

This will maintain the precision of the control flow analysis. In contrast, Steens-
gaard’s algorithm would be extended with the constraint:

a1 ∼ x1 ∧ . . . ∧ an ∼ xn ∧ id ∼ id1

which results in a considerable loss of precision, since every n-argument function
is considered a possible target for the call.
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Example: Null Pointer Analysis

We are now also able to define an analysis that detects null dereferences. Specif-
ically, we want to ensure that *p is only executed when p is initialized and does
not contain null.

As before, we assume that the program is normalized, so that all pointer
manipulations are of these kinds:

1) id = malloc

2) id1 = &id2

3) id1 = id2

4) id1 = *id2

5) *id1 = id2

6) id = null

The basic lattice we use, called Null , is:

NN

IN

?

where IN means initialized and NN means not null. We then form the map
lattice:

Vars 7→ Null

where we recall that Vars is the set of variables declared in the given program.
For every CFG node v we introduce a constraint variable [[v]] denoting a symbol
table giving the status for every variable at that program point. For variable
declarations we have the constraint:

[[v]] = [id1 7→ ?, . . . , idn 7→ ?]

For the nodes corresponding to the various pointer manipulations we have the
constraints:

id = malloc: [[v]] = JOIN (v)[id 7→ NN]
id1 = &id2: [[v]] = JOIN (v)[id 1 7→ NN]
id1 = id2: [[v]] = JOIN (v)[id 1 7→ JOIN (v)(id2)]

id1 = *id2: [[v]] = right(JOIN (v), id1, id2)
*id1 = id2: [[v]] = left(JOIN (v), id1, id2)
id = null: [[v]] = JOIN (v)[id 7→ IN]

and for all other nodes the constraint:

[[v]] = JOIN (v)
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where we have defined:
JOIN (v) =

⊔

w∈pred(v)

[[w]]

right(σ, x, y) = σ[x 7→ σ(y) ⊔
⊔

&p∈pt(y)

σ(p)]

left(σ, x, y) = σ [
&p∈pt(x)

p 7→ σ(p) ⊔ σ(y) ]

Note that allocation sites will always be mapped to ⊥, which reflects that we
are not tracking cardinality or connectivity of the heap. After the analysis, the
evaluation of *p is guaranteed to be safe at program point v if [[v]](p) = NN.
The precision of this analysis depends of course on the quality of the underlying
points-to analysis.

Exercise 11.3: Explain the above constraints.

Consider the following buggy example program:

var p,q,r,n;

p = malloc;

q = &p;

n = null;

*q = n;

*p = r;

Andersen’s algorithm computes the following points-to sets:

pt(p) = {malloc-1}
pt(q) = {&p}
pt(r) = {}
pt(n) = {}

Based on this information, the null pointer analysis generates the following
constraints:

[[var p,q,r,n;]] = [p 7→ ?, q 7→ ?, r 7→ ?, n 7→ ?]
[[p=malloc]] = [[var p,q,r,n;]][p 7→ NN]
[[q=&p]] = [[p=malloc]][q 7→ NN]
[[n=null]] = [[q=&p]][n 7→ IN]
[[*q=n]] = [[n=null]][p 7→ [[n=null]](p) ⊔ [[n=null]](n)]
[[*p=r]] = [[*q=n]]

for which the least solution is:

[[var p,q,r,n;]] = [p 7→ ?, q 7→ ?, r 7→ ?, n 7→ ?]
[[p=malloc]] = [p 7→ NN, q 7→ ?, r 7→ ?, n 7→ ?]
[[q=&p]] = [p 7→ NN, q 7→ NN, r 7→ ?, n 7→ ?]
[[n=null]] = [p 7→ NN, q 7→ NN, r 7→ ?, n 7→ IN]
[[*q=n]] = [p 7→ IN, q 7→ NN, r 7→ ?, n 7→ IN]
[[*p=r]] = [p 7→ IN, q 7→ NN, r 7→ ?, n 7→ IN]
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By inspecting this information, a compiler could statically detect that when
*p=r is evaluated, the variable p may contain null and the variable r may be
uninitialized.

Example: Shape Analysis

So far, we have viewed the heap as an amorphous structure and only answered
questions about stack based variables. The heap can be analyzed in more detail
using shape analysis. Note that we can produce interesting heaps, even though
the malloc operation only allocates a single heap cell. An example of a non-
trivial heap is:

x

y

z

where x, y, and z are program variables. We will seek to answer questions about
disjointness of the structures contained in program variables. In the example
above, x and y are not disjoint whereas y and z are.

Shape analysis requires a more ambitious lattice of shape graphs, which are
directed graphs in which the nodes are the pointer targets for the given program.
Shape graphs are ordered by inclusion of their sets of edges. Thus, ⊥ is the graph
without edges and ⊤ is the completely connected graph. The pointer targets
serve as an abstraction of all the cells that could possibly be created during
execution, and the existence of an edge implies that the store may contain a
reference between two cells that are represented by the source and target nodes.
Formally, our lattice is then:

2Targets×Targets

ordered by the usual subset inclusion. For every CFG node v we introduce a
constraint variable [[v]] denoting a shape graph that describes all possible stores
after that program point. For the nodes corresponding to the various pointer
manipulations we have the constraints:

id = malloc: [[v]] = JOIN (v)↓ id ∪ {(&id , malloc-i)}
id1 = &id2: [[v]] = JOIN (v)↓ id1 ∪ {(&id1, &id2)}
id1 = id2: [[v]] = assign(JOIN (v), id1, id2)

id1 = *id2: [[v]] = right(JOIN (v), id1, id2)
*id1 = id2: [[v]] = left(JOIN (v), id1, id2)
id = null: [[v]] = JOIN (v)↓ id
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and for all other nodes the constraint:

[[v]] = JOIN (v)

where we have defined:
JOIN (v) =

⋃

w∈pred(v)

[[w]]

σ↓x = {(s, t) ∈ σ | s 6= &x}

assign(σ, x, y) = σ↓x ∪
⋃

(&y,t)∈σ

{(&x, t)}

right(σ, x, y) = σ↓x ∪
⋃

(&y,s),(s,t)∈σ

{(&x, t)}

left(σ, x, y) =







σ {s | (&x, s) ∈ σ} = ∅
⋃

(&x,s)∈σ σ↓s {s | (&x, s) ∈ σ} 6= ∅ ∧ {t | (&y, t) ∈ σ} = ∅
⋃

(&x,s),(&y,t)∈σ σ↓s ∪ {(s, t)} otherwise

Exercise 11.4: Explain the above constraints.

Consider now the following program:

var x,y,n,p,q;

x = malloc; y = malloc;

*x = null; *y = y;

n = input;

while (n>0) {

p = malloc; q = malloc;

*p = x; *q = y;

x = p; y = q;

n = n-1;

}

After the loop, the analysis produces the following shape graph:

&x

malloc−3

malloc−1

malloc−4

malloc−2

&y

&p &q
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From this result we can safely conclude that x and y will always be disjoint.
Note that our shape analysis also computes a flow sensitive points-to map

that for each program point v is defined by:

pt(p) = {t | (&p, t) ∈ [[v]]}

This analysis is more precise than Andersen’s algorithm, but clearly also more
expensive to perform. As an example, consider the program:

x = &y;

x = &z;

After these statements, Andersen’s algorithm would predict that pt(x) = {&y, &z}
whereas the shape analysis computes pt(x) = {&z} for the final program point.
This flow sensitive points-to information could be used to boost the null pointer
analysis. However, an initial flow insensitive points-to analysis would still be
required to construct a CFG for programs using function pointers. Conversely,
if we have another points-to analysis, then it may be used to boost the precision
of the shape analysis by restricting the targets considered in the left and right
functions.

Example: Better Shape Analysis

The above shape analysis allows us to conclude that x and y will always be
disjoint. However, the shape graphs we compute are unable to answer other
interesting questions. For example, we cannot conclude that malloc-2 nodes
always contain a self-loop whereas malloc-4 nodes never appear on cycles. To
make such distinctions, we need a more detailed lattice. As an example, we
could maintain information about cyclicity in the graph. This would change
our lattice into:

2Targets×Targets × 2Targets×Targets

where for an element (X,Y ) we have that X denotes the possible edges and
Y ⊆ X denotes those edges that could possibly be part of a cycle in the graph
(thus, Y is used to remember part of the history of the heap).

With this more detailed lattice we now get the obligation of correspondingly
updating the constraints. Of course, we could trivially always consider the
second component to contain all edges, but to obtain useful results we need
to do better. An assignment id = malloc can never create a cycle, so the
corresponding constraint may be updated as follows (where we assume that
JOIN (v) = (X,Y )):

id = malloc: [[v]] = (X ↓ id ∪ {(&id , malloc-i)}, Y ↓ id)

An assignment id1 = &id2 cannot create a cycle if the current shape graph does
not contain a path from &id2 to &id1 (since reachability in the shape graph is
conservative). Consequently, the constraint may be updated as follows:
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id1 = &id2: [[v]] = (X ↓ id1 ∪ {(&id1, &id2)}, Y ↓ id1 ∪ reach(X ↓ id1, &id2, &id1))

where reach(σ, s, t) returns (t, s) if s can reach t through zero or more edges in
σ, and ∅ otherwise.

Exercise 11.5: Show how the remaining constraints are similarly updated.

With this more detailed analysis, we then compute the following shape graph:

&x

malloc−3

malloc−1

malloc−4

malloc−2

&y

&p &q

0

?

0

0

0

0
0

0

0

0

0

where the edge label 0 means that the edge is definitely not on a cycle and
? means that the answer is unknown. Now, we are able to conclude that
the malloc-4 nodes never appear on cycles. We are allowed to think that the
malloc-2 nodes appear on cycles, but we still do not have enough information
to conclude that a self-loop is formed. To substantiate this conclusion, we need
to further refine our lattice to keep track of edges that definitely are parts of
cycles and to keep track of whether more than one node of a given target can
ever be allocated. This requires further refinements of the lattice as follows:

2Targets×Targets × 3Targets×Targets × 2Targets

We here use the notation 3A to denote the lattice A 7→ 3Val , where 3Val is the
lattice of 3-valued Booleans:

0

?

1

where 0 means definitely false, 1 means definitely true, and ? means unknown.
In a lattice element (X,Y, Z), X denotes the shape graph edges, Y denotes
(may or must) knowledge about cyclicity of edges, and Z denotes those targets
of which only a single instance has ever been allocated. We can now define even
more complicated constraints that maintain this information, and the analysis
will result in the following information (where # denotes that a target is uniquely
allocated):
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&x

malloc−3

malloc−1

malloc−4

malloc−2

&y

&p &q

0

1

0

0

0

0
0

0

0

0

0#

# #

#

# #

Finally, we are able to conclude that there is only a single malloc-2 node and
that it has a self-loop.

Analyses like the above can be performed in a less ad-hoc manner, using a
framework known as parametric shape analysis. Here, the targets are character-
ized by a number of unary instrumentation predicates that are chosen to provide
the information necessary for the analysis. Examples of such unary predicates
are:

• does this node have two or more incoming pointers?

• is this node reachable from the variable x?

• is this node on a cycle?

but the relevant ones depend on the questions for which we seek answers. Our
simple shape graphs had a single node for each pointer target. In the parametric
framework, we polyvariantly have a copy for each possible 3-valued interpreta-
tion of the predicates. Thus, the nodes of a shape graph corresponds to:

3Targets × 3Targets × . . .× 3Targets

with one copy for each predicate. The shape graph itself must then describe the
connectivity between these nodes, and again we use 3-valued logic to describe
edges as definitely present, definitely absent, or possibly present. Thus, our final
lattice becomes:

3(3Targets×3Targets×...×3Targets)2

or (amusingly):

3((3Targets)k)2

if we have k predicates. To complete the parametric shape analysis, we must
the specify the constraints. If we have included many predicates, then we have a
correspondingly heavy burden of maintaining these with useful precision. This
is generally something of a puzzle to get right, as indicated even by our simple
example above. But the technique is powerful and may be used to verify e.g.
that a procedure for inserting into a red-black search tree respects the red-black
invariant.
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Example: Escape Analysis

We earlier lamented the escaping stack cell error displayed by the program:

baz() {

var x;

return &x;

}

main() {

var p;

p=baz(); *p=1;

return *p;

}

which was beyond the scope of the type system. Having performed the simple
shape analysis, we can easily perform an escape analysis to catch such errors.
We just need to check that the possible pointer targets for return expressions
in the shape graph cannot reach arguments or variables defined in the function
itself, since all other pointer targets must then necessarily reside in earlier frames
on the invocation stack.

12 Conclusion

We have seen the basic tools that are required to perform static analysis of
programs. Real-life applications invariably gravitate back to the techniques that
we have covered, though many variations and extensions are usually required.

Two major areas have not been covered at all. The quality of an analysis
can only be measured relatively to a suite of intended applications. It is rare
that competing analyses can be formally compared, so much work in this area is
concerned with performing experiments to establish the precision and efficiency
of proposed analyses. The correctness of an analysis requires a formal semantics
of the underlying programming language. Completely formal proofs of correct-
ness of analyses are exceedingly laborious and remain mostly academic exercises.
Even so, it is often possible to provide convincing correctness arguments.
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