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ELEMENTARY PROPERTIES OF ORDERED ABELIAN GROUPS

v v
Ju. S. GUREVIC

In the paper a classification of ordered abelian groups by elementary proper-
ties is set up.

It will be shown that the elementary theory of ordered abelian groups is solv-
able if and only if the elementary theory of ordered sets is solvable. Now in [1]
it is announced as a theorem that the elemeantary theory of ordered sets is solvable,
and this then implies the solvability of the elementary theory of ordered abelian
groups.

§1. Notation and definitions

1.1. Let o be a signature; ®(o) is a set of formulas in LPC (the lower pred-
icate calculus) of signature o that do not contain free variables; ® (o) is the set
of formulas in ®(¢) having in their prenex form not more than n quantifiers. If
M is a model of ¢, then ®(M) is the set of formulas in ®(g) that are true on M.
By definition, (I)n () = (M) n (I)n (o). If K is a class of models of ¢, then
DK = nex PM). ®(K) is called the elementary theory of the class.

1.2. A predicate P(xl, +++, %) is called formular in the class K of models
of signature ¢ if there exists a formula ?I(xl, ooy x") in LPC of signature o
such that P(xl’ e, x) = ‘Zl(xl, +++, %) in all models of K. In the case n =0
we obtain the definition of a formular proposition.

Let r=((Q, R, -++) be a set of formular predicates in the class K of models
of signature ¢, and M € K. |f| denotes the set of elements of M. Since @, R, -
are formular predicates, their values in || are defined. By < |%|, 7> =< |},

Q, R, +-+ > we denote the corresponding model of signature 7. In particular,
% = < |M|, o >. Suppose, moreover, that P is a unary formular predicate in K.
Then < %], 7>F is by definition the submodel of < |R|, r> containing precisely

those elements of || that satisfy P.
1.3. The following expressions will be treated as synonyms:
1. The elementary theory of the class K is solvable.
2. ®(K) is solvable.
3. K is a solvable class.

1.4. P; denotes the ith prime number in ascending order. If s is a positive
integer, then [(s) is the index of the greatest prime divisor of s, (s); is the ex-
ponent of the greatest power of p, dividing s, and = (s} is the set of prime divi-

sors of s.
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1.5. We abbreviate ‘‘winning strategy,’’ “‘ordered set,”’ ‘‘ordered abelian
group’’ by w.s., o.s., 0.a.g., respectively.

1.6. Order is everywhere to be interpreted as linear order.

§2.T,(@,, )

Following [2] we shall set forth below conditions for the equality (T)" (Eml) =
¢, (R,). Analogous conditions in the language of mappings were obtained inde-
pendently by A. D. Taimanov [3].

Let ?Dll, M, be models of ¢. I', (Wll, 5)]12) is a game with two players I and
Il. The players move in turn; / begins. At the kth move (k= 1,---, n) he chooses
first a number I, equal to 1 or 2. Then he chooses in the model M;; an element
akk . Il at the kth move chooses the element ask- % in §m3_ll‘. After n moves we
have a correspondence:

1
a1<—-—»a

2
1
D I ) (*)
1 2

n

a «—— a’.
n

If (*) is an isomorphism, then I/ wins; otherwise [ wins.

Lemma 1. If Il kas a w.s. in Fn(§m1, SRZ), then ®n(9Jl1) = (I)n(sz),

Now let o be finite and ¢ = t(g) be a positive integer such that (t)i is the
number of i-ary predicates of o.

Lemma 2. There exists a primitive recursive function N =N(t(o), n) such
that Il has a w.s. in Fn(‘.ml, 9]12) if QN(KU),”)(SJRI) = (I)N(t(o)’n)(fmz).

We shall also use the game l—‘("1 nk)(ml, ?Dlz), which differs from
r,M@,, ?)le) only in that at the kth move the players choose n; elements each,
not necessarily one by one. Obviously, we have

Lemma 3. Let n=n) ++«-+n; Ifll has aw.s. in U (M}, My), then Il also
has a w.s. in F(nl,m,nl) (gﬁl’ Wz)'
$3. m-chains
3.1. Let m be a positive integer or ®, and 7 a signature containing a bi-
nary predicate x <y and unary predicates |x| =k, 1<k <m.
x <y is an abbreviation for — (y < x),
s xy is an abbreviation for — (x <y) &~ {y <=),
|%| # & is an abbreviation for o ({x| = k).
If x <y, we say that x precedes y. If |x| = k, we say that the norm of x
is k.
T, is the class of models of signature 7, satisfying the following axioms
(universal quantifiers preceding all other formal symbols have been omitted here
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and later in suitable cases):

(3.1.1) xxx

(3.1.2) x<Xy-— y=xX=x.

(3.13) x<xy&y=xz— xX2z

(3.1.4) Xy =% &Yy =Yy & X <yp— % <yy.

(3.1.5) axy&lxl=k—|yl=4k 1<k<m

(3.2.1) x<y— — (y<=x).

(3.2.2) x<y&y<z—x<2z

(3.3.1) |x|=i—|xl£) i#), 1<i, j<m

Models of the class I are called m-chains. Thus, if we do not distinguish
between elements connected by <, an m-chain is an o.s. whose elements may
have no norm at all or one and the same norm, the norm being a positive integer
less than m; no connection is assumed between order and norm. T1 is simply the
class of o.s.

It is easy to see that

®(T,) = ®(T,) O ().

For the sake of brevity we shall also use the predicate |x| = 0, which means
that x has no (positive) norm. For finite m, |x| =0 is an abbreviation for
|x]#1&++- & |x| £ m — 1. The predicate |x| = 0 does not occur in 7 nor in
the formulas of (D(Tm).

3.2. Lemma 4. Suppose that:

1. K is a solvable class of models of signature g3

2. 7= (Ql’ 02’ -+.) is a set of formular predicates in K and U, Wy, oo
are corresponding formulas in LPC of signature o}

3. P is a unary formular predicate in K;

4. L is a class of models of signature r such that: a) for every e K,
< ||, +>P € L, and b) for every N € L there is an M € K for whick < oy,
r>Pan,

Then ®©(L) is solvable.

Proof. Let % € ®(r). In U we replace the predicates Qi by the formulas
U, and restrict the quantifiers to P. We obtain a formula & € ®(0). Clearly,

%A € P(L) is equivalent to ¢ € ®(K).

3.3. Lemma 5. The elementary theory of w-chains is solvable if the elemen-

tary theory of o.s. is solvable. »

Proof. Let S(x, y) be an abbreviation for — d Z{x<z<y) & x<y.

We set



168 Ju. . GUREVIC

|x| = kdf= Hoxyr- Hxp Vy[Six, %p) & S{xy, %o) & <0
s & S0, %) & 1 Sy, ], 1<k <
P(x)df = — Ty Sy, 2.

We use Lemma 4, with Tl’ ™ T, 7, in placeof K, g, L, 7, respectively.
Obviously, if ! € T, thea < ||, 7 >F isin fact an o-chain. Now let % be an
w-chain. With an element x € X of norm %k (k =0, 1, -++) we associate a set A
of order type 1+ k + 0* + w. We assume that 4, = Ay for xxy and A, N A f[f
otherwise. We extend the partial order in | 4, to alinear order by postulatmg

that for x <y every element of 4, shall precede every element of A So we ob-
tain an o.s. which we call assocxated with . Clearly, this o.s. is what we were
looking for.

Corollary. Let m be finite. The class of models 7. Setisfying only the ax-
toms (3.1.1) = (3.2.2) is solvable if the class of o.s. is solvable

3.4. Let I, N be w-chains and T, N’ be the o.s. associated with them.
Lemma 6. For ®(M) = ®(N) it is necessary and sufficient that SN’ =
(N).
The necessity follows from the fact that a w.s. for /] in L (@, ') can
easily be constructed from a w.s. for /] in F (|, n.
Sufficiency. Suppose that ®(f') = (N’ ) Then O(< R, 7 >P) =
QR 7, >F). Bur <[, 7 >P W, <0, 7 5P R
$4. Linear order in direct sums of cyclic groups
4.1. By 0, Wwe denote the signature containing a single ternary predicate
S(x, y, 2). For S(x, y, 2) we often write x+y=z
% =0 is an abbreviation for Vy S(x, y, y),
%=y is an abbreviation for Vz(z =0 —s S(z, x, ),
S(x, y, 0) is an abbreviation for Vz(z = 0 — Sx, v, 2)).
KO is the class of models of signature ¢, satisfying the following axioms:
(4.1.1) x==x.
(4.1.2) x=y — y=x
(4.13) x=y& y=2— x = 2.
(4.1.4) %) =2, &y, = Yr & 2 =2, & S(xl, Y1, 21} — S(xz, Yo 2ok
(4.2.1) 42z5(x, y, 2).
(4.2.2) S(x, v, zl) & Slx, y, zz) — zy = Zy,
(4-2'3) S(x, Y, ll,) & S(u: 2, wl) & S()’, z, ‘U) & S(x: v, wz) g wl = wz-
(4.2.4) S(x, y, 2) — S(y, %, 2).
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(4.2.5) dx(x=0).
(4.2.6) AxS(x, y, 0).
Thus, if we do not distinguish between elements connected by the sign =,
then KO is an abelian group.
4.2. Let Kij be the'class of abelian groups consisting of direct sums of
cyclic groups of order p. and the null group.
Lemma 7. Every nonzero element g in G € Kij lies in a cyclic direct sum-
mand.
Corollary. Let G € Kij’ 8€G and 0<k<j Then
pig=0— pl kg
Definition. A correspondence
gv — kY, (1
where gV € G, R €H, v=1,+--,k; G, HE Kij is called regular (between ele
ments of the groups G, H € Kij) if there exist elements g, +++, g, € G, hy, +++
LN hr € H, and integers f;: such that {g1}+ cee {gr} is a direct summand of
G, {hl} Foeen 4 {hri is a direct summand of H, and g¥ = Zf:gy_, hY = Zf}’:h#.
Here {g} denotes the cyclic subgroup generated by g and + is the sign of a
direct sum.
The smallest possible r is called the rank of the regular correspondence (1).
Let oG), where G € K;: be the number of cyclic direct summands in a de-
composition of G. Then a (6)ef = min(a(G), n).
Lemma 8. Let (1) be a regular correspondence of rank r<n and a (G) =
o, (H). Then for every g € G there is an h € H such that the extension of (1) b
means of g «—— h is a regular correspondence of rank <r + 1.
4.3. Let Ks, where s is a positive integer, be the class of abelian groups
satisfying the axiom Vx(sx = 0).
By Priifer’s first theorem [4] a group G € K, can be represented as a direct
sum G = Zcii’ where Gij € Ki' and Gdf 2]0” is a Sylow subgroup.
By g; we denote the component of g € G in G .
Remark. There exists an integer ¢;, depending on s and i oaly, such that
; = £;8- For future reference we fix a definite éi for all s and i.
Definition. A correspondence
gv(__‘ hV, (2
whete g¥ € G, iV €H, v=1,+-, k G HE K, is called regular (between elc
meats of G, H € K ) if there are direct decompositions G = X Gi}., H=% Hij
with Gii’ Hi/‘ € Kij such that the correspondence
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gij — hii (Zij)
is regular, where g;’i, h:.']. are the components of g%, h” in Gij’ Hij’ respectively,
v=1, 0, k.

The maximal rank of the correspondences (Zij) is called the rank of (2).

Let G €K, and G = Zcij’ where Gij € Kij' We set

B, -3 an(ci].) oy T Hdim1tinl
Lemma 9. Suppose that (2) is a regular correspondence of rank r <n and

B,(G) = B, (H). Then for every g € G there is an h € H such that the extension
of (2) by means of g« k is a regular correspondence of rank <(r+ 1).

4.4. Let K be the class of ?bghan groups consisting of direct sums of cyclic
S l(s)
» sosy, p

Lemma 10. Let G € K:, g€ C and m|s. Then mg=0-— (s/m)|g.
Proof. The proof is based on the Corollary to Lemma 7.

groups of the ordets p(1 s)1 and the null group.

4.5. Let p; be the signature consisting of the predicates S(x, y, 2) and
x<y.

L is the class of models M of signature p; such that

a) <|R|, S(x, 5, 2) > €K};

b) Ls satisfies the axioms (3.1.1) —(3.1.4), (3.2.1), (3.2.2) (with the same
conventions about abbreviations);

c) M satisfies the axioms

(4.3.1) x<0—>x=0,

(4.3.2) %+ y <max(x, y),

(4.3.3) px <y — Hz(pz=px & z2<y),
where p € w(s).

The following simple properties of models of class Ls are easily checked,
where m is an arbitrary integer, n divides s, and o(x) denotes the order of the
element x in the sense of group theory.

1) x=y —> xxy.

2) mx<x, x; <%

3) (m,s)=1— mxxx, (m o)) =1— mxxx, —xxx

4) xky— x+ y < max(x, y).

5) x= max x;

6) mx<y—s Jzlmz=mx & z<y).

7) D@ =<5y <x), Sz, v, 2> €K,

8) E¥=<fly<a), Sz, y, 2> €K,.

9) F(9¥=E(x/D(» €K,

[ S

e e e e

—
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In 7) and 9) it is assumed that x £ 0. In addition, we set Do)y =g, F(0)=o0.
Let G € L. A subgroup 4 is called convex if
x, yEA&x<z<y— z € A.

The empty set is also counted among the convex subgroups. D(x) and E(x)
are convex subgroups. D(x) is serving. E(x)\D(x) is called a jump of G.

4.6. Let y range over a set ¥ of natural numbers. Let E1 \D1 be jumps of

1 2 2

G €L, EZ\ND? be jumps of H €L, F ~EL/D, FL=E /D

Definition. A correspondence

DL¢——» Di (3

is called n-regular if

1 1 2 2
D Dng —Dnguz’

1y _ 2
2) B,(FY) - B, (F2).
Definition. A correspondence
gu‘__’ hV’ (4)
where g € G, RV €H, v=1,+-+, k, G, H€ L, is called n-regular if the fol-
lowing conditions hold:

1) D(E&,g" — DEER,

is an n-regular correspondence, where §1’
2) Let Efl v, . Effjg be all the elements of the form 2 &, g” belonging
o E(Z (fl Y). Then Efl R, - Efl Y are all the elements of the form X & AY
belonging to E(Ef L), and
Eflg + D(Efl F'ss) ‘——4251 Y + D(Ec‘fl ),
................ 4"
zfl g+ D(EELg?) 32 € ¥ + D(EELRY)

fk range over all the integers.

is a regular correspondence between elements of the groups
FELg"), F(EELR) €K,

Here (4') is called a subcorrespondence related to D& f{,g"). The rank of
(4) is the maximum of the ranks of the subcorrespondences.

Corollary. Let (4) be an n-regular correspondence and suppose m|s. Then
mlzfvgy———-» m|2§uh1’.

For if leng”, then (s/m)3 fygv =0€ E(20-g¥). Hence
(s/m)Efth= 0 and, by Lemma 10, m | Efuhy.

4.7. Lemma 11. Given:

0 G, HE LPS, where p is a prime number; EYN\D! and E2\D? are jumps
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of G and H, respectively; g € G, lY €H, v=1, -+, k; r<n; g€G.
1) The correspondence
D(S&,g%) — D(EE BY), D' D2, )
where fl’ e, ffk range over all possible integers, is n-regular.
2) The correspondence
g¥ s kY (6)
where v =1, +++, k, is n-regular, and the rank r can be reached only in subcorre-
spondences relating to those D (3 ‘fygy) that are contained in DL.
3) plg is minimal among the elements of the form plg + & g¥ for 0 < j<q
and pjg € El\Dl.
4) plg = Efggy € DL,
Then there is an h € H such that the extension of (6) by means of g «—— h

is an n-regular correspondence; also, the rank r cannot be reached in subcorre-
spondences relating to those D(Z fyg”) that contain D1,

Proof. By the Corollary to the second Definition in 4.6, there is an a € H
such that p7a= Etfghv € D2. Since D? is serving, we may assume that a € DZ.

By Lemma 9 there is a b € H such that the extension of the subcorrespond-
ence relating to pl by means of g+ Dlesb+D?isa regular correspondence
of rank <r. Also p"b € D®. Let ¢ € D? and pTc=p"bh. We set h=b~c + a
Then h is the required element.

Lemma 12. Given:
0) G, HELpy; EiL’\DL are jumps of G, Ei\DfL are jumps of H, p=1, -
vee, 8, 8Y€G, RYEH, v=1,+++,k g€GC.
1) The correspondence
DEE, g")— DL AY),

1 2
D#M D,

is n-regular.

2) The correspondence

gV — BV (7)

is n-regular of rank r <n.

3) a_ is minimal among the elements of the form p*"Fg+ % & g¥ and a,€
EIN\DL.

A"

Then there is an h € H such that the extension of (7) by means of ge— h

is an n-regular correspondence of rank <(r + 1).

Proof. Let i <j; then pj_ia]. is of the form p* "ig + 2 ¢,g%, so that
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a; < Pi_iai <@ Let pl|g with 0<j< tig- Then (assuming g £0, ie., py <si
the case g =0 is trivial)

0= = eex

a*‘o < a#o+1 ©1

< P EEED-<

“ug-1° Cpp-orrl rE

P R

a =a

<a eeeoxa .
H“i-1 mi-1+1 wlo s

Clearly, without violating the conditions of the lemma we may replace (cf.
Bk~ pk-1"1 1o

the kth row) @,y by pa,, and T o1+l by p @ k=1, A

The conditions of Lemma 11 are satisfied with DLI’ thl’ a,

DY, D2, g. Therefore there is a b, € H such that the extension of (7) by means

in place of

of SR by is an n-regular correspondence with the appropriate restriction on
the ranks of subcorrespondences. In a similar way we extend the correspondence
so obtained by means of a,, — b,, etc. Suppose that we have found by, -

seey, bl such that the extension of (7) by means of @ «— bl’ fen, — bl

%l
h= bl_

is n-regularof rank <(r+ 1), andlet ¢ =a_ =g+ Efgg”. We set

©l
Efgh”, and then /% is the required element.

4.8. Let G€ L_. By G, we denote the submodel of G that contains precisely
the elements x for which p(is)i = 0. Gi € Lp .(s)i.
12

Lemma 13. Given:

0)G HEL; g"€G, kY €H, v=1,+-,k g€6G, heH.

1) The correspondence g« kY is n-regular.

2) The correspondence g¥ «—s kY, g, «— h; is n-regular between elements
of the models G, ll;, i=1, -, L(s).

3) The correspondence
D& g7+ Eg) s D(EE AV + £h) (8)
is n-regular.

Then gV« hY, g h is also an n-regular correspondence.

Proof. Let x=2¢& g¥+ &g, y=2§ k" + &k 5, =%, y;= (¥ (see 4.3).
Since (8) is a regular correspondence, x, <x is equivalent to y;<y. The rest
follows from the Definition in 4.3.

Lemma 14. Given:

. 0 G, He LS; g”€ G, hYeH, v=1, .4,k E}I.\D}/ and Etz].\D?].,
p“s, are jumps of G and H, respectively; g € G.

1) Th ondence
) e correspon g¥ e B ©)
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is n-regular of rank r> n.
2) The correspondence D(Zf gY) e D(E(f rY), Dl} — 02 is n-regular.
3) a]' is the minimal element of the form p( )’ ]g +3 €& gt and a; . €
El \Dl
Then there is an h € H such that the extension of (9) by means of g «— h
is an n-regular correspondence of rank < (r+ 1).

Proof. It is not hard to see that the conditions of LLemma 12 are satisfied with

p; in place of p. Therefore there is a b% such that the cortespondence g7 — h7,

g, bé between elements of the models G;, H; is n-regular. We set h =3 be.
Now the conditions of Lemma 13 can be verified.

4.9. Let p_=(S(x,y, 2), x<y, Pi(x), 1<j<s).

L: is the class of those models M of signature p_ for which <|Tl}, p; > €

L, and R satisfies, in addition, the following axioms, P(x) being an abbrevia-
tion for P1 () Veer Vv Ps_1 (x):

(4.4.1) P(x) & xxy — P(y).

(44.2) P(®) — Ty (P, (y) & xxy).

(4.4.3) Pl (%) —> o(x) = s.

(444 P — P(j), 1<j<s.

(4.4.5) Pi(x) & Piy) & xxy——x-y<x 1<j<s.

In other words, in l € L some of the jumps E\D have been chosen for
which F = E/D is cyclic of order s. The elements of the chosen jumps and only
they satisfy P. Further, in every such cyclic F exactly one generator is chosen.
Suppose, for example, that g + D is the chosen generator of F. The elements of
the coset jg+ D for 1 <j<s satisfy the predicate Pi'

The results obtained above for L carry over to L_. For this purpose it is
sufficient:

a) to supplement the first Definition of 4.6 by the postulate that E1 \Dl i
a chosen jump if and only if E? \D2 i

b) to supplement the second Defmltxon of 4.6 by the postulate
Pj(zf,,gv) = P].(Egth), 1<j<s;
c) to attach asterisks in the statements of Lemmas 11—14 to the letters de-
noting the corresponding classes;

d) in the proof of Lemma 11, modified in this way, to consider also the case
when g satisfies one of the predicates P ..

Then b can be taken to be an arbitrary element of EZ\ D? satisfying P].,
and the rest remains unaltered.
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The new lemmas will be called 11* — 14", respectively.

§5. s-regularity

5.1. Let ¢* = (S(x, y, 2), x <y). K" is the class of models of signature ¢”*
that satisfy the axioms (4.1.1) — (4.2.6) and, in addition, the following axioms:

(5-1.5) % =x) &y} =y &% <yp — % <¥pe

(5.3.1) x <y —>— (y <x).

(5.3.2) x<y& y<z— x<z

(5.3.3) (x=y) = (x<y) &= (y<ax).

(5.4.1) x<y—x+2z2<y+z

Thus, if we do not distinguish between elements connected by the sign =,
then a model of the class K* is an o.a.g.

5.2. Definition. An o.a.g. G is called s-regular, where s is a positive inte-

ger, if it satisfies the axiom

Vap oo Vo Hy () <oo0 <xp —sx) <y<x & sy (A)

From (A) it follows immediately that

VaVx, «.- Vx dy (¥ <evr<x, —> 2 <y<x &Y= z(mod s)). (B)

Lemma 15. The definitions of s-regularity given above are equivalent.

For let G be discrete and s-regular in the sense [6] (the remaining cases are
trivial), and suppose that %, <++o <x.. Among the elements of the form x; + ke,
where e is the least positive element of G, there is X +TE= 0 (mod s). Without
loss of generality we may assume that 0 < r < s. But then % Sxy +re<x.

Lemma 16. Let s=m.n. An o.a.g. G is s-regular if and only if it is m-regu-
lar and n-regular.

5.3. Definition. Let 7 be a set of prime numbers. An o.a.g. G is called
mregular if it is p-regular for every p € 7. If 7 is the set of all prime numbers,
then G is called regular.

An archimedean group is regular.

From Lemma 16 it follows that an o.a.g. G is s-regular if and only if it is
n{s)-regular.

Lemma 17. An o.a.g. G is mg-regular if and only if for every nonzero convex
subgroup C the group G/ C is n-complete (i.e., satisfies the axiom Vx(px = 0)
for every p € m).

Proof. 1) Let G be p-regular, C # 0 a convex subgroup, and g € G. In
g + C there is an element divisible by p, so that p|g+ C. 2) Let G/C be

m-complete for every nonzero convex subgroup C, and %, -++, . € G and
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X <.-e<x .. Wesety=min (xi+1 - xi). Let A be the union of all convex sub-
groups not containing y, B the intersection of all convex subgroups containing y,
and p € 7. We examine separately two subcases.

2a) A#0. Then p| A+ x,. Let A+ x = A+ pz. Then x; <pz+p-|x —pe <
X +y < %q-

2b) A=0. Since p|b+ x;, B contains b=~ x (modp), i-e., p|b+ x,. But
since B is archimedean, it is p-regular and satisfies axiom (B). Then we may as-
sume that 0 < b <(p ~ 1) and therefore xy <% + b< %

Corollary. An extension of a m-regular group by ¢ m-complete group is n-regu-
lar.

5.4. Let 7 be a set of prime numbers, G an o.a.g., and g € G, g # 0. Let
A(g) be the union of the convex subgroups not containing g, and B(g) the inter-
section of the convex subgroups containing g. B(g)/ A{(g) is archimedean and
hence 7m-regular. Let Aﬂ(g) be the intersection of those convex subgroups C for
which B(g)/ C is mregular. Let B, (g) be the union of those convex subgroups
C for which C/A(g) is mregular. By means of Lemma 17 and its Corollary it is
easy to check:

Lemma 18. Let C be an arbitrary convex subgroup of an o.a.g. G and g,

h € G with g, h#0.

1) B (g)/ A, (g is n-regular.

2) If € CA4,(g), then B (g)/C is not n-regular.

NIfC> B"(g), then C/An,(g) is not m-regular.

4 [4,(9) € 4, (B] — [B_(g) C 4,(h].

) 4.(g= U Ap(g).
pEw

6) B_(g) = B (g).

Bﬂ(g)\An,(g) will be called a #-regular jump, and C"(g)df= Bn(g)/ A"(g)
the a-regular factor comresponding to g.

Thus the set of nonzero elements of an o.a.g. splits into the set-theoretical
union of disjoint 7-regular jumps. In addition, we set 4_(0) = 4, Bn(O) =0,
C”(O) = 0. Instead of 4 (g, B (9, C
C(g).

5.5. Lemma 19. Let g, A > 0.

(4, () C A_(]
=[g<hV Vvadylg>x>h—|y| <sh& y = x (mod s))].

(g) we shall write A (g, Bs(g),

w(s) m(s) (s)

Proof. 1) Let As(g) C AS (k) & g> x> h. Then As(g) = A (k). By virtue of
the s-regularity of CS (g) there is a z € Bs (g) such that
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A (g <A@+ z2<A(g+(s- Dk
and
A,(g) + z= A (g) + x (mod s).
Let z~x+ A (g) = su+ A, (g). We set y=x+ su.
2) Let 4_(g)> A (k). Then A _(h) C B (k) C A (g) C B (g) and B (g)/ B (h)
is not s-complete. In Bs(g)\ffs(h) there is an x such that x> 0 and s tx+ B (A).
Then h < x < g, and if |y| < sh, then y € B (k) and therefore y # x (mod ).
Corollary. The predicates As (g) C As (h) and As (g) = As (k) are formular in
the class K*.
5.6. Let a;(g) be the number of modulo p; independent elements of C_ (g)
(in the usual sense), and let o, = min(ai(g), n). We define the (s, n)-norm of the
convex subgroup As (g), in symbols IAS (g) ln, to be the number
I(s) -
i§l a;, (g (n+ D
if C,(g) is dense, and 1o be Zi(zsfn-(n 1 4 1= (s DS E C(p) is dis-
crete.
Lemma 20. The predicate |A_(g)|, =k is formular in the class K"

§6. s-fundamentality

6-1. Definitions. The s-fundament D_(g) of an element g of an o.a.g. G is
the union of those convex subgroups C for which C M (g + sG) = 4. A convex sub-
group is called s-fundamental if it is D_(g) for some g. A convex subgroup is
called s-fundamental if it is p-fundamental for at least one p € #.

Corollaties. Let C be an arbitrary convex subgroup of an o.a.g. G and g,
h€G.

1) slg=D (g =4

2 D Ng+s6)=4.

3) C=D_(g) is equivalent to C = D (g + (), where D (g + ¢) is the s-fund-
ament of the element g+ C of the o.a.g. G/C.

4 If D (g) <D (h), then D (g+h) <D (B). If D (g) <D (h), then
D (g+ k) =D (h).

5) D (g CD,, (g, where m and n are positive integers. It is easy to con-
struct an example with m > 1 in which D" (g) C Dmn(g).

6) D, (mg) =D, (g

7) Let C= Dps (g) > Dp (g). Then there is an integer ] such that Dp].(s) C
D j+1 (g) = C. Also, in C there is an element h=g (mod p/). Let g—h=1plg'
Then Dp(g') =D ]-+1(g -k = Dp(g) =C.

Hence and from 6) it follows that C is p®-fundamental if and only if it is
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p-fundamental.

8) VeVhD () C 4, (v B, (B < D, (D)].

In other words, an s-fundamental subgroup either does not intersect an s-regu-
lar jump at all, or it contains it completely.

9 D (g CA (g

10) Dy () = N pegrec As .

1) D (g) = max(D (S) , 1<i<li(s)).

Hence and from lhe precedmg it follows that C is s-fundamental if and only
if it is w(s)-fundamental.

12) Let p|s and D _(pg) CD (k). Then in D (k) there is a gl = ph (mod s).
Hence plgt. Let gl = pg?. Then g% € D (k).

13) G is n-regular if and only if Vg(D_(g) C0).

6.2. The set of elements & such that D_(h) C D_(g) forms a subgroup which
we denote by D (g). [D (g) CD (W=D 0« D} 3 E (9% =
< h(D (B C D, (g)) s>; F (g)df E, (g)/D (8. E, (g)\D (g) will be called an

s-jump of the o.a.g. G.

If 3h(D_(g) = A (h)), then the convex subgroup D_(g) already has an
(s, n)-norm. (See 5.6.)

Let — EIh(DS (g) = As (h)). Then the number

(n+ DU B, (F, (g)

(see 4.3) will be called the (s, n)-norm of the s-fundamental subgroup D (g) and
will be denoted by |D_(g)|,.

Let

m=mls, =G+ D¢ 3 nlns+ 1)(5)]+m+(s)i_1+i-1 +1
plls
= (n+ DES) 4 (n 4 OV T,

The convex subgroups As (g) and D (g) of the o.a.g. G with the (s, n)-norms
assigned to them above and the inclusion relation form an m-chain (to within the
s,n(G)'

6.3. Let st signify that there exists an A such that D_{g) = A (%) and that
GS (k) is discrete and As (B +g= AS (h) + je(mod s) in G/ AS (h), where
As (%) + e is the least positive element of C, (h), 1<j<s.

Let

potation of the predicates) which we shall denote by T

G, =< G/sG, D (g) C D (), Ps]-(g), 1<j<s>

It is not difficult to verify that G_ is an element of L: (see 4.9), but with

the inessential provision that instead of g < & and Pj (g) we now write
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D (g <D (k) and | (g), respectively.

Under the (group) homomorphxsm G — G/s G the subgroups D (g) and E (g
go over into D(g + sG) and E(g + sG). Conversely, the complete inverse images
of D(g + sG) and E(g + sG) are D: (g) and E_(g). F (g = F(g + sG). The ele-
ment (:ig (see the Remark in 4.3) goes over into (g + sG)i.

For later reference we rephrase the necessary definition and Lemma 14*.

6.4. Definition. A correspondence

g¥ e h% (1
where g¥ € G, kY €H, v=1,+++, k, G and H o.a.g. is called (s, n)-regular if:

1) The correspondence D (3 fwg”) PR Ds (E,fyhv)’ where fl' e, gk

range over all the integers, is an isomorphism of the submodels T, (G) and

(H).
s,n
2) Let 253 g¥ - flg” be all the elements of the form Ef g” belong-
ing to E(X .fig”). Then 2 thV Zflhv are all the elements of the form

Z.fvh” belonging to E(Z eflh”) and the correspendence
glgV+ Di(z¢le ”)~——»E§1h”+ DI (T ELRY),
.................. an
Eflyg”+ DI(S&Lg”) — z.fﬁ,hu DI(S&LRY)
between the elements of the groups F (3¢, gY), F (2 &, hY) € K| is n-regular.
3) P (EEEMN =P EERY), 1<)<s.

The rank of the correspondence (1) is the maximal among the ranks of the cor-

respondences of the form (1').

Corollary. Let (1) be an (s, n)-regular correspondence and m|s. Then

miE & g¥ — m|2E KV

Lemma 21. Given:

0) G, H are o.a.g; g€ G, kY€ H, v=1,++, k E:]\Dl; and Ef]\DZLJ*,
(p/L:|s), are s-jumps of G and H, respectively;

1) The correspondence

gle— h” (2)

is (s, n)-regular of rank r <n.

2) The correspondence Ds » §Vg")6——’ Ds (Efyh"), D}].«——» DLZ/' is an iso-
morphism of the submodels Ts,n(G) and Ts,n(H),

3) a;. is an element with minimal s-fundament among the elements of the form
(s)z /<g+2§ g’gl and a E}/\Dllj*

Then there is an h € such that the extension of (2) by means of g «— h
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is an (s, n)-regular correspondence of rank < (r+ 1).

Remark. From the preceding it is clear and can also easily be verified directly
that all possible D_(£, g” + £g) are exhausted by all the D (£,8") and D}j'

6.5. Lemma 22. Let'g, h €G. Then
1) Ds (g) C As (k) is equivalent to

EIat:[As (x) C As (k) & x = g(mod s)].
2) As (g) C D, (h) is equivalent to

Vyly = h(mod s) — As (g c AS (Nl
3) D (g) CD (B} is equivalent to

dx[x = g(mod s) & A (x) C D m1.

Lemma 23. The predicate |D_(g)|, =k is formular in K"

Proof. The proposition B3(G) = k is formular in K_. Let % be a formula in
(D(oo) corresponding to the proposition 8(G) =k - (n + 1)Xs), Replacing in %
the predicate S(x, y, z) by D (x+y-2CDy (g) and restricting the quantifiers
to D_(%) C 2 (g) we obtain the required formula.

§7. T. (6)

7.1. Lemma 24. For all s and n there exist formular in K* (see 5.1) predi-

cates g <h and |g| =k, 1<k <m=m(s, n) (see 6.2) such that if G € K*, then

s,

<|Gl, g<h, lgl=Fk 1<k<m>
is an m-chain isomorphic to Ts’n(C).
Proof. We set
gl = k% = [s|g & |4_(g)], = Hl VIstg&|D (@], =4
g <hif=[s|g& s|h — A(g) C 4.(B)]
&ls|lg & sTh — As(g) C Ds(h)]
&[stg & s|h— D (g) CA ()]
wlsts & sth— D () C D (A,
In the isomorphism so constructed, to the subgroup A_ (g) there correspond
the elements of B_(g) \ 4, (g) that are divisible by s and all those elements £
for which D_(h) = A (g). Thus to the empty set, which we count here among the

convex subgroups and as an element of T, n(G), there corresponds the set con-
)

sisting of the single element zero.

I — 3h(D (g) = A,(A)), then to the convex subgroup D (g) there corresponds
k(D (k) = D (g).
Note that the aggregate of elements T (G) depends only on 7(s). The

PROPERTIES OF ORDERED ABELIAN GROUPS 181

(s, n)-norm |4_(g){, also depends on n. The (s, a)-norm |D (g)|, also depends
on (), 1< 1(s).
7.2. We introduce the following predicate (m = m(s, n)) which is formular in
Tm(see 3.1):
ai(x), B”(x); ai(x)’ 1<i<i(a), 1 <j< (S)i'
We set ai(x) =1, Bi]‘(x) =0 if |x] =(n+ i),
We set ai(x) =0, Bij (x) = Bij if
lx‘ =(n+ I)l(s) + EBLJ(” + 1)(s)l+"‘ +(s)i-1+]"1_

Finally, yi(x)df = ai(x) + Bil(x) Foeee Bi(s)i(x). Further, let

Qite, =D -0&y,D40&s<y
&Vzlx<z<y—y,(2)=0],
Q,l-(x)de a, (%) £0 v dy Qll (%, ¥),
Qf(x)dfe a;(x) =0 &y, () #0&— Ay Q}(x, y)
=Hj (Bij(x) £0) & Vylx<y — Hz(x < z<y & yl2) £0)],
Q?(x)de Q?(x) & Vy[x<y — dz(x<z<y & Q} (N1,
Q%(x, y)ef = Q?(x) & x<y& Vz(x<z<y—— Oll- (2)),
Qi = Hy Q2 (x, y).
Obviously, y;(x) = Q! (%) vV Q2 (%), — (0} (1) & Q? (x), Q2(x) = Q} DV Oi(w),
~1(Q (») & = QF ().
7.3. It is easy to check that Ts’n (G) satisfies the following axioms:
(a) Ax(|x| =0& Vy(x <y).
(b)y x<y&lyl|=0— dz(x<z<y& |z £0).
(c)) 12>+ DI — "y (s <y).
(cy) x<y& fx} > (n + 1)1(8)—-» Jz(x<z<y & |z| <(n+ nis),

Suppose that x, y € Ts’n (G) and Qll (x, y) and also that g € G and g €y\x.
This makes sense, because x and y are subgroups of G. Let p;4g. Then
yi(Dpi(g)) #0 and Dpi(g) C Api(g) C y. But, by definition 0} (x, ), in which
case DPi(g) C x. This means (by Corollaries 3) and 13) in 6.1) that y/x is p-
regular. But then 'Bij (x) =0 for 157<(s),

Thus Ts’n(C) satisfies the axiom

qy 0} (x, y) — y,;(x) = Bisy; #)- (d)

. . . . . . *
We denote the conjunction of all the axioms in this subsection by £ n+ The

class of m-chains satisfying Q; will be denoted by T;.
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7.4, Lemma 25. Let T € T:'. Then there is an o.a.g. G such that @(TS,H(G)) =
(7).

Proof. Without loss of generality we may assume that T is countable. We
shall construct an o.a.g; G for which Ts,n(C) > T.

Let k= Zf.(jf a,(n + 171 and 0< a; < n. We denote by G}t the archimedean-
ordered direct sum of a; groups of type Rpl’ stey Qyy BTOUPS of type Rpl(s)’
where R is the natrally ordered group of rational numbers (under addition)
whose denominators are prime to m. By GIZC we denote R, where m = Ha,-=0pi'

Now let y € T and |y| = k. With y we associate the o.a.g. Gy = Cllf + - Gi,
where the sign +. means the lexicographically ordered direct sum, and G’t isa
convex subgroup of Gy' Let y € T and |y} = (n + DX®). With y we associate

the o.a.g. Gy isomorphic to the group of integers.

Let 4y =3y 1<(ne1

direct sum in which the elements having nonzero components only in Gyl are

l(s)Gy- Here 3 means the lexicographically ordered

smaller in absolute value thanthe elements having nonzero components only in
Gyz for y; <y,.

By a, we denote one of the elements having nonzero components oaly in Gy
such that p 4 a, when p,|s.

Let B be the minimal complete 0.a g. containing AO as a subgroup.

A. Suppose that Ey Q: (x, ¥). It is easy to see that )70} (x, y) is convex in
T and contains a sequence converging to x. We split }?Qtl (%, y) into y;(x) =
,Bi(s)_(x) subsets each of which contains a sequence converging to x. And if ¥

i
and z lie in one and the same subset, we select in B the elements

a —a
y z
—T—’ ‘f:l,z,... (1)
P
One of the elements of the form a, where QLI (x, y), shall be denoted by a,.

Let oni
ments (1), and let D be the largest convex subgroup of A

be the least subgroup of B containing AO and the selected ele-
0x; Mot containing the
elements @ with Qf (%, y). It is easy to see that a;(D) =0 and Bi/’(D) =0 for
i <(s);, while By o) (D) =By, ().

Let Al be the least subgroup of B containing all AOxi’ where i =1, -+« s)
and % ranges over all elements for which Ay Q} (%, ¥).

B. We enumerate all elements z € T for which Q? (2): Zyy Zgy tees

Since Q3(2), there exists a sequence {y;,} such that

1
B.1. O; (y;,)

B2 Y1 > 92> 0
B.3. limka= zZp.
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Since {y;, 1 N {y].'u} is finite for i # j, we may obviously assume that
B.4. by, b nly;,1=4.
In B we select the elements
a,, -a
__l/_]_k_& ) (2)
pi
where Gy = ay,
kv
v=p=f;, (zk) P Bi(/—l)(zk) + f(modyi(zk)),
where O<§_<_Bij(zk), k=1,2+--.

Let Ali be the least subgroup of B containing A4, and the selected elements

(2), and let D be the largest convex subgroup of A” not containing the elements

@, with a fixed kand v =1, 2, ---. It is easy to see that
v
ai(D):O; B”(D)=B”(zk): 1S]‘S(s)i'
Let A2 be the least subgroup of B containing all A“, i=1, 00, L(s).

C. Suppose that x, y € T and Qtz (x, ¥). Every element of the segment [x, y|
satisfies the predicate y; (%) £0— Q?(x) Let Z be the largest convex submodel
of T containing [x, y] any element of which satisfies the predicate y;(x) £0—
Q‘L‘ (x). On the set of elements z € Z for which y;(2) = 0 we define an equiva-
lence relation

Pi(x,y)d/EVZ(szSy\/ y_gzgx————»yi(z):O).

For all x, y with Pi(x, y) we select in B the elements

a —a

XY -
P§ ’ §~1,2,-'-. (3)
3

We fix an element in each equivalence class of Pi (x, y). Let Z* be the sub-
model of Z containing all the elements x € Z with Y; (x) £ 0 and among the ele-
ments y € Z with y;(y) = 0 those that are fixed.

We enumerate all elements % € 7 with yi(x) £0: X5 Ky von

Just as under B, we associate with every %) a sequence {ka§ of elements
*
of Z° such that

C.LL y,(y, ) = 0,

CL2 Y1 > Y22 s
C.1.3. limykv =x,

CLd dy, b Nty l= d.

We may assume, furthermore, that |J, {y, | exhausts all those y € Z° with
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yi(y) = (0 for which there exists an x € Z* such that x < Yy & yi(x) £ 0.
In B we select the elements
LT

Pl

) (4)

where a, = Gy,

VEI’LE'Bil(xk)+."+Bi(]‘—1) (xk)+§(modyi(xk)),
where 0 < £< Bij(xk)’ k=1,2,+--.

Now let @, = ay _, £ =min(j, lBij (x;) # 0), and allw be one of the elements

Ykl
(4) for which p>v.

With each y,  we associate a sequence {xk(l)§ of elements of Z* with the
following properties:

CLL ylx ) £ 0

C.2.2. 1y = Ko

C.2.3. xk(l) < xk(Z) <ovn,
C.2.4. lim =y, (o Z°).

In B we select the elements

1 2
@ -y %2y 3 Ty %Gy )
kv pfk(z) 4 kv p-gk(?’) 4
13 12

for 2ll k, v.
D. Suppose that y € T, y,(y) = 0, 4 dx Q: (x, y) and — dx Qf (%, ¥). Let
¥1» ¥2» ++* be all such elements.
In B we select the elements
Sk

:_-s 6“1’21"'; k*lyzy"'- (6)
"
i

Let G be the least subgroup of B containing A2 and the elements selected
in (3)—(6) for all possible Z and i.

Then G is the required o.a g.
Remark. If s is a power of the prime number p;, then O} (x) — ai(x) £0,

Pi(x’ y) — %<y, i.e., A and the beginning of B correspond to the fact that we

“fuse’’

the decomposable p;tegular jumps. (For 7| <7,, a nl-regular jump de-
composes, in general, into a set-theoretical sum of nz-regular jumps.)

The situation of a p;-fundamental subgroup is completely determined by the
section that it induces in the series of p-regular jumps.

Thus, let s be a power of p, and G the least subgroup of B containing
AO and the elements (2), (4) for all possible Z. Then Ts,n(Gl) differs from T
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only in that in place of the elements y with 7;(y) = 0 there stand the elements yl
with ai(yl) = 1. This fact makes it necessary to select the elements (5) and (6).
§8. u-closure

Definition. The l-closure of a submodel ¥ of an o.a.g. G is the submodel
M1 consisting of the elements of M, their opposites, and zero. The u-closure of
M, where u is a positive integer, is the submodel Mu consisting of all clements
x of the form

%= Elw a; € M.

Lemma 26. Given:

0) w>1, v=0uwd), u=1% G, H o.a.g.; M a submodel of G, N a submodel
of H, ¢ an isomorphism of M onto N admitting an extension to an isomorphism

¢*Mu=Nu; g€G, REH.

Dw€M, vheN,, ¢*vg = vh
or

2) vgé Mv, vh € Nv and the submodels <Mv, vg> and <Nv, vh> are isomor-
phic as o.s., where this isomorphism coincides on M with ¢*.

Then the extension of ¢ by means of g — h is an isomorphism s admit-
ting an extension to an isomorphism of Y* <M, g >, =<N, h> . .

Proof. 1) vg € M_. It is easy to verify that if x € <M, g>,, then vx € M,
and v*x = p*ux.

Now let x, 5, z €<M, g> .

If x+y=2z then Y*x+ ¢*y = (1/v) (p*vx + d*vy) = (1/v) p vz ="z

If x <y, then Y*x— ¥y = (1/0) (p*vx — ¢*vy) <0.

2) ugEMv. Let x,y, zE<M, g> and x=o0g+ xl, y=Bg+y1, z=yg+ FI
where x!, yl, e M,

2a) x+y=2 If a+fB =y, then obviously, ¢*x + y*y = * =

Let a+ 3 #y. Then 0=x+y—z=(a+B—y)g—(zl—x1~yl):
vg — EL—:TZT; (z! = 2! = y!) and hence vg € M,

2b) x < y. If a =, then obviously, /*x < y*y. Let a # BB, and for the sake
of definiteness a > 3. Then E—E—B (x~y)=vg— = 1_1 5 (y! - «1) <0, ie.,

Ly b,

Then also vh < a—g_ﬁ" (p*y! - ¢*x1) € N,, and hence = —UB (g x — Yry)< o,
Yra <yty.

vg <
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§9. Classification

9.1. We introduce the following primitive-recursive functions:

alk) = (3k2)1, Bk = (alk)2.
y(0) =1,
{y(k + 1) = By (k).

{6(0) = ly
5k + 1) = 8(h)- aly(h).

(0) =0,
{e(k + 1) = 2[e(k) - a(y (k) + 6(K)].
(R = (k)l Feee s (k)l(k)' t(k) = L8 (K) + 2.

For Ts(")’"(G) we shall write Tn(C).

Let s be a positive integer. We define on the o.a.g. G a function p(g) as
follows:

1) p(0) = 0.
2) If Cs (g) is dense, then p(g) = .
3) If C,(g) is discrete, e+ A, (g) the least positive element of C () and
m an integer, then
p(g) = {|m| if g+ A (g) =me+ A_(g).
o if Vmllg+ 4 (g)| > me + A_(g)].

It is easy to see that the value of p(g) does not depend on s. In the defini-
tion of p(g) we could have used, instead of A (g) and C,(g), also A(g) and
C(g) = Blg)/ A(g), where B(g)\ 4(g) is an archimedean jump containing g.

9.2. Lemma 27. Suppose that G and H are o.a.g. and that k moves
(k=0,1, +++, n) have been made in Fn(G, H):

gre— kY y=1, .-+, k (Ap
Let us also assume that:
(ak) The correspondence (Ak) can be extended to an isomorphism

L. gk —<pl k
¢k<g ’ » 8 >’y(n—k)“<h"”’h>'y(n"k)'

(b,) The correspondence

5(n) 5(n)
SEoBE TS vk (B})

is (8(n), n)-regular of rank < k.
(cp) If x€< gl, cee, gk >7(n—k)’ then
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p(x) <eln—k) V pld,») <eln— k) — plx) = pl2).
(dk) After k moves in the game
Cisny,eee, tinyy (T (C)s T, (D)
with n moves, we have reached the following position:
v
{ Dsnoiy EE&,8") e Dy 4y (EE R,
Asny () = Ay (),

where &), -+, &, range over all possible integers, x € < gl, oo, g" > (n-ky
and 1l has a w.s. in the game.

Then 1l also has a w.s. in (G, H).

The proof is trivial for k = n. Suppose that & < n and that the lemma is proved
for k& + 1. Suppose also that | chooses at the (k + 1)th move of U (G, H) the ele-
ment g**1 € G. By the symmetry of the conditioans it is sufficient to restrict our-
selves to the discussion of this case.

For the sake of brevity we introduce the following notation:

dny=s, yin—-k-1=w, alyln-k-1)=y,
yln-B=u, <gl, ..., gk>:M, <hl, ... BE> =N

A. Suppose it happens that vg € Mv. As a consequence of the definition in
6.4, vl¢k(vg). In this case II at the (k + 1)th move of r, (G, H) chooses the
element hF+1 (1/v) ¢, (vg). The condition (a, ,,) is satisfied by Lemma 26.
We recall that if x € <M, &>, then vx € Mv' This implies (Ck+1)’ because
eln— k) <ve(n -k~ 1). Moreover, 8(n— k) = vd(n -k~ 1) so that
8(n)/8(n - k~-1)=(8(n)/8(n - k))v. This implies (d; ,,) and (b, ).

B. Now we come to the discussion of the case vg € MU.
k+1

B.1. Let ¢; be closest to the left, and ¢, closest to the right of vg in
MU and d = €y — € and suppose, for the sake of definiteness, that vgk+1 - <
¢y~ vgk+1. Then we set g = vgk+1 - ¢y

Let a; be the element with the least s-fundament among the elements of the
form
WICE s 3G St &
(see the Remark in 4.3).
We shall assume that at the (k + 1)th move of the game

Flemy, wonenyy (T (@ T (D)

player [ has chosen elements of D (ai ) for all i and j such that p{: |'s, and alse
an element of As (g) in Tn (g) (if k=0, then /C G). Let Dij and A be the cor-

responding elements which ][ has chosenin T, (H), using his w.s. in the game
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(if k=0, then apart from these elements [/ also chooses g C H).

By Lemma 21 there is a b € H such that the extension of (Bk) by means of

g — b, and hence also the extension of (Bk) by means of

5(n) — 5(n)
Sti-B & 5ta—h

is (s, n)-regular of rank < (& + 1).
Note that (see 6.3) for 1 <j< s and (5(n)/5(n - k) |j

b

5(n)
Psmi [mﬂj x} = PS(n—k)jS("—k) ().
S(n)

Hence Ps(n_k)l-(g) = Ps(n_k)].(b), 1<j<8(n-k.

B.2. Suppose that we have succeeded in finding an A € H such that
a) h=b (mod5(n - k),

b) A, (h) = 4,

¢) A<2h+ A< d+ 4 in H/A,

d) p(g) <veeln~k~1) Vph) <veeln-k~1) — p(g) = p(h).
Without loss of generality we may assume here that

e) 0<2k< ¢akd.

For if 2h > ¢, d, then a=~ 2k - ¢, d € A, and instead of k we can take
B = h~8(n~k-a

Since vgk+1 = ¢; + g, by the Corollary to the Definition in 6.4 we have
v| e, + ko In that case Il chooses at the (k + 1)th move of I (G, H) the ele-
ment hk+1 = (1/9) (¢c + h).

B.2.1. Then the condition (a4,) is satisfied by Lemma 26.

B.2.2. By the choice of b condition (b, ,,) is satisfied.

B.2.3. Let x = §g ~ Efygl’ be an arbitrary element of <M, g> . To verify
condition (dk+1) we only have to show now, obviously, that if AS (x) = As (g),
then As (¢k+lx) = 4, and if As(x) # A  (g), then there is an a € M, such that
As(x) = As(a) and AS(¢k+1x) = As(qSk a). Here we may confine the discussion to
the case &+# 0. Observe that

v
-X

v
vhk+1 —Z:Evgu >

and hence As (%) 2 As(g).

Let y = (v/§)2§vg”5 ¢y, then (v/&)x| = g + a, where a € Mu and a > 0.
In that case [(v/&) b, x| =h+ $pa If A(a)C Ay, then 4 (x) = A (g) and
As(¢k+1x) = A, and if A (a)D> A (g), then 4 (x)= A.(a) and A @y %) = A, (¢y0)-

PROPERTIES OF ORDERED ABELIAN GROUPS 189

Let y > c,, then [(v/&)x| = al - g, where d € Mu and al > 2g, and the ver-
ification is similar.

But since y € M, either y < ¢y or y 2 c,.

B.2.4. Let us verify (c; ;). We keep the notation of B.2.3. Letting p(x) <
eln =k~ 1), the case p(¢, . %) <e(n~ k- 1) can be analyzed similarly. We con-
Leu,
and al > 2g. The case [(v/&)x| = g+ a, where ¢ € M, and a> 0, is simpler.
Here v/ &)y, %] = qskal ~h 1 A (al) C A, (g), then

\g_‘-p(x) =p['§x
So, |v/&} <p(dy, %) = p(B) = p(g). Hence, p(x) = p(d; ). If As(al) > A (g),
then |v/&|-p () = plal) <eln - k) and therefore |v/&] cplepy %) = p(¢kal) =
p(al) and p(x) = pldy %) If A(al) = 4 (g), then p(g)<plad —g) <veeln—k-1
and therefore p(g) = p(h). Moreover, 2(al — g) = (al - 2g) + al > al and therefore
plal) <2p(al ~ g) <eln - k). Hence plal) = p(¢ka1) and plal - g) = p(d)ka1~lt,)
and p(x) = p(¢k+lx),

B.3. We now come to the choice of k. We introduce additional notation:

fine the discussion to an analysis of the case |(v/&)x| = al- g, where a

J:p(g)<v~f(n—k—l).

8(n - k) = t; B is the upper subgroup of the s-regular jump of the o.a.g. /I whose

lower subgroup is 4; C = B/A. Note that since Dt(g) = Ds(f 8 C As(f g =

A4.(g) ¢ A,(d) we have by the choice of Dij and A that D, (b)) CAC A (b, d).
Without loss of generality we may assume that b € B\ 4 and b > 0.

1) € (g) is dense. Then € is also dense. If AC A (), then we set
h="b. 1f A=A (¢,d), then by the fact that C_(g) is t-regular and dense there
is a ¢ € H such that A<2€+A§q5kd+A and ¢+ A=b+ A (mods). Let
c~b+A=ta+ A Weset h=>b+ ta

2) C,(g) is discrete. Then C is also discrete. Suppose that e € G and
e+ A (g) is the smallest positive element of C_(g) Suppose that f€ H and f+ A
is the least positive element of C. Since C (g) is discrete and t-regular, among
the numbers 1, -+, ¢ there is a j such that g + As(g) = je+ As(g) (mod £). By
(1) (see B.1), in this case b + 4 = jf + A (mod ).

2a) p(g) <veln—k—1). Then p(g) =/ (mod:). Therefore there is a ¢ such
that p(g)f - b+ A=tc+ A. We set h=1b+ tc.

2b) plg) 2 veeln— k- 1).

Among the elements v.e(n~k~1)f+ A, ++v, (veeln-k-1D+t-1Df+ 4
thereis If + A= jf+ A (mod#). Let If—~b+ A=1tc+ A. We set h=1Db+ tc.

Thus, in all possible cases we have picked an element % satisfying the con-
ditions a) —d).
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This proves Lemma 27.

9.3. Now we set k=0 in Lemma 27. Then we see that if [/ has a w.s. in
(t(n), +++, €n)) (T"(G), Tn (H)), then also Fn (G, H). By Lemmas 1-3 this leads to

Theorem 1 (the classification theorem). Let G and H be o.a.g. There exists
a primitive-recursive function N=N(n) such that if CIJN(n)(Tn(G)) = CI)N(n)(Tn(H)),
then @ (G) = & (H).

Remarks. 1) The equation giving ¥ = N(n) can be written down explicitly.

r

2) There exists a primitive-recursive function ¥ = M(n, k) such that if
(DM(n,k)(C) = cDM(n,k)(H)’ then <I>k(T" (3) = (Dk( Tn (H)). This follows immediately
from Lemma 24.

Corollary 1. ®(G) = O(H) if and only if for every n

O(T (G)) = O (T, ().

Let G be an o.a.g. We construct the following w-chain which we denote by
Tw(G). We take TI(G). To the right of it we write down an element without norm
such that every element of T1 (G) precedes %. Next, we write down TZ(G) in
its natural order so that %y precedes every element of TZ(G). Then we write
down an %, without norm to the right, etc.

Corollary 2. ®(G) = ®(H) is equivalent to (I)(Tw(G)) = (I)(Tw(H)).

Let T;)(G) and T’ (H) be o.s. associated with T (G) and T (), respec-
tively (see 3.4).

Corollary 3. ©(G) = ®(H) is equivalent to (D(T;)(G)) = (I)(T;)(H)).

9.4. Corollary 4. Let G and H be &(n)-regular and discrete o.a.g. Then
D (C) =, (H).

Corollary 5. Let G and H be &(n)-regular and dense o.a.g., ai(G) (or
a,(H), respectively) the number of modulo p, independent elements of G (or l},
and min (ai(C)’ n) = min (ai(H), n) for all i with p;|8(n). Then @ _(G) = ® (H).

From Corollaries 4 and 5 there follows a criterion for elementary equivalence
of regular groups that can be found in [5].

Theorem 1 implies the validity of the conditions for elementary equivalence
to be found in [7] for the class of 0.a.g. discussed there. When G lies in that
class, then (I)n (G) is finite for every n. The condition that the convex sub-
groups can be totally ordered may be omitted.

Corollary 6. Let C be a convex subgroups of an o.a.g. G. Then ®(G) =
O(C+-6G/0).

We remark that Corollaries 4—6 can be proved directly by means of Lemmas
1 and 26.
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s10. Solvability of the elementary theory of o.a.g.

10.1. Lemma 28. Suppose that K is a class of models of signature o and
that ®(K) is recursively axiomatized. Suppose further that for every n we can
effectively construct formulas ‘21"1, e, ?Inda(n) such that

a) O(K) —U v v

b) U . holds in K;

) if M, NR€K and U, € (M) 0 BR), then @ (W) = & (N).

Then ®(K) is solvable.

Theorem 2 (on solvability). The elementary theory of o.a.g. is solvable if and

ng(n)’

only if the elementary theory of o.s. is solvable.

Proof. A. Suppose the class of o.s. to be solvable. Then by Lemma 5 CD(Tw)
is solvable.

Let m = m(5(n), n). Since the signature 7, in (I)N(")(rm) is finite, where
N = N(n) is the function in Theorem 1, there is only a finite number of formulas
that have prenex form and whose quantifier-free form has disjunctive normal form.
Let these be 8%, Qé, +++. We form all possible formulas 8? = 81 & 532 &,
where Q]. is 81 or — @1, The set of these formulas satisfies the conditions a)
and b) in 10.1 for K = T:‘n and N(n) in place of the previous n. Observe that
(see §7) (Q; — Q?) € ®(T,) is equivalent to Qtz € <I>(T::1 ). But (I)(Tm) =
(T) N ®(r,).

Using the solvability of ®(T,) we select among the formulas th those for
which - Q? € (I)(T:L), i.e., that hold in T;. Let these be £, ..+, &

sy BY
Lemma 24 we are in a position to write down formulas als 20"

, ?I"¢(n) such
that for every o.a.g. G and i=1, -++, ¢(n), U, € D(G) is equivalent to

Qi € Q(T,(6)).

Using Lemmas 25 and 27 we find that a)—c) for ?lnl, s, 21"¢(n) and K =
K* hold.

B. Let ®(K") be solvable. We choose an integer s > 1. The predicate
x < ydfz As (%) C As(y) is formular in K*. The predicate P(x), which signifies
that Cs(x) is discrete, is formular in K*. To complete the proof of Theorem 2 it

now remains to apply Lemma 4.
Corollary. Tte class of semigroups of positive elements of o.a.g., i.e., of
commutative semigroups with cancellation satisfying the axiom
Hz(z=x-yVz=y-x), x£0, x£—-y,
is solvable.

From Theorem 1 and Lemma 28 it also follows that the class of regular (and

hence archimedean; see [5]) o.a.g. is solvable.
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THE WORD PROBLEM FOR SEMIGROUPS WITH
ONE-SIDED CANCELLATION

P. 8. NOVIKOV AND S. I. ADJ AN

Introduction

Let there be given a finite alphabet
Ayy Qg v v oy Oy (1)
and a finite number of pairs of words in this alphabet
(4;, B) (1=i=m).
To define an associative system D 9 with generators (1) and defining rela-
tions
A; = B; (I=gt=m) (2)

t

one must define precisely a relation “‘equality of words in system U’ which will
decompose the set of all words built of letters of alphabet (1) into disjoint classes
of mutually equal words. This relation must be reflexive, transitive, and symmet-
ric.

For semigroups (a special sort of associative system) the equivalence rela-
tion is defined as follows. Two words X and Y are said to be equal in the semi-
group ¥ with generators (1) and defining relations (2) if and only if the equation

X =Y can be derived by a finite number of applications of the following rules of

inference:
1- Ai = Bi,
2. A=A,

3. A =B implies B =4,

4. A=B and B=2C imply 4 =C,

5. A = B implies a4 = aB and 4a = Ba,
where 4 and B are arbitrary words and @ is an arbitrary lecter of the alphabet of
the semigroup .

When we speak of the associative system given by generators (1) and defin-
ing relations (2), but do not specify any rules of inference, it may be understood
that we mean the semigroup with generators (1) and defining relations (2).

The free semigroup with generators (1) means the semigroup with generators

(1) and the empty system of defining relations.

1) In this paper we will consider associative systems with identiry.
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