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1 Introduction and Overview

1.1 Origins
Let us begin with the problems which gave rise to Domain Tieor

1. Least fixpoints as meanings of recursive definitionsRecursive definitions of
procedures, data structures and other computationaiesngibound in program-
ming languages. Indeed, recursion is the basic effectiveéhar@sm for describ-
ing infinite computational behaviour in finite terms. Givereaursive definition:

X=..X.. (1)

How can we give a non-circular account of its meaning? Suppesare work-
ing inside some mathematical structube We want to find an element € D
such that substituting for x in (1) yields a valid equation. The right-hand-side
of (1) can be read as a function &f, semantically ag: D — D. We can now
see that we are asking for an elemérg D such thatl = f(d)—that is, for a
fixpointof f. Moreover, we want ainiform canonicamethod for constructing
such fixpoints for arbitrary structure® and functionsf: D — D within our
framework. Elementary considerations show that the usaiggories of math-
ematical structures either fail to meet this requiremerdlia{sets, topological
spaces) or meet it in a trivial fashion (groups, vector space

2. Recursive domain equations. Apart from recursive definitions of computa-
tional objects, programming languages also abound, attplar implicitly, in
recursive definitions oflatatypes The classical example is the type-frae
calculus [Bar84]. To give a mathematical semantics forXttroalculus is to find
a mathematical structur® such that terms of tha-calculus can be interpreted
as elements oD in such a way that application in the calculus is interpreted
by function application. Now consider the self-applicatterm \z.zz. By the
usual condition for type-compatibility of a function wittsiargument, we see
that if the second occurrence @fin zz has typeD, and the whole termx has
type D, then the first occurrence must have, or be construable dadaype
[D — D]. Thus we are led to the requirement that we have

[D—>D]%D.

If we view [. — .] as afunctor F': C°” x C — C over a suitable categoi@
of mathematical structures, then we are looking for a fixpdn>~ F(D, D).
Thus recursive datatypes again lead to a requirement fauifitg, but now lifted
to the functorial level. Again we want such fixpoints to existiformly and
canonically.

This second requirement is even further beyond the realrosdafiary mathemati-
cal experience than the first. Collectively, they call foravel mathematical theory to
serve as a foundation for the semantics of programming lagest



A first step towards Domain Theory is the familiar result tlesery monotone
function on a complete lattice, or more generally on a dedatomplete partial or-
der with least element, has a least fixpoint. (For an accofitihe history of this
result, see [LNS82].) Some early uses of this result in theteod of formal lan-
guage theory were [Ard60, GR62]. It had also found applaaiin recursion theory
[Kle52, Pla64]. Its application to the semantics of firstl@rrecursion equations and
flowcharts was already well-established among Computerisis by the end of the
1960’s [dBS69, Bek69, Bek71, Par69]. But Domain Theory proat least as we un-
derstand the term, began in 1969, and was unambiguously¢lagian of one man,
Dana Scott [Sco69, Sco70, Sco71, Sco72, Sco93]. In patictiie following key
insights can be identified in his work:

1. Domains as types.The fact that suitable categories of domains eagesian
closed and hence give rise to models of typ&dalculi. More generally, that
domains give mathematical meaning to a broad class of datetisring mecha-
nisms.

2. Recursive types.Scott’s key construction was a solution to the “domain equa-
tion”
D~[D — D]

thus giving the first mathematical model of the type-feeealculus. This led

to a general theory of solutions of recursive domain equatidn conjunction

with (1), this showed that domains form a suitable univeosetie semantics of
programming languages. In this way, Scott provided a matieal foundation

for the work of Christopher Strachey on denotational semafiS76, Sto77].

This combination of descriptive richness and a powerful @ledant mathemati-
cal theory led to denotational semantics becoming a dorhpeiadigm in The-

oretical Computer Science.

3. Continuity vs. Computability. Continuityis a central pillar of Domain theory.
It serves as a qualitative approximation to computability.other words, for
most purposes to detect whether some construction is catipually feasible
it is sufficient to check that it is continuous; while contityus an “algebraic”
condition, which is much easier to handle than computgbilit order to give
this idea of continuity as a smoothed-out version of conipilitp substance, it
is not sufficient to work only with a notion of “completeness™convergence”;
one also needs a notion approximation which does justice to the idea that
infinite objects are given in some coherent way as limits efrtfinite approx-
imations. This leads to considering, not arbitrary conmgleartial orders, but
the continuousones. Indeed, Scott's early work on Domain Theory was semi-
nal to the subsequent extensive development of the theayrdinuous lattices,
which also drew heavily on ideas from topology, analysipotogical algebra
and category theory [GHKS80].

4. Partial information. A natural concomitant of the notion of approximation in
domains is that they form the basis of a theory of partialimfation, which ex-
tends the familiar notion of partial function to encompasgtenle spectrum of



“degrees of definedness”. This has important applicatiorthé semantics of
programming languages, where such multiple degrees ofitiefirplay a key

role in the analysis of computational notions such as lazyeeger evaluation,
and call-by-name vs. call-by-value parameter-passinghar@sms for proce-
dures.

General considerations from recursion theory dictate paatial functions are
unavoidable in any discussion of computability. Domain diyeprovides an
appropriately abstract, structural setting in which thesgons can be lifted to
higher types, recursive types, etc.

1.2 Our approach

It is a striking fact that, although Domain Theory has beeouad for a quarter-
century, no book-length treatment of it has yet been pubtishQuite a number of
books on semantics of programming languages, incorpgrairbstantial introduc-
tions to domain theory as a necessary tool for denotatimrabstics, have appeared
[Sto77, Sch86, Gun92b, Win93]; but there has been no texitddwo the underlying
mathematical theory of domains. To make an analogy, it i$ amny Calculus text-
books were available, offering presentations of some laastysis interleaved with its
applications in modelling physical and geometrical praidebut no textbook of Real
Analysis. Although this Handbook Chapter cannot offer tommprehensive coverage
of a full-length textbook, it is nevertheless written in grit of a presentation of Real
Analysis. That is, we attempt to give a crisp, efficient preatton of the mathematical
theory of domains without excursions into applications. Mépe that such an account
will be found useful by readers wishing to acquire some faarity with Domain The-
ory, including those who seek to apply it. Indeed, we belithat the chances for
exciting new applications of Domain Theory will be enhanifedore people become
aware of the full richness of the mathematical theory.

1.3 Overview
Domains individually

We begin by developing the basic mathematical language ofddo Theory, and then
present the central pillars of the theory: convergence apdeximation. We put con-
siderable emphasis on bases of continuous domains, andrsivathe theory can be
developed in terms of these. We also give a first presentafitime topological view
of Domain Theory, which will be a recurring theme.

Domains collectively

We study special classes of maps which play a key role in dothaiory: retractions,
adjunctions, embeddings and projections. We also look astcaction on domains
such as products, function spaces, sums and lifting; anitirmitb of directed systems
of domains and embeddings.



Cartesian closed categories of domains

A particularly important requirement on categories of damds that they should be
cartesian closed (i.e. closed under function spaces). dreetes a tension with the
requirement for a good theory of approximation for domasisce neither the category
CONT of all continuous domains, nor the categdkitG of all algebraic domains
is cartesian closed. This leads to a non-trivial analysisiedessary and sufficient
conditions on domains to ensure closure under functionespaand striking results
on the classification of the maximal cartesian closed fullicatiegories oCONT and
ALG . This material is based on [Jun89, Jun90Q].

Recursive domain equations

The theory of recursive domain equations is presented.o@fyh this material formed
the very starting point of Domain Theory, a full clarificatiof just what canonicity of
solutions means, and how it can be translated into prootjplies for reasoning about
these canonical solutions, has only emerged over the pasbiwhree years, through
the work of Peter Freyd and Andrew Pitts [Fre91, Fre92, Ri}98Ve make extensive
use of their insights in our presentation.

Equational theories

We present a general theory of the construction of free afggetor inequational theo-
ries over continuous domains. These results, and the wigdonstructions in terms
of bases, appear to be new. We then apply this general theggwerdomains and
give a comprehensive treatment of the Plotkin, Hoare andSpgwerdomains. In ad-
dition to characterizing these as free algebras for ceitaiquational theories, we also
prove representation theorems which characterize a p@meath overD as a certain

space of subsets @¥; these results make considerable use of topological msthod

Domains and logic

We develop the logical point of view of Domain Theory, in wihidomains are charac-
terized in terms of their observable properties, and fumgiin terms of their actions
on these properties. The general framework for this is glediby Stone duality; we
develop the rudiments of Stone duality in some generalitg ten specialize it to
domains. Finally, we present “Domain Theory in Logical Fof#br91b], in which a
metalanguage of types and terms suitable for denotatiemadstics is extended with
a language of properties, and presented axiomatically asgrgmming logic in such
a way that the lattice of properties over each type is the &thral of the domain de-
noted by that type, and the prime filter of properties which ba proved to hold of
a term correspond under Stone duality to the domain elememdted by that term.
This yields a systematic way of moving back and forth betwtberiogical and deno-
tational descriptions of some computational situatioshedetermining the other up to
isomorphism.
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2 Domains individually

We will begin by introducing the basic language of Domain ditye Most topics we
deal with in this section are treated more thoroughly and @ibee leisurely pace in
[DP90].

2.1 Convergence
2.1.1 Posets and preorders

Definition 2.1.1. A setP with a binary relationC is called apartially ordered sebr
posetf the following holds for alk, y, z € P:

1. x C z (Reflexivity)
2. xCy Ay C z= z C z (Transitivity)
3.z CyAyC x = z =y (Antisymmetry)

Small finite partially ordered sets can be drawn as line diagr (Hasse diagrams).
Examples are given in Figure 1. We will also allow ourseh@sltaw infinite posets
by showing a finite part which illustrates the building piple. Three examples are
given in Figure 2. We prefer the notati@nto the more commor because the order
on domains we are studying here often coexists with an ofkerunrelated intrinsic
order. The flat and lazy natural numbers from Figure 2 illtgtrthis.

If we drop antisymmetry from our list of requirements then get what is known
aspreorders This does not change the theory very much. As is easily dbersub-
relationC N Jis in any case an equivalence relation and if two elements tx@o
equivalence classes € A,y € B are related by_, then so is any pair of elements
from A and B. We can therefore pass from a preorder to a canonical ggrtiedered
set by taking equivalence classes. Pictorially, the sitaghen looks as in Figure 3.

Many notions from the theory of ordered sets make sense évefiexivity fails.
Hence we may sum up these considerations with the sldgeder theory is the study
of transitive relations A common way to extract the order-theoretic content from a
relation/z is to pass to the transitive closure 8f defined a J, ., o} 12"

Ordered sets can be turned upside down:

Proposition 2.1.2. If (P, C) is an ordered set then so BR°? = (P, J).

true false

Ve

The flat booleans The four-element lattice The four-element chain

Figure 1: A few posets drawn as line diagrams.
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. 2
2 1
o 1 2 3
1 NN 0
o N
ordinal flat lazy

Figure 2: Three versions of the natural numbers.

o O O O

Figure 3: A preorder whose canonical quotient is the foerrant lattice.

One consequence of this observation is that each of the ptmicéroduced below
has a dual counterpart.

2.1.2 Notation from order theory
The following concepts form the core language of order theor
Definition 2.1.3. Let (P, C) be an ordered set.

1. A subset of P is anupper setf x € A impliesy € A for all y J z. We denote
by T A the set of all elements above some elememt.df no confusion is to be
feared then we abbreviafg z} asfx. The dual notions arower setand | A.

2. An element € P is called anupper boundor a subsetd C P, if z is above
every element ofl. We often writed C z in this situation. We denote i (A)
the set of all upper bounds of. Dually, Ib(A) denotes the set of lower bounds
of A.

3. Anelement € P is maximalif there is no other element éf aboveit: TaNP =
{z}. Minimal elements are defined dually. For a subdetC P the minimal
elements ofib(A) are calledminimal upper bounds of.. The set of all minimal
upper bounds ofl is denoted bynub(A).

11



4. If all elements of? are below a single element < P, thenz is said to be the
largest elementThe dually definetbast elemendf a poset is also calledottom
and is commonly denoted Ly. In the presence of a least element we speak of a
pointed poset

5. If for a subsetd C P the set of upper bounds has a least elementhenx
is called thesupremunor join. We writex = | | A in this case. In the other
direction we speak ohfimum or meetand writez = [ ] A.

6. A partially ordered seP is all-semilattice(r1-semilatticé if the supremum (in-
fimum) for each pair of elements exists.Afis both aL- and arl-semilattice
thenP is called alattice. A lattice iscompletef suprema and infima exist for all
subsets.

The operations of forming suprema, resp. infima, have a faiclpaoperties which
we will use throughout this text without mentioning themther.

Proposition 2.1.4. Let P be a poset such that the suprema and infima occurring in the
following formulae exist. 4, B and all A; are subsets aP.)

1. AC Bimplies| |AC | |Band[|AZJ[]B.

2. A =J(14) and[1 A =T](14).
3. IfA=U,c; Aithen| A =| ], (L] A:) and similarly for the infimum.

Proof. We illustrate order theoretic reasoning with suprema byshg (3). The el-
ement| | A is above each elemehi A; by (1), so it is an upper bound of the set
{LJA; |ieI}. Sincel ., (|]A:) is the least upper bound of this set, we have
LlA 3 ;e (LJAs). Conversely, each € A is contained in somel; and there-
fore below the correspondirigl A; which in turn is below |;.,(| | A:). Hence the
right hand side is an upper bound dfand ag| | A is the least such, we also have

LA T Lies (L Ad)- O

Let us conclude this subsection by looking at an importamilfaof examples of
complete lattices. Supposg€ is a set andC is a family of subsets oX. We call
L aclosure systenf it is closed under the formation of intersections, thatvidien-
ever each member of a familyd;);c; belongs tol then so doe§), ; A;. Because
we have allowed the index set to be empty, this implies fias in L. We call the
members ofl hulls or closed sets Given an arbitrary subset of X, one can form
N{B € L | A C B}. This s the least superset dfwhich belongs tdl and is called
thehull or theclosureof A.

Proposition 2.1.5. Every closure system is a complete lattice with respectdiogion.

Proof. Infima are given by intersections and for the supremum orestiie closure of
the union. O

12



2.1.3 Monotone functions

Definition 2.1.6. Let P and @) be partially ordered sets. A functioh: P — Q@ is
calledmonotonéf for all z,y € P withx C y we also havef(z) C f(y) in Q.

‘Monotone’ is really an abbreviation for ‘monotone ordeeperving’, but since we
have no use for monotone order-reversing maps_(y = f(x) 3 f(y)), we have
opted for the shorter expression. Alternative terminoldgyisotone(vs. antitong or
the other half of the full expressionrder-preservingnapping.

The set[P ™ Q] of all monotone functions between two posets, when ordered
pointwise(i.e. f C g if forall x € P, f(x) C g(x)), gives rise to another partially
ordered set, thenonotone function spadeetweenP and@. The category?OSET of
posets and monotone maps has pleasing properties, seesexe:9(9).

Proposition 2.1.7.1f L is a complete lattice then every monotone map ffota L has
a fixpoint. The least of these is given by

[ [{z €L flx)CTa},
the largest by
| HzeLlaC f@)}.

Proof. Let A = {z € L | f(z) C «} anda = [ | A. For eachz € A we havea C z
andf(a) C f(z) C z. Taking the infimum we gef(a) C []f(4) C[]A = a and
a € A follows. On the other hand; € A always impliesf(z) € A by monotonicity.
Applying this toa yields f(a) € A and hence C f(a). O

For lattices, the converse is also true: The existence obfintp for monotone maps
implies completeness. But the proofis much harder andsreliethe Axiom of Choice,
see [Mar76].

2.1.4 Directed sets

Definition 2.1.8. Let P be a poset. A subset of P is directed if it is nonempty and
each pair of elements of has an upper bound iA. If a directed setd has a supremum
then this is denoted Hy| " A.
Directed lower sets are calleideals Ideals of the forni« are calledprincipal
The dual notions aréiltered setand (principal) filter.

Simple examples of directed sets ateins These are non-empty subsets which
are totally ordered, i.e. for each paity eitherx C y ory C z holds. The chain
of natural numbers with their natural order is particulaslynple; subsets of a poset
isomorphic to it are usually called-chains. Another frequent type of directed set is
given by the set of finite subsets of an arbitrary set. Usiigyahd Proposition 2.1.4(3),
we get the following useful decomposition of general suprem

Proposition 2.1.9. Let A be a non-empty subset ofL.asemilattice for whicH | A
exists. Then the join od can also be written as

| |"{| | M | M C Afinite and non-empty.

13



General directed sets, on the other hand, may be quite messurestructured.
Sometimes one can find a well-behaved cofinal subset, sucblssirg where we say
that A is cofinalin B, if for all b € B there is aru € A above it. Such a cofinal subset
will have the same supremum (if it exists). But cofinal chalpsot always exist, as
Exercise 2.3.9(6) shows. Sitill, every directed set may beght of as being equipped
externally with a nice structure as we will now work out.

Definition 2.1.10. A monotone netn a posetP is a monotone functioa from a
directed setl into P. The sefl is called theindex sewf the net.

Leta: I — P be a monotone net. If we are given a monotone fungtiod — 1,
whereJ is directed and where for all € T there isj € J with 5(j) > 4, then we call
ao @:J — P asubnebfa.

A monotone netv: I — P has asupremunin P, if the set{a(i) | i € I} has a
supremum inP.

Every directed set can be viewed as a monotone net: let thissitbe the index
set. On the other hand, the image of a monotonemeat — P is a directed set itP.
So what are nets good for? The answer is given in the followirgposition (which
seems to have been stated first in [Kra39]).

Lemma2.1.11.Let P be a poset and let: I — P be a monotone net. Thenhas a
subnetn o 3: J — P, whose index sef is a lattice in which every principal ideal is
finite.

Proof. Let J be the set of finite subsets bf Clearly, J is a lattice in which every prin-
cipal ideal is finite. We define the mapping J — I by induction on the cardinality
of the elements of':

B(¢) = anyelementof;
B(A) = anyupperboundofthe setU {3(B) | B C A}, A # ¢.
It is obvious that? is monotone and defines a subnet. 0

This lemma allows us to base an induction proof on an arlyitlaected set. This
was recently applied to settle a long-standing conjectutattice theory, see [TT93].

Proposition 2.1.12.Let I be directed andx: I x I — P be a monotone net. Under
the assumption that the indicated directed suprema ekistfdllowing equalities hold:

||" i 5) =[] i) = | '] e ) = | ] el d).

ijel iel jeJ jeJ iel iel

2.1.5 Directed-complete partial orders

Definition 2.1.13. A posetD in which every directed subset has a supremum we call a
directed-complete partial ordesr dcpofor short.

Examples 2.1.14. e Every complete lattice is also a dcpo. Instances of this are
powersets, topologies, subgroup lattices, congruentiedst, and, more gener-
ally, closure systems. As Proposition 2.1.9 shows, a tttibich is also a dcpo
is almost complete. Only a least element may be missing.
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e Every finite poset is a dcpo.

e The set of natural numbers with the usual order does not foduopo; we have
to add a top element as done in Figure 2. In general, it is adliffiproblem
how to add points to a poset so that it becomes a dcpo. UsingdBition 2.1.15
below, Markowsky has defined such a completion via chaindan]6]. Luckily,
we need not worry about this problem in domain theory becégse we are
usually interested in algebraic or continuous dcpo’s wheeocempletion is easily
defined, see Section 2.2.6 below. The correct formulatiovhat constitutes a
completion, of course, takes also morphisms into accougenfral framework
is described in [P0i92], Sections 3.3 to 3.6.

e The points of alocale form a dcpo in the specialization grdee [Vic89, Joh82].

More examples will follow in the next subsection. There wdl afiso discuss the
question of whether directed setswichains should be used to define dcpo’s. Arbi-
trarily long chains have the full power of directed sets fiiesExercise 2.3.9(6)) as the
following proposition shows.

Proposition 2.1.15. A partially ordered setD is a dcpo if and only if each chain i
has a supremum.

The proof, which uses the Axiom of Choice, goes back to a lerfraamura
[lwa44] and can be found in [Mar76].

The following, which may also be found in [Mar76], complensriProposi-
tion 2.1.7 above.

Proposition 2.1.16. A pointed poseP is a dcpo if and only if every monotone map
on P has a least fixpoint.

2.1.6 Continuous functions

Definition 2.1.17. Let D and E be dcpo’s. A functiory: D — E is (Scott) con-
tinuousif it is monotone and if for each directed subseobf D we havef(| |TA) =
| |Tf(A). We denote the set of all continuous functions fiorto £, ordered pointwise,
A function between pointed dcpo’s, which preserves thelmotiement, is called
strict We denote the space of all continuous strict functionﬁ)ayi E].
The identity function on a set is denoted byd 4, the constant function with im-

age{z} byc,.

The preservation of joins of directed sets is actually emotagdefine continuous
maps. In practice, however, one usually needs to show fiasif{tH) is directed. This
is equivalent to monotonicity.

Proposition2.1.18.Let D andE be dcpo’s. ThefiD — FE] is again a dcpo. Directed
suprema inD — E] are calculated pointwise.
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Proof. Let F' be a directed collection of functions fromto E. Letg: D — E be the
function, which is defined by(x) = | ;. f(z). Let A C D be directed.

s = L'
fer
= "] f@
fEF acA

= "] f@

a€A feF

= | |"g(a).

a€A
This shows thay is continuous. O

The class of all dcpo’s together with Scott-continuous fioms forms a category,
which we denote b]pCPO. It has strong closure properties as we shall see shortly. Fo
the moment we concentrate on that property of continuoussmégch is one of the
main reasons for the success of domain theory, namely, ’patifits can be calculated
easily and uniformly.

Theorem 2.1.19.Let D be a pointed dcpo.

1. Every continuous functiorf on D has a least fixpoint. It is given by

LlTnEN fn(J‘)
2. The assignmeffitc: [D — D] — D, f +— ||, f™(L) is continuous.

Proof. (1) The sef{ f*(.L) | n € N} is a chain. This follows fromL C f(.L) and the
monotonicity of f. Using continuity off we getf (||, f™(L)) = 1 T,en f" (L)
and the latter is clearly equal {d" . f"(L).

If x is any other fixpoint off then from L C 2 we getf(L) C f(x) = x and so on
by induction. Hence: is an upper bound of af*(_L) and that is why it must be above
fix(f).

(2) Let us first look at thex-fold iteration operatoit,,: [D — D] — D which
mapsf to f™*(L). We show its continuity by induction. The Oth iteration ogter
equalsc; so nothing has to be shown there. For the induction step le¢ a directed
family of continuous functions ofv. We calculate:

it (UTF) = (UTF)(tn(]TF)) definition
= U'AUepita(f) ind. hypothesis
= LngeF g(queF(itn(f))) Prop. 2.1.18
= |—|Tg€F I_leEF g(itn(f)) continuity ofg
= Ulep ML) Prop. 2.1.12

The pointwise supremum of all iteration operators (whictnf@ chain as we have
seen in (1)) is preciselfix and so the latter is also continuous. O
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The least fixpoint operator is the mathematical countegfagcursive and iterative
statements in programming languages. When proving a popésuch a statement
semantically, one often employs the following proof prpieiwhich is known under
the namdixpoint induction(see [Ten91] or any other book on denotational semantics).
Call a predicate on (i.e. a subset of) a dgzbnissibleif it contains L. and is closed
under suprema ab-chains. The following is then easily established:

Lemma 2.1.20. Let D be a dcpo,P C D an admissible predicate, anfl: D — D
a Scott-continuous function. If it is true th#fz) satisfiesP whenever: satisfiesP,
then it must be true thdix( f) satisfiesP.

We also note the following invariance property of the leagpdint operator. In
fact, it characterizeBx uniquely among all fixpoint operators (Exercise 2.3.9(16))

Lemma 2.1.21.Let D and E be pointed dcpo’s and let

D h E
f g
D h E

be a commutative diagram of continuous functions whiei® strict. Thenfix(g) =
h(fix(f)).

Proof. Using continuity ofh, commutativity of the diagram, and strictnesshdh turn
we calculate:

h(fix(£)) = A ]" (L)
neN

= [ The (1)
neN

— 19" ohL)

neN
= fix(g)

2.2 Approximation

In the last subsection we have explained the kind of limitd tftomain theory deals
with, namely, suprema of directed sets. We could have saichrmore about these
“convergence spaces” called dcpo’s. But the topic canyebsitome esoteric and lose
its connection with computing. For example, the cardigalitdcpo’s has not been re-
stricted yet and indeed, we didn’t have the tools to sensiblgo (Exercise 2.3.9(18)).
We will in this subsection introduce the idea that elemeneéscamposed of (or ‘ap-
proximated by’) ‘simple’ pieces. This will enrich our thgommensely and will also
give the desired connection to semantics.
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2.2.1 The order of approximation

Definition 2.2.1. Letz andy be elements of a dcpb. We say that approximateg
if for all directed subsetst of D, y C | |TA impliesz C a for somea € A. We say
that x is compacif it approximates itself.

We introduce the following notation far,y € D andA C D:

r <y < xapproximateg

lr = {yeD|y<a}
fz = {yeD|z<y}
fa = Uta

a€A
K(D) = {xze€ D|xcompac}

The relationk is traditionally called ‘way-below relation’. M.B. Smythiroduced
the expression ‘order of definite refinement’ in [Smy86]. dighout this text we will
referto it as therder of approximationeven though the relation is not reflexive. Other
common terminology for ‘compact’ ifinite or isolated The analogy to finite sets is
indeed very strong; however one covers a finiteldeby a directed collectiofA4; );cr
of sets,M will always be contained in som#; already.

In general, approximation is not an absolute property aflsipoints. Rather, we
could phrase: < y as “x is a lot simpler thany”, which clearly depends opas much
as it depends on.

An element which is compact approximates every element@lioWMore gener-
ally, we observe the following basic properties of approiion.

Proposition 2.2.2. Let D be a dcpo. Then the following is true for allz’, y, 3’ € D:
lLrz<xy=2xzCy;

27 Ca<gyly =2/ <y

2.2.2 Basesindcpo’s

Definition 2.2.3. We say that a subsd? of a dcpoD is a basisfor D, if for every
elementr of D the setB, = |= N B contains a directed subset with supremumVe
call elements o3, approximants ta: relative toB.

We may think of the rational numbers as a basis for the reaith @top element
added, in order to get a dcpo), but other choices are alsahpesslyadic numbers,
irrational numbers, etc.

Proposition 2.2.4. Let D be a dcpo with basis.
1. For everyr € D the setB, is directed andr = | |'B,.
2. B containsK(D).

3. Every superset @B is also a basis foiD.
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Proof. (1) It is clear that the join ofB, equalsz. The point is directedness. From
the definition we know there is some directed subsedf B, with | |TA = x. Let
nowy,y’ be elements approximating There must be elemenisa’ in A abovey, 1/,
respectively. These have an upper boufidn A, which by definition belongs t®,..

(2) We have to show that every elemendf K(D) belongs toB. Indeed, since
¢ = | |"B. there must be an elemebtc B. abovec. All of B. is belowc, sob is
actually equal te.

(3) is immediate from the definition. O

Corollary 2.2.5. Let D be a dcpo with basis.
1. The largest basis fab is D itself.
2. Bis the smallest basis fap if and only if B = K(D).

The ‘only if’ part of (2) is not a direct consequence of theqa@ing proposition.
We leave its proof as Exercise 2.3.9(26).

2.2.3 Continuous and algebraic domains

Definition 2.2.6. A dcpo is calleccontinuousor a continuous domaiif it has a basis.

It is called algebraicor an algebraic domaiif it has a basis of compact elements. We
say D is w-continuous if there exists a countable basis and we calt@lgebraic if
K(D) is a countable basis.

Here we are using the word “domain” for the first time. Indefed,us a structure
only qualifies as a domain if it embodies both a notion of cogeace and a notion of
approximation.

In the light of Proposition 2.2.4 we can reformulate Defmiti2.2.6 as follows,
avoiding existential quantification.

Proposition 2.2.7. 1. A dcpoD is continuous if and only if for alk € D, x =
LI" ]z holds.

2. ltis algebraic if and only if for alk € D, z = | |TK(D),, holds.
The word ‘algebraic’ points to algebra. Let us make this @mtion precise.

Definition 2.2.8. A closure syster (cf. Section 2.1.2) is calledductive if it is closed
under directed union.

Proposition 2.2.9. Every inductive closure systefnis an algebraic lattice. The com-
pact elements are precisely the finitely generated hulls.

Proof. If Aisthe hull of a finite seM and if (B; )< is a directed family of hulls such
that|_|TZ.€I B; = U;c; Bi 2 A, thenM is already contained in sonte;. Hence hulls
of finite sets are compact elements in the complete laftic®n the other hand, every
closed set is the directed union of finitely generated hslisthese form a basis. By
Proposition 2.2.4(2), there cannot be any other compantexiés. O
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Given a group, (or, more generally, an algebra in the sensmiotrsal algebra),
then there are two canonical inductive closure systemsaded with it, the lattice of
subgroups (subalgebras) and the lattice of normal subgr@agmgruence relations).

Other standard examples of algebraic domains are:

e Any set with the discrete order is an algebraic domain. Ina#ios one usually
adds a bottom element (standing for divergence) resultingpicalledflat do-
mains (The flat natural numbers are shown in Figure 2.) A basis nmusither
case contain all elements.

e The set{X — Y] of partial functions between se§ andY ordered by graph
inclusion. Compact elements are those functions which bdiréte carrier. It is

naturally isomorphic tgX — Y | and to[X | EN Y.
e Every finite poset.
Continuous domains:

e Every algebraic dcpo is also continuous. This follows disefrom the defini-
tion. The order of approximation is characterizediby y if and only if there
exists a compact elemenbetween: andy.

e The unit interval is a continuous lattice. It plays a centod¢ in the theory of
continuous lattices, see [GHK80], Chapter IV and in particular Theorem 2.19.

Another way of modelling the real numbers in domain theotpitake all closed
intervals of finite length and to order them by reversed isida. Single element
intervals are maximal in this domain and provide a faithfephnresentation of
the real line. A countable basis is given by the set of intisrvéth rational
endpoints.

e The lattice of open subsets of a sober spacrms a continuous lattice if and
only if X is locally compact. Compact Hausdorff spaces are a spexsal dere
O < U holds if and only if there exists a compact gétsuch thatO C C C
U. This meeting point of topology and domain theory is disedsis detail in
[Smy92, Vic89, Joh82, GHK80] and will also be addressed in Chapter 7.

At this point it may be helpful to give an example of a non-déombus dcpo. The
easiest to explain is depicted in Figure 4 (labellel We show that the order of
approximation onD is empty. Pairga;,b;) and(b;,a;) cannot belong to the order
of approximation because they are not related in the ordeeo. dointsa; T a; in the
same ‘leg’ are still not approximating becausg),.cy is a directed set with supremum
abovea; but containing no element aboug

A non-continuous distributive complete lattice is muchdwarto visualize by a line
diagram. From what we have said we know that the topology obaisspace which is
not locally compact is such a lattice. Exercise 2.3.9(24gasses this in detail.

If D is pointed then the order of approximation is non-empty bseaa bottom
element approximates every other element.

A basis not only gives approximations for elements, it aljgpraximates the order
relation:
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Figure 4: A continuousk) and a non-continuougX) dcpo.

Figure 5: Basis elementwitnesses that is not belowy.

Proposition 2.2.10. Let D be a continuous domain with basis and letx andy be
elements ob. Thenx C y, B, C By and B, C |y are all equivalent.

The form in which we will usually apply this proposition is: iZ y implies there
existsbh € B, with b [Z y. A picture of this situation is given in Figure 5.

In the light of Proposition 2.2.10 we can now also give a manelitive rea-
son why the dcpadD in Figure 4 is not continuous. A natural candidate for a ba-
sis in D is the collection of alla;'s andb;’s (certainly, T doesn’t approximate any-
thing). Proposition 2.2.10 expresses the idea that in araoois domain all informa-
tion about how elements are related is contained in the lafsiady. And the fact that
LT enan =",en bn = T holdsinD is precisely what is not visible in the would-be
basis. Thus, the dcpo should look rather likén the same figure (which indeed is an
algebraic domain).

Bases allow us to express the continuity of functions in anfeeminiscent of the
e-0 definition for real-valued functions.

Proposition 2.2.11. A map f between continuous domaid3 and E with bases
B and C, respectively, is continuous if and only if for eache D ande € Cy(,,
there existsl € B, with f(1d) C Te.
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Proof. By continuity we havef(z) = f(||"B.) = [l';cp, f(d). Sincee approx-
imates f(x), there existsl € B, with f(d) J e. Monotonicity of f then implies
F(1d) C Te.

For the converse we first show monotonicity. Suppese y holds butf(x) is not
below f(y). By Proposition 2.2.10 there isc C(, \ | f(y) and from our assumption
we getd € B, suchthatf(7d) C Te. Sincey belongstojd this is a contradiction. Now
let A be a directed subset @ with x as its join. Monotonicity implie$ |Tf(A) C
f(LJTA) = f(x). If the converse relation does not hold then we can again sghoo
e € Cyy with e Z | |f(A) and for somel € B, we havef(7d) C Te. Sinced
approximates:, somea € A is aboved and we get |"f(A) 3 f(a) 3 f(d) D e
contradicting our choice of. O

Finally, we cite a result which reduces the calculation aklefixpoints to a basis.
The point here is that a continuous function need not preseswnpactness nor the
order of approximation and so the sequence (L), f(f(L)),... need not consist of
basis elements.

Proposition 2.2.12. If D is a pointedw-continuous domain with basi® and if
f: D — D is a continuous map, then there existsaathainby C b; C by C ...
of basis elements such that the following conditions arsfed:

1.bp=1,

2. Yn € N.by11 C f(by),

3. Uhenbn =fix(f) (= UTen [ (L))
A proof may be found in [Abr90b].

2.2.4 Comments on possible variations
directed sets vsw-chainsLet us start with the following observation.

Proposition 2.2.13.1f a dcpoD has a countable basis then every directed subsét of
contains anv-chain with the same supremum.

This raises the question whether one shouldn’t build up theletheory usingy-
chains. The basic definitions then read: Astcpo is a poset in which every-chain
has a supremum. A function is-continuous if it preserves joins af-chains. An
elementz is w-approximatingy if |_|TnGN a, 3 yimpliesa, J x for somen € N.
An w-ccpo is continuous if there is a countable suti3such that every element is the
join of anw-chain of elements fron®3 w-approximating it. Similarly for algebraicity.
(This is the approach adopted in [Plo81], for example.) Thennpoint about these
definitions is the countability of the basis. It ensures thay are in complete harmony

with our set-up, because we can show:
Proposition 2.2.14. 1. Every continuous-ccpo is a continuous dcpo.

2. Every algebraicu-ccpo is an algebraic dcpo.
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3. Everyw-continuous map between continuouscpo’s is continuous.

Proof. (1) Let (b,,)nen be an enumeration of a badisfor D. We first show that the
continuousv-ccpoD is directed-complete, so let be a directed subset @. Let B’
be the set of basis elements which are below some elemefitanfd, for simplicity,
assume thaB = B’. We construct am-chain in A as follows: letay be an element
of A which is abové,. Then leth,,, be the first basis element not belaw: It must be
below somei} € A and we set:; to be an upper bound af, anda} in A. We proceed
by induction. It does not follow that the resulting ch#in, ) ,<n is cofinal inA but it is
true that its supremum is also the supremumpbecause both subsetsiofdominate
the same set of basis elements.

This construction also shows thatapproximation is the same as approximation in
a continuousu-ccpo. The same basi$ may then be used to show thatis a continu-
ous domain. (The directedness of the g&tfollows as in Proposition 2.2.4(1).)

(2) follows from the proof of (1), so it remains to show (3). Nuonicity of the
function f is implied in the definition ofu-continuity. Therefore a directed satC D
is mapped onto a directed setihand alsof (| |TA) 3 | |"f(A) holds. Let(a,)nen
be anw-chain inA with | |TA = | |7 _ an, as constructed in the proof of (1). Then

we havef(L]TA) = f(U",enan) = U en f(an) T LTf(A). [

If we drop the crucial assumption about the countabilityhef basis then the two
theories bifurcate and, in our opinion, the theory based arhains becomes rather
bizarre. To give just one illustration, observe that simpligects, such as powersets,
may fail to be algebraic domains. There remains the quediimnever, whether in the
realm of a mathematical theory of computation one should gfigh w-chains. Argu-
ments in favor of this approach point to pedagogy and fouadst The pedagogical
aspect is somewhat weakened by the fact that even in a consauccpo the set$x
happen to balirected. Glossing over this fact would tend to mislead toelent. In
our eyes, the right middle ground foraurseon domain theory, then, would be to
start withw-chains and motivations from semantics and then at some (miobably
where the ideal completion of a poset is discussed) to swvtitatirected sets as the
more general concept. This suggestion is hardly origintak in direct analogy with
the way students are introduced to topological concepts.

Turning to foundations, we feel that the necessitghoosechains where directed
subsets are naturally available (such as in function spaed thus to rely on the
Axiom of Choice without need, is a serious stain on this appho To take foundational
questions seriously implies a much deeper re-working othleery: some pointers to
the literature will be found in Section 8.

We do not feel the need to say much about the use of chains itfaaybcardi-
nality. This adds nothing in strength (because of Propmsi#l.1.15) but has all the
disadvantages pointed out forchains already.

bases vs. intrinsic descriptionsThe definition of a continuous domain given here
differs from, and is in fact more complicated than the staddme (which we pre-
sented as Proposition 2.2.7(1)). We nevertheless preférig approach to the concept
of approximation for three reasons. Firstly, the standafihition does not allow the
restriction of the size of continuous domains. In this respet the cardinality of a do-
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main but the minimal cardinality of a basis is of interestc@wlly, we wanted to point
out the strong analogy between algebraic and continuousithemAnd, indeed, the
proofs we have given so far for continuous domains speeiaizctly to the algebraic
case if one replaces3’ by ‘ K(D)' throughout. Thus far at least, proofs for algebraic
domains alone would not be any shorter. And, thirdly, we wdlrtb stress the idea of
approximation by elements which are (for whatever reasonpler than others. Such
a notion of simplicity does often exist for continuous dongajsuch as rational vs. real
numbers), even though its justification is not purely ortezeretical (see 8.1.1).

algebraic vs. continuous.This brings up the question of why one bothers with con-
tinuous domains at all. There are two important reasonditaytdepend on definitions
introduced later in this text. The first is the simplificatiohthe mathematical theory
of domains stemming from the possibility of freely usingraets (see Theorem 3.1.4
below). The second is the observation that in algebraic dwsrievo fundamental con-
cepts of domain theory essentially coincide, namely, that®cott-open set and that of
a compact saturated set. We find it pedagogically advantegedoe able to distinguish
between the two.

continuous dcpo vs. continuous domainlt is presently common practice to start
a paper in semantics or domain theory by defining the subolfadspo’s of interest
and then assigning the name ‘domain’ to these structuresfullyeagree with this
custom of using ‘domain’ as a generic name. In this articteyéver, we will study
a full range of possible definitions, the most general of Wwhgthat of a dcpo. We
have nevertheless avoided calling these domains. Forasdih’ refers to both ideas
essential to the theory, namely, the idea of convergencéenidea of approximation.

2.2.5 Useful properties

Let us start right away with the single most important featof the order of approxi-
mation, thenterpolation property

Lemma 2.2.15.Let D be a continuous domain and l18f C D be a finite set each
of whose elements approximatgsThen there existg’ € D suchthatVl <« ¢y <y
holds. If B is a basis forD theny’ may be chosen from3. (We sayy’ interpolates
betweenV/ andy.)

Proof. Given M < y in D we define the set
A={aeD|3d €D:a<d <y}

It is clearly non-empty. It is directed because ik ¢’ < y andb < i < y then by
the directedness gfy there isc’ € D suchthat’ C ¢ < yandb’ C ¢’ < y and again
by the directedness ¢t’ there isc € D witha C ¢ < ¢’ andb C ¢ < ¢’. We calculate
the supremum ofl: lety’ be any element approximating Since|y’ C A we have that
LITA 3 "]y’ =y This holds for ally’ < y so by continuityy = | |"|y C | JTA.
All elements ofA are less thap, so in fact equality holdsl:_my = | |TA. Remember
that we started out with a séf whose elements approximajeBy definition there is
am € Awithm C a,, for eachm € M. Leta be an upper bound of thg,, in A. By
definition, for somer/, ¢ <« ¢’ < y, and we can take’ as an interpolating element
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betweenM andy. The proof remains the same if we allow only basis elements to
enterA. 0

Corollary 2.2.16. Let D be a continuous domain with a bad#sand letA be a directed
subset ofD. If ¢ is an element approximatirig ' A thenc already approximates some

a € A. As aformula:
a=U e

acA
Intersecting with the basis on both sides gives
Bia= | Ba:
acA

Next we will illustrate how in a domain we can restrict atientto principal ideals.

Proposition 2.2.17. 1. If D is a continuous domain andf, y are elements irD,
thenz approximateg; if and only if for all directed setst with | |TA = y there
isana € A such thats J z.

2. The order of approximation on a continuous domain is themnf the orders of
approximation on all principal ideals.

3. Adcpois continuous if and only if each principal ideal @tinuous.
4. For a continuous domaib we haveK(D) = |, , K(lz).
5. A dcpo is algebraic if and only if each principal ideal igabraic.

Proposition 2.2.18. 1. In a continuous domain minimal upper bounds of finite sets
of compact elements are again compact.

2. In a complete lattice the se{s are LI-sub-semilattices.
3. Ina complete lattice the join of finitely many compact eletais again compact.

Corollary 2.2.19. A complete lattice is algebraic if and only if each elemethésjoin
of compact elements.

The infimum of compact elements need not be compact again,iees algebraic
lattice. An example is given in Figure 6.

2.2.6 Bases as objects

In Section 2.2.2 we have seen how we can use bases in ordgpresexproperties of
the ambient domain. We will now study the question of how farcan reduce domain
theory to a theory of (abstract) bases. The resulting teghes will prove useful in
later chapters but we hope that they will also deepen theer&aginderstanding of the
nature of domains.

We start with the question of what additional informatiomecessary in order to
reconstruct a domain from one of its bases. Somewhat sinmgiysit is just the order
of approximation. Thus we define:
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Figure 6: The meet of the compact elemeantndb is not compact.

Definition 2.2.20. An (abstrack basisis given by a seB3 together with a transitive
relation < on B, such that

(INT) M<x=—3Jdye B M<y<zx
holds for all elements and finite subsetsd/ of B.

Abstract bases were introduced in [Smy77] where they aleddR-structures”.
Examples of abstract bases are concrete bases of contidamasns, of course, where
the relation< is the restriction of the order of approximation. Axiom (INi§ satisfied
because of Lemma 2.2.15 and because we have required bademains to have
directed sets of approximants for each element.

Other examples are partially ordered sets, where (INT) tisfe&ad because of re-
flexivity. We will shortly identify posets as being exacthetbases of compact elements
of algebraic domains.

In what follows we will use the terminology developed at thegimning of this
chapter, even though the relatienon an abstract basis need neither be reflexive nor
antisymmetric. This is convenient but in some instancekdounore innocent than it
is. AnidealA in a basis, for example, has the property (following fromedtedness)
that for everyr € A there is another elemeptc A with < y. In posets this doesn’t
mean anything but here it becomes an important feature. Goethis is stressed by
using the expressiord is aroundideal’. Note that a set of the forrw is always an
ideal because of (INT) but that it need not contaitself. We will refrain from calling
lx ‘principal’ in these circumstances.

Definition 2.2.21. For a basis(B, <) let IdI(B) be the set of all ideals ordered by
inclusion. It is called thadeal completiorof B. Furthermore, leti: B — IdI(B)
denote the function which mapse B to |z. If we want to stress the relation with
which B is equipped then we writel( B, <) for the ideal completion.

Proposition 2.2.22.Let (B, <) be an abstract basis.
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1. The ideal completion dB is a dcpo.

2. A < A’ holdsinldl(B) if and only if there are: < yin B such thatd C i(x) C
i(y) C A

3. IdI(B) is a continuous domain and a basisléf{ B) is given byi(B).
4. If < is reflexive thend|(B) is algebraic.
5. If (B, <) is a poset therB, K(IdI(B)), andi(B) are all isomorphic.

Proof. (1) holds because clearly the directed union of ideals isdaali Roundness
implies that everyA € IdI(B) can be written a$J, . , . This union is directed
because is directed. This proves (2) and also (3). The fourth claitfofes from the
characterization of the order of approximation. The laatisk holds because there is
only one basis of compact elements for an algebraic domain. O

Defining the product of two abstract bases as one does faalhadrdered sets,
we have the following:

Proposition 2.2.23.1dI(B x B’) = 1dI(B) x IdI(B’)
Our ‘completion’ has a weak universal property:

Proposition 2.2.24. Let (B, <) be an abstract basis and |é? be a dcpo. For every
monotone functiorf: B — D there is a largest continuous functigh IdI(B) — D
such thatf o i is belowf. Itis given byf(A) = | |Tf(A).

The assignment — f is a Scott-continuous map frof8 — D] to [IdI(B) — D).
If the relation< is reflexive theryf o i equalsf.

Proof. Let us first check continuity off. To this end let(A;);c; be a di-
rected collection of ideals. Using general associativiBroposition 2.1.4(3))
we can calculate: f(|]%c; 4)) = f(Uic; A) = UNHf(@) |2 €U Aid =
|_|T¢e1 |_|T{f(x) |z € Ai} = |_|T¢e1 J(A).

Sincef is assumed to be monotony) is an upper bound fof (| ). This proves
that f o i is below f. If, on the other handy: IdI(B) — D is another continuous
function with this property then we havg4) = g(U,c4 l2) = T ca9(lz) =
U'sea 9(i(@) © U eq f(z) = F(A).

The claim about the continuity of the assignmegnt— f is shown by the usual
switch of directed suprema.

If < is a preorderthen we can show thfati = f: f(i(x)) = f(lz) = ||Tf(lz) =
f(z). O
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A particular instance of this proposition is the case tBand B’ are two abstract
bases ang': B — B’ is monotone. By the extension ¢fto IdI(B) we mean the map

i’/o\f: IdI(B) — IdI(B’). It maps an ideall C B to the ideal| f(A).

Proposition 2.2.25. Let D be a continuous domain with basis Viewing(B, <) as
an abstract basis, we have the following:

1. IdI(B) is isomorphic toD. The isomorphism : IdI(B) — D is the extensiod
of the embedding @B into D. Its inversed maps elements € D to B,.

2. For every dcpd? and continuous functiofi: D — E we havef = g o 3 where
g is the restriction off to B.

Proof. In a continuous domain we have= | |' B, for all elements, s@ o 3 = idp.
Composing the maps the other way round we need to see thgtewe which ap-
proximates |" A, whereA is an ideal in( B, <), actually belongs tel. We interpolate:
¢ < d < | |TA and using the defining property of the order of approximatwa find
a € A aboved. Therefore: approximates and belongs tod.

The calculation for (2) is straightforwardt(z) = f(| | B.) =

Corollary 2.2.26. A continuous function from a continuous domairto a dcpokE is
completely determined by its behavior on a basi®of

As we now know how to reconstruct a continuous domain frorhatsis and how to
recover a continuous function from its restriction to theibawe may wonder whether
it is possible to work with bases alone. There is one furthrebjem to overcome,
namely, the fact that continuous functions do not presdrgetder of approximation.
The only way out is to switch from functions to relations, whave relate a basis
element to all basis elements approximatiffi¢:). This can be axiomatized as follows.

Definition 2.2.27. A relation R between abstract basds and C is called approx-
imableif the following conditions are satisfied:

1.V € BVy,y' € C. (xRy = ¢y = zRY');

2.YVx € BYM C;,, C. WYy € M. Ry = (32 € C. xRz andz = M));
3. Va,2' € BVy € C. (2' = xRy = 2'Ry);

4. Vx € BVy e C. (zRy = (32 € B. z > zRy)).

The following is then proved without difficulties.

Theorem 2.2.28.The category of abstract bases and approximable relatisms|uiv-
alent toCONT, the category of continuous dcpo’s and continuous maps.

The formulations we have chosen in this section allow us idiately to read off
the corresponding results in the special case of algebaaraihs. In particular:

Theorem 2.2.29.The category of preorders and approximable relations is\eajant
to ALG, the category of algebraic dcpo’s and continuous maps.
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2.3 Topology

By atopologyon a spaceX we understand a system of subsetsXofcalled theopen
set3, which is closed under finite intersections and infiniteamsi. It is an amazing
fact that by a suitable choice of a topology we can encodenfdtination about con-
vergence, approximation, continuity of functions, andrepeints ofX themselves. To
a student of Mathematics this appears to be an immense eistrérom the intuitive
beginnings of analysis. In domain theory we are in the ludtyasion that we can tie
up open sets with the concrete idea of observable propeflibis has been done in
detail earlier in this handbook, [Smy92], and we may theeforoceed swiftly to the
mathematical side of the subject.

2.3.1 The Scott-topology on a dcpo

Definition 2.3.1. Let D be a dcpo. A subset is called(Scott-)closedf it is a lower
set and is closed under suprema of directed subsets. Comptemf closed sets are
called(Scott-)openthey are the elements ef,, the Scott-topologyon D.

We shall use the notatioti(A) for the smallest closed set containidg Similarly,
Int(A) will stand for the open kernel od.

A Scott-open se is necessarily an upper set. By contraposition it is charaxtd
by the property that every directed set whose supremumnig€3 has a non-empty
intersection withO.

Basic examples of closed sets are principal ideals. Thisvietdge is enough to
show the following:

Proposition 2.3.2. Let D be a dcpo.
1. For elements;, y € D the following are equivalent:
(@) zCy,
(b) Every Scott-open set which containalso containg,
(©) = € C({y}).

2. The Scott-topology satisfies tig separation axiom.

3. (D,op) is a Hausdorff £ T5) topological space if and only if the order dn
is trivial.
Thus we can reconstruct the order between elements of a dopothe Scott-
topology. The same is true for limits of directed sets.

Proposition 2.3.3. Let A be a directed set in a dcpb. Thenx € D is the supremum
of A if and only if it is an upper bound for and every Scott-neighborhood of
contains an element of.

Proof. Indeed, the closed set| |’ A separates the supremum from all other upper
bounds ofA. O
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Proposition 2.3.4. For dcpo’sD and E, a functionf from D to E is Scott-continuous
if and only if it is topologically continuous with respectttee Scott-topologies ob
andFE.

Proof. Let f be a continuous function fror? to £ and letO be an open subset &f.

It is clear thatf ~1(O) is an upper set because continuous functions are monotbne. |
f maps the element = | |,_; z; € D into O then we havef(z) = f(|',c; z:) =
|_|Ti€I f(z;) € O and by definition there must be somgwhich is mapped int@.
Hencef~1(0) is openinD.

For the converse assume thyats topologically continuous. We first show thAt
must be monotone: Let C z’ be elements of). The inverse image of the Scott-
closed set f(z') containsz’. Hence it also containg. Now let A C D be directed.
Look at the inverse image of the Scott-closed|sgt’ ., f(a)). It containsA and is
Scott-closed, too. So it must also contin A. Since by monotonicity (| |TA) is an
upper bound off (A), it follows that f (| |TA) is the supremum of (A). O

So much for the theme of convergence. Let us now proceed tinskew far
approximation is reflected in the Scott-topology.
2.3.2 The Scott-topology on domains

In this subsection we work with the second-most primitiverimf open sets, namely
those which can be written 4. We start by characterizing the order of approxima-
tion.

Proposition 2.3.5. Let D be a continuous domain. Then the following are equivalent
for all pairs z,y € D:

1 z<Ky,
2. y € Int(Tx),

3. yc

Comment: Of course, (1) is equivalent to (3) all dcpos.

Proposition 2.3.6. Let D be a continuous domain with basis Then openness of a
subseD of D can be characterized in the following two ways:

1. 0=U,co fz,

2. 0 =U,cons 1.

This can be read as saying that every open set is supportésifogimbers from the
basis. We may therefore ask how the Scott-topology is deffirem an abstract basis.

Proposition 2.3.7. Let (B, <) be an abstract basis and |&f be any subset d8. Then
the set{ A € IdI(B) | M N A # (0} is Scott-open indl(B) and all open sets ohil(B)
are of this form.
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This, finally, nicely connects the theory up with the ideambéservable property.
If we assume that the elements of an abstract basis areyidigskribable and finitely
recognisable (and we strongly approve of this intuitior®rtlit is clear how to observe
a property in the completion: we have to wait until we see ameint from a given set
of basis elements.

We also have the following sharpening of Proposition 2.3.6:

Lemma 2.3.8. Every Scott-open set in a continuous domain is a union oft-Sp&n
filters.

Proof. Let « be an element in the open g8t By Proposition 2.3.6 there is an ele-
menty € O which approximates. We repeatedly interpolate betwegmandx. This
gives us a sequenge < ... € Y, < ... € y1 < z. The union of allfy,, is a
Scott-open filter containing and contained i®. O

In this subsection we have laid the groundwork for a formaftabf Domain The-
ory purely in terms of the lattice of Scott-open sets. Sinegeocsnstrue open sets as
properties we have also brought logic into the picture. Téliationship will be looked
at more closely in Chapter 7. There and in Section 4.2.3 wkaléb exhibit more
properties of the Scott-topology on domains.

Exercises 2.3.9. 1. Formalize the passage from preorders to their quotiesegpa
2. Draw line diagrams of the powersets of a one, two, thred,faor element set.
3. Show that a poset which has all suprema also has all infima véce versa.

4. Refine Proposition 2.1.7 by showing that the fixpoints obaatone function on
a complete lattice form a complete lattice. Is it a sublatfic

5. Show that finite directed sets have a largest element. &letize the class of
posets in which this is true for every directed set.

6. Show that the directed set of finite subsets of real nunt®mgs not contain a
cofinal chain.

7. Which of the following are dcpo’sR, [0,1] (unit interval), Q, Z~ (negative
integers)?

8. Let f be a monotone map between complete lattiteend M and let A be a
subset ofL. Prove: f(| | 4) 3| | f(A).

9. Show that the category of posets and monotone functionssfa cartesian
closed category.

10. Draw the line diagram for the function space of the flatlbaos (see Figure 1).

11. Show that an ideal in a (binary) product of posets can gbvle seen as the
product of two ideals from the individual posets.
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12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.
23.

24,
25.

26.

Show that a maj between two dcpo’® and E is continuous if and only if for
all directed setsd in D, f(||TA) = || f(A) holds (i.e., monotonicity does not
need to be required explicitly).

Give an example of a monotone m@pon a pointed dcpoD for which
|_|TnGN f™(L) is not a fixpoint. (Some fixpoint must exist by Propositionls.}

Use fixpoint induction to prove the following. Lgly: D — D be continuous
functions on a pointed dcpd with f(L) = g(L), andfog = go f. Then
fix(f) = fix(g).

(Dinaturality of fixpoints) LetD, E be pointed dcpo’s and lef: D —
E.g: E — D be continuous functions. Prove

fix(g o f) = g(fix(f o g)) .

Show that Lemma 2.1.21 uniquely characterizegmong all fixpoint operators.

Prove: Given pointed dcpolR and E and a continuous functiofi: D x £ —
E there is a continuous functiol’(f): D — FE such thatY(f) = f o
(idp, Y (f)) holds. (This is the general definition of a category havingdirts.)
How does Theorem 2.1.19 follow from this?

Show that each version of the natural numbers as showigurd-2 is an exam-
ple of a countable dcpo whose function space is uncountable.

Characterize the order of approximation on the unitiné. What are the com-
pact elements?

Show that in finite posets every element is compact.

LetL be the lattice of open sets @f, whereQ is equipped with the ordinary
metric topology. Show that no two non-empty open sets appate each other.
Conclude thatl is not continuous.

Prove Proposition 2.2.10.

Extend Proposition 2.2.10 in the following way: For gvénite subsef\/ of
a continuous dcpd with basisB there existsM’ C B, such thatr — 2’ is
an order-isomorphism betweed and M’ and such that for alke € M, the
elementr’ belongs toB, .

Prove Proposition 2.2.17.

Show that elements of an abstract basis, which apprdgima other element,
may be deleted without changing the ideal completion.

Show that if: is a nhon-compact element of a bagidor a continuous domai®
thenB \ {z} is still a basis. (Hint: Use the interpolation property.)
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27.

28.

29.
30.

31.
32.

33.

34.

The preceding exercise shows that different bases caerge the same do-
main. Show that for a fixed basis different orders of appration may also
yield the same domain. Show that this will definitely be trsedithe two orders
<1 and< satisfy the equationg o<, =<1 and<s0<; =<o.

Consider Proposition 2.2.22(2). Give an example of astralbt basisB which
shows that(x) < i(y) in IdI(B) does not entait: < y.

What is the ideal completion (@, <)?

Let< be a relation on a seB such that<o< = < holds. Give an example
showing that Axiom (INT) (Definition 2.2.20) need not besdiatil. Nevertheless,
IdI(B, <) is a continuous domain. What is the advantage of our axicraitin
over this simpler concept?

Spell out the proof of Theorem 2.2.28.

Prove that in a dcpo every upper set is the intersectionit®f Scott-
neighborhoods.

Show that in order to construct the Scott-closure of aelosetA of a continuous
domain it is sufficient to add all suprema of directed subsetsA. Give an
example of a non-continuous dcpo where this fails.

Given a subseY in adcpoD let X be the smallest superset&fwhich is closed
against the formation of suprema of directed subsets. Shatithe cardinality
of X can be no greater thadlX!. (Hint: Construct a directed suprema closed
superset ofX by addingall existing suprema tc.)
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3 Domains collectively

3.1 Comparing domains
3.1.1 Retractions

A reader with some background in universal algebra may dirbave missed a discus-
sion of sub-dcpo’s and quotient-dcpo’s. The reason fordhigssion is quite simple:
there is no fully satisfactory notion of sub-object or gqeaotiin domain theory based
on general Scott-continuous functions. And this is becglisdormation of directed
suprema is a partial operation of unbounded arity. We tloeesfannot hope to be able
to employ the tools of universal algebra. But if wembinethe ideas of sub-object and
quotient then the picture looks quite nice.

Definition 3.1.1. Let P and @ be posets. A pais: P — @Q, r: Q — P of monotone
functions is called anonotone section retraction pdirr o s is the identity onP. In
this situation we will callP a monotone retraaf ¢).

If P and @ are dcpo’s and if both functions are continuous then we spdak
continuous section retraction pair

We will omit the qualifying adjective ‘monotone’, respeatly ‘continuous’, if the
properties of the functions are clear from the context. Wi alo uses-r-pair as a
shorthand.

One sees immediately that in an s-r-pair the retractioniijgstive and the section
is injective, so our intuition abouP being both a sub-object and a quotient(pfis
justified. In such a situatio® inherits many properties from®:

Proposition 3.1.2. Let P and@ be posets and let: P — Q, r: Q — P be a mono-
tone section retraction pair.

1. LetA be any subset @?. If s(A) has a supremum i) thenA has a supremum
in P. Itis given byr(| | s(A)). Similarly for the infimum.

2. If Q is a (pointed) dcpo, a semilattice, a lattice or a completéda then so isP.

Proof. Because of- o s = idp and the monotonicity of it is clear thatr(| | s(A4))
is an upper bound foA. Letx be another such. Then by the monotonicitysoive
have thats(z) is an upper bound of(A) and hence it is abovie| s(4). So we get
z=r(s(z)) I r(s(A)).

The property of being a (pointed) dcpo, semilattice, escdgfined through the ex-
istence of suprema or infima of certain subsets. The shaesétsubsets is preserved
by monotone functions and so (2) follows from (1). O

Let us now turn to continuous section retraction pairs.

Lemma 3.1.3. Let (s,7) be a continuous section retraction pair between dcpo’s
D andE and letB be a basis fo. Thenr(B) is a basis forD.
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Proof. Let ¢ € B be an approximant te(z) for x € D. We show that-(c¢) approxi-
matesr. To this end letd be a directed subset @ with | |TA 3 x. By the continuity
of s we have |Ts(A) = s(||TA4) 3 s(z) and so for some € A, s(a) J ¢ must hold.
This impliesa = r(s(a)) 3 r(c). The continuity ofr gives us that is the supremum
of T(Bs(m)). O

Theorem 3.1.4. A retract of a continuous domain via a continuous s-r-paicatin-
uous.

The analogous statement for algebraic domains does notitngleneral. Instead
of constructing a particular counterexample, we use oumkadge about the ideal
completion to get a general, positive result which impllds hegative one.

Theorem 3.1.5. Every (-) continuous domain is the retract of an-] algebraic do-
main via a continuous s-r-pair.

In more detail, we have:

Proposition 3.1.6. Let D be a continuous domain with basi8. Then the maps
s: D — IdI(B,C),z — B, andr: Idl(B,C) — D, A ~ | |'A constitute a con-
tinuous section retraction pair betweénand|d|(B, C).

Proof. The continuity ofr follows from general associativity, Proposition 2.1.4dan
the fact that directed supremaliti( B) are directed unions. For the continuity ofve
use the interpolation property in the form of PropositioR.26(2). O

3.1.2 Idempotents

Often the section part of an s-r-pair is really a subset siolu. In this case we can hide
it and work with the map o on E alone. It is idempotent, becaugeo r) o (sor) =
so(ros)or=sor.

Proposition 3.1.7. 1. The image of a continuous idempotent nfagn a dcpaD is
a dcpo. The suprema of directed subsetsrgff), calculated inim(f), coincide
with those calculated i. The inclusiorim(f) — D is Scott-continuous.

2. The set of all continuous idempotent functions on a dcpgaén a dcpo.

Proof. (1) The first part follows from Proposition 3.1.2 becauseittodusion is surely
monotone. For the second part létbe a directed set containedimn(f). We need to
see that |TA belongs toim(f) again. This holds becaugeis continuous] |TA =
LT/(A) = f(U'A).

(2) Let(f;):csr be a directed family of continuous idempotents. For ary D we
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can calculate
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Hence the supremum of continuous idempotents is again ampioent function. We
have proved in Proposition 2.1.18 that it is also continuous O

If fis a continuous idempotent map on a continuous donfaithen we know
that its image is again continuous. But itnst true that the order of approximation
onim(f) is the restriction of the order of approximation dh For example, every
constant map is continuous and idempotent. Its image isgabedic domain with one
element, which is therefore compact. But surely not evegyneint of a continuous
domain is compact. However, we can say something nice ahew¢ott-topology on
the image:

Proposition 3.1.8. If f is a continuous idempotent function on a dcpothen the
Scott-topology oim( f) is the restriction of the Scott-topology @nto im(f).

Proof. This follows immediately because a continuous idempotenttion f gives
rise to a continuous s-r-pair betweien( f) andD. O

Useful examples of idempotent self-maps are retractierysonto principal ideals.

They are given by
B y, fyCuax;
ret, (y) - { x, otherwise

Their continuity follows from the fact thafz is always Scott-closed. Dually, we can
define a retraction onto a principal filtée. It is Scott-continuous if (but not only if)
its generator is compact.

3.1.3 Adjunctions

An easy way to avoid writing this subsection would be to réderategory theory and to
translate the general theory of adjoint functors into thegdsetting. However, we feel
that the right way to get used to the idea of adjointness isaid sut with a relatively
simple situation such as is presented by domain theory.ag@h fve will use adjoint
functors later on, but really in a descriptive fashion only.

Let us start with the example of a surjective m@afrom a poset) onto a posef.
It is natural to ask whether there is a one-sided invers® — Q for f, i.e. a map
such thatf o ¢ = idp holds. Figure 7 illustrates this situation. Such a map must

36



. f fHe)
b % f71(0)
a T, f~Ha)

Figure 7: The right inverse problem for a surjective funotio

pick out a representative frorfi!(z) for eachz € P. Set-theoretically this can be
done, but the point here is that we wartb be monotone. If we succeed theand f
form a (monotone) section retraction pair. Even nicer watlde if we could pick
out a canonical representative frofri!(z), which in the realm of order theory means
that we wantf~!(x) to have a least (or largest) element. If this is the case tiogn h
can we ensure that the assignmentr — min(f~!(x)) is monotone? The solution
is suggested by the observation that iis monotone ther(z) is not only the least
element off ~!(z) but also off (7). This condition is also sufficient. The switch
from f=1(z) to f~1(12) (and this is a trick to remember) may allow us to construct
a partial right inverse even if is not surjective. Thus we arrive at a first, tentative
definition of an adjunction.

Definition 3.1.9. (preliminary)Let P andQ be posets and lét P — Q andu: Q —
P be monotone functions. We say tiat.) is anadjunctionbetweenP and Q) if for
everyz € P we have that(z) is the least element af*(1z).

This definition is simple and easy to motivate. But it brings joist one aspect of
adjoint pairs, namely, thatis uniquely determined by. There is much more:

Proposition 3.1.10.Let P and (@ be posets ané: P — @ andu: @ — P be mono-
tone functions. Then the following are equivalent:

1. Vx € P.l(z) = min(u~!(T2)),
2. Yy € Q. uy) = max(I~ ' (ly)),
3. louCidganduol Jidp,
4. YVxr e PYy e Q. (zCuly) & l(z) Cy).
(For (4)=—-(1) the monotonicity ofi and! is not needed.)

Proof. (1)=>(2) Pick an elemenj € @. Then because(y) C u(y) we have from (1)
that!/(u(y)) C y holds. Sou(y) belongs ta~!(|y). Now letz’ be any element of
1=1(ly), or, equivalently](z") C y. Using (1) again, we see that this can only happen
if u(y) 3 2’ holds. Sou(y) is indeed the largest elementiof'(|y). The converse is
proved analogously, of course.

(1) and (2) together immediately give both (3) and (4).

From (3) we get (4) by applying the monotone niap the inequalityr C u(y)
and using o u C idg.
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Assuming (4) we see immediately thidt:) is a lower bound for:~1(1x). But
becausé(x) C I(z) and hence C u(I(x)) we have that(z) also belongs ta—!(Tz).
We get the monotonicity of as follows: Ifz C 2’ holds in P then becaus&(z’) C
I(«") we haver’ C u(Il(2')) and by transitivityz C u(I(z’)). Using (4) again, we get
I(x) C (). O

We conclude that despite the lopsided definition, the sanatescribed by an ad-
junction is completely symmetric. And indeed, adjunctians usually introduced us-
ing either (3) or (4).

Definition 3.1.11. (official) Let P and@ be posets and lét P — @Q andu: Q — P
be functions. We say thét «) is anadjunctionbetweenP and( if for all € P and
y € Q we haver C u(y) < I(z) C y. We calll thelower andw theupper adjoineand
writel: P = Q : u.

Proposition 3.1.12.Letl: P = @ : u be an adjunction between posets.
1. uolou=wvandlouol =1,

2. The image ofi and the image of are order-isomorphic. The isomorphisms are
given by the restrictions af and! to im(l) andim(u), respectively.

3. uis surjectives uol = idp < [ is injective,
4. lis surjectives [ o u = idg < u is injective,
5. [ preserves existing supremapreserves existing infima.

Proof. (1) We use Proposition 3.1.10(3) twice:= idpou C (uol)ou = uo(lou) C
uoidg = u.

(2) The equations from (1) say precisely that on the imagasafd/, v o [ and
[ o u, respectively, act like identity functions.

(3) If u is surjective then we can canaebn the right in the equationo l o u = u
and getu o [ = idp. From this it follows that must be injective.

(5) Letz = | JA for A C P. By monotonicity,l(z) 3 I(a) for eacha € A.
Conversely, ley be any upper bound dfA4). Thenu(y) is an upper bound for each
u(l(a)) which in turn is above.. Sou(y) J | | A = « holds and this is equivalent to
y 3 (). O

The last property in the preceding proposition may be usedefoe an adjunc-
tion in yet another way, the only prerequisite being thatdlere enough sets with an
infimum (or supremum). This is the Adjoint Functor Theoremgosets.

Proposition 3.1.13.Let f: L — P be a monotone function from a complete lattice to
a poset. Then the following are equivalent:

1. f preserves all infima,
2. f has alower adjoint.

And similarly: f preserves all suprema if and onlyfithas an upper adjoint.
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Proof. We already know how to define a candidate for a lower adjgimte try g(x) =
[/~ 1(Tz). All that remains, is to show that(x) belongs tof ~*(1z). This follows

becausef preserves meetsf(g(x)) = f([f7'(12)) = [f(f~'(12)) 2 1z =
x. O

This proposition gives us a way of recognizing an adjointaion in cases where
only one function is explicitly given. It is then useful tovesa notation for the missing
mapping. We writef* for the upper and, for the lower adjoint off.

Now it is high time to come back to domains and see what allrtfésins in our
setting.

Proposition 3.1.14.Let!: D = FE : u be an adjunction between dcpo’s.
1. [ is Scott-continuous.
2. If u is Scott-continuous thdmpreserves the order of approximation.
3. If D is continuous then the converse of (2) is also true.

Proof. Continuity of the lower adjoint follows from Proposition1312(5). So letr <«
y be elements irD and letA be a directed subset @f such that(y) C | |TA holds.
This impliesy C u(| |TA) and from the continuity of; we deducey C | |Tu(A).
Hence some(a) is abover which, going back t&7, meand(z) C a.

(3) For the converse led be any directed subset &. Monotonicity ofu yields
| |Tu(A) C u(]|TA). In order to show that the other inequality also holds, wespro
that| | Tu(A) is above every approximanttd| |TA). Indeed, ifr < u(| |TA) we have
I(z) < l(u(||TA)) C | |TA by assumption. So someis abovel(z) and for thisa we
havezr C u(a) C | |Tu(A). O

3.1.4 Projections and sub-domains
Let us now combine the ideas of Section 3.1.1 and 3.1.3.

Definition 3.1.15. Let D and F be dcpo’'s and lek: D — E andp: E — D be
continuous functions. We say that p) is a continuous embedding projection pé&r
e-p-pai)if poe =idp andeop C idg.

We note that the section retraction pair between a contisdomain and its ideal
completion as constructed in Section 3.1.1 is really an eltiog projection pair.

From the general theory of adjunctions and retractions weadly know quite a
bit about e-p-pairs. The embedding is injectipeis surjective,e preserves existing
suprema and the order of approximatipmreserves existing infimd) is continuous
if E is continuous, and, finally, embeddings and projectiongugly determine each
other. Because of this last property the term ‘embedding’dwell-defined meaning;
it is an injective function which has a Scott-continuouserpgdjoint.

An injective lower adjoint also reflects the order of approation:

Proposition 3.1.16.Lete: D = FE : p be an e-p-pair between dcpo’s and leandy
be elements ab. Thene(z) < e(y) holds inE if and only ifz approximateg in D.
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Let us also look at the associated idempotepton E. As itis below the identity, it
makes good sense to call such a functidemnel operatoybut often such maps are just

calledprojections We denote the set of kernel operators on a dEploy [D , D).
It is important to note that while a kernel operator pressiméima as a map fronv to
its image, it doesiot have any preservation properties as a map fidno D besides
Scott-continuity. What we can say is summarized in the faithg proposition.

Proposition 3.1.17.Let D be a dcpo.
1. [D R D] is a dcpo.

2. If pis a kernel operator oD then for allz € D we have thap(z) = max{y €
im(p) |y E x}.

3. The image of a kernel operator is closed under existingesup.
4. Kimp)= (Kp) N (im(p) x im(p)).
5. For kernel operatorg, p’ on D we havep C p’ if and only ifim(p) C im(p’).

Proof. (1) is proved as Proposition 3.1.7 and (2) follows becausmether with the
inclusion ofim(p) into D form an adjunction. This also shows (4). Finally, (3) and (5)
are direct consequences of (2). O

In the introduction we explained the idea that the order orrmantic domain
models the relation of some elements bebwgjter than others, where—at least in
semantics—'better’ may be replaced more precisely by dvgeirmination’. Thus we
view elements at the bottom of a domain as being less desithhh those higher up;
they are ‘proto-elements’ from which fully developed elertseevolve as we go up in
the order. Now, the embedding part of an e-p-pailD = E : p placesD at the bot-
tom of E.. Following the above line of thought, we may thinkidfas being a collection
of proto-elements from which the elementsiofevolve. Because there is the projec-
tion part as well, every element éf exists in some primitive form i already. Also,
D contains some information about the order and the order pfagimation onk.
We may therefore think oD as a preliminary version af/, as anapproximationto £
on the domain level. This thought is made fruitful in Sectidn2 and 5. Although the
word does not convey the whole fabric of ideas, we ndma sub-domairof E, just
in case there is an e-p-pair D = E : p.

3.1.5 Closures and quotient domains

The sub-domain relation is preeminent in domain theory bfitourse, we can also
combine retractions and adjunctions the other way aroumdisTve arrive atontin-
uous insertion closure pair§-c-pairs). Because adjunctions are not symmetric as far
as the order of approximation is concerned, Propositiorld,the situation is not just
the order dual of that of the previous subsection. We knowttiainsertion preserves
existing infima and so on, but in addition we now have that thigstive part preserves
the order of approximation and therefore is algebraic ifE is.
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The associated idempotent is calledlasure operator For closure operators the
same caveat applies as for kernel operators; they need es¢pe suprema. Worse,
such functions do no longer automatically have a Scottinants (upper) adjoint.
This is the price we have to pay for the algebraicity of thegma_et us formulate this
precisely.

Proposition 3.1.18.Let D be an algebraic domain and let D — D be a monotone
idempotent function abovep. Thenim(c) is again an algebraic domain if and only if
it is closed under directed suprema.

The reader will no doubt recognize this statement as beingfamulation and
generalization of our example of inductive closure systémmis Chapter 2, Proposi-
tion 2.2.9. It is only consequent to cdll a quotient domairof the continuous domain
FE ifthere exists an i-c-pak: D = E': c.

3.2 Finitary constructions

In this section we will present a few basic ways of putting éams together so as to
build up complicated structures from simple ones. Theretlaree aspects of these
constructions which we are interested in. The first one igkinthe order-theoretic
definition and the proof that we stay within dcpo’s and Scotttinuous functions.
The second one is the question how the construction can elokd in terms of bases
and whether the principle of approximation can be retairidte third one, finally, is
the question of what universal property the constructios. Hehis is the categorical
viewpoint. Since this Handbook contains a chapter on cayeti®ory, [P0i92] (in
particular, Chapter 2), we need not repeat here the arguf@nivhy this is a fruitful
and enlightening way of looking at these type constructors.

There are, however, several categories that we are inggf@stand a construction
may play different roles in different settings. Let us tHere list the categories that,
at this point, seem suitable asiaiverse of discoursélhere is, first of all DCPO, the
category of dcpo’s and Scott-continuous functions as thtoed in Section 2.1. We
can restrict the objects by taking only continuous or, m@ecgl, algebraic domains.
Thus we arrive at the full subcategori€ONT andALG of DCPO. Each of these
may be further restricted by requiring the objects to havettoln element (and Theo-
rem 2.1.19 tells us why one would be interested in doing sajltieag in the categories
DCPO_, CONT_, andALG ;. The presence of a distinguished point in each object
suggests that morphisms should preserve them. But thistiseatly appropriate in
semantics; strict functions are tied to a particular eviaduestrategy. For us this means
that there is yet another cascade of categob€$ 0, ,, CONT 4, andALG |, where
objects have bottom elements and morphisms are strict apit&mtinuous. Finally,
we may bound the size of (minimal) bases for continuous agelahic domains to be
countable. We indicate this by the prefix-".

41



3.2.1 Cartesian product

Definition 3.2.1. Thecartesian produdf two dcpo’sD and E is given by the following
data:

D x E={(z,y) |z €D,y e E},
(x,y) C (2',y/) ifand only ifz C 2’ andy C ¢/'.

This is just the usual product of sets, augmented by the cuatelvise order.
Through induction, we can define the cartesian product fatefinon-empty collec-
tions of dcpo’s. For the product over the empty index set wiendehe result to be a
fixed one-element dcpb

Proposition 3.2.2. The cartesian product of dcpo’s is a dcpo. Suprema and infima a
calculated coordinatewise.

With each producD x E there are associated two projections:
m:DxFE — Dandm: Dx E — E.

These projections are always surjective but they are upjeirds only if D andFE are
pointed. So there is a slight mismatch with Section 3.1.£h&iven a dcpd” and
continuous functiong: F — D andg: F — E, we denote the mediating morphism
from Fto D x E by (f,g). ltmapsz € F to (f(z),g(x)).

Proposition 3.2.3. Projections and mediating morphisms are continuous.

If f: D — D’andg: E — E’ are Scott-continuous, then so is the mediating map
(fom,gom): Dx E — D' x E’. The common notation for it ig’ x g. Since
our construction is completely explicit, we have thus defiadunctor in two variables
onDCPO.

Proposition 3.2.4. Let D and E' be dcpo’s.

1. Atuple(z,y) approximates atuplér’, y') in D x F if and only ifz approximates
2’ in D andy approximateg/’ in E.

2. If B and B’ are bases forD and E, respectively, thelB x B’ is a basis for
D x E.

3. D x Eis continuous if and only iD and E are.
4. K(D x E) = K(D) x K(E).

The categorical aspect of the cartesian product is quitesplg; it is a categorical
product in each case. But we can say even more.

Lemma 3.2.5. Let C be a full subcategory dbCPO or DCPO,; which has finite
products. Then these are isomorphic to the cartesian produc
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In a restricted setting this was first observed in [Smy83die General proof may
be found in [Jun89].

A useful property which does not follow from general categalror topological
considerations, is the following.

Lemma 3.2.6. A functionf: D x E — F'is continuous if and only if it is continuous
in each variable separately.

Proof. Assumef: D x E — F is separately continuous. Theghis monotone, be-
cause giveriz, y) C (2’,y") we canfillin(z, y') and use coordinatewise monotonicity
twice. The same works for continuity: # C D x F is directed then

|_|T f(xvy) = |_|T |_|T f(a:,y)

(z,y)€EA zem (A) yema(A)

= |_|T f(x7 |_|T y)

zeT(A) yEma(A)

= f( |_|T €T, |_|T y)

zeT(A) yEma(A)
= f(]"4).

This proves the interesting direction. O

3.2.2 Function space

We have introduced the function space in Section 2.1.6 @&redt consists of all
continuous functions between two dcpo’s ordered pointwidde know that this
is again a dcpo. The first morphism which is connected wits tlanstruction is
apply: [D — E] x D — E, (f,x) — f(x). Itis continuous because it is contin-
uous in each argument separately: in the first because eifettprema of functions
are calculated pointwise, in the second, becdillse— FE] contains only continuous
functions.

The second standard morphism is the operation which regesaa function of two
arguments into a combination of two unary functions. Thaifig mapsD x E to F,
thenCurry(f): D — [E — F is the mapping which assigns ¢#oc D the function
which assigns te € F the elemenf(d, ). Curry(f) is a continuous function because
of Lemma 3.2.6. And for completely general reasons we haaeGhrry itself is a
continuous operation fromD x E — F] to [D — [E — F]]. Another derived
operation is composition which is a continuous operatiomffD — E|x [E — F]
to[D — F].

All this shows that the continuous function space is the egptial in DCPO.
Taking cartesian products and function spaces togetherawe shown thaDCPO is
cartesian closed.

We turn the function space construction into a functor fl@@PO°? x DCPO to
DCPO by setting[- — “|(f,g)(h) = go ho f,wheref: D’ - D,g: E — E’ and
his an element ofD — EJ.

43



Figure 8: The coalesced sum of two pointed dcpo’s.

As for the product we can show that the choice of the expoakatiject is more
or less forced upon us. This again was first noticed by Smythérabove mentioned
reference.

Lemma 3.2.7.LetC be a cartesian closed full subcategory®mEPO. The exponential
of two objectsD and E of C is isomorphic td D — E].

Let us now turn to the theme of approximation in function gsac The reader
should brace himself for a profound disappointment: Evanafgebraic domains it
may be the case that the order of approximation on the fumspace is empty! (Exer-
cise 3.3.12(11) discusses an example.) This fact togetilet @mmas 3.2.5 and 3.2.7
implies that neitheCONT nor ALG are cartesian closed. The only way to remedy
this situation is to move to more restricted classes of damaihis will be the topic of
Chapter 4.

3.2.3 Coalesced sum

In the category of sets the coproduct is given by disjoinbaniThis works equally
well for dcpo’s and there isn’t really anything interestitogprove about it. We denote
itby D U E.

Disjoint union, however, destroys the property of havingast element and this
in turn is indispensable in proving that every function hdpoint, Theorem 2.1.19.
One therefore looks for substitutes for disjoint union whietain pointedness, but,
of course, one cannot expect a clean categorical charzatien such as for cartesian
product or function space. (See also Exercise 3.3.12(Ir2jact, it has been shown in
[HP9Q] that we cannot have cartesian closure, the fixpoiop@rty and coproducts in
a non-degenerate category.

So let us now restrict attention to pointed dcpo’s. One wapuifing a family of
them together is to identify their bottom elements. Thisalarl thecoalesced surand
denotedD ¢ E. Figure 8 illustrates this operation. Elements fréam® E different
from L pgp carry a label which indicates where they came from. We whieat in the
form (z: i), € {1,2}.

Proposition 3.2.8. The coalesced sum of pointed dcpo’s is a pointed dcpo.
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The individual dcpo’s may be injected into the sum in the obgiway:

inl(z) = { (x: 1), x+# Lp;

1lpee, z=1p

)

and
inf(z) = { (:2), x# Llg;

lpgr, z=1g
A universal property for the sum holds only in the realm oicstfunctions:

Proposition 3.2.9. The coalesced sum of pointed dcpo’s is the coprodudGr O |,
CONT _, andALG | ;.

Once we accept the restriction to bottom preserving funstibis clear how to turn
the coalesced sum into a functor.

3.2.4 Smash product and strict function space

Itis clear that insid®CPO, , a candidate for the exponential is not the full function

space but rather the sgb ESR E)] of strict continuous functions from» to E. How-
ever, it does not harmonize with the producbB@PO |, which, as we have seen, must
be the cartesian product. We do get a match if we consideptitakedsmash product
It is defined like the cartesian product but all tuples whiohtain at least one bottom
element are identified. Common notationisg E.

We leave it to the reader to check that smash product and ftriction space turn
DCPOQ, into a monoidal closed category.

3.2.5 Lifting

Set-theoreticallylifting is the simple operation of adding a new bottom element to a
dcpo. Applied toD, the resulting structure is denoted By, . Clearly, continuity or
algebraicity don'’t suffer any harm from this.

Associated with it is the mapp: D — D, which maps each € D to its name-
sakeinD | .

The categorical significance of lifting stems from the fdwttit is left adjoint to
the inclusion functor frorDCPO , into DCPO. (Where a morphisnf: D — E'is
lifted by mapping the new bottom elementbf. to the new bottom element @f, .)

3.2.6 Summary

For quick reference let us compile a table of the constrastiooked at so far. AV’
indicates that the category is closed under the respediv&uction, a4+’ says that, in
addition, the construction plays the expected categomidalas a product, exponential
or coproduct, respectively. Observe that for the consimastconsidered in this section
it makes no difference if we restrict the size of a (minimadsis.
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CONT | CONT | |

DCPO DCPO | DCPO | CONT ALG ALG | ALG |
DxE  + + + + + +

[D — E] + + v

DUE + +

D®FE v v v v

D =5 B v +
Do FE v + v +
D, v v v v v v

3.3 Infinitary constructions

The product and sum constructions from the previous settéme infinitary counter-
parts. Generally, these work nicely as long as we are onlgewmed with questions
of convergence, but they cause problems with respect tortier of approximation.
This is exemplified by the fact that an infinite power of a finii@set may fail to be
algebraic. In any case, there is not much use of these opesdti semantics. Much
more interesting is the idea of incrementally building upcangin in a limit process.
This is the topic of this section.

3.3.1 Limits and colimits

Our limit constructions are to be understood categoricatig hence we refer once
more to [Poi92] for motivation and general results. Here #ire basic defini-
tions. A diagramin a categoryC is given by a functor from a small categoty
to C. We can describe, somewhat sloppily but more concretelyagram by a pair
((Di)ico, (fj: Daj)y — De(jy)ienr) of a family of objects and a family afonnect-
ing morphisms The shape of the diagram is thus encoded in the index3éghich
correspond to the objects bf and M (which correspond to the morphismsigfand
in the maps:,d: M — O which corresponds to thédom andcodom map onl. What
is lost is the information about compositionlin In the cases which interest us, this
is not a problem. Aconeover such a diagram is given by an objdetand a fam-
iy (fi: D — D;)ico of morphisms such that for ajlc M we havef;o fq;y = fe(j)-

A cone islimiting if for every other con€E, (g;):co) there is exactly one morphism
f: E — Dsuchthatforali € O, g; = fio f. If (D,(f:)ico) is a limiting cone,
then D is calledlimit and thef; are calledimiting morphisms The dual notions are
coconegcolimit, andcolimiting morphism

Theorem 3.3.1. DCPOChas limits of arbitrary diagrams.

Proof. The proof follows general category theoretic principlese Wéscribe the limit
of the diagram((D;):co, (f;: Da¢jy — De(j))jem) @s a set of particular elements of
the product of allD;’s, the so-calledommuting tuples

D= {<:LZ RS O> € H D, |V] e M. Te(f) = fj(xd(j))}
i€O
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NS

Figure 9: An expanding sequence of finite domains.

The order on the limit object is inherited from the produbgttis, tuples are ordered
coordinatewise. Itis again a dcpo because the coordinsgéesmpremum of commuting
tuples is commuting as afl; are Scott-continuous. This also proves that the projestion
7;: [[;,eo Di — Dj restricted toD are continuous. They give us the maps needed to
complement) to a cone.

Given any other conéE, (¢;: £ — D,):c0), We define the mediating morphism
h: E — Dby h(z) = (g:(x) : ¢ € O). Again, it is obvious that this is well-defined
and continuous, and that it is the only possible choice. O

We also have the dual:
Theorem 3.3.2. DCPGhas colimits of arbitrary diagrams.

This was first noted in [Mar77] and, for a somewhat differegtting, in [Mes77].
The simplest way to prove it is by reducing it to completen&da Theorem 23.14
of [HS73]. This appears in [LS81]. A more detailed analydigalimits appears in
[Fie92]. There the problem of retaining algebraicity istadgldressed.

Theorem 3.3.3. DCPQis cartesian closed, complete and cocomplete.
Theorem 3.3.4. DCPQ, is monoidal closed, complete and cocomplete.

How aboutDCPOQO, , where objects have least elements but morphisms need not
preserve them? The truth is that both completeness and getamess fail for this
category. On the other hand, it is the right setting for datiohal semantics in most
cases. As a result of this mismatch, we quite often must résatetailed proofs on
the element level and cannot simply apply general catedpayretic principles. Let us
nevertheless write down the one good propertp6PO, :

Theorem 3.3.5. DCPQ s cartesian closed.

3.3.2 The limit-colimit coincidence

The theorems of the previous subsection fall apart comlpléteve pass to domains,
that is, toCONT or ALG . To get better results for limits and colimits we must restri
both the shape of the diagrams and the connecting morphiseas u
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For motivation let us look at a chaiP,, D-, ... of domains where each,, is
a sub-domain oD, in the sense of Section 3.1.4. Taking up again the animated
language from that section we may think of the points/gf,; as growing out of
points of D,,, the latter being the buds which contain the leaves and floteene seen
at later stages. Figure 9 shows a, hopefully inspiring, glamntuition suggests that
in such a situation a well-structured limit can be found bgiad limit points to the
union of theD,,, and that it will be algebraic if th®,, are.

Definition 3.3.6. A diagram (D, )nen, (émn: Dn — Dm)n<men) in the category
DCPO s called anexpanding sequengi the following conditions are satisfied:

1. Eacheyy: D, — D, is an embedding. (The associated projectigy), we
denote b)pnm.)

2.VneN. ey, =idp, .
3. Vn<m<keN. ey, =€mOemn -

Note that because lower adjoints determine upper adjoirdw&ce versa, we have
DPnk = Pnm © Pmir Wheneven <m < k € N.

It turns out that, in contrast to the general situation, tbknat of an expanding
sequence can be calculated easily via the associated fiwogc

Theorem 3.3.7.Let((Dy)nen, (emn: Dn — Dm)n<men) be an expanding sequence
in DCPO. Define
D={(zn:neN)e[],exDn|Vn<meN. z, =ppm(rm)},
Pm: D — Dy {xy :n €N) — 2z, m €N,
em: Dy — D, x— <|_|Tk;n,mpnk oepm(z):ne€N),meNS3
Then

1. The mapse.,, pm), m € N, form embedding projection pairs afd’ €, ©
pm = idp holds.

2. (D, (pn)nen) is a limit of the diagram ((Dy)nen; (Prm)n<men).  If
(C, (gn)nen) is another cone, then the mediating map fréirto D is given

by g(x) = (gn(z) : ”€N>0r9—|_|neN€n°9n

(
3. (D, (en)nen) is a colimit of the diagram((D,)nen, (€mn)n<men). If
(E, (fn)nen) is another cocone, then the mediating map frbnto E is given

be( nin €N))= LlnEan(xn) or f= Lln,eanOPn-

Proof. We have already shown in Theorem 3.3.1 that a limit of the rdiexy
((Dy,), (pnm)) is given by (D, (p,)) and that the mediating morphism has the (first)
postulated form.

3he directed supremunn| Tkgn,m Dnk © €km (z) in the definition ofe,, could be replaced by, o

erm (z) for anyupper boundc of {n, m} in N. However, this would actually make the proofs more cum-
bersome to write down.
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For the rest, let us start by showing that the functiepnsare well-defined, i.e. that
y = en(x) IS @ commuting tuple. Assume < n’. Then we have,, (y,/) =
pnn’(l_'Tkgn',m Pn'k © €xm(T)) = I_lTk,gn’,m Pnn’ © Prk © €xm(T) = I_lTkgn’,m Dnk ©
exm(z) = yn. The assignment — e,,(x) is Scott-continuous because of general
associativity and because only Scott-continuous mapsaotvied in the definition.
Next, let us now check that,, andp,, form an e-p-pair.

em oPm({zn :n €N)) = en(am)
= {U T@n,m Dnk © €km (Tm) 1 n € N)

LlTk;mmpnk O €km © Pmk(zk) 1 n € N)

(
(U g Pk (k) : n € N)
(zn :n €N)

111

andp, o en(z) = pm(<|_|Tkgn,m Pnk © exm(z) 1 n €N)) = UTkgm Pmk © €km(T) =
x.

A closer analysis reveals that, o p,, will leave all those elements of the tuple
(xn : n € N) unchanged for which < m:

pn(emopm«xn TZEN>)) = ... = |_|T pnkoekmopmk(xk)
k>n,m

= |_|T Pnm © Pmk © €km © pmk(xk)

k>n,m
= |_|T Pnm © Pmk (xk) = |_|T Tn = Tn
k>n,m k>n,m

This proves that the,,, op,,,, m € N, add up to the identity, as stated in (1). Putting this
to use, we easily get the second representation for the tirgglimap intoD viewed as
alimit: g =idog = |_|TmeN €m O Pm © g = UTmeNem ° G-

It remains to prove the universal property 6f as a colimit. To this end let
(E, (fn)nen) be a cocone over the expanding sequence. We have to check that
f= |_|TneN fn o pyn is well-defined in the sense that the supremum is over a éidect
set. So leth < m. We getf,, o pn = fin © €mn © Prm © Pm & fm © pm- It COMmutes
with the colimiting maps because

foem = |_|Tfnopnoem

n>m

= |_|Tfnopnoenoenm
n>m

- UTfnoenm:Llem:fm
n>m n>m

We also have to show that there is no other choiceffohgain the equation in (1)
comes in handy: Lef’ be any mediating morphism. It must satisfyo e¢,,, = fmn
and sof’ o e, © P = fm © pm. FOrming the supremum on both sides giyés=
LI, .en fm © pm Which is the definition off. O
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This fact, that the colimit of an expanding sequence is ceadly isomorphic to
the limit of the associated dual diagram, is called lilvdt-colimit coincidence It is
one of the fundamental tools of domain theory and plays itstrpoominent role in
the solution of recursive domain equations, Chapter 5. 8seaf this coincidence we
will henceforth also speak of thalimit of an expanding sequence and denote it by
bilim{(D..), (emn))-

We can generalize Theorem 3.3.7 in two ways; we can rep¥abg an arbitrary
directed set (in which case we will speak of expanding systeyrand we can use
general Scott-continuous adjunctions instead of e-pspadihe first generalization is
harmless and does not need any serious adjustments in tbis pkle will freely use
it from now on. The second, on the other hand, is quite intergs By the passage
from embeddings to, no longer injective, lower adjoints,allew domains not only to
grow but also to shrink as we move on in the index set. Thustpoivhich at some
stage looked different, may at a later stage be recognideel tioe same. The interested
reader will find an outline of the mathematical theory of timshe exercises. For the
main text, we must remind ourselves that this generalindtims so far not found any
application in semantics.

Part (1) of the preceding theorem gives a characterizafibilioits:

Lemma 3.3.8. Let (E,(fn)nen) be a cocone for the expanding sequence
((Dp)nens(emn: Dn — Dm)n<men). It is colimiting if and only if, firstly, there
are Scott-continuous functiong,: £ — D,, such that eack{f,, g.) is an e-p-pair
and, secondy, " _ fn © gn = idg holds.

Proof. Necessity is Part (1) of Theorem 3.3.7. For sufficiency wewsltimat the
bilimit D as constructed there, is isomorphicHo We already have maps:. D — E
andg: E — D becauseD is the bilimit. These commute with the limiting and the
colimiting morphisms, respectively. So let us check thaytbompose to identities:

fogl@) = [f({gn(x):neN))
= |_|Tfnogn($)

neN
= x

and

gof = (|_|Tenogn)o (|_|Tfmopm)

neN meN

= |_|T6nognofnopn
neN

= UTenopn:idD~
neN

O

We note that in the proof we have used the conditijﬁ;;GN fnogn = idg only
for the first calculation. Without it, we still get thgtandg form an e-p-pair. Thus we
have:
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Proposition 3.3.9. Let (F, (f.)nen) be a cocone over the expanding sequence
((Dn)nens (€mn: Dn — Dp)n<men) Where thef,, are embeddings. Then the bilimit
of the sequence is a sub-domainff

In other words:

Corollary 3.3.10. The bilimit of an expanding sequence is also the colimitif)im
the restricted category of dcpo’s with embeddings (priges) as morphisms.

3.3.3 Bilimits of domains

Theorem 3.3.11. Let ((Dy)nen, (€mn: Dn — Dm)n<men) be an expanding se-
quence andD, (e, )nen) its bilimit.

1. If all D,, are (w-)continuous then so i®. If we are given baseB™, n € N for
eachD,, then a basis foD is given byl J,, . en(B").

2. Ifall D,, are (w-)algebraic then so i andK(D) = |J,,cy en(K(Dr)).

Proof. Given an element € D we first show thatJ,, .\ en (B, ) is directed. To

this end it is sufficient to show that for all < m < N and for eacly € By, there is
y € B () with en(y) C en(y’). Well, becauseg approximate®,,(z) and because
embeddings preserve the order of approximation, we baygy) < emn(pn(z)) =
emn(Prm © Pm (7)) C pm(x). Sincep,,(z) = UTB;’:’”(I)' somey’ < ppn(z) is
abovee,,,, (y). This impliese, (y) = em(emn(¥)) C em(y).

The set,cyen(By, (,)) gives backz becauser = Ul enen © pul(z) =
Ulenenld'By () = UlenlU'en(By (o) = L' Uen(By ) It consists
solely of approximants t@ because the,, are lower adjoints. O

Exercises 3.3.12. 1. Let D be a continuous domain and l¢t: D — D be an
idempotent Scott-continuous function. Show tfiat) < f(y) holds in the
image off if and only if there exists < f(y) in D such thatf(z) C f(z) C
f(y). In the case thaD is algebraic conclude that an elementof im(f) is
compact if and only if there is € K(D) ¢,y with f(c) = f(x).

2. Letp be a kernel operator with finite image. Show that(p) is contained
in K(D) and thatp itself is compact ifD — D].

3. [Hut92] A chainC is calledorder denséf it has more than one element and for
each pairxz C y there existe € C such thatr C z C v.

(a) Let C be an order dense chain of compact elements in an alge-
braic domain D with least element. Consider the functigifiz) =
LJ{ce C|cC z}. Show that this is continuous and below the identity.
Give an example to demonstrate tlgateed not be idempotent. Show that
h = gogisidempotent and hence a kernel operator. Finally, show that t
image ofh is not algebraic (it must be continuous by Theorem 3.1.4).
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10.

11.

12.
13.

14.

(b) Let, converselyf be a continuous and idempotent function on an algebraic
dcpo D such that its image is not algebraic. Show tkdtD) contains an
order dense chain.

(c) An algebraic domain is calledrojection stabléf every projection onD
has an algebraic image. Conclude that an algebraic domath Wwottom
is projection stable if and only iK(D) does not contain an order dense
chain.

. Lete: D = E: p be an embedding projection pair betwegrsemilattices.

Show thaim(e) is a lower set inE if and only if for allz C y in E we have
e(p(z)) = e(p(y)) Nz

. Formulate and prove a generalization of Proposition B3lfor arbitrary posets.

. Formulate an analogue of Proposition 3.2.4 for infinitegwucts. Proceed as fol-

lows: First restrict to pointed dcpo’s. Next find an exampfla ¢non-pointed) fi-
nite poset which has a non-algebraic infinite power. Thiasthgive you enough
intuition to try the general case.

. A dcpo may be seen as a topological space with respect tS8dbt-topology.

Given two dcpo’s we can form their product BCPO. Show that the Scott-
topology on the product need not be the product topologyHaitthe two topolo-
gies coincide if one of the factors is a continuous domain.

. Construct an example which shows that Lemma 3.2.6 dodsofwfor infinite

products.

. DeriveCurry and composition as maps in an arbitrary cartesian closeégaty.

LetC be a cartesian closed full subcategory BEPO. Let R-C be the full
subcategory oDCPO whose objects are the retracts of object€ofShow that
R-C is cartesian closed.

LetZ~ be the negative integers with the usual ordering. Show thatarder
of approximation orfZ~ — Z~] is empty. Find a pointed algebraic dcpo in
which a similar effect takes place.

Show thaDCPO, does not have coproducts.

Show thaCONT does not have equalizers for all pairs of morphisms. (Hint:
First convince yourself that limits iI@ONT, if they exist, have the same under-
lying dcpo as when they are calculateddCPO.)

Complement the table in Section 3.2.6 with the infinicaynterparts of carte-
sian product, disjoint union, smash product and sum. Olesénat for these
the cardinality of the basis does play a role, so you have t ealumns for
w-CONT etc.
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15. Show that the embeddings into the bilimit of an expandéetuence are given
more concretely by, (z) = (x,, : n € N) with

_f pum(®), n<my
Ty =
enm(T), n>m.

Find a similar description for expanding systems.

16. Redo Section 3.3.2 for directed index sets and Scotiremus adjunctions. The
following are the interesting points:

(a) The limit-colimit coincidence, Theorem 3.3.7, holddoaéim.

(b) The characterization of bilimits given in Lemma 3.3.&slaot suffice. It
states thatF’ must not contain superfluous elements. Now we also need to
say thatE’ does not identify too many elements.

(c) Given an expanding systeftD; ), ({,;)) with adjunctions, we can pass to
quotient domaing; by settingD, = im(uTkjiuik o l;). Show that the
original adjunctions when restricted and corestricted e D become e-
p-pairs and that these define the same bilimit.

17. LetRD be the space of Scott-continuous idempotents on a dcpApply the
previous exercise to show tht’,_, r; = r in RD impliesbilim(im(r;)) =
im(r) (where the connecting adjunctions are given by restrictmgretractions

to the respective image).

18. Prove that the Scott-topology on a bilimit of continudamains is the restriction
of the product topology on the product of the individual dama
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4 Cartesian closed categories of domains

In the last chapter we have seen that our big ambient categfo@iPO andDCPO
are, among other things, cartesian closed and we have glpécted out that for the
natural classes afomaing CONT andALG, this is no longer true. The problematic
construction is the exponential, which as we know by Lemn2a73. must be the set
of Scott-continuous functions ordered pointwise. If, oa tither hand, we find a full
subcategory of£ONT which is closed under terminal object, cartesian product an
function space, then it is also cartesian closed, becaesesttessary universal proper-
ties are inherited fronrdCPO.

Let us study more closely why function spaces may fail to beaias. The fact
that the order of approximation may be empty tells us thatettmeay be no natural
candidates for basis elements in a function space. This weébetier somewhat by
requiring the image domain to contain a bottom element.

Definition 4.0.1. For D and E dcpo’s wherel has a least element ante D, e € E,
we define thetep functiond \, e¢): D — E by

e if z € Int(1d);
(d™\ e)(z) = { 1 g, otherwise.

More generally, we will us€O \ ¢) for the function which maps the Scott-open@et
to e and everything else ta.

Proposition 4.0.2. 1. Step functions are Scott-continuous.

2. LetD and E be dcpo’s wherd? is pointed and leff : D — E be continuous. If
e approximates (d) then(d \ e) approximates.

3. If, in addition,D and E are continuous theyf is a supremum of step functions.

Proof. (1) Continuity follows from the openness bit(1d), respectivelyO.

(2) LetG be a directed family of functions with| "G’ 3 f. SupremaifD — E)
are calculated pointwise so we also h@égegg(d) 3 f(d). This implies that for
someg € G, g(d) J e holds. A simple case distinction then shows thahust be
above(d \ e) everywhere.

(3) We show that for eacld € D and eache < f(d) in FE there is a step
function approximatingf which mapsd to e. Indeed, fromd = |_|Tid we get
fld) = f(|_|Ty<<dy) = |_|Ty<<df(y) and so for somey < d we havef(y) 3 e.
The desired step function is therefore given(igy\, e¢). Continuity of E implies that
we can get arbitrarily close tH(d) this way. O

Note that the supremum in (3) need not be directed, so we hatvghown that
[D — E] is again continuous. Was it a mistake to require directesifirsthe set of
approximants? The answer is no, because without it we catlithawe proved (3) in
the first place.

The problem of joining finitely many step functions togettseras to buildlirected
collections of approximants, comes up already in the case®$tep functiongd; \
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Figure 10: Finding an upper bound for two step functions.

e1) and(ds \, e2) which approximate a given continuous functipn The situation

is illustrated in Figure 10. The problem is where to map theo{Eopen but otherwise
unstructured) sel = Td; N d. It has to be done in such a way that the resulting
function still approximateg. As it will turn out, it suffices to make special assumptions
abouteitherthe image domaiz—the topic of Section 4.1—er about the pre-image
domainD — the topic of Section 4.2. In both cases we restrict our fitirrio pointed
domains, and we work with step functions and joins of thesemRhese we can pass to
more general domains in again two ways. This will be outlibgdfly in Section 4.3.2.
The question then arises whether we have not missed out oa akennative way of
building a cartesian closed category. This is not the casesasill see in Section 4.3.
The basic tool for this fundamental result, Lemma 4.3.1| midely connect up with
the dichotomy distinguishing 4.1 and 4.2.

4.1 Local uniqueness: Lattice-like domains

The idea for adjusting the image domain is simple; we assiaief ande; have a
least upper bound (if bounded at all). Mapping the intersectiohto e (andfd; \ A
to e; andfd, \ A to ey) results in a continuous functignwhich is aboved; \ e;)
and(d2 \, e2) and still approximateg. This is seen as follows: Suppoégis a
directed collection of functions with supremum abgveSomeg; € G must be above
(d1 \\ e1) and somg; € G must be abovéd, \, e2). Then by construction every
upper bound of g1, g2} in G is aboveh.

In fact, we do not need that the join ef ande, exists globally inE. It suffices to
formthe join forevernyu € Ainside] f(a), because we have seen in Proposition 2.2.17
that all considerations about the order of approximationlwa performed inside prin-
cipal ideals. We have the following list of definitions.

Definition 4.1.1. Let E be a pointed continuous domain. We say thas
1. anL-domain if each paire;, es € E bounded by € E has a supremum ipe;

2. abounded-complete domajor bc-domain, if each bounded paie,, e € E
has a supremum;

55



C1 C2

a b
1 v
X €ALG \L C el \BC V € BC\ LAT

Figure 11: Separating examples for the categories of &tiie domains.

3. (repeated for comparison) eontinuous latticeif each paire;,es € E has a
supremum.

We denote the full subcategories@DNT ; corresponding to these definitions by
L, BC, andLAT . For the algebraic counterparts we uag, aBC, andalLAT .

All this still makes sense if we forget about approximatiam, lsurely, at this point
the reader does not suffer from a lack of variety as far asgeaies are concerned.
We would like to point out that continuous lattices are theémmubjects of study in
[GHK*80], a mathematically oriented text, whereas the objects-aBC are often
the domains of choice in semantics, where they appear uhdaerameScott-domain
Typical examples are depicted in Figure 11. They even cheniae the corresponding
categories, see Exercise 4.3.11(3).

Since domains have directed joins anyway, we see that inrhailts every subset
of a principal ideal has a supremum in that ideal. We also kit complete lattices
can alternatively be characterized by infima. The same ganebe played for the
other two definitions:

Proposition 4.1.2. Let D be a pointed continuous domain. ThBris an L-domain, a
bc-domain, or a continuous lattice if and only if it has infifiea bounded non-empty,
non-empty, or arbitrary subsets, respectively.

The consideration of infima may seem a side issue in the ligtlieoproblem of
turning function spaces into domains. Its relevance besariear when we remember
that upper adjoints preserve infima. The second half of thievitng is therefore a
simple observation. The first half follows from Propositi®i.2 and Theorem 3.1.4.

Proposition 4.1.3. Retracts and bilimits of L-domains (bc-domains, contirsitau-
tices) are again L-domains (bc-domains, continuous latfjc

We can treat continuous and algebraic lattice-like domainsly in parallel be-
cause the ideal completion respects these definitions:
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Proposition 4.1.4. Let D be an L-domain (bc-domain, continuous lattice). Then
IdI(D, C) is an algebraic L-domain (bc-domain, lattice).

ThusL, BC, andLAT contain precisely the retracts of objectsaif, aBC, and
aL AT, respectively. We conclude this section by stating therddsilosure property
of lattice-like domains.

Proposition 4.1.5. Let D be a continuous domain anfl an L-domain (bc-domain,
continuous lattice). ThefD — E] is again an L-domain (bc-domain, continuous
lattice).

Corollary 4.1.6. The categoried, BC, LAT, and their algebraic counterparts are
cartesian closed.

4.2 Finite choice: Compact domains

Let us now turn our attention to the first argument of the fioxcspace construction,
which means by the general considerations from the begyufithis chapter, the study
of open sets and their finite intersections. Step functiseglafined using basic open
sets of the form{d, and the fact that there is a single generatavas crucial in the
proof that(d \, e) approximates’ whenevere approximatesf(d). Arbitrary open
sets are unions of such basic opens (Proposition 2.3.6hlgérieral this is an infinite
union and so the proof of Proposition 4.0.2 will no longer koiFor the first time
we have now reached a point in our exposition where the thebajgebraic domains
is definitely simpler and better understood than that of iooiius domains. Let us
therefore treat this case first.

4.2.1 Bifinite domains

Step functiongd \, ¢) may in the algebraic case be defined using compact elements
only, where the characteristic pre-imagé is actually equal to/d. Taking up our
line of thought from above, we want for the algebraicity oé tfunction space that
the intersectiold = Td; N Tds is itself generated by finitely many compact points:
A =1e1 U...UTe,. Note that the;; must be minimal upper bounds 6d;, d>}. For
eachc; we choose a compact element belf; ) and above , eo. New intersections
then come up, this time between the differénts. Let us therefore further assume that
after finitely many iterations this process stops. It is asyeaxercise to show that the
function constructed in this way is a compact element befaand aboved; \ e1)
and(ds \, e2). We hope that this provides sufficient motivation for thddaling list

of definitions.

Definition 4.2.1. Let P be a poset. (Think aP as the basis of an algebraic domain.)

1. We say thaP is mub-completgor: hasproperty n) if for every upper bounad
of a finite subsed/ of P there is a minimal upper bound af belowzx. Written
as aformulavM C, P. (,,cps T = Tmub(M).

2. For a subsetA of P let its mub-closuremc(A) be the smallest superset df
which for every finitel/ C mc(A) also containgnub(M).
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3. We say thaP has thefinite mub propertyf it is mub-complete and if every finite
subset has a finite mub-closure. If, in additidghhas a least element, then we
call it a Plotkin-order

4. An algebraic domain whose basis of compact elements io&iflorder is
called abifinite domain The full subcategory oALG | of bifinite domains we
denote byB.

With this terminology we can formulate precisely how fiytehany step functions
combine to determine a compact element in the function spgem®1b].

Definition 4.2.2. Let D be a bifinite domain and leE be pointed and algebraic. A
finite subsef’ of K(D) x K(E) is calledjoinableif

VG CF3H CF. (m(H) =mub(m(G)) A Ve € ma(G),d € m(H). cCd).
The function which we associate with a joinable fantilys
a:»—>|_|{e|§id6 K(D).dCz A (d,e) € F}.

Lemma 4.2.3.If D is a bifinite domain and? is pointed and algebraic, then every
joinable subset oK (D) x K(F) gives rise to a compact element[éf — E].
If FandG are joinable families then the corresponding functionsratated if and
only if
V(d,e) € G3(d',e') € F.d Cdande C ¢

The expected result, dual to Proposition 4.1.5 above, thien i

Proposition 4.2.4. If D is a bifinite domain and® is pointed and algebraic, then
[D — E] is algebraic. All compact elements|d® — E| arise from joinable fami-
lies.

Comment: Proof sketch: Letf be a continuous function fror» to E, and M be a finite mub-closed
set of compact elements d@b. Let (e, )mens be a collection of compact elements bfsuch that
forall m € M, e, < f(m). Then there exists a collectiafé., ), s Of compact elements o
such that the assignment — é,, is order-preserving. The new elements can be found by regigat
considering a minimal element of M for which é,,, has not yet been chosen, and by picking an upper
bound for{em } U {é,,,» | m’ < m}. With this construction one finds a directed collection ahpact
elements of D — E] arbitrarily close tof.

Note that this is strictly weaker than Proposition 4.1.5 amddo not immediately
get thatB is cartesian closed. For this we have to find alternative rifgigmns. The
fact that we can get an algebraic function space by makingapgssumptions about
eitherthe argument domaior the target domain was noted in a very restricted form in
[Mar81].

The concept of finite mub closure is best explained by ilatsig what can go
wrong. In Figure 12 we have the three classical examplesgetahic domains which
are not bifinite; in the first one the basis is not mub-compiatthe second one there is
an infinite mub-set for two compact elements, and in the tbird, although all mub-
sets are finite, there occurs an infinite mub-closure. On &rpositive note, it is clear
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Figure 12: Typical non-bifinite domains.

that every finite and pointed poset is a Plotkin-order andcheifinite. This trivial
example contains the key to a true understanding of bifirkenwe will now prove
that bifinite domains are precisely the bilimits of finite ptgd posets.

Proposition 4.2.5. Let D be an algebraic domain with mub-complete bas{®) and
let A be a set of compact elements. Then there is a least kernehtoper, on D
which keepsi fixed. Itis given by 4(x) = | |T{c € mc(4) | ¢ C z}.

Proof. First note thaip 4 is well-defined because the supremum is indeed over a di-
rected set. This follows from mub-completeness. Contyntotlows from Corol-

lary 2.2.16. On the other hand, it is clear that a kernel dpenahich fixesA must
also fix each element of the mub-closure(A), and sop4 is clearly the least mono-
tone function with the desired property. O

In a bifinite domain finite sets of compact elements have fimitd-closures. By
the preceding proposition this implies that there are maamp&l operators on such a
domain which have a finite image. In fact, we get a directedlfamfithem, because the
order on kernel operators is completely determined by iheges, Proposition 3.1.17.
For the sake of brevity, let us call a kernel operator withtéinmage aridempotent
deflation

Theorem 4.2.6.Let D be a pointed dcpd. The following are equivalent
1. D is a bifinite domain.

2. There exists a directed collectidif;);c; of idempotent deflations dd whose
supremum equaig p.

3. The set of all idempotent deflations is directed and yielgsas its join.
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Proof. What we have not yet said is how algebraicity/ofollows from the existence
of idempotent deflations. For this observe that the inclusibthe image of a kernel
operator is a lower adjoint and as such preserves compactries the implication
‘2 = 3’ we use the fact that idempotent deflations are in any casgaotelements
of the function space. O

Itis now only a little step to the promised categorical clotegzation.

Theorem 4.2.7. A dcpo is bifinite if and only if it is a bilimit of an expandingstem
of finite pointed posets.

Proof. Let D be bifinite and let( f;);c; be a family of idempotent deflations gener-
ating the identity. Construct an expanding system by takisgbjects the images of
the deflations and as connecting embeddings the inclusionaigfes. The associated
upper adjoint is given byf; restricted toim(f;). D is the bilimit of this system by
Lemma 3.3.8.

If, conversely{D, (f:):cr) is a bilimit of finite posets then clearly the compositions
fi o gi, Whereg; is the upper adjoint of;, satisfy the requirements of Theorem 4.2.6.

O

So we have three characterizations of bifiniteness, thénaliggne, which may
be called an internal description, a functional descriptiy Theorem 4.2.6, and a
categorical one by Theorem 4.2.7. Often, the functionaftattarization is the most
handy one in proofs. We should also mention that bifinite domavere first defined
by Gordon Plotkin in [Plo76] using expanding sequenceso(ntaxonomy these are
precisely the countably based bifinite domains.) The aarohg used for them, SFP,
continues to be quite popular.

Theorem 4.2.8.The categonB of bifinite domains is closed under cartesian product,
function space, coalesced sum, and bilimits. In partigiBas cartesian closed.

Proof. Only function space and bilimit are non-trivial. We leave tatter as an exer-
cise. For the function space |et and E be bifinite with families of idempotent defla-
tions(f;)icr and(g,), e . A directed family of idempotent deflations ¢ — E] is
given by the map$;;: h— gjoho f;, (i,j) € I x J. O

4.2.2 FS-domains

Let us now look at continuous domains. The reasoning aboat tile structure oD
should be in order to ensure thd@ — E] is continuous is pretty much the same as
for algebraic domains. But at the point where we there intoedl the mub-closure of
a finite set of compact elements, we must now postulatexistenceof some finite
and finitely supported partitioning ab. This is clearly an increase in the logical
complexity of our definition and also of doubtful practicaleu It is more satisfactory
to generalise the functional characterization.

Definition 4.2.9. Let D be a dcpo andf: D — D be a Scott-continuous function.
We say thaff is finitely separatedrom the identity orD, if there exists a finite sei/
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such that for any: € D there ism € M with f(z) C m C x. We speak obtrong
separatiorif for eachz there are elements,, m’ € M with f(z) Cm < m’ C z.

A pointed dcpd is called anFS-domairif there is a directed collectiofif;);c of
continuous functions of, each finitely separated froid 5, with the identity map as
their supremum.

It is relatively easy to see that FS-domains are indeed mootis. Thus it makes
sense to speak &fS as the full subcategory &EONT where the objects are the FS-
domains.

We have exact parallels to the properties of bifinite domais often the proofs
are trickier.

Proposition 4.2.10.If D is an FS-domain andZ is pointed and continuous then
[D — E] is continuous.

Comment: Unfortunately, the proof of this is not only “trickier” butsayet unknown. What is true,
is that wherboth D and E' are FS-domains, thefD — FE] is also an FS-domains. This was shown
in [Jun90]. The following theorem is therefore still valid.

Theorem 4.2.11.The categor§Sis closed under the formation of products, function
spaces, coalesced sums, and bilimits. It is cartesian dlose

What we do not have are a categorical characterization orsarigion of FS-
domains as retracts of bifinite domains. All we can say is tlewing.

Proposition 4.2.12. 1. Every bifinite domain is an FS-domain.
2. Aretract of an FS-domain is an FS-domain.
3. An algebraic FS-domain is bifinite.

To fully expose our ignorance, we conclude this subsectiith an example of a
well-structured FS-domain of which we do not know whethés & retract of a bifinite
domain.

Example. Let Disc be the collection of all closed discs in the plane plus theg@la
itself, ordered by reversed inclusion. One checks that ttexdd intersection of discs
is again a disc, sBisc is a pointed dcpo. A disé; approximates a disé; if and only
if dy is a neighborhood ofl;. This proves thaDisc is continuous. For every > 0
we define a mag. on Disc as follows. All discs inside the open disc with radiyare
mapped to their closedtneighborhood, all other discs are mapped to the plane which
is the bottom element dbisc. Because the closed discs contained in some compact
set form a compact space under the Hausdorff subspace tpptihese functions are
finitely separated from the identity map. This proves thak is a countably based
FS-domain.

4.2.3 Coherence

This is a good opportunity to continue our exposition of iyediogical side of domain
theory, which we began in Section 2.3. We need a second taeoplementing the
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latticeop of Scott-open sets, namely, the compact saturated sets.'¢tenpact’ is to
be understood in the classical topological sense of the viierdh setd of a topological
space iscompactif every covering ofA by open sets contains a finite subcovering.
Saturatedare those sets which are intersections of their neighbathiodn dcpo’s
equipped with the Scott-topology these are precisely thEeupets, as is easily seen
using opens of the form \ | z.

Theorem 4.2.13.Let D be a continuous domain. The sets of open neighborhoods of
compact saturated sets are precisely the Scott-open fifters .

By Proposition 7.2.27 this is a special case of the HofmarsléMe Theorem 7.2.9.

Let us denote the set of compact saturated sets of a ficpmrdered by reverse
inclusion, byxp. We will refer to families inxp which are directed with respect to
reverse inclusion, more concretely as filtered familiese T¢ilowing, then, is only a
re-formulation of Corollary 7.2.11.

Proposition 4.2.14.Let D be a continuous domain.
1. kp is adcpo. Directed suprema are given by intersection.

2. If the intersection of a filtered family of compact satedhsets is contained in a
Scott-open se&b then some element of it belongx¥calready.

3. kp \ {0} is adcpo.
Proposition 4.2.15.Let D be a continuous domain.
1. kp is a continuous domain.
2. A < B holdsinkp if and only if there is a Scott-open setwith B C O C A.

3. O <« U holds inop if and only if there is a compact saturated sétwith
OCACU.

Proof. All three claims are shown easily using upper sets genefatdihitely many
points: If O is an open neighborhood of a compact saturatedigéien there exists a
finite set)M of points ofO with A C 1M C 1M C O. O

The interesting point about FS-domains then is, that thecs of compact sat-
urated sets is actually a continuous lattice. We alreadye hthirected suprema (in
the form of filtered intersections) and continuity, so thal® down to the property
that the intersection of two compact saturated sets is agaimpact. Let us call do-
mains for which this is truegoherent domaingGiven the intimate connection between
op andkp, it is no surprise that we can read off coherence from th&c@atif open
sets.

Proposition 4.2.16. A continuous domainD is coherent if and only if for all
0,U1,Us € op with O < U; andO <« U, we also have) < Uy N Us.

(In Figure 6 we gave an example showing that the conditioigrne in arbitrary
continuous lattices.)
This result specializes for algebraic domains as follows:
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Proposition 4.2.17. An algebraic domairD is coherent if and only iK(D) is mub-
complete and finite sets Bf D) have finite sets of minimal upper bounds.

This proposition was named ‘2/3-SFP Theorem’ in [Plo81] same coherence
rules out precisely the first two non-examples of Plotkidess, Figure 12, but not
the third. The only topological characterization of bifenilomains we have at the
moment, makes use of the continuous function space, see heh$2.

We observe that for algebraic coherent domains.andxp have a common sub-
lattice, namely that of compact-open sets. These are pigdise sets of the form
Ter UL .. U Te, with thec; compact elements. This lattice generates lgihand« p
when we form arbitrary suprema. This pleasant coincideeegufes prominently in
Chapter 7.

Theorem 4.2.18.FS-domains (bifinite domains) are coherent.
Let us reformulate the idea of coherence in yet another way.

Definition 4.2.19. The Lawson-topologyon a dcpoD is the smallest topology con-
taining all Scott-open sets and all sets of the fabm Tx. It is denoted by p.

Proposition 4.2.20.Let D be a continuous domain.

1. The Lawson-topology ob is Hausdorff. Every Lawson-open set has the form
O\ A whereO is Scott-open and\ is Scott-compact saturated.

2. The Lawson-topology ab is compact if and only iD is coherent.

3. A Scott-continuous retract of a Lawson-compact contiswomain is Lawson-
compact and continuous.

So we see that FS-domains and bifinite domains carry a natomgbact Hausdorff
topology. We will make use of this in Chapter 6.

4.3 The hierarchy of categories of domains

The purpose of this section is to show that there are no othgswf constructing a
cartesian closed full subcategory@®NT or ALG than those exhibited in the previous
two sections. The idea that such a result could hold origimhatith Gordon Plotkin,
[Plo81]. For the particular clags-ALG | it was verified by Mike Smyth in [Smy83a],
for the other classes by Achim Jung in [Jun88, Jun89, Jur®0these classification
results depend on the Axiom of Choice.

4.3.1 Domains with least element

Let us start right away with the crucial bifurcation lemmawehich everything else in
this section is based.

Lemma 4.3.1. Let D and E be continuous domains, whefe is pointed, such that
[D — E] is continuous. The® is coherent orF is an L-domain.
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Proof. By contradiction. Assumé is not coherent and’ is not an L-domain. By
Proposition 4.2.16 there exist open sé&sl/;, andUs in D such thatD <« U; and
O <« Us hold but notO <« U; NUs. Therefore there is a directed collectio¥ ) ;< of
open sets covering; N Uz, none of which cover®. We shall also need interpolating
setsU; andU,, thatis,0 < U] < U; andO < Uy < Us.

The assumption abotit not being an L-domain can be transformed into two special
cases. EitheE contains the algebraic domaihfrom Figure 12 (where the descending
chain inA may generally be an ordinal) of from Figure 11 as a retract. We have left
the proof of this as Exercise 4.3.11(3). Note thafifis a retract ofE then[D — F’|
is a retract of D — E] and hence the former is continuous if the latter is. Let us now
prove for both cases theb — E] is not continuous.

Case 1. = A. Consider the step functionfs = (U] \, a) and fo = (U5 \, b).
They clearly approximatg, which is defined by

co, IfxelU; NUsy;
a, ifzxel;\Us;

F@ =934 ifecv,\ 0y
1, otherwise.

Since approximating sets are directed we ought to find annlppendg for f; and f>
approximatingf. But this impossible: Given an upper bound{¢f, f>} below f we
have the directed collectiofh;);c; defined by

o, if v eV
hi(z) =< cpy1, fze(UinNUs)\V;andg(z) = cy;
g(z), otherwise.

No h; is abovey becaus¢U; NUs) \ V; must contain a non-empty piece@fand there
h; is strictly belowg. The supremum of the;, however, equalg. Contradiction.
Case 2. = X. We choose open sets In as in the previous case. The various

functions, giving the contradiction, are now definedfay= (U] \, a), fo = (U} \,
b),

c1, if x € U, ﬁUQ;

a, ifxzel;\Us;

F@ =934 itzcu\vy.
1, otherwise.
T, if x € Vj;

hi(z) =< ca, if x € (U1 NU2)\ Vs
g(z), otherwise.

O

The remaining problem is that coherence does not imply thég an FS-domain
(nor, in the algebraic case, that it is bifinite). It is takemecof by passing to higher-
order function spaces:

Lemma 4.3.2. Let D be a continuous domain with bottom element. Theis an
FS-domain if and only if bottb and[D — D] are coherent.
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(The proof may be found in [Jun90].)
Combining the preceding two lemmas with Lemmas 3.2.5 and’ 342 get the
promised classification result.

Theorem 4.3.3. Every cartesian closed full subcategory@ONT | is contained in
FSorlL.

Adding Proposition 4.2.12 we get the analogue for algehlitamains:

Theorem 4.3.4. Every cartesian closed full subcategoryAlfG ; is contained inB
oral.

Forming the function space of an L-domain may in generakiase the cardinality
of the basis (Exercise 4.3.11(17)). If we restrict the aaafity, this case is ruled out:

Theorem 4.3.5. Every cartesian closed full subcategoryu®CONT | (w-ALG ) is
contained inv-FS (w-B).

4.3.2 Domains without least element

The classification of pointed domains, as we have just ssegoverned by the di-
chotomy between coherent and lattice-like structures.r&ged at the element level,
and at least for algebraic domains we have given the negesgarmation, it is the
distinction between finite mub-closures and locally uniguprema of finite sets. It
turns out that passing to domains which do not necessarilg hattom elements im-
plies that we also have to study the mub-closure of the engity\8e get again the
same dichotomy. Coherence in this case meanshidelf, that is, the largest ele-
ment ofop, is a compact element. This is just the compactned3 a6 a topological
space. And the property that is lattice-like boils down to the requirement that each
element ofE' is above a unique minimal element, 8bis really the disjoint union of
pointed components.

Lemma4.3.6.Let D and F be continuous domains such th& — FE]is continuous.
ThenD is compact orE is a disjoint union of pointed domains.

The proof is a cut-down version of that of Lemma 4.3.1 abovee Surprising
fact is that this choice can be madalependentlffrom the choice between coher-
ent domains and L-domains. Before we state the classifitatibich because of this
independence, will now involv& x 2 = 4 cases, we have to refine the notion of com-
pactness, because just like coherence it is not the fulliionchecessary for cartesian
closure.

Definition 4.3.7. A dcpoD is afinite amalganif it is the union of finitely many pointed
dcpo’sDy, ..., D, such that every intersection @f;’s is also a union ofD;’s. (Com-
pare the definition of mub-complete.)

For categories whose objects are finite amalgams of objecta finother cate-
gory C we use the notatiok-C. Similarly, we writeU-C if the objects are disjoint
unions of objects of.
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Proposition 4.3.8. A mub-complete dcpo is a finite amalgam if and only if the mub-
closure of the empty set is finite.

Lemma 4.3.9.1f both D and[D — D] are compact and continuous théhis a finite
amalgam.

Theorem 4.3.10. 1. The maximal cartesian closed full subcategorigSONT are
F-FS, U-FS, F-L, andU-L.

2. The maximal cartesian closed full subcategorieg\lb& are F-B, U-B, F-aL,
andU-al.

At this point we can answer a question that may have occuordtetdiligent reader
some time ago, namely, why we have defined bifinite domaireyimg ofpointedfinite
posets, where clearly we never needed the bottom elemeh¢ ioharacterizations of
them. The answer is that we wanted to emphasize the uniforynofvpassing from
pointed to general domains. The fact that the objectB-8f can be represented as
bilimits of finite posets is then just a pleasant coincidence

Exercises 4.3.11. 1. [Jun89] Show that a dcpd is continuous if the function
space[D — D] is continuous.

2. LetD be a bounded-complete domain. Show thats a Scott-continuous func-
tion fromD x D to D.

3. Characterize the lattice-like (pointed) domains by fdden substructures:
(a) FE is w-continuous but not mub-complete if and only if domaim Fig-

ure 12 is a retract ofE.

(b) E is mub-complete but not an L-domain if and only if dom&irin Fig-
ure 11 is a retract of.

(c) E is an L-domain but not bounded-complete if and only if donaim
Figure 11 is a retract of~.

(d) E is a bounded-complete domain but not a lattice if and onlypihdin}
in Figure 11 is a retract off.

4. Find a poset in which all pairs have finite mub-closuresibuvhich a triple of
points exists with infinite mub-closure.

5. Show that if for an algebraic domaib the basis is mub-complete théhitself
is not necessarily mub-complete.

6. Show that in a bifinite domain finite sets of non-compachetds may have
infinitely many minimal upper bounds and, even if these driérgle, may have
infinite mub-closures.

7. Show that ifA is a two-element subset of an L-domain thémJ mub(A) is
mub-closed.

8. Prove that bilimits of bifinite domains are bifinite.
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9.

10.

11.

12.
13.

14.
15.
16.

17.

Prove the following statements about retracts of bifiddenains.

(a) A pointed dcpd is a retract of a bifinite domain if and only if there is a
directed family( f;);c of functions onD such that eaclyf; has a finite im-
age and such thamTieI fi = idp. (You may want to do this for countably
based domains first.)

(b) The ideal completion of a retract of a bifinite domain neetibe bifinite.

(c) If D is a countably based retract of a bifinite domain then it isoatise
image of a projection from a bifinite domain. (Without coubility this is
an open problem.)

(d) The category of retracts of bifinite domains is cartessiosed and closed
under bilimits.

Prove that FS-domains have infima for downward directdd.sAs a conse-
guence, an FS-domain which has binary infima, is a bc-domain.

Show that in a continuous domain the Lawson-closed upgtsrare precisely
the Scott-compact saturated sets.

Characterize Lawson-continuous maps between bifipiteadhs.

We have seen that every bifinite domain is the bilimit @kfiposets. As such,
it can be thought of as a subset of the product of all theseefimitsets. Prove
that the Lawson-topology on the bifinite domain is the restn of the product
topology if each finite poset is equipped with the discrepelagy.

Prove that a coherent L-domain is an FS-domain.
Characterize those domains which are both L-domaing=8xdomains.

Characterize Scott-topology and Lawson-topology ah lhedomains and FS-
domains by the ideal of functions approximating the idgntit

[Jun89] LetE be an L-domain such thaly — E] is countably based. Show
that £ is an FS-domain.
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5 Recursive domain equations

The study of recursive domain equations is not easily mt/dy reference to other
mathematical structure theories. So we shall allow ouesete deviate from our gen-
eral philosophy and spend some time on examples. Beyondatioti, our examples
represent three different (and almost disjoint) areas irckvhecursive domain equa-
tions arise, in which they serve a particular role, and inalitparticular aspects about
solutions become prominent. It is an astonishing fact thigtivdomain theory all
these aspects are dealt with in a unified and indeed veryasztsy manner. This rich-
ness and interconnectedness of the theory of recursiveid@yaations, beautiful as it
is, may nevertheless appear quite confusing on a first eneouks a general guideline
we offer the following: Recursive domain equations and tbedin theory for solv-
ing them comprise gechniquethat is worthlearning But in order tounderstandhe
meaningof a particular recursive domain equation, you have to knogvdontext in
which it came up.

5.1 Examples
5.1.1 Genuine equations

The prime example here ¥ = [X — X]. Solving this equation in a cartesian
closed category gives a model for the untypedalculus [Sco80, Bar84], in which, as
we know, no type distinction is made between functions agdraents. When setting
up an interpretation oA-terms with values inD, where D solves this equation, we
need the isomorphisms: D — [D — D] andv: [D — D] — D explicitly. We
conclude that even in the case of a genuine equation we akentpaot only for an
object but an objecplus an isomorphism. This is a first hint that we shall need to
treat recursive domain equations in a categorical settifgvever, the function space
operator is contravariant in its first and covariant in its@®d argument and so there
is definitely an obstacle to overcome. A second problem thiatexample illustrates
is that there may be many solutions to choose from. How do wegmrize a canonical
one? This will be the topic of Section 5.3.

Besides this classical example, genuine equations are Térey come up in se-
mantics when one is confronted with the ability of computerseat information both
as program text and as data.

5.1.2 Recursive definitions

In semantics we sometimes need to make recursive definifimngery much the same
reasons that we need recursive function calls, namely, weeBmes do not know how
often the body of a definition (resp. function) needs to beaded. To give an example,
take the following definition of a space of so-called ‘restimmps’:

R[S — (S®S x R)].

We read it as follows: A resumption is a map which assigns tat@ ither a final state
or an intermediary state together with another resumptmmesenting the remaining
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computation. Such a recursive definition is therefore mghiut a shorthand for an
infinite (but regular) expression. Likewisewdile loop could be replaced by an infinite
repetition of its body. This analogy suggests that the wagnte meaning to a recursive
definition is to seek a limit of the repeated unwinding of traal of the definition
starting from a trivial domain. No doubt this is in accordaneth our intuition, and
indeed this is how we shall solve equations in general. Batradefore we can do
this, we need to be able to turn the right hand side of the fipation into a functor.

5.1.3 Datatypes

Data types are algebras, i.e. sets together with operatitimes study of this notion is
known as ‘Algebraic Specification’ [EM85] or ‘Initial Algel Semantics’ [GTW78].
We choose a formulation which fits nicely into our generafrfeavork.

Definition 5.1.1. Let F' be a functor on a categoi@. An F-algebrais given by an ob-
ject Aand amapf: F(A) — A. Ahomomorphism between algebrasF(A) — A
andf’: F(A") — A’isamapg: A — A’ such that the following diagram commutes:

Fa) 29 poan
f f!

A—9 L x

For example, if we letF” be the functor oveBetwhich assignd U A x A to A
(wherel is the one-point dcpo as discussed in Section 3.2.1), fhaitgebras are pre-
cisely the algebras with one nullary and one binary opendgtidhe sense of universal
algebra. Lehmann and Smyth [LS81] discuss many examplesy Miiethe data types
which programming languages deal with are furthermordlfolieee algebras, or term
algebras on no generators. These are distinguished by ¢héh there is precisely
one homomorphism from them into any other algebra of the sagmature. In our cat-
egorical language we express this by initiality. Term ahgst{alias initialF’-algebras)
are connected with the topic of this chapter because of tl@rMimg observation:

Lemma5.1.2.If i: F(A) — Alis an initial F-algebra theni is an isomorphism.

Proof. Consider the following composition of homomorphisms:

F(A) ) F2(A) FG), F(A)
) F(i) )
A—Td o pay 4

wheref is the unique homomorphism from F(A) — Ato F(i): F?(A) — F(A)
guaranteed by initiality. Again by initiality; o f must beids. And from the first
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quadrangle we gef o i = F (i) o F'(f) = F(ida) = idp(4). Sof andi are inverses
of each other. O

So in order to find an initiaF-algebra, we need to solve the equati®re F(X).
But once we get a solution, we still have to check initialthat is, we must validate
that the isomorphism fron?’(X') to X is the right structure map.

In category theory we habitually dualize all definitions.tthis case we get (final)
co-algebras. Luckily, this concept is equally meaningfhere the mag': F(A) —
A describes the way how new objects of typareconstructedrom old ones, a map
g: A — F(A) stands for the opposite process, thecompositioof an object into its
constituents. Naturally, we want the two operations to beligses of each other. In
other words, ifi: F/(A) — A is an initial F-algebra, then we requitg*: A — F(A)
to be the final co-algebra.

Peter Freyd [Fre91] makes this reasoning the basis of amatio treatment of
domain theory. Beyond and above axiomatizing known reshiidreats contravariant
and mixed variant functors and offers a universal propentyoenpassing both initial-
ity and finality. This will allow us to judge the solution of geral recursive domain
equations with respect to canonicity.

5.2 Construction of solutions

Suppose we are given a recursive domain equakio® F'(X) where the right hand
side defines a functor on a suitable category of domains. Agested by the ex-
ample in Section 5.1.2, we want to repeat the trick which gavéxpoints for Scott-
continuous functions, namely, to take a (bi-)limit of thggencd, F'(I), F(F(L)),....
Remember that bilimits are defined in terms of e-p-pairss Tidkes it necessary that
we, at least temporarily, switch to a different categorye Honvention that we adopt
for this chapter is to leD stand for any category gointeddomains, closed under
bilimits. All the cartesian closed categories of pointed@dins mentioned in Chapter 4
qualify. We denote the corresponding subcategory wherenthigphisms are embed-
dings byD®. Some results will only hold for strict functions. Recalattour notation

forthese wergf: D L E andD  , for categories. Despite this unhappy (but unavoid-
able) proliferation of categories, recall that the cenlfrait-colimit Theorem 3.3.7 and
Corollary 3.3.10 state a close connection: Colimits of exfiag sequences D¢ are
also colimits inD and, furthermore, if the embeddings defining the sequereeear
placed by their upper adjoints, the colimit coincides with torresponding limit. This
will bear fruit when we analyze the solutions we getDf from various angles as
suggested by the examples in the last subsection.

Let us now start by just assuming that our functor restricd.

5.2.1 Continuous functors

Definition 5.2.1. A functor F': D¢ — D°® is called continuous if for every ex-
panding Sequence(Dn)nEN; (enm,: Dn - DnL)nEmEN> with colimit <D7 (eW:)W:GN>
we have that(F (D), (F(e,))nen) is a colimit of the sequencé(F(D,,))nen,
(F(emn): F(Dn) — F(Dm))nCmen)-
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This, obviously, is Scott-continuity expressed for funsto/Vhether we formulate
it in terms of expanding sequences or expanding systemsnigtarial. The question is
not, what is allowed to enter the model, but rather, how muhtthve to check before
| can apply the theorems in this chapter. And sequencesldtaals needed.

This, then, is the central lemma on which our domain theotetihnique for solv-
ing recursive domain equations is based (recall fffats our notation for the upper
adjoint of f):

Lemma 5.2.2. Let F' be a continuous functor on a categddy of domains. For each
embedding:: A — F(A) consider the colimi{D, (e,,)nen) Of the expanding se-

quenced - F(A) ) F(F(A)) FEO) . ThenDis isomorphic toF'(D) via
the maps
fod = || cyént10F(en)* : F(D)— D, and
unfold = || cyFlen)oei, : D— F(D).

For eachn € N they satisfy the equations

F(e,) = unfoldoeniq
F(en)* = ey ofold.

Proof. We know that(D, (e, ),en {0}) is @ colimit over the diagram

F(e)

P pray) FED L

F(A)
(clipping off the first approximation makes no differencejere there is also the co-
cone(F (D), (F(en))nen). The latter is also colimiting by the continuity df. In
this situation Theorem 3.3.7 provides us with unique méatjatorphisms which are
precisely the statefbld andunfold. They are inverses of each other because both co-
cones are colimiting. The equations follow from the expli@scription of mediating
morphisms in Theorem 3.3.7. O

Note that since we have restricted attention to pointed dasneve always have the
initial embedding:: I — F(I). The solution taX =~ F'(X) based on this embedding
we callcanonicaland denote it by IX(F).

5.2.2 Local continuity

Continuity of a functor is a hard condition to verify. Luckilhere is a property which
is stronger but nevertheless much easier to check. It veith arove useful in the next
section.

Definition 5.2.3. A functor F' from D to E, whereD andE are categories of domains,
is calledlocally continuousif the mapsHom(D, D') — Hom(F(D), F(D")), f —
F(f), are continuous for all object® and D’ from D.

Proposition 5.2.4. A locally continuous functoF': D — E restricts to a continuous
functor fromD*® to E°.
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We will soon generalize this, so there is no need for a protiiatpoint.

Typically, recursive domain equations are built from theibaonstructions listed
in Section 3.2. The strategy is to check local continuitydach of these individually
and then rely on the fact that composition of continuous forscyields a continuous
functor. However, we must realize that the function spagestraction is contravariant
in its first and covariant in its second variable, and so tbbri&ue from the preceding
paragraph does not immediately apply. Luckily, it can berggthened to cover this
case as well.

Definition 5.2.5. A functorF': D°? x D' — E, contravariant in its first, covariant in
its second variable, is callddcally continuousif for directed setsd C Hom(D2, D1)
andA’ C Hom(D1, D}) (whereD;, D, are objects irD and D}, D}, are objectsirD’)

we have
F(|_|TA7|_|TAI): |_|T F(fvf/)

feA, freA’
in Hom(F(Dy, D1), F'(D2, Dy)).

Proposition 5.2.6.1f F': D°” x D' — E is a mixed variant, locally continuous functor,
then it defines a continuous covariant funcfofrom D¢ x D’ € to E® as follows:

F(D,D') = F(D,D')for objects, and
F(e,e') = F(e*,¢€') for embeddings.

The upper adjoint td (e, ¢/) is given byF (e, e’).

Proof. Let (e,e*) and(e’,¢’™) be e-p-pairs irD andD’, respectively. We calculate
F(e,e™)o F(e,e') = Fle,e’™) o Fe*,e') = F(e*oe,e’" o€') = F(id,id) = id and
F(e,e') o F(e,e™) = F(e*,e') o Fle,e’™) = F(eoe*, e o€e'*) C F(id,id) = id, S0
F maps indeed pairs of embeddings to embeddings.

For continuity, let((D,,), (emr)) and{(D.,), (e},,,)) be expanding sequences in
D and D’ with colimits (D, (e,)) and (D', (e%)), respectively. By Lemma 3.3.8
this implies | |1, .yen 0 ¢, = idp and |]T e, o €¢/;, = idp. By lo-
cal continuity we havel |1 (en, "Yo Flen,el)* = ]! Len Flen,er) o
Flen,€')) = UTneNF(en oer el o€ ) = F(]! nen én © el UTneNen oe) =
F(idp,idp) = idF(D pry and so (F °(D, D), (F(en, e, ))n6N> is a colimit of
((F(Dn, Dy))nen, (F(emm emn))’nEmEN> u

While it may seem harmless to restrict a covariant functardeddings in order
to solve a recursive domain equation, it is neverthelessleat what the philosophical
justification for this step is. For mixed variant functorsstiguestion becomes even
more pressing since we explicitthangethe functor. As already mentioned, a satis-
factory answer has only recently been found, [Fre91, Pit98ie present Peter Freyd’s
solution in the next section.

Let us take stock of what we have achieved so far. Buildinghksddor recursive
domain equations are the constructors of Section 8,2y, —, etc., each of which is
readily seen to define a locally continuous functor. Trairglgthem to embeddings
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via the preceding proposition, we get continuous functéee or two variables. We
further need the diagonak: D¢ — D¢ x D¢ to deal with multiple occurrences of
X in the body of the equation. Then we note that colimits in adimiower ofD®
are calculated coordinatewise and hence the diagonal antughing of continuous
functors are continuous. Finally, we include constant fargcto allow for constants to
occur in an equation. Two more operators will be added betbebilimit in the next
section and various powerdomain constructions in Chapter 6

5.2.3 Parameterized equations

Suppose that we are given a locally continuous funétan two variables. Given
any domainD we can solve the equatioR = F(D, X) using the techniques of
the preceding sections. Remember that by default we meanadlnéon according
to Lemma 5.2.2 based an I — F(D, 1), so there is no ambiguity. Also, we have
given a concrete representation for bilimits in TheoremB.80FIX(F' (D, -)) is also
well-defined in this respect. We want to show that it exteods functor.

Notation is a bit of a problem. Lef': D, x E;; — E,, be a functor in two
variables. We sef', for the functor orE | ; which mapsF to F'(D, E) for objects and

g: E L Eto F(idp, g) for morphisms. Similarly fo"p,. The embeddings into the
canonical fixpoint ofFp, resp.Fp/, we denote by, e;,... andeg, e}, ..., and we
usee ande’ for the unique strict function frorfiinto D andD’, respectively.

Proposition 5.2.7. Let F': D, x E; — E,, be a locally continuous functor. Then
the following defines a locally continuous functor frém, to E | ;:

On objects : D — FIX(Fp),

onmorphisms :  (f: D — D) — | |Tel, 0 fuoe;,
neN

where the sequend¢,, ). is defined recursively by = idr, fr4+1 = F(f, fn).

Proof. Let D andD’ be objects 0D, and letf: D 1L D’ be a strict function. The
solution toX = F(D, X) is given by the bilimit

FIX(Fp)
€o e1 €9
I Fp(I) F_D(e), F,%(]I) e

and similarly forD’. Corresponding objects of the two expanding sequenceare ¢

nected byf,, : F73(I) R F7,(I). They commute with the embeddings of the expand-
ing sequences: For = 0 we havel'}, (¢/) o fo = ¢’ oidj =€’ = fioe = fi1 0 F2(e)
because there is only one strict map frbto F'* (D’). Higher indices follow by induc-

73



tion:

Fpfe)o fuyr = Flidp, Fpi(€') o F(f, fn)
= F(f,Fp(¢)o fa)
= F(f, fas10Fp(e))
= F(f, fas1) o F(idp, Fp(e))
= fn+2oFg+1(e)'

So we have a second cocone over the sequence defitit{g’p ) and using the fact
that colimits inE ;° are also colimits irE | ;, we get a (unique) mediating morphism
from FIX(Fp) to FIX(Fp/). By Theorem 3.3.7 it has the postulated representation.
Functoriality comes for free from the uniqueness of med@tnorphisms. It re-
mains to check local continuity. So ldtbe a directed set of maps fromto D’. We
easily get| |'A),, = [ |"; , f» by induction and the local continuity &f. The supre-
mum can be brought to the very front by the continuity of cosipon and general
associativity. O

Note that this proof works just as well for mixed variant ftmrs. As an application,
suppose we are given a system of simultaneous equations

X, 2 F(Xi,...,X,)

X, = F.(Xi1,...,X,).

We can solve these one after the other, viewiXg ..., X,, as parameters for the
first equation, substituting the result f&f; in the second equation and so on. 1t is
more direct to pass fror® to D", for which Theorem 3.3.7 and the results of this
chapter remain true, and then solve these equations simeoltasly with the tupling of
the F;. The fact that these two methods yield isomorphic resulk@vn asBekic’s
rule [Bek69].

5.3 Canonicity

We have seen in the first section of this chapter that recaicddmain equations arise
in various contexts. After having demonstrated a technfqueolving them, we must
now check whether the solutions match the particular regouénts of these applica-
tions.

5.3.1 Invariance and minimality

Let us begin with a technique of internalizing the expandiaguencéd — F(I) —
F(F(I)) — --- into the canonical solution. This will allow us to do proofsoait
FIX(F) without (explicit) use of the defining expanding sequence.

Lemma 5.3.1. Let F' be a locally continuous functor on a category of domdinand
leti: F(A) — A be an isomorphism. Then there exists a least homomorphism
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from A to every otherF-algebra f: F(C) — C. It equals the least fixpoint of the
functional¢c 4 on[A — C] which is defined by

dc,alg) = foF(g)oi™t.

Least homomorphisms composejifF(B) — B is also an isomorphism, then
hc,a =hc,Bohp,a.

Proof. The functionalp = ¢¢ 4 is clearly continuous becausgeis locally continu-
ous and composition is a continuous operation. Since we glabally assumed least
elements, the function spagéd — C] containsc as a least element. So the least
fixpoint b, 4 Of ¢c, 4 calculated as the supremum of the chainC ¢(c,) C ---
exists. We show by induction that it is below every homomdspth. Forc, this is
obvious. For the induction step assumg h. We calculates(g) = fo F(g)oi™t C
foF(h)oi~! = h. Itfollows thatfix(¢) = hc 4 C h holds. On the other hand, every
fixpoint of ¢ is @ homomorphismh o i = ¢(h) oi = fo F(h)oi~toi= fo F(h).

The claim about composition of least homomorphisms can la¢sshown by in-
duction. But it is somewhat more elegant to use the invadawicleast fixpoints,
Lemma 2.1.21. Consider the diagram

B—atu_q
oc.B dC, A

[B_>c]£[A_>C]

whereH is the strict operation which assigns hp 4 tog € [B — C]. The diagram
commutes, becausé o ¢c p(g) = fo F(g)oj tohpa = foF(gohpa)oi?
(becauseip 4 is an homomorphism)= ¢c 4(H(g)). Lemma 2.1.21 then gives us
the desired equalityhc,a = fix(éc,a) = H(fix(¢pc,g)) = fix(¢pc,g) o hpa =
hC,B o hB,A- D

Specializing the second algebra in this lemma ta b&'(A) — A itself, we de-
duce that on every fixpoint of a locally continuous functarthexists a least endomor-
phismh4 4. Since the identity is always an endomorphism, the leasb@tphism
must be below the identity and idempotent, i.e. a kernelatpeand in particular strict.
This we will use frequently below.

Theorem 5.3.2. (Invariance, Part 1) et F' be a locally continuous functor on a cate-
gory of domain® and leti: F(A) — A be an isomorphism. Then the following are
equivalent:

1. Aisisomorphic to the canonical fixpoiRtX(F');

2. id4 is the least endomorphism df

3. ida = fix(¢a,4) Wheregy 4: [A — A] — [A — A]isdefinedbya a(g) =
ioF(g)oi ™t
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4. id 4 is the only strict endomorphism df

Proof. (1=>2) The least endomorphism db = FIX(F) is calculated as the least
fixpointof ¢p p: g — foldo F(g)ounfold. With the usual notation for the embeddings
of F™(I) into D we get (by induction)c; = e o e} and¢™(c ) = ¢(¢" 1(cy)) =
¢(en—10ef_,) =foldo F(e,—_1)oF(ef_;)ounfold = e, o€}, where the last equality
follows becausédold andunfold are mediating morphisms. Lemma 3.3.8 entails that
the supremum of the” (c ) is the identity.

The equivalence of (2) and (3) is a reformulation of LemmaZ.3

(3=4) Supposeh: A 1L A defines an endomorphism of the algebra
i: F(A) — A. We apply the invariance property of least fixpoints, Lemmh 21,
to the diagram (wherg now stands forp 4, 4)

A Eoa g

Y Y

[A—»A]E[A—u‘l]

whereH mapsy € [A — A]to hog. This s a strict operation becausés assumed to
be strict. The diagram commutel:o ¢(g) = H(io F(g)oi~!) = hoioF(g)oi~t =
io F(h)oF(g)oi™! = ¢(H(g)). By Lemma 2.1.21 we haviel, = fix(¢) =
H(fix(¢)) = hoida = h.

(4= 1) By the preceding lemma we have homomorphisms betwéesnd
FIX(F). They compose to the least endomorphismsdgmesp.FIX(F'), which we
know to be strict. But then they must be equal to the idenstwa have just shown for
FIX(F') and assumed foA. O

If, in the last third of this proof, we do not assume titt is the only strict endo-
morphism or4, then we still get an embedding-projection pair betwelk{( F') and A.
Thus we have:

Theorem 5.3.3. (Minimality, Part 1) The canonical fixpoint of a locally continuous
functor is a sub-domain of every other fixpoint.

So we have shown that the canonical solution is l#est fixpoint in a relevant
sense. This s clearly a good canonicity result with resfettte first class of examples.
For pedagogical reasons we have restricted attention toaberiant case first, but, as
we will see in section 5.3.3, this characterization is als® for functors of mixed
variance.

5.3.2 Initiality and finality

By a little refinement of the proofs of the preceding subsecive get the desired
result that the canonical fixpoint together withd is an initial F-algebra. One of the
adjustments is that we have to pass completely to strictimms, because Lemma5.3.1
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does not guarantee the existence of strict homomorphischealy of these can we
prove unicity.

Theorem 5.3.4. (Initiality) Let F': D;; — D, be a locally continuous functor on
a category of domains with strict functions. Thiefd: F(D) — D is an initial F-
algebra whereD is the canonical solution t& = F'(X).

Proof. Let f: F(A) =+ Abe a strictF’-algebra. The homomorphismm D — A we
get from Lemma 5.3.1 is strict as we see by inspecting its iiefin That there are no
others is shown as in the proof of Theorem 5.3.2=34). The relevant diagram for
the application of Lemma 2.1.21 is now:

[D — D] i{» [D — A]
(3535 ®A,D

[D—>D]£>[D—>A]
O

By dualizing Lemma 5.3.1 and the proof of Theorem 5.3.2£34), we get the
final co-algebra theorem. It is slightly stronger than ality since it holds for all
co-algebras, not only the strict ones.

Theorem 5.3.5. (Finality) Let F': D — D be a locally continuous functor with canon-
ical fixpointD = FIX(F). Thenunfold: D — F(D) is a final co-algebra.

5.3.3 Mixed variance

Let us now tackle the case that we are given an equation irhvthe&variableX occurs
both positively and negatively in the body, as in our firstrapée X >~ [X — X].
We assume that by separating the negative occurrenceslimpositive ones, we have
a functor in two variables, contravariant in the first and aant in the second. As
the reader will remember, solving such an equation requinedsomewhat magical
passage to adjoints in the first coordinate. We will now seeoww far we can extend
the results from the previous two subsections to this casée that for a mixed variant
functor the concept af’-algebra or co-algebra is no longer meaningful, as theraare
homomorphisms. The idea is to pass to pairs of mappings. l&emil is replaced by

Lemma 5.3.6. Let F': D°? x D — D be a mixed variant, locally continuous functor
andleti: F(A,A) — Aandj: F(B, B) — B be isomorphisms. Then there exists a
least pair of function&: A — B andk: B — A such that

F F
roaa) EEMY pp gy r oy EPE) poaa
i j and j i
A h B B i A
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commute.
The composition of two such least pairs gives another one.

Proof. Define a Scott-continuous functignon[A — B] x [B — A] by ¢(f,g) =
(joF(g,f)oi~tioF(f,g)oj 1) andlet(h, k) be its least fixpoint. Commutativity
of the two diagrams is shown as in the proof of Lemma 5.3.1.

Comment: The statement about composition of least pairs of functisrertainly true for constant
bottom maps, and this is lifted to the limits by induction otree fixpoint computation.

O

By equatingA and B in this lemma, we get a least endofunctiomwhich satisfies
hof = foF(h,h). Again, it must be below the identity. Let us call such endetions
mixed endomorphisms

Theorem 5.3.7. (Invariance, Part 2).et F: D°? x D — D be a mixed variant and
locally continuous functor and let: (A, A) — A be an isomorphism. Then the
following are equivalent:

1. Ais isomorphic to the canonical fixpoiRtX(F);
2. id 4 is the least mixed endomorphismasf

3. ida = fix(¢a,a) Wherepa a: [A — A] — [A — Alisdefined by s a(g) =

ioF(g,g)oi !

4. id 4 is the only strict mixed endomorphismAf

Proof. The proof is of course similar to that of Theorem 5.3.2, but les

spell out the parts where mixed variance shows up. Recalin frBec-
tion 5.2.2 how the expanding sequence definibg = FIX(F) looks like:
I+ FII) 2% PRI, FILI) — ---. If ege1,... are the col-

imiting maps intoD, then F'(ef, eo), F'(e],e1),... form the cocone intd?'(D, D),
which, by local continuity, is also colimiting. The equatfrom Lemma 5.2.2 read:
F(e},en) = unfold o e,41 @andF (e, e,)* = F(ey, €};) = €5, o fold. We show that
then-th approximation to the least mixed endomorphism egaatse’. Forn = 0 we
getc, = eg o e, and for the induction step:

¢"lcr) = ¢(¢"(c))
= dlenoey)
= foldo F(e, o€, e, 0e)) o unfold
= foldo F(e}, en) o Flen,e)) o unfold
= ent10€,,.
(Note how contravariance in the first argumento$hufflese,, ande; in just the right
way.)
(3=4) The diagram to which Lemma 2.1.21 is applied is as beford, b

H:[A— Al - [A— Alnowmapy: A — Atohogoh.
The rest can safely be left to the reader. O
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Theorem 5.3.8. (Minimality, Part 2) The canonical fixpoint of a mixed variant and
locally continuous functor is a sub-domain of every othgrdint.

Now that we have some experience with mixed variance, it é&tprclear how
to deal with initiality and finality. The trick is to pass onogore to pairs of (strict)
functions.

Theorem 5.3.9. (Free mixed variant algebrd)et F': D,,°? x D, — D, be a
mixed variant, locally continuous functor and I& be the canonical solution to

X & F(X, X). Then for every pair of strict continuous functiofis A N F(B,A)

andg: F'(A, B) ', Bthere are unique strict functiorts: A =% Dandk: D =5 B
such that

F(k,h F(h, k
F(B,A) (k. 1) F(D,D) F(D,D) (h k) F(A,B)
f unfold and fold g
h k
A D D B
commute.

We should mention that the passage from covariant to mixe@nt functors,
which we have carried out here concretely, can be done on stnagh categorical
level as was demonstrated by Peter Freyd in [Fre91]. Thefeatf domain theory
which Freyd uses as his sole axiom is the existence and deincé of initial algebras
and final co-algebras for “all” endofunctors (“all” to be @mpreted in some suitable
enriched sense, in our case as “all locally continuous emdbrs”). Freyd’s results
are the most striking contribution to date towards Axiormm&omain Theory, for which
see 8.4 below.

5.4 Analysis of solutions

We have worked hard in the last section in order to show thatdomain theoretic
solutions are canonical in various respects. Besides ¢iiglieassuring, the advantage
of canonical solutions is that we can establish proof rubgsshowing properties of
them. This is the topic of this section.

5.4.1 Structural induction on terms

This technique is in analogy with universal algebra. Whitee dvas no control over
arbitrary algebras of a certain signature, we feel quite footable with the initial or
term algebra. There, every element is described by a terrmaridentifications are
made. The first property carries over to our setting quitdyedor each of the finitary
constructions of Section 3.2, we have introduced a notétiotne basis elements of the
constructed domain, to wit, tupléd, e), variants(d: ¢), one-element constadt € I,
and step-function&l \ e). Since our canonical solutions are built as bilimits, start
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from I, and since every basis element of a bilimit shows up at a fitg@tation already,
Theorem 3.3.11, these can be denoted by finite expressidms.pibof can then be
based on structural induction on the length of these terms.

Unicity, however, is hard to achieve and this is the faulthaf function space. One
has to define normal forms and prove conversion rules. Artreat along these lines,
based on [Abr91b], is given in Chapter 7.3.

5.4.2 Admissible relations

This is a more domain-theoretic formulation of structuraduction, based on certain
relations. The subject has recently been expanded andjegtiaed in an elegant way
by Andrew Pitts [Pit93b, Pit94]. We follow his treatment sédy but do not seek the
same generality. We start with admissible relations, whighhave met shortly in

Chapter 2 already.

Definition 5.4.1. A relation R C D" on a pointed domai is calledadmissiblégf it
contains the constantly-bottom tuple and if it is closedarsiprema ofy-chains. We
write R"™ (D) for the set of all admissible-ary relations onD, ordered by inclusion.
Unary relations of this kind are also calletimissible predicates

This is tailored to applications of the Fixpoint Theorem.29, whence we pre-
ferred the slightly more inclusive conceptwfchain over directed sets. If we are given

a strict continuous functiofi: D % B, then we can apply it to relations pointwise in
the usual way:

FrUR) = ((F @), f@)) | o) € RY.

Proposition 5.4.2. For dcpo’sD and E and admissiblex-ary relationsR on D and.S
onEthe set{f | f'(R) C S} is an admissible predicate g =N E].

We also need to say how admissible relations may be transfibfsy our locally
continuous functors. This is a matter of definition becalwsea are several — and
equally useful — possibilities.

Definition 5.4.3. Let F': D,,°? x D1, — D, be a mixed variant and locally contin-
uous functor on a category of domains and strict functions.admissible action on
(n-ary) relationgfor F is given by a functior"¢! which assigns to each paiD, E)

a mapF{,g{E> fromR(D) x R(E) to R(F (D, E)). These maps have to be compatible

with strict morphisms D, as follows: If f: Do N Dy andg: F; R E> and if
Ry € R(D,) etc., such thaf™ (Ry) C Ry andg™!(S1) C Sa, then

F(f,9)" ' (F{5, 5y (R1.81)) € F{B, 1, (Re, S2).

(Admittedly, this is a bit heavy in terms of notation. But inrcconcrete examples
it is simply not the case that the behaviourffs' ., on R and$ is the same as — or
in a simple way related to — the result of appli/ing the funttofz and.S viewed as
dcpo’s.)

Specializingf andg to identity mappings in this definition, we get:
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Proposition 5.4.4. The mapngglE> are antitone in the first and monotone in the
second variable.

Theorem 5.4.5.Let D, be a category of domains and Ietbe a mixed variant and
locally continuous functor fror® ,°? x D, to D, together with an admissible action
on relations. Abbreviat€IX(F) by D. Given two admissible relation8, S € R"(D)
such that

unfold"®(R) C F™(S,R) and fold"(F"!(R,S)) C S
thenRk C S holds.

Proof. We know from the invariance theorem that the identity/ois the least fixpoint

of ¢, whereg(g) = foldo F(g, g)ounfold. Let P = {f € [D = D] | f™{(R) C S},
which we know is an admissible predicate. We want that thatitieon D belongs
to P and for this it suffices to show thatmapsP into itself. So suppose € P:

d(g) (R) = fold" o F(g,g)" ounfold"’(R) by definition
C fold™ o F(g,g) ¢ (F"®(S,R)) by assumption
C fold™ (FTe(R, S)) becausg ¢ P
c s by assumption
Indeed(g) belongs again t@. O

In order to understand the power of this theorem, we will gttwlo particular
actions in the next subsections. They, too, are taken frot@3p].

5.4.3 Induction with admissible relations

Definition 5.4.6. Let F' be a mixed variant functor as before. We call an admissible
action on @-ary) relationslogical, if for all objectsD and £ and R € R" (D) we have
F{g{m (R,E™) = F(D,E)".

SpecializingR to be the wholeD in Theorem 5.4.5 and removing the assumption
unfold"® (R) C F"¢!(S, R), which for this choice of? is always satisfied for a logical
action, we get:

Theorem 5.4.7. (Induction)Let D, , be a category of domains and lét: D, ,°? x

D, — D, be a mixed variant and locally continuous functor togethéha logical
action on admissible predicates. LBtbe the canonical fixpoint df. If S € R' (D) is
an admissible predicate, for whichc F ¢ (D, S) impliesfold(z) € S, thenS must
be equal taD.

The reader should take the time to recognize in this the li@of structural in-
duction on term algebras.

We exhibit a particular logical action on admissible predés for functors which
are built from the constructors of Section 3.2 Hf S are admissible predicates on the
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pointed domaing and E, then we set

R = up(R)U{L}C Dy,
RxS = {{z,yyeDxFE|zeR,ye S}
[R— 5] = {felD— El[f(R)CS},
ReS = in(R)Uinr(S)C D@ E,

and analogously fop and[- N ]. (This is not quite in accordance with our notational
convention. For example, the correct expressionfor— S]is[- — .]’G){m (R,S).)
The definition of the action for the function space operatmusd make it clear why
we chose the adjective ‘logical’ for it.

We get more complicated functors by composing the basictnamters. The
actions also compose in a straightforward way:Fif G;, and G> are mixed vari-
ant functors on a category of domains then we can define a nvixeant composi-
tion H = F o (G1,G2) by settingH(X,Y) = F(G1(Y, X),G2(X,Y)) for objects
and similarly for morphisms. Given admissible actions facle of /', G, andGs, we
can define an action fdif by settingH"*! (R, S) = F"(G5¢ (S, R), G5¢1(R, S)). It
is an easy exercise to show that this action is logical iftaltonstituents are.

5.4.4 Co-induction with admissible relations

In this subsection we work with another canonical relationdomains, namely the
order relation. We again require that it is dominant if puttie covariant position.

Definition 5.4.8. Let F' be a mixed variant functor. We call an admissible action on
binary relationsextensional if for all objects D and £ and R € R"(D) we have
FI 5y (R,Eg) = Cr(p.m)-

Theorem 5.4.9. (Co-induction) Let D,, be a category of domains and let
F:D,,°? x Dy — D, be a mixed variant and locally continuous functor together
with an extensional action on binary relations. Ltbe the canonical fixpoint of'.

If R € R*(D) is an admissible relation such that for aflz,y) € R we have
{unfold(x), unfold(y)) € Fr/(Cp, R), thenR is contained ir_p.

If we call an admissible binary relatioR on D a simulation if it satisfies the
hypothesis of this theorem, then we can formulate quite isehc

Corollary 5.4.10. Two elements of the canonical fixpoint of a mixed variant and |
cally continuous functor are in the order relation if and pnif they are related by a
simulation.

We still have to show that extensional actions exist. We @edcas in the last
subsection and first give extensional actions for the prmmitonstructors and then
rely on the fact that these compose. SoRetS be admissible binary relations dp,
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resp.E. We set:

R, = {{z,y)eD?|z= Lor{(z,y) € R}
RxS = {{{z,y),(«",y)) € (DxE)?|
(r,2') € Rand{y,y’) € S}
[R— 8] = {{f.9)€[D— E]"|VzeD.(f(x),g(x)) € S}
RS = {{z,y)e(D®E)?|z= Lor

(z =inl(2),y = inl(y’) and(z’,y’) € R) or
(x =inr(2"),y = inr(y’) and(z’,y') € S)}

and similarly for® and[- R -]. We call this family of actions ‘extensional’ because
the definition in the case of the function space is the samerdbéd extensional order
on functions.

Exercises 5.4.11. 1. Find recursive domain equations which characterize linee
versions of the natural numbers from Figure 2.

2. [Ern85] Find an example which demonstrates that the ideahpletion functor
is not locally continuous. Characterize the solutionsia IdI(X, C).

3. [DHR71] Prove that only the one-point poset satisfiesz [P - P].

4. Verify Beki’s rule in the dcpo case. Thatis, I&, E be pointed dcpo’s and let
f:DxE— Dandg: D x E — E be continuous functions. We can solve the
equations

v=f(z,y) y=g=y)
directly by taking the simultaneous fixpo{at b) = fix({f, g)). Or we can solve
for one variable at a time by defining

h(y) = fix(Az.f(z,y))  k(y) = g(h(y),y)

and setting
d = fix(k) c=h(d) .

Verify that(a, b) = (¢, d) holds by using fixpoint induction.

5. Find an example which shows that the Initiality Theoregvbmay fail for non-
strict algebras.

6. Why does Theorem 5.3.5 hold for arbitrary (non-strictadgebras?

7. What are initial algebra and final co-algebra for the fuoctX — I U X on the
category of sets? Show that they are not isomorphic as adgebr

8. (G. Plotkin) LetF" be the functor which map¥ to [X — X and letD be its
canonical fixpoint. This gives rise to a model of the (lazythaa calculus (see
[Bar84, Abr90c, AO93]). Prove that the denotation of theombinator in this
model is the least fixpoint functidix. Proceed as follows:
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(a) Define a multiplication oD by x - y = unfold(x)(y).

(b) The interpretatiory; of Yf is wy - wy Wherew; = fold(z — f(z - x)).
Check that this is a fixpoint of. It follows thatfix(f) C ys holds.

(c) Define a subset of [D — D], by
E={e|eCidpande(wy) -wys C fix(f)} .
(d) Use Theorem 5.3.7 to show thap € E. Theny; C fix(f) is also valid.

9. Given an action on relations for a functor in four variableontravariant in the
first two, covariant in the last two, define an action for thadtor (D, E) —
FIX(F(D,-, E,-)). Prove that the resulting action is logical (extensionékhie
original action was logical (extensional).
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6 Equational theories

In the last chapter we saw how we can build initial algebraer olomains. It is a nat-
ural question to ask whether we can also accommodate eqgaatie. construct free
algebras with respect to equational theories. In univetggbra this is done by factor-
ing the initial or term algebra with respect to the congrieegenerated by the defining
equations, and we will see that we can proceed in a simildidagor domains. Bases
will play a prominent role in this approach.

The technique of the previous chapter, namely, to genehnatel¢sired algebra in
an iterative process, is no longer applicable. A formal prfoo this statement may
be found in [AT89], Section 111.3, but the result is quiteuitive: Recall that anF-
algebrac: F(A) — A encodes the algebraic structure drby giving information
about the basic operations ah whereF'(A) is the sum of the input domains for each
basic operation. Call an equatifiat if each of the equated terms contains precisely
one operation symbol. For example, commutativity of a bir@reration is expressed
by a flat equation while associativity is not. Flat equatioas be incorporated into
the concept off-algebras by including the input, on which the two operatiagree,
only once inF'(A). For non-flat equations such a trick is not available. Whaheed
instead of just the basic operations is a description oéathtoperations oved. In this
case,F'(A) will have to be the free algebra ovdr, the object we wanted to construct!

Thus F-algebras are not the appropriate categorical concept weheguational
theories. The correct formalization, rather, is that of mds and Eilenberg-Moore
algebras.

We will show the existence of free algebras for dcpo’s andioous domains in
the first section of this chapter. For the former, we use thpiftl Functor Theorem
(see [P0i92], for example), for the latter, we constructlibsis of the free algebra as a
quotient of the term algebra.

Equational theories come up in semantics when non-detéstisitanguages are
studied. They typically contain a commutative, assoaiatand idempotent binary
operation, standing for the union of two possible branchpsogram may take. The
associated algebras are known under the name ‘powerdoraaththey have been the
subject of detailed studies. We shall present some of thearl in the second section.

6.1 General techniques
6.1.1 Free dcpo-algebras

Let us recall the basic concepts of universal algebra so &g the notation for this
chapter. A signatur® = (€, ) consists of a sef2 of operation symbols and a map
a: Q — N, assigning to each operation symbol a (finite) aritg-Algebrad = (A, I)

is given by a carrier sed and an interpretation of the operation symbols, in the sense
that for f € Q, I(f) is a map fromA~(/) to A. We also writef, or evenf for the
interpreted operation symbol and speak of the operafiam A. A homomorphism
between twoX-algebrasA and B is a maph: A — B which commutes with the
operations:

Vi e Q. h(falar,...,anp))) = fe(h(ar),..., haqy))
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We denote the term algebra over a 3ewith respect to a signatui® by 7x(X). It
has the universal property that each map fradhto A, whereA = (A,I) is aX-
algebra, can be extended uniquely to a homomorpltisriiz(X) — A. LetV be
a fixed countable set whose elements we refer to as ‘varialiedrs of elements of
Tx (V') are used to encode equations. An equatios: 7 is said to hold in an algebra
A= (A, I)ifforeachmaph: V — Awe haveh(r;) = h(r2). The pair(h(r), h(m2))

is also called an instance of the equatian= . The class of:-algebras in which
each equation from a sétC Tx (V) x Tx(V) holds, is denoted bget( %, £).

Here we are interested idcpo-algebrascharacterized by the property that the
carrier set is equipped with an order relation such thatéoinees a dcpo, and such that
each operation is Scott-continuous. Naturally, we alsairegdhe homomorphisms to
be Scott-continuous. Because of the order we also can in@minequalities. So
from now on we let a paifr;, 2) € € C Tx(V) x Tx(V) stand for the inequality
71 C 7. We use the notatioDCPO(%, €) for the class of all dcpo-algebras over the
signatureX which satisfy the inequalities il. For these we have:

Proposition 6.1.1. For every signatureX and set& of inequalities, the class
DCPO(X, &) with Scott-continuous homomorphisms forms a completgoate

Proof. Itis checked without difficulties th&CPO(X, €) is closed under products and
equalizers, which both are defined as in the ordinary case. O

This proves that we have one ingredient for the Adjoint Fantheorem, namely, a
complete categorpCPO(X, €) and a (forgetful) functot/ : DCPO(X, £) — DCPO
which preserves all limits. The other ingredient is the atlerl solution set condition.
For this setup it says that each dcpo can generate only sgt-nua-isomorphic dcpo-
algebras. This is indeed the case: Given a dbpand a continuous map D — A,
whereA is the carrier set of a dcpo-algehda we construct the dcpo-subalgebrasbf
generated by(D) in two stages. In the first we l&f be the (ordinary) subalgebra of
A which is generated by(D). Its cardinality is bounded by an expression depending
on the cardinality ofD and(2. Then we add taS all suprema of directed subsets
until we get a sub-dcpé of the dcpoA. Because we have required the operations
on A to be Scott-continuous§ remains to be a subalgebra. The crucial step in this
argument now is that the cardinality fis bounded by!°! as we asked you to show
in Exercise 2.3.9(34). All in all, givei, the cardinality ofS has a bound depending
on |D| and so there is only room for a set of different dcpo-algebiidsus we have
shown:

Theorem 6.1.2. For every signature: and seté of inequalities, the forgetful functor
U: DCPO(X, &) — DCPO has a left adjoint.

Equivalently: For each dcpoD the free dcpo-algebra oveld with respect toX
and¢& exists.

The technique of this subsection is quite robust and has bged in [Nel81] for
proving the existence of free algebras under more genetangoof convergence than
that of directed-completeness. This, however, is not thection we are interested in,
and instead we shall now turn to continuous domains.
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6.1.2 Free continuous domain-algebras

None of the categories of approximated dcpo’s, or domairesheve met so far is
complete. Both infinite products and equalizers may failkiste Hence we cannot rely
on the Adjoint Functor Theorem. While this will result in a redechnical proof, there
will also be a clear advantage: we will gain explicit infortioa about the basis of the
constructed free algebra, which may help us to find alteraaescriptions. In the case
of dcpo’s, such concrete representations are quite coatplic see [Nel81, ANR82].

We denote the category of dcpo-algebras, whose carriens éocontinuous do-
main, byCONT (3, £) and speak of (continuoudpmain-algebrasAgain there is the
obvious forgetful functot/: CONT (%, £) — CONT. To keep the notation manage-
able we shall try to suppress mentionldfin particular, we will writeA for U(A) on
objects and make no distinction betwdeandU (h) on morphisms. Let us write down
the condition for adjointness on which we will base our proof

D n

F(D) F(D)

CONT ext(g) ' Jlext(g) CONT(%, €)

A A

In words: Suppose a signatureand a se€ of inequalities has been fixed. Then
given a continuous domaiP we must construct a dcpo-algelfd D), whose carrier
set F'(D) is a continuous domain, and a Scott-continuous functiod — F(D)
such thatF'(D) satisfies the inequalities i& and such that given any such domain-
algebraA and Scott-continuous map: D — A there is a unique Scott-continuous
homomorphisnmext(g): F(D) — A for whichext(g) o 7 = g. (It may be instructive
to compare this with Definition 3.1.9.)

Comment: In fact, what is shown below is that the frdemainalgebra is also free for allcpaalgebras,
in other words, the adjunction betwe®®NT andCONT (X, &) is (up to isomorphism) the restriction
of the adjunction betweeDCPO andDCPO(X, €) established in Theorem 6.1.2.

The idea for solving this problem is to work explicitly witlabes (cf. Section 2.2.6).
So assume that we have fixed a badis <) for the continuous domai®. We will
construct an abstract bagi§'B, <) for the desired free domain-algebF§ D). The
underlying seff’ B is given by the seTx; (B) of all terms overB. On F'B we have two
natural order relations. The first, which we denotéhys induced by the defining sét
of inequalities. We can give a precise definition in the forfra deduction scheme:
Axioms:

(Al) tCtforallt € FB.
(A2) s L tifthis is an instance of an inequality frofn

Rules:

(R1) If f € Q is ann-ary function symbol and ity T ¢1,...,s, T ¢, then

f(Sl,...,Sn) E f(tl,...,tn).
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(R2) If s T t andt T u thens C w.

The relation is the ‘least substitutive preorder’ in the terminology 8t¢88]. It
is the obvious generalization of the concept of a congruesiedon to the preordered
case, and indeedF' B, L) is the free preordered algebra ov@r The associated equiv-
alence relation we denote by. The factor sef’ B/~ is ordered byC and this is the
free ordered algebra ovét.

Let us now turn to the second relation i3, namely, the one which arises from
the order of approximation oB. We sett <* ¢’ if ¢ and¢’ have the same structure and
corresponding constants are relateddyFormally,<# is given through the deduction
scheme:

Axioms:

(A) a=<*bif a<bin B.
Rules:

(R) If f € Q is ann-ary function symbol and iy <° ¢1,...,s, <° t, then

f(Sl, ey Sn) <9 f(tl, e ,tn).
Our first observation is that® satisfies the interpolation axiom:
Proposition 6.1.3. (F'B, <*) is an abstract basis.

Proof. Since <? relates only terms of the same structure, it is quite obvitias it

is a transitive relation. For the interpolation axiom assutmats <* ¢ holds for all
elements; of a finite setM C F'B. For each occurrence of a constarih ¢ let M, be
the set of constants which occur in the same location in otleeofermss € M. Since
M, is finite and sincel/, < a holds by the definition o*, we find interpolating
elements:’ betweenM, anda. Lett’ be the term in which all constants are replaced
by the corresponding interpolating element. This is a tefmctvinterpolates between
M andt in the relation<*. O

The question now is how to combing and<*. As a guideline we take Propo-
sition 2.2.2(2). If the inequalities tell us that should be below; ands, should be
belowt, and if s; approximates, then it should be the case thatapproximatess.
Hence we defines, the order of approximation oR' B, to be the transitive closure of
C o <*® o L. The following, somewhat technical properties will be imstental for
the free algebra theorem:

Proposition 6.1.4. 1. <® o [ is contained in<* o [ o <°.
2. Foreveryn <m € Nwe havg o <* o L) C (Lo <° o )™,

Proof. (1) Assumes <° ¢t T u. LetC' C B be the set of all constants which appear in
the derivation oft C . For eachec € C let M, be the set of constants which appear
in s at the same place asappears irt. Of coursec may not occur irt at all; in this
caseM. will be empty. If it occurs several times thedd. can contain more than one
element. In any casé/. is finite andM. < cholds. Letc’ be an interpolating element
between)M,. andc. We now replace each constanin the derivation ot T u by the
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corresponding constant and we get a valid derivation of a formutaT «’. (The
catch is that an instance of an inequality is transformeal &t instance of the same
inequality.) It is immediate from the construction thak® ¢’ C «’ <*® « holds.

(2) Using (1) and the reflexivity of we get

Eo{sog - ,I;o(-<sorlgo—<s) C Eo-<sogogo-<sog,
The general case follows by induction. O

Lemma 6.1.5. (F'B, <) is an abstract basis.

Proof. Transitivity has been built in, so it remains to look at theeipolation axiom.
Let M < t for a finite setM From the definition of< we get for eacts € M a
sequence of terms C s' <* s2 C ... C s"(9)=1 < s7(5) C ¢ The last two steps
may be replaced by”(s -l o<s I: s” <5 t as we have shown in the preceding
proposition. The collection of alt” is finite and we find an interpolating term
between it and according to Proposition 6.1.3. Because of the reflexivity_owe
haveM <t < t. O

So we can take as the carrier set of our free algebra bvitre ideal completion of
(F'B, <) and from Proposition 2.2.22 we know that this is a continudarmain. The
techniques of Section 2.2.6 also help us to fill in the renmgjmieces. The operations
on F (D) are defined pointwise: If1,,..., A, are ideals and iff € Q is ann-ary
function symbol then we lefrp) (4, ..., A,) be the ideal which is generated by
{f(t1,...,tn) | t1 € A1,...,t, € A,}. We need to know that this set is directed. It
will follow if the operations onF'B are monotone with respect to. So assume we
are given an operation symbgle Q and pairss; < t1,...,s, < t,. By definition,
each pair translates into a sequengc€ s} <* s? C ... <® szn(i) C ¢;. Now we use
Proposition 6.1.4(2) to extend all these sequences to the &ngthm. Then we can
apply f step by step, using Rules (R1) and (R) alternately:

f(s1,oo80) S f(shoosh)y <o f(s3,...,82) C
=<* f(817"'7 n)gf(thvtn)

Using the remark following Proposition 2.2.24 we infer ttia¢ operationg’r(p) de-
fined this way are Scott-continuous functions. THUS) is a continuous domain-
algebra. The generating domdihembeds intd”'( D) via the extensiorn of the mono-
tone inclusion ofB into F'B.

Theorem 6.1.6.F (D) is a continuous domain algebra and is the free continuousédcp
algebra overD with respect to> and €.

Proof. We already know the first part. For the second we must showh&Y) satisfies
the inequalities ir€ and that it has the universal property with respect to aléotg in
DCPO(%, &).

For the inequalities letr;, 2) € € and leth: V' — F(D) be a map. It assigns to
each variable an ideal if B. We must show thak(r;) is a subset ofi(3). As we
have just seen, the idefalr, ) is generated by terms of the forhtr; ) wherek is a map
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from V to F B, such that for each variablec V, k(x) € h(z). So suppose < k(r;)
for such ak. Thenk(r;) C k(72) is an instance of the inequality in the term algebra
FB = Tx(B) and so we know that < k(7») also holds. The term(r») belongs to
h(r2), again because the operationsBfD) are defined pointwise. So< h(r,) as
desired.

To establish the universal property assume that we are giveontinuous map
g: D — Aforadcpo-algebra which satisfies the inequalities frofn The restriction
of g to the setB C D has a unique monotone extensigio the preordered algebra
(F'B,L). We want to show thaj also preserves®. For an axionu <° b this is clear
becauseg is monotone o B, <). For the rules (R) we use thatis a homomorphism
and that the operations ohare monotone:

g(f(sla"'asn)) fA(g(Sl)aag(Sn))
fA(g(tl)v s 7g(tn))
g(f(t,...,tn)) .

Together this says thattranslates the order of approximatieron F' B to C on A, and
therefore it can be extended to a homomorphistig) on the ideal completio’(D).
Uniqueness oéxt(g) is obvious. What we have to show is thkat(g), when restricted

to B, equalsg, because Proposition 2.2.24 does not give an extensiomiyadest
approximation. We can nevertheless prove it here becaasese as the restriction of

a continuous map of. An elementd of D is represented if'( D) as the ideak(d)
containing at least all oaB; = B N |d because of the axioms of our second deductive

system. So we havext(g) (n(d)) = |1'3(n(d)) 2 11'3(Ba) = LIg(Ba) = 9(d).
O

Ir1

Theorem 6.1.7. For any signatureX and seté of inequalities the forgetful functor
U: CONT(X,€) — CONT has a left adjointF. It is equivalent to the restriction
and corestriction of the left adjoint from Theorem 6.1.Z30NT and CONT (3, €),
respectively.

In other words:Free continuous domain-algebras exist and they are alsowinich
respect to dcpo-algebras.

The action of the left adjoint functor on morphisms is obéairby assigning to a
continuous functioy: D — E the homomorphism which extengg o g.

D" p(D)
g F(g)
E—", pp)

We want to show thak’ is locally continuous (Definition 5.2.3). To this end let us
first look at the passage from maps to their extension.
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Proposition 6.1.8. The assignmeny — ext(g), as a map fromD — A] to
[F(D) — A]is Scott-continuous.

Proof. By Proposition 2.2.25 it is sufficient to show this for thetrigion of g to the
basisB of D. Let G be a directed collection of monotone maps frétrio A and let
t € F'B be aterm in which the constants, . .., a,, € B occur. We calculate:

|_|TG(t) = t[LlTG(al)/al, cee UTG(an)/an]
|_|Tt[g(a1)/a1, oo g(an)/an]

geG

= |9,

geG

where we have written[b; /a1, . . ., by /a,] for the term in which each occurrence of
a; is replaced by,. Restriction followed by homomorphic extension followeddx-
tension to the ideal completion gives a sequence of contimfunctiondD — A] —
[B-™ Al —» [FB ™ A] — [F(D) — A] which equalext. O

Cartesian closed categories can be viewed as categoridsdh theHom-functor
can be internalized. The preceding proposition formulategmilar closure property
of the free construction: if the free construction can bedawn to a cartesian closed
category then there the associated monad and the natumafdrenations that come
with it can be internalized. This concept was introduced bdérs Kock [Koc70,
Koc72]. It has recently found much interest under the naroenjgutational monads’
through the work of Eugenio Moggi [Mog91].

Theorem 6.1.9. For any signature: and set€ of inequalities the compositiaii o F
is a locally continuous functor o6ONT.

Proof. The action ofU o F' on morphisms is the combination of composition with
andext. O

If e: D — FE is an embedding then we can describe the actiot’ ofespec-
tively U o F, quite concretely. A basis element 6f D) is the equivalence class of
some terms. Its image undef’'(e) is the equivalence class of the teg which we
get froms by replacing all constants inby theirimage undexs.

If we start out with an algebraic domain then we can choose as its bakigD),
the set of compact elements. The order of approximatioki@) is the order relation
inherited fromD, in particular, it is reflexive. From this it follows that tleenstructed
order of approximation< on F'B is also reflexive, whence the ideal completion of
(F'B, <) is an algebraic domain. This gives us:

Theorem 6.1.10.For any signatureX and seté of inequalities the forgetful functor
fromALG (X, €) to ALG has a left adjoint.

Finally, let us look at;, which maps the generating domdininto the free algebra,
and let us study the question of when it is injective. What aegay is that if injectivity
fails then it fails completely:
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Proposition 6.1.11. For any in-equational theory the canonical magrom a dcpoD
into the free algebrd’(D) over D is order-reflecting if and only if there exists a dcpo-
algebra A for this theory for which the carrier dcpd is non-trivially ordered.

Proof. Assume that there exists a dcpo-algeArahich contains two elementsC b.
Let D be any dcpo and [Z y two distinct elements. We can define a continuous map
from D to A, separating: from y by setting

_foa, ifdCy;
g(d) = { b, otherwise.

Sinceg equalsxt(g) o n, whereext(g) is the unigue homomorphism frof(D) to A,
it cannot be that(z) C n(y) holds.
The converse is trivial, becauganust be monotone. O

6.1.3 Least elements and strict algebras

We have come across strict functions several times alrdatlyerefore seems worth-
while to study the problem of free algebras also in this cent®ut what should a strict
algebra be? There are several possibilities as to what wireeqf the operations on
such an algebra:

1. An operation which is applied to arguments, one of whichagtom, returns
bottom.

2. An operation applied to the constantly bottom vectormetipottom.

3. An operation of arity greater than 0 applied to the cortstdyottom vector re-
turns bottom.

Luckily, we can leave this open as we shall see shortly. Alheed is:

Definition 6.1.12. A strict dcpo-algebr#és a dcpo-algebra for which the carrier set
contains a least element. #rict homomorphisnibetween strict algebras is a Scott-
continuous homomorphism which preserves the least element

For pointed dcpo’s the existence of free strict dcpo-algslman be established as
before through the Adjoint Functor Theorem. For pointed dora the construction of
the previous subsection can be adapted by adding a furtiemda the first deduction
scheme:

(A3) LT tforallt € FB.
Thus we have:

Theorem 6.1.13. Free strict dcpo- and domain-algebras exist, that is, thegdtful
functors

DCPO,,(3,&) — DCPO,,
CONT(2,8) — CONT,,,
and ALG ,(Z,&) — ALG |,

have left adjoints.
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Let us return to the problem of strict operations. The solufs that we can add
a nullary operatiori) to the signature and the inequalilyC x to £ without changing
the free algebras. Because of axiom (A3) we havé_ 0 and because of the new
inequality we have) T L. Therefore the new operation must be interpreted by the
bottom element. The advantage of having bottom explicitlyhie signature is that
we can now formulate equations about strictness of opertiBor example, the first
possibility mentioned at the beginning can be enforced ljraglto £ the inequality

f(xlw' .,.137;_1,0,.137;_;,_1,- . ama(f)) co

for all operation symbolg of positive arity and all < i < a(f). The corresponding
free algebras then exist by the general theorem.

More problematic is the situation wittbCPO, (respectively CONT, and
ALG ). The existence of a least element in the generating dcps dokeimply the
existence of a least element in the free algebra (ExercB@32)). Without it, we
cannot make use of local continuity in domain equationstifeumore, even if the free
algebra has a least element, it need not be the case ihatrict (Exercise 6.2.23(3)).
The same phenomena appears if we restrict attention to ahg efirtesian closed cat-
egories exhibited in Chapter 4. The reason is that we reguigecial structure of the
objects of our category but allow morphisms which do not eres this structure. It is
therefore always an interesting fact if the general comsima for a particular algebraic
theory can be restricted and corestricted to one of thesecatdgories. In the case
that the general construction does not yield the right dbjéanay be that a different
construction is needed. This has been tried for the Plotkimgrgdomain in several
attempts by Karel Hrbacek but a satisfactory solution waainbd only at the cost of
changing the morphisms between continuous algebras, sb87HHrb89, Hrb88].

On a more positive note, we can say:

Proposition 6.1.14.If the free functor maps finite pointed posets to finite paip@sets
then it restricts and corestricts to bifinite domains.

6.2 Powerdomains

6.2.1 The convex or Plotkin powerdomain

Definition 6.2.1. Theconvexor Plotkin powertheorys defined by a signature with one
binary operationd and the equations

1. z Uy =y Y x (Commutativity)
2. (rYy)Yz=2aY (yY z) (Associativity)
3. x Uz = z (ldempotence)

The operationd is calledformal union

A dcpo-algebra with respect to this theory is calledi@o-semilattice The free
dcpo-semilattice over a dcpb is called thePlotkin powerdomairf D and it is de-
noted byP¥(D).
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Every semilattice can be equipped with an order by setting
r<yifzdy=uy.

Formal union then becomes the join in the resulting ordee¢d®n a dcpo-semilattice
this order has little to do with the domain ordering and it & i the focus of our
interest.

The free semilattice over a s&t is given by the set of all non-empty finite subsets
of X, where formal union is interpreted as actual union of sethis Gives us the
first half of an alternative description of the Plotkin podemain over a continuous
domain D with basisB. Its basisF'B, which we constructed as the term algebra
over B, is partitioned into equivalence classesythe equivalence relation derived
from C, that is, from the defining equations. These equivalenssekare in one-to-
one correspondence with finite subsetgfindeed, given a term fromi' B, we can
re-arrange it because of associativity and commutatigity] because of idempotence
we can make sure that each constant occurs just once.

Remember that we have set up the order of approximation F' B as the transitive
closure ofl o <® o L. This way we have ensured that an ideaFi® contains only
full equivalence classes with respectto We may therefore replacEB by B ;(B),
the set of finite subsets d®, where we associate with a tertme F B the set[t] of
constants appearing tn

Let us now also transfer the order of approximation to the hasis.

Definition 6.2.2. Two subsets\/ and N of a set equipped with a relatioR are in
the Egli-Milner relation written asM Rgj,; N, if the following two conditions are
satisfied:

Yae M dbe N. aRb

Vbe N dae M. aRb.

Here we are talking about finite subsets 8f <), so we write< g, for the Egli-
Milner relation between finite subsets Bf Let us establish the connection between
<gMm onPB(B) and< on FB. Firstly, if s <* t then by definition each constant
in ¢t is matched by a constant inwhich approximates it and vice versa. These are just
the conditions fofs] < gar [t]. Since< gy is transitive, we find thag < ¢ implies
[s] <gm [t] in general. Conversely, if two finite subset$ = {a1,...,a,} and
N = {by,...,b,} of B are related by x5, then we can build termsandt¢, such that
[s] = M, [t] = N, ands <° t hold. This is done as follows. For eaghec M letb;;
be an element oV such thatu; < b;(;) and for eachy; € N let a;;) be an element
of M suchthau; ;) < b;. Thenwe can set

s=(@Y..."9anm)
andt = (bj1y Y ... Y bjim))

Y
g (biY..."dby).

We have proved:

Theorem 6.2.3. The Plotkin powerdomain of a continuous domdnwith basis
(B, <) is given by the ideal completion §B¢(B), < g ).
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An immediate consequence of this characterization is teaPtotkin powerdomain
of a finite pointed poset is again finite and pointed. By Prduos6.1.14, the Plotkin
powerdomain of a bifinite domain is again bifinite. This is abnthe best result we
can obtain. The Plotkin power construction certainly dmatrall properties of being
lattice-like, see Exercise 6.2.23(8). It is, on the othardhanot completely haphazard,
in the sense that not every finite poset is a sub-domain of @ptmnain of some other
poset. This was shown in [NUR392].

The passage from terms to finite sets has reduced the size bé#is for the pow-
erdomain drastically. Yet, it is still possible to get an eveaner representation. We
present this for algebraic domains only. For continuousaama similar treatment is
possible but itis less intuitive. Remember that abstraseébdor algebraic domains are
preordered sets.

Definition 6.2.4. For a subsef\ of a preordered sefB, C) let theconvex hullCx(M)
be defined by

{aeB|3ImneM . mCaln}.
A set which coincides with its convex hull is callmmhvex
The following properties are easily checked:
Proposition 6.2.5. Let (B, C) be a preordered set antl/, N be subsets aB.
1. Cx(M) = 1M N | M.
2. M C Cx(M).
3. Cx(Cx(M)) = Cx(M).
4. M C N = Cx(M) C Cx(N).
5. M =gy Cx(M).
6. M =g N ifand only if Cx(M) = Cx(N).

Comment: In (5) and (6) we have used the notatios £ 5,” as an abbreviation for= gy N Jdeas’;
it is not the E M -version of equality as defined in 6.2.2 (which would be neghinore than equality on
the powerset).

While (B;(K(D)),Cga) is only a preordered set, parts (5) and (6) of the preced-
ing proposition suggests how to replace it with an ordered8&iting B, r(K(D))
for the set of finitely generated convex subset& 0b), we have:

Proposition 6.2.6. The Plotkin powerdomain of an algebraic domairis isomorphic
to the ideal completion afB., ¢ (K(D)), Cem).

This explains the alternative terminology ‘convex powerdin’. We will sharpen
this description in 6.2.3 below.

For examples of how the Plotkin powerdomain can be used irasdos, we refer
to [HP79, Abr91a].
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6.2.2 One-sided powerdomains
Definition 6.2.7. If the Plotkin powertheory is augmented by the inequality
zCaxYy

then we obtain théloareor lower powertheory Algebras for this theory are called
inflationary semilatticesThe free inflationary semilattice over a dcpois called the
lower or Hoare powerdomaiof D, and it is denoted b*(D).

Similarly, the terminology concerning the inequality

rJdxYy
is upperor Smyth powerdomairdeflationary semilatticeand P5(D).

It is a consequence of the new inequality that the semiéatirdering and the do-
main ordering coincide in the case of the Hoare powerthdarythe Smyth powerthe-
ory the semilattice ordering is the reverse of the domaireong). This forces these
powerdomains to have additional structure.

Proposition 6.2.8. 1. The Hoare powerdomain of any dcpo is a lattice which has
all non-empty suprema and bounded infima. The sup operatiginén by formal
union.

2. The Smyth powerdomain of any dcpo has binary infima. Theayieen by formal
union.

Unfortunately, the existence of binary infima does not faaomain into one of
the cartesian closed categories of Chapter 4. We take uplesstion again in the next
subsection.

Let us also study the bases of these powerdomains as derowadaf given basis
(B, <) of a continuous domai®. The development proceeds along the same lines
as for the Plotkin powertheory. The equivalence relatiauiged by the equations and
the new inequality has not changed, so we may again repl@tby the set;(B) of
finite subsets oB. The difference is wholly in the associated preordefibn( B).

Proposition 6.2.9. For M and N finite subsets of a bas{#3, <) we have
M LT NifandonlyifM C [N

in the case of the Hoare powertheory and
M T NifandonlyifN C 1M

for the Smyth powertheory.

The restricted order of approximatior® is as before given by the Egli-Milner
relation< g,,. As prescribed by the general theory we must combine it witiuision
(for the lower theory) and with reversed inclusion (for thgper theory), respectively.
Without difficulties one obtains the following connection

s=<gtifandonlyifvVa e [s] b€ [t]. a < b
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and
s <gtifandonlyifvb € [t] Ja € [s]. a < b.

So each of the one-sided theories is characterized by oheftiak Egli-Milner order-
ing. Writing < g and< g for these we can formulate:

Theorem 6.2.10.Let D be a continuous domain with basiB, <).

1. The Hoare powerdomain ob is isomorphic to the ideal completion of
(Br(B), <u)-

2. The Smyth powerdomain dp is isomorphic to the ideal completion of
(Br(B), <s).

For algebraic domains we can replace the preordefB p{B) by an ordered set in
both cases.

Proposition 6.2.11. For subsets\/ and N of a preordered setB, <) we have
1. M=y |M,
2. M <y Nifandonlyif M C |[N,
and
3. M =g 1M,
4. M <g NifandonlyiffM D TN.

Writing Bz, (B) for the set of finitely generated lower subsetdbéndBy ;(B)
for the set of finitely generated upper subset8ofve have:

Proposition 6.2.12.Let D be an algebraic domain.

1. The Hoare powerdomair’(D) of D is isomorphic to the ideal completion of

PBr,s(K(D)), S)-

2. The Smyth powerdomaR¥(D) of D is isomorphic to the ideal completion of
(Bu.s(K(D)), 2)-

From this description we can infer through Proposition B4lthat the Smyth pow-
erdomain of a bifinite domain is again bifinite. Since a dedlairy semilattice has
binary infima anyway, we conclude that the Smyth powerdoro&anbifinite domain
is actually a bc-domain. For a more general statement sedl@gr6.2.15.

6.2.3 Topological representation theorems

The objective of this subsection is to describe the poweadnswe have seen so far
directly as spaces of certain subsets of the given domathowi recourse to bases
and the ideal completion. It will turn out that the charaiz&tions of Proposition 6.2.6

and Proposition 6.2.12 can be extended nicely once we allowsetves topological

methods.
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Theorem 6.2.13.The Hoare powerdomain of a continuous domaiis isomorphic to
the lattice of all non-empty Scott-closed subset®oformal union is interpreted by
actual union.

Proof. Let (B, <) be a basis folD. We establish an isomorphism with the repre-
sentation of Theorem 6.2.10. Given an idéaf finite sets inP*(D) we map it to
(1) = CI(J 1), the Scott-closure of the union of all these sets. Convgréel a
non-empty Scott-closed settwe lety” (4) = B;(|A N B), the set of finite sets of
basis elements approximating some elementinWe first check that) (A) is in-
deed an ideal with respect ta . It is surely non-empty ad was assumed to contain
elements. Given two finite subset$ and N of | A N B then we can apply the inter-
polation axiom to get finite subseld’ and N’ with M < gy, M’ andN <y N'.
An upper bound fol\/ and N with respect tox  is then given byM’ U N”. Itis also
clear that the Scott closure ¢fi N B gives A back again because every elementof
is the directed supremum of basis elements. Herfte v/ = id. Starting out with an
ideal I, we must show that we get it back frap’ (). So letM ¢ I. By the roundness
of I (see the discussion before Definition 2.2.21) there is ardithite set\/’ € I with
M <y M'. Soforeachu € M thereisb € M’ with a < b. Since all elements of
are contained i’ (I), we have that: belongs to|¢(I) N B. Conversely, ifa is an
element of| ¢(1) N B thenfa N ¢(I) is not empty and therefore must megt/ as
D\ fais closed. The sdia} is then below some element blinder the< z-ordering.
Monotonicity of the isomorphisms is trivial and the repnetsdion is proved.

Formal union applied to two ideals returns the ideal of usiohthe constituting
sets. Under the isomorphism this operation is transform&xiinion of closed subsets.

O

This theorem holds not just for continuous domains but adsall dcpo’s and even
all Ty-spaces. See [Sch93] for this. We can also get the full canédtice of all
closed sets if we add to the Hoare powertheory a nullary dipera and the equations

edr=z4de=uc.

Alternatively, we can take the strict free algebra with exgpio the Hoare powertheory.
If the domain has a least element then these adjustmentsoamrgenessary, a least
element for the Hoare powerdomain{d.}. Homomorphisms, however, will only
preserve non-empty suprema.

The characterization of the Smyth powerdomain builds omtlagerial laid out in
Section 4.2.3. In particular, recall that a Scott-compattigted set in a continuous
domain has a Scott-open filter of open neighborhoods andeticdt Scott-open filter
in op arises in this way.

Theorem 6.2.14. The Smyth powerdomain of a continuous domairs isomorphic
to the set:p \ {0} of non-empty Scott-compact saturated subsets ordered/bysed
inclusion. Formal union is interpreted as union.

Proof. Let (B, <) be a basis foD. We show that:p \ {()} is isomorphic taP%(D) =
IdI(Bs(B), <s). Given an ideall we let¢®(I) be(,,;c; TM. This constitutes a
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monotone map fronP“(D) to kp \ {0} by Proposition 4.2.14. In the other direction,
we assign to a compact saturated4éhe set)” (A) of all finite setsM C B such that
A C TM. Why is this an ideal? For every open neighborhébdf A we find a finite
setM of basis elements containeddhsuch thatd C TM becaused is compact and
O = Upecons Tb (Proposition 2.3.6). Then given two finite séts and NV in ¢ (A)
an upper bound for them is any such finite etvith A C TP C 1M N {N. Clearly,
¥ is monotone asp \ {0} is equipped with reversed inclusion.

Let us show that)® o ¢° is the identity orP“(D). ForM < I let M’ < I be above
M in the < s-ordering. Theny® (I) C 1M’ C TM and soM belongs ta)® o ¢%(I).
Conversely, every neighborhood ¢f (1) contains somé M with M € I already as
we saw in Proposition 4.2.14. Sajf (1) is contained irf N for some finite selV C B
then there aréd/ and M’ in I with M C TN andM <5 M’. HenceN <g M’ and
N belongs tal.

The compositiony® o +° is clearly the identity as we just saw that every neighbor-
hood of a compact set contains a finitely generated one anckassaturated set is the
intersection of its neighborhoods.

The claim about formal union follows because on powerseitsnend intersection
completely distribute:¢® (I 9 J) = Ny nes (M UN) = Nyepnes, (TM U

TN) =Nprer TM UNyes TN = ¢%(I) U ¢°(J). U

For this theorem continuity is indispensable. A charaztdion of the free defla-
tionary semilattice over an arbitrary dcpo is not known. Thierested reader may
consult [Hec90, Hec93a] and [Sch93] for a discussion ofdpisn problem.

Corollary 6.2.15. The Smyth powerdomain of a coherent domain with bottom is a
bc-domain.

Proof. That two compact saturated setsand B are bounded by another ong, sim-
ply means” C AN B. In this cased N B is not empty. It is compact saturated by the
very definition of coherence. O

Let us now turn to the Plotkin powerdomain. An iddabf finite sets ordered
by < g will generate ideals with respect to both coarser orders and <. We
can therefore associate witha Scott-closed set? (I) = CI(|JI) and a compact
saturated set® (1) = Marer TM. However, not every such pair arises in this way; the
Plotkin powerdomain is not simply the product of the two aiged powerdomains.
We will be able to characterize them in two special casescdantably based domains
and for coherent domains. The general situation is quiteelesg, as is illustrated
by Exercise 6.2.23(11). In both special cases we do wantdw shat ! is faithfully
represented by the intersectiofl) = ¢ (I) N ¢(I). In the first case we will need
the following weakening of the Egli-Milner ordering:

Definition 6.2.16. For a dcpoD we letLens(D) be the set of all non-empty subsets
of D which arise as the intersection of a Scott-closed and a catrgsturated subset.
The elements dfens(D) we calllenses On Lens(D) we define theéopological Egli-
Milner ordering Cr g, by
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Proposition 6.2.17.Let D be a dcpo.
1. Every lens is convex and Scott-compact.
2. A canonical representation for a ledisis given byl L N CI(L).
3. The topological Egli-Milner ordering is anti-symmetoa Lens(D).

Proof. Convexity is clear as every lens is the intersection of a toavel an upper set.
An open covering of alens = C' N U, whereC'is closed and/ compact saturated,
may be extended to a covering bf by adding the complement @' to the cover.
This proves compactness. Since all Scott-open sets arerdpweised, compactness
of a setA implies the compactness ¢f. Using convexity, we geL. = 1L N |[L C
1L N CI(L) and using boolean algebra we calculafe= 1(CNU) € U = U and
C|(L) = C|(CQU) - C|(C> =C,s0TLN C|(L) CUNC=L.ThenifK =rgy L
we havel K = 1L andCI(K) = CI(L). Equality of K and L follows. O

Before we can prove the representation theorem we need g#terrdescription of
the lensp(1).

Lemma 6.2.18.Let D be a continuous domain with basisand let] be an ideal in
(PB¢(B),<pm). Theng(I) = {||TA | A C UI directed andA N M # ( for all
M e I}.

Proof. The elements of the set on the right clearly belong to thetQdosure ofl J I.
They are also contained i’ () becausg | A is above some element it N M for
eachM € I.

Conversely, letr € ¢(I) and leta € A = [x N B. The setfa is Scott-open and
must therefore meet some € I. From the roundness df we getM’ € I with
M <y M'. The setM U {a} also approximated/’ and so it is contained it.
Hencea € (JI. Furthermore, given any/ € I, let againM’ € I be such that
M <gy M'. Thenzx is above some element 8f’ as¢(I) C 1M’ and therefore
m < «x holds for somen € M. O

Theorem 6.2.19.Let D be anw-continuous domain. The Plotkin powerdomBif{ D)
is isomorphic toLens(D), Crgas). Formal union is interpreted as union followed by
topological convex closure.

Proof. Let (B, <) be a countable basis dP. We have already defined the map
¢: PP(D) — Lens(D). In the other direction we take the functigrwhich assigns to a
lensK the set)™ (CI(K)) N+ (1K). Before we can prove that these maps constitute
a pair of isomorphisms, we need the following informationatreconstructing’? (1)
and¢® (I) from ¢(I).

1. ¢°(I) = Té(I): Since¢®(I) is an upper set which contairg/), only one
inclusion can be in doubt. Let € ¢5(I) andI’ = {M N |x| M € I}. Firstly,
each set inl’ is non-empty and, secondly, we ha¥e N |z <s N N |x whenever
M <gy N. Calculatingg® (1) in the continuous domain (I) gives us a non-
empty set which is below and contained in the lengI).
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2. ¢ (I) = Cl(#(I)): Again, only one inclusion needs an argument. We show that
every element of¢” (I) N B belongs tol ¢(I). Given a basis elementapproximating
some element of’? (1) then we already know that it belongs(tp/. Let M € I be
some set which contains Using countability of the basis we may assume that
extends to a cofinal chain ih (Proposition 2.2.13):M = My <gpm M1 <gm
My <gyp ... . KOnig's Lemma then tells us that we can find a chain of elédmsen
a=ay < a; < as < ...wherea, € A,. The supremum: = |_|TnGN an belongs to
¢(I) and is above.

3. ¢ is monotone: Lefl C I’ be two ideals iNP¢(B), <ga). The larger ideal
results in a bigger lower set’’ (I’) and a smaller upper sét’(I’). Using 1 and 2 we
can calculate for the corresponding lenses:

o(I) C ¢"(I) C o™ (I") = Cl(p(I")),

o(I') C ¢%(I') € ¢%(I) = 19(1).

So¢(I) Crem ¢(I') as desired.

4. The monotonicity of) follows by construction and one half of the topological
Egli-Milner ordering: K C 1M impliesL C TM if we assumeK Crgyy L.

5. ¢ o) = id: Given alensL. = C' N U we clearly havey® (¢(L)) 2 L. Using
the continuity ofD and the compactness 6fwe infer thate® (1/(L)) must equal L.
Every basis element approximating some elemetit o€curs in some set af(L), so
™ (y(L)) = CI(L) is clear. Proposition 6.2.17 above then implies that) (L) gives
backL.

6. ¢ o ¢ = id: Given an ideall we know that eactM € I covers the leng(])
in the sense of M D ¢(I). So M is contained iny®(¢(I)). By (2), we also have
that M is contained i)™ (Cl(¢(I))). Conversely, iffM 2 ¢(I) for a finite seth
of basis elements contained ji (1), then for someV € I we havel M O N by the
Hofmann-Mislove Theorem 4.2.14. For thiswe haveM < s N. On the other hand,
each element of M approximates some € ¢(I) and hence belongs to somg € I.
An upper bound fortV and all NV, in I, therefore, is above/ in < g, which shows
that M must belong td.

7. In the representation theorems for the one-sided poweadws we have shown
that formal union translates to actual union. We combing thi the convex setting:
oI JJ) = "I )N (I 9 J) = (6" (1) U™ (1) N (1) Ue*(J)) =
(Clo(1)) U Cl(o(]))) N (Te(1) UTe(])) = Cl(o(I) Up(J)) N T(o(1) Ug(J])). O

Note that we used countability of the basis only for showinat t* (1) can be
recovered fromp(I). In general, this is wrong. Exercise 6.2.23(11) discussesxa
ample.

The substitution of topological closure for downward cleswas also necessary,
as the example in Figure 13 shows. There, thesset 1a is a lens but its downward
closure is not Scott-closed,is missing. The setl U {c} is also a lens. It is belowt
in the topological Egli-Milner order but not in the plain Eglliiner order. The convex
closure of the union of the two lensés } and A is not a lens¢ must be added.

A better representation theorem is obtained if we pass temst domains (Sec-
tion 4.2.3). (Note that the example in Figure 13 is not cohgrbecause the set
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Figure 13: An algebraic domain in which topological Egli{nér ordering and ordi-
nary Egli-Milner ordering do not coincide.

{c1, a} has infinitely many minimal upper bounds, violating the dtiod in Proposi-
tion 4.2.17.) We first observe that lenses are always Lawkised sets. If the domain
is coherent then this implies that they are also Lawson-@mmnpCompactness will
allow us to use downward closure instead of topologicaluies

Lemma 6.2.20.Let L be a Lawson-compact subset of a continuous dormaiifhen
| L is Scott-closed.

Proof. Let = be an element oD which does not belong tpL. For eachy € L there
existsb, < x such that, Z y. The setD \ 1b, is Lawson-open and contains
By compactness, finitely many such sets cokerlLet b be an upper bound for the
associated basis elements approximatingThen b is an open neighborhood af
which does not intersedt. Hence| L is closed. O

Corollary 6.2.21. The lenses of a coherent domain are precisely the convexdraws
compact subsets. For these, topological Egli-Milner omgiand Egli-Milner ordering
coincide.

Theorem 6.2.22.Let D be a coherent domain. The Plotkin powerdomainlofs
isomorphic to{Lens(D),Cgas). Formal union is interpreted as union followed by
convex closure.

Proof. The differences to the proof of Theorem 6.2.19, which aretakén care of
by the preceding corollary, concern part 2. We must show ¢iab(7)) = |[o(I)
contains all OfiqﬁH(I) N B. In the presence of coherence this can be done through
the Hofmann-Mislove Theorem 4.2.14. The lower g€t(1) is a continuous domain
in itself. For an element of WH (I) N B we look at the filtered collection of upper
setsJ = {faNTM | M € I}. Each of these is non-empty, becaudgelongs to some
M € I, and compact saturated because of coherence. Hgnwtes non-empty. It is
also contained (/) and above:. O
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6.2.4 Hyperspaces and probabilistic powerdomains

In our presentation of powerdomains we have emphasizee#tiere that they are free
algebras with respect to certain (in-)equational theoriem the general existence
theorem for such algebras we derived concrete represensadis sets of subsets. This
is the approach which in the realm of domain theory was sugddgst by Matthew
Hennessy and Gordon Plotkin in [HP79] but it has a rather toadgjtion in algebraic
semantics (see e.g. [NR85]). However, it is not the only yieint one can take. One
may also study certain sets of subsets of domains in their rigim. In topology,
this study of ‘hyperspaces’, as they are called, is a loagding tradition, starting
with Felix Hausdorff [Haul4] and Leopold Vietoris [Vie21jé22]. It is also how the
subject started in semantics and, indeed, continues tovstageed. A hyperspace can
be interesting even if an equational characterization eabha found or can be found
only in restricted settings. Recent examples of this aresételomains introduced by
Peter Buneman [BDW88, Gun92a, Hec90, Puh93, Hec91, He@®8bhnection with
a general theory of relational databases. While these ate gatural from a domain-
theoretic point of view, their equational characterizatidqwhich do exist for some of
them) are rather bizarre and do not give us much insight. Hpetfspace approach is
developed in logical form in Section 7.3.

We should also mention the various attempts to define a piidiatoversion of
the powerdomain construction, see [SD80, Mai85, Gra889 JR#90]. (As an aside,
these cannot be restricted to algebraic domains; the winlecapt of continuous do-
main is forced upon us through the necessary use of the ueivad [0, 1].) They do
have an equational description in some sense but this ggenth¢éhe techniques of
this chapter.

One can then ask abstractly what constitutes a powerdoroasirciction and build
a theory upon such a definition. This approach was taken icyBleHec91]. The
most notable feature of this work is that under this perdpecoo, many of the known
powerdomains turn out to be canonical in a precise sense. tH@a(very natural)
formulation of canonicity is connected with concerns in setits, however, is as yet
unclear.

Exercises 6.2.23. 1. For the proof of Theorem 6.1.6 we can eq@éi also with
the transitive closure ok® o C. Show:
(a) This relation<’ satisfies the interpolation axiom.
(b) In general,<’ is different from<.

(c) The ideal completions gff'B, <) and (F'B, <’) are isomorphic. (Use
Exercise 2.3.9(27).)

(d) What is the advantage ef over<'?

2. Describe the free domain algebra for an arbitrary domalrand an arbitrary
signatureX in the case tha€ is empty.

3. Set up an algebraic theory such that all its dcpo-algelivage least elements
but the embeddinggare not strict.
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10.

11.

Figure 14: Part of an algebraic domain where Theorem 6.0 f

. Let(%, &) be the usual equational theory of groups (or boolean algspr&how
that any dcpo-algebra with respect to this theory is triljiadrdered. Conclude
that the free construction collapses each connected cosemgar the generating
dcpo into a single point.

. Given signature& and X’ and sets of inequalitie€ and &’ we call the pair
(3, &) areductof (3, &) if ¥ C X' and& C &’. In this case there is an obvious
forgetful functor fromC(X', £’) to C(X, €), whereC is any of the categories
considered in this chapter. Show that the general tech@igquid heorem 6.1.2
and 6.1.7 suffice to prove that this functor has a left adjoint

. Likewise, show that partial domain algebras can be coteplé&eely.

. Let A be a free domain-algebra over an algebraic domain. Is it titugt every
operation, if applied to compact elementsdfreturns a compact element?

. LetD = {L Ca,b C T} be the four-element lattice (Figure 1) and Bt =
DxD. Theset{(L,a),(L,b)} and{(a, L), (b, L)} are elements of the Plotkin
powerdomain ofE. Show that they have two minimal upper bounds. Since
{{T,T)} is a top elemen®?(E) is not an L-domain.

. Is the Plotkin powerdomain closed BfB, the category whose objects are bilim-
its of finite (but not necessarily pointed) posets?

Define a natural isomorphism betwefi(D) | —F and[D — E] whereD is
any continuous domair is a complete lattice, and-- stands for the set of
functions which preserve all suprema (ordered pointwise).

We want to construct an algebraic domdinto which Theorem 6.2.19 cannot
be extended. The compact element® @afre arranged in finite sets already such
that they form a directed collection in the Egli-Milner orttey, generating the
ideal I. We take one finite set for each elemen§f{R), the finite powerset
of the reals (or any other uncountable set), and we will hadie < g Mg if

a C B C R. So we can arrange th&/, in layers according to the cardinality
of a. EachM,, contains one ‘white’ anda|! many ‘black’ elements. & G
then the white element d#/,, is below every element dif/g. For the order
between black elements look at adjacent layers. Thergzmany subsets gf
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with cardinality |3| — 1. The|5|! many black elements df/3 we partition into

|| many classes of cardinaliy/3| — 1)!. So we can let the black elements of a
lower neighbor ofMz be just below the equally many black elements of one of
these classes. (The idea being that no two black elemengsamewpper bound.)
Figure 14 shows a tiny fraction of the resulting orderediséD). Establish the
following facts about this domain:

(a) Above a black element there are only black, below a whément there
are only white elements.

. Anideal inK(D) can contain at most one black element from each set.

ii. Anideal can contain at most one black element in eachrlaye

iii. Anideal can contain at most countably many black eletsien

(b)

(c) i. Anideal meeting all sets must contain all white eletaen

ii. If an ideal contains a black element, then it contains kbast black
element.

ii. If an ideal meeting all sets containg then it must contain upper
bounds fora and the uncountably many white elements of the first
layer. These upper bounds must form an uncountable set argisto
solely of black elements.

(d) From the contradiction between b-iii and c-iii concluttiat only one ideal
in K meets all sets, the idedl’ of white elements. Thereforg(l) con-
tains precisely one element, sayShow that b equalsiW U {b} and that it
is Scott-closed. Hence it is far from containing all elensesfl J I = K.

(e) Go a step farther and prove that the lensesofre not even directed-
complete by showing that the idefalve started out with does not have an
upper bound.

12. (R. Heckmann) Remove idempotence from the Hoare paeeythnd study free
domain algebras with respect to this theory. These are ngdoffinite if the
generating domain is finite. Show that the free algebra okerfour-element
lattice (Figure 1) is neither bifinite nor an L-domain.
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7 Domains and logic

There are at least three ways in which the idea of a functiarbegormalized. The first

is via algorithms, which is the Computer Science viewpoiftte second is via value
tables or, in more learned words, via graphs. This is the heratecent — invention of
Mathematics. The third, finally, is via propositions: We agther take propositions
about the function itself or view a function as somethingahhinaps arguments which
satisfy ¢ to values which satisfyy. The encoding in the latter case is by the set of all
such pairg¢,v). The beauty of the subject, then, lies in the interplay betwihese
notions.

The passage from algorithms (programs) to the extensicgdrgption via graphs
is called denotational semantics. It requires sophigtitatructures, precisetjomains
in the sense of this text, because of, for example, recudsfigitions in programs. The
passage from algorithms to propositions about functiorealed program logics. If
we take the computer scientist’s point of view as primannttienotational semantics
and program logics are two different ways of describing tebdviour of programs.
It is the purpose of this chapter to lay out the connectiomben these two forms of
semantics. As propositions we allow all those formulae veteogensions in the domain
under consideration are (compact) Scott-open sets. Thisels well justified because
it can be argued that such propositions correspond to ptiepavhich can be detected
in a finite amount of time [Abr87]. The reader will find lucid@ications of this point
in [Smy92] and [Vic89].

Mathematically, then, we have to study the relation betwg@mains and their
complete lattices of Scott-open sets. Stated for gengpalogical spaces, this is the
famous Stone duality. We treat it in Section 7.1. The retstrcto domains introduces
several extra features which we discuss in a one by one fashiS8ection 7.2. The
actual domain logic, as a syntactical theory, is laid outect®n 7.3.

The whole open-set lattice, however, is too big to be syitalty represented.
We must, on this higher level, once more employ ideas of appration and bases.
There is a wide range of possibilities here, which can be gedwnder the heading
of information systems/\e concentrate on one of these, namely, the logic of compact
open subsets. This is well motivated by the general framewbStone duality and
also gives the richest logic.

7.1 Stone duality
7.1.1 Approximation and distributivity

We start out with a few observations concerning distriitytivSo far, this didn’t play a
role due to the poor order theoretic properties of domairmyNn the context of open
set lattices, it becomes a central theme, because, as wesshalt is closely related
with the concept of approximation. The earliest accounhi tonnection is probably
[Ran53].

A word on notation: We shall try to keep a clear distinctiotvoeen spaces, which
in the end will be our domains, and their open-set latticeg siall emphasize this
by using< for the less-than-or-equal-to relation whenever we spddattices, even
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though these do form a special class of domains, too, as yguremember from
Section 4.1.
Recall that a latticd. is said to belistributiveif for all =, y, z € L the equality

xA(yVz)=(@Ay)V(zA2)

holds. The dual of this axiom is then satisfied as well. Foritfi@itary version of
distributivity, we introduce the following notation for ofce functions: If(A;);c; is a
family of sets then we writg : T HOR \J A; if f(7) takes its value i, for everyi € I.
Complete distributivitgan then be expressed by the equation

AVA =\ N\

i€l Fi 120, €1

It, too, implies its order dual, see Exercise 7.3.19(1).r&€he a lot of room for varia-
tions of this and we shall meet a few of them in this sectiorrelt®mes the first:

Theorem 7.1.1. A complete latticd. is continuous if and only if

AV = VT A7G

el f:Ii»UAiiEI
holds for all families(A4;);c; of directed subsets df.

Proof. The reader should check for himself that the supremum onigin hand side
is indeed over a directed set. Let nawbe an element approximating the left hand
side of the equation. Then for eacke I we haver < \/TA; and so there ig; €
A; with z < a;. Let f be the choice function which selects thege Thenz <
Nic; f(i) andz is below the right hand side as well. Assumihgo be continuous,
this proves/\;.; VTA4; < \/Tf_ 10,04 Nier f(i). The reverse inequality holds in
every complete lattice. L

For the converse fix an elemente L and let(A4;);c; be the family of all directed
setsA for whichz < \/TA. From the equality, which we now assume to hold, we get

thatz = \/1 A f(i). We claim that for each choice functigh 7 - J 4;,

Fi1-%5u4;
the corresponding element= /\,_; f(i) is approximating:. Indeed, if4 is a directed
set withx < \/TAthenA = A;, for somei € I and soy < f(ig) € A. O

Let us now look at completely distributive lattices whicly, the preceding the-
orem, are guaranteed to be continuous. We can go furtherxgréss this stronger
distributivity by an approximation axiom, too.

Definition 7.1.2. For a complete latticd. define a relation on L by
<& yifVAC L. (y§\/A=>EIa€A.x§a).

Call L prime-continuou§ for everyz € L,z = \/ {y | y << =} holds.
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Note that the relatior is defined in just the same way as the order of approxi-
mation, except that directed sets are replaced by arbistargets. All our fundamental
results about the order of approximation hahdytatis mutandisfor <« as well. In
particular, we shall make use of Proposition 2.2.10 and Lar@r2.15. Adapting the
previous theorem we get George N. Raney’s characterizafioamplete distributivity
[Ran53].

Theorem 7.1.3. A complete lattice is prime-continuous if and only if it isqaetely
distributive.

Let us now turn our attention to ‘approximation’ from aboWée right concept for
this is:

Definition 7.1.4. A complete lattice. is said to ben-generatedy a subsetd if for
everyz € L,z = A\(Tz N A) holds. (Dually, we can speak vfgeneratior)

We will study A-generation by certain elements only, which we now intredinc
somewhat greater generality than actually needed for oyrgses.

Definition 7.1.5. An element: of a lattice L is called A-irreducibleif whenever: =
/\ M for a finite setM C L then it must be the case that= m for somem € M.
We sayz is A-primeif x > A M impliesz > m for somem € M, whereM is
again finite. Stating these conditions for arbitraty C L gives rise to the notions
of completelyA-irreducibleand completelyA-prime element. The dual notions are
obtained by exchanging supremum for infimum.

Note that neithen-irreducible norA-prime elements are ever equal to the top ele-
ment of the lattice, because that is the infimum of the emiity se

Proposition 7.1.6. A A-prime element is alsp-irreducible. The converse holds if the
lattice is distributive.

Theorem 7.1.7. A continuous (algebraic) latticé is A-generated by its set of (com-
pletely)A-irreducible elements.

Proof. If = andy are elements oL such thatz is not belowy then there is a Scott-
open filterF which contains: but noty, becausey is closed and the Scott-topology is
generated by open filters, Lemma 2.3.8. Employing the Axiéi@twice in the form
of Zorn’s Lemma, we find a maximal element abayé the inductive sef \ F'. It

is clearly A-irreducible. In an algebraic lattice we can chods® be a principal filter
generated by a compact element. The maximal elements irothplement are then
completelyA-irreducible. O

Theorem 7.1.8.1f L is a complete lattice which is-generated by\-prime elements,
thenL satisfies the equations

AV = /A fm)

meM £ M&UAM meM
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and
iel i Ig}u]m i€l
where the setd/ and M; are finite.
A dual statement holds for lattices which aregenerated by/-prime elements.

Proof. The right hand side is certainly below the left hand side , ssume thap is an-
prime element abovvf_ [N Amens f(m). Surely,pis above),, ., f(m) for

everyf: M -9, UA,, and because it is-prime it is abovef (my) for someM; € M.
We claim that the seB of all f(my) covers at least ond,,,. Assume the contrary.
Then for eachn € M there exists:,,, € A,, \ B and we can define a choice function
fo: m — an. Thenfo(myg,) € B contradicts our construction gf. So we know
that for somem € M all elements of4,, are belowp and hence is also above
Amerr V Am. The proof for the second equation is similar and simpler. O

Note that the two equations are not derivable from each dibeause of the side
condition on finiteness. The first equation is equivalent to

l'/\\/yi = \/(95/\%)
el iel
which can be stated without choice functions. In this lattem it is known as the
frame distributivity lawand complete lattices, which satisfy it, are calfeaines The
basic operations on a frame are those which appear in thetiequnamely, arbitrary
join and finite meet.

7.1.2 From spaces to lattices

Given a topologyr on a setX thenr consists of certain subsets &f. We may think
of 7 as an ordered set where the order relation is set inclusitis drdered set is a
complete lattice because arbitrary joins exist. Let us ek at continuous functions.
In connection with open-set lattices it seems right to tddeeibverse image operation
which, for a continuous function, is required to map opensgens. Set-theoretically,
it preserves all unions and intersections of subsets, ancehall joins and finite meets
of opens. This motivates the following definition.

Definition 7.1.9. Aframe-homomorphistietween complete latticés and L is a map
which preserves arbitrary suprema and finite infima.

We letCLat stand for the category of complete lattices and frame-hoarphisms.
We want to relate it tolop, the category of topological spaces and continuous func-
tions. The first half of this relation is given by the contrasat functor(2, which
assigns to a topological space its lattice of open subset$caa continuous map the
inverse image function.

For an alternative description |2tbe the two-element chaih < T equipped with
the Scott-topology. The open sets of a spAcare in one-to-one correspondence with
continuous functions fronX to 2, if for each open sab C X we setyo to be the map
which assignsT to an element: if and only if x € O. The action of2 on morphisms
can then be expressed By f)(xo) = xo o f.
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XF

Figure 15: A ‘point’ in a complete lattice.

7.1.3 From lattices to topological spaces

For motivation, let us look at topological spaces first. Aaneént of a topological
spaceX is naturally equipped with the following three pieces ofbimhation. We can
associate with it its filteff, of open neighborhoods, the complement of its closure, or
a map froml, the one-element topological space Xo Taking the filter, for example,
we observe that it has the additional property that if a umibapen sets belongs to it
then so does one of the opens. Also, the closure of a poinhkasoperty that it cannot
be contained in a union of closed sets without being conttimene of them already.
The mapl — X, which singles out the point, translates to a frame-homgimisem
from Q(X) to Q(1) = 2. Let us fix this new piece of notation:

Definition 7.1.10. A filter F C L is calledprimeif \/ M € F impliesF N M # (
for all finite M C L. Allowing M to be an arbitrary subset we arrive at the notion of
completely prime filter Dually, we speak dicompletely) prime ideals

Proposition 7.1.11. Let L be a complete lattice and lef' be a subset of.. The
following are equivalent:

1. F'is a completely prime filter.

2. Fis afilterandL \ F' = |z for somex € L.
3. L\ F = |z fora A-prime element € L.

4. xr is a frame-homomorphism fromto 2.

This proposition shows that all three ways of charactegznints through opens
coincide (see also Figure 15). Each of them has its own \drared we will take
advantage of the coincidence. As our official definition weade the variant which is
closest to our treatment of topological spaces.

110



Definition 7.1.12. Let L. be a complete lattice. Thegointsof L. are the completely
prime filters ofL. The collectiorpt(L) of all points is turned into a topological space
by requiring all those subsets pf(L) to be open which are of the form

O, ={Fept(L)|zeF}, z€L.
Proposition 7.1.13. The setd),,, « € L, form a topology ompt(L).

Proof. We have(),,c s Oz, = On.crren. M finite, because points are filters and

Uicr Oz: = Ov,,2, because they are completely prime. O

Observe the perfect symmetry of our setup. In a topologigate an element
belongs to an open sétif x € O; in a complete lattice a poinf belongs to an open
setQ, if x € F.

By assigning to a complete lattide the topological space of all points, and to a
frame-homomorphismh: K — L the mappt(h) which assigns to a poirft the point
h=1(F) (which is readily seen to be a completely prime filter), we @ebntravariant
functor, also denoted byt, from CLat to Top.

Again, we give the alternative description based on charistic functions. The
fact is that we can use the same obj2dor this purpose, because it is a complete
lattice as well. One speaks okahizophrenic objedh such a situation. As we saw in
Proposition 7.1.11, a completely prime filtér gives rise to a frame-homomorphism
xr: L — 2. The action of the functopt on morphisms can then be expressed, as
before, bypt(h)(xr) = xF o h.

7.1.4 The basic adjunction

A topological spaceX can be mapped into the space of points of its open set lattice,
simply mapx € X to the completely prime filte#,. of its open neighborhoods. This
assignment, which we denote hy : X — pt(Q(X)), is continuous and open onto its
image: LetU be an open set iX. Then we get by simply unwinding the definitions:
F, €0y < U €TF, — =z € U. Italso commutes with continuous functions
FrX = Y p(Qf))(nx (x) = f)7H(Ta) = Fry = 0y o f(x). So the family

of all nx constitutes a natural transformation from the identitydian to pt o 2.

The same holds for complete lattices. Wedet L — Q(pt(L)) be the map
which assigng),, to x € L. Itis a frame-homomorphism as we have seen in the
proof of Proposition 7.1.13. To see that this, too, is a rattransformation, we
check that it commutes with frame-homomorphisms< — L: Q(pt(h))(ek (z)) =
pt(h) "1 (04) = Opa) = €1 © h(x), which is essentially the same calculation asifor
We have all the ingredients to formulate the Stone Dualitgdrem:

Theorem 7.1.14.The functors): Top — ClLat andpt: CLat — Top are dual ad-
joints of each other. The units areande.
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Proof. It remains to check the triangle equalities

QxX) — 29, opr((X)))  and
Q
i (nx)
Q(X)
For the left diagram le© be an open set iX.
Qnx)(eax)(0)) =nx'(00) = {ze X |nx(z) € 0o}

= {zeX|F, €00}
= {z€eX|0eF,;}
= {zeX|ze0}=0.

The calculation for the right diagram is verbatim the samedfexchange ande, Q)
andpt, X andL, andO andd. O

While our concrete representation through open sets anglevaty prime filters,
respectively, allowed us a very concise proof of this thegri¢is nevertheless instruc-
tive to see how the units behave in terms of characteristictians. Their type is from
X to(X — 2) — 2andfromL to (L — 2) — 2, whereby the right hand sides are
revealed to be second duals. The canonical mapping intoandeatual is, of course,
point evaluationz — ev,, whereev,(x) = x(z). This is indeed what both ande
do.

7.2 Some equivalences
7.2.1 Sober spaces and spatial lattices

In this subsection we look more closely at the upiemde. We will need the following
concept:

Definition 7.2.1. A closed subset of a topological space is caliedducibleif it is
non-empty and cannot be written as the union of two closepgsrsubsets.

Clearly, an irreducible closed set corresponds via comptgation to aA-
irreducible (and hence-prime) element in the lattice of all open sets.

Proposition 7.2.2. Let X be a topological space. Thepx: X — pt(Q(X)) is in-
jective if and only ifX satisfies th&-separation axiom. It is surjective if and only if
every irreducible closed set is the closure of an element.of

Proof. The first half is just one of the various equivalent definifai7,-separation:
different elements have different sets of open neighbaitkoo
For the second statement observe that/thgrime elements of)(X) are in one-
to-one correspondence with completely prime filters of opets. The condition then
simply says that every such filter arises as the neighborfibedof an element ofX .
O
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Definition 7.2.3. A topological spaceX is calledsoberif nx is bijective.

Note that ifnx is bijective then it must be a homeomorphism because we know
from Section 7.1.4 that it is always continuous and open ¢iéoimage. By the
preceding proposition, a space is sober if and only if if§jsand every irreducible
closed set is the closure of a point. The intuitive meaningfigourse, that a space is
sober if it can be recovered from its lattice of open sets.

Proposition 7.2.4. For any complete latticé the units, : L — Q(pt(L)) is surjective
and monotone. Furthermore, the following are equivalent:

1. 1 is injective.

2. The elements df are separated by completely prime filters.

3. L is A-generated by\-prime elements.

4. Ifx £ y then there exists a completely prime filfésuch thatr € F andy & F.
5. ¢ is order-reflecting.

Proof. We have seen in Proposition 7.1.13 that all open setst@h) are of the form
O, for somex € L. This proves surjectivity. Monotonicity is clear becausefs are
upper sets.

Turning to the equivalent conditions for injectivity, wetedhatO, = O, is equiv-
alenttor € ' < y € F for all completely prime filterd"". In other wordsgy,
is injective if and only if the elements df are separated by completely prime filters.
Givenz € L let 2/ be the infimum of allA-primes abover. We want to show that
x = o'. If 2/ is strictly abover then there exists a completely prime filter contain-
ing #’ but notz. Using the equivalence of Proposition 7.1.11, we see thstidhthe
same as the existence of\gprime element inz \ 12’, a contradiction. From (3) the
last two statements follow easily. They, in turn, imply ictigity (which, in a general
order-theoretic setting, is strictly weaker than orddteion). O

Definition 7.2.5. A complete latticd. is calledspatialif €, is bijective.

The intuitive meaning in this case is that a spatial lattiaa be thought of as a
lattice of open sets for some topological space. A directeqnence of Theorem 7.1.8
is the following:

Theorem 7.2.6. A spatial lattice is a frame. In particular, it is distribwe.

Theorem 7.2.7. For any complete latticé the topological spacet(L) is sober. For
any topological spac& the latticeQ2(X) is spatial.

Proof. The space of points of a lattice is certainlyTy, because if we are given dif-
ferent completely prime filters then thereasc L which belongs to one of them but
not the other. Hence), contains one but not the other. For surjectivityigf ;. let
A be an irreducible closed set of filters. First of all, the umib of all filters in A is a
non-empty upper set ih which is unreachable by joins. Hence the complemet of
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is a principal ideal z. Also, the complement ofl in pt(L) certainly contain®,.. We
claim thatz must beA-prime. Indeed, ify A z < x thenA is covered by the comple-
ments of0, andO,, whence it is covered by one of them, say the complemett,of
which means nothing else thgn< zx. It follows thatA is contained in the closure of
the pointL \ |z. On the other hand,, \ |« belongs to the closed sédtas each of its
open neighborhoods contains an elemen of

The second statement is rather easier to argue fap. ahdO’ are different open
sets then there is an elemenf X contained in one but not the other. Hence the
neighborhood filter ofz, which is always completely prime, separatégndO’. O

Corollary 7.2.8. The functors£? andpt form a dual equivalence between the category
of sober spaces and the category of spatial lattices.

This result may suggest that a reasonable universe of tgpallospaces ought to
consist of sober spaces, or, if one prefers the latticertmoside, of spatial lattices.
This is indeed true as far as spaces are concerned. For tloe Iside, however, it
has been argued forcefully that the right choice is the lazgi=gory offrames(which
are defined to be those complete lattices which satisfy tedrdistributivity law,
Section 7.1.1). The basis of these arguments is the factftd@atframes exist, see
[Joh82], Theorem I1.1.2, a property which holds neitherdomplete lattices nor for
spatial lattices. (More information on this is in [Isb72h8@, Joh83].) The choice
of using frames for doing topology has more recently founpigut from theoretical
computer science, because it is precisely the frame digivity law which can be
expected to hold for observable properties of processesn Ehough this connection
is to a large extent theaison d&trefor this chapter, we must refer to [Abr87, Abr91b,
Vic89, Smy92] for an in-depth discussion.

7.2.2 Properties of sober spaces

Because application gft o €2 to a spaceX is an essentially idempotent operation, it
is best to think obt(Q2(X)) as a completion o . It is commonly called theoberifi-
cationof X. Completeness of this particular kind is also at the heattt@MHofmann-
Mislove Theorem, which we have met in Section 4.2.3 alreadtiahich we are now
able to state in its full generality.

Theorem 7.2.9.Let X be a sober space. The sets of open neighborhoods of compact
saturated sets are precisely the Scott-open filtef3(iX ).

Proof. It is pretty obvious that the neighborhoods of compact sisbaree Scott-open
filters in (X). We are interested in the other direction. Given a Scottdiile
ter ¥ C Q(X) then the candidate for the corresponding compact sé&f is (| F.
We must show that each open neighborhood&odbelongs taF already. For the sake
of contradiction assume that there exists an open neigbbd® ¢ F. By Zorn's
Lemma we may further assume th@tis maximal with this property. Becauseis

a filter, O is A-prime as an element ¢2(XX) and this is tantamount to saying that its
complementd is irreducible as a closed set. By sobriety it must be thewrsf a
single pointz € X. The open sets which do not contairare precisely those which
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are contained il. Hence every open set from the filtércontainse and sar belongs
to K. This, finally, contradicts our assumption tiiais a neighborhood oK. O

This appeared first in [HM81]. Our proof is taken from [KP9Hote that it relies,
like almost everything else in this chapter, on the Axiom bbfce.

Saturated sets are uniquely determined by their open nergbbds, so we can
reformulate the preceding theorem as follows:

Corollary 7.2.10. Let X be a sober space. The poset of compact saturated sets or-
dered by inclusion is dually isomorphic to the poset of Sop#n filters in2(X) (also
ordered by inclusion).

Corollary 7.2.11. Let X be a sober space. The filtered intersection of a family of
(non-empty) compact saturated subsets is compact (anémpty). If such a filtered
intersection is contained in an open getthen some element of the family belongs to
O already.

Proof. By the Hofmann-Mislove Theorem we can switch freely betweampact satu-
rated sets and open filtersii{ X ). Clearly, the directed union of open filters is another
such. This proves the first statement. For the intersecfiarfiiered family to be con-
tained inO means thaO belongs to the directed union of the corresponding filters.
ThenO must be contained in one of these already. The claim abountéesection of
non-empty sets follows from this directly because we can k= (. O

Every Ty-space can be equipped with an order relation, callecspeeialization
order, by settingz C y if for all open set0, =z € O impliesy € O. We may then
compare the given topology with topologies defined on omdlesets. One of these
which plays a role in this context, is thveeak upper topologylt is defined as the
coarsest topology for which all sets of the fojm are closed.

Proposition 7.2.12.For anTy-spaceX the topology onX is finer than the weak upper
topology derived from the specialization order.

Proposition 7.2.13.A sober space is a dcpo in its specialization order and itetogy
is coarser than the Scott-topology derived from this order.

Proof. By the equivalence between sober spaces and spatial $attieenay think of
X as the points of a complete lattide It is seen without difficulties that the special-
ization order onX then translates to the inclusion order of completely prirtter§.
That a directed union of completely prime filters is again eptetely prime filter is
immediate.

Let UEEI F; be such a directed union. It belongs to an opertseif and only if
x € F; for somei € I. This shows that eadh,, is Scott-open. O

A dcpo equipped with the Scott-topology, on the other hasdjdt necessarily
sober, see Exercise 7.3.19(7). We also record the folloféingalthough we shall not
make use of it.

Theorem 7.2.14.The category of sober spaces is complete and cocomplesealkd
closed under retracts formed in the ambient catedgany.
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For the reader’s convenience we sum up our consideratioagable comparing
concepts in topological spaces to conceptstiil) for L a complete lattice.

space pt(L)
point completely prime filter (c. p. filter)
specialization order inclusion order
open set c. p. filters containing somes L
saturated set c. p. filters containing some upper set

compact saturated set c. p. filters containing a Scott-ofien fi

7.2.3 Locally compact spaces and continuous lattices

We already know that sober spaces may be seen as dcpo’s witdanconsistent
topology. We move on to more special kinds of spaces withitnd@characterize our
various kinds of domains through their open-set latticas: fidst step in this direction
is to introduce local compactness. We have:

Lemma 7.2.15. Distributive continuous lattices are spatial.

Proof. We have shown in Theorem 7.1.7 that continuous lattices\agenerated by
A-irreducible elements. In a distributive lattice theseas® A-prime. O

Now recall that a topological space is called locally contplaevery element has
a fundamental system of compact neighborhoods. This aloas dot imply sobriety,
as the ascending chain of natural numbers, equipped withvdak upper topology,
shows. But in combination with sobriety we get the followimeautiful result;

Theorem 7.2.16. The functor? and pt restrict to a dual equivalence between the
category of sober locally compact spaces and the categodystributive continuous
lattices.

Proof. We have seen in Section 4.2.3 already tBat< O’ holds inQ(X) if there
is a compact set betwe&nhandO’. This proves that the open-set lattice of a locally
compact space is continuous.

For the converse, let’ be a point in an open sét,, that is,z € F'. A completely
prime filter is Scott-open, therefore there is a further edaty € F with y < .
Lemma 2.3.8 tells us that there is a Scott-open fifiecontained infy which con-
tainsz. We know by the previous lemma that a distributive contiraiadtice can be
thought of as the open-set lattice of its space of points¢iyHurthermore, is guaran-
teed to be sober. So we can apply the Hofmann-Mislove The@r@r8 and get that
the setA of points of L, which are supersets 6f, is compact saturated. In summary,
F'is contained irY,, which is a subset ofl and this is a subset @f,. O

From now on, all our spaces are locally compact and sober.tfiilee properties
introduced in the next three subsections, however, argentdent of each other.
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7.2.4 Coherence

We have introduced coherence in Section 4.2.3 for the spesrsa of continuous do-
mains. The general definition reads as follows:

Definition 7.2.17. Atopological space is callecbherentif it is sober, locally compact,
and the intersection of two compact saturated subsets ipaotn

Definition 7.2.18. The order of approximation on a complete lattice is caltadlti-
plicativeif <« y andz <« z implyz < y A z. A distributive continuous lattice for
which the order of approximation is multiplicative is callarithmetic

As a generalization of Proposition 4.2.16 we have:

Theorem 7.2.19. The functor) and pt restrict to a dual equivalence between the
category of coherent spaces and the category of arithmaticés.

Proof. The same arguments as in Proposition 4.2.15 apply, so ié& that the open-
set lattice of a coherent space is arithmetic. For the caavere may, just as in the
proof of Theorem 7.2.16, invoke the Hofmann-Mislove Theorét tells us that com-
pact saturated sets pf(L) are in one-to-one correspondence with Scott-open filters.
Multiplicativity of the order of approximation is just whate need to prove that the
pointwise infimum of two Scott-open filters is again Scoteop O

7.2.5 Compact-open sets and spectral spaces

By passing from continuous lattices to algebraic ones we get

Theorem 7.2.20. The functor? and pt restrict to a dual equivalence between the
category of sober spaces, in which every element has a fugrttahsystem of compact-
open neighborhoods, and the category of distributive aigiebattices.

The proof is the same as for distributive continuous lagtiGeheorem 7.2.16. We
now combine this with coherence.

Definition 7.2.21. A topological space, which is coherent and in which evergnelat
has a fundamental system of compact-open neighborhoazid|ésl aspectral space

Theorem 7.2.22. The functor) and pt restrict to a dual equivalence between the
category of spectral spaces and the category of algebratihmetic lattices.

Having arrived at this level, we can replace the open-sttéatvith the sublattice
of compact-open subsets. Our next task then is to refore@lmne-duality with bases
of open-set lattices. For objects we have:

Proposition 7.2.23.Let L be an algebraic arithmetic lattice. The completely prime fil
ters of L are in one-to-one correspondence with the prime filted$@d¥f). The topology
onpt(L) is generated by the set of &I, wherex is compact inL.
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Proof. Given a completely prime filteF' in L, we letF' N K(L) be the set of compact
elements contained in it. This is clearly an upwards closgdrsK(L). It is a filter,
becausd. is arithmetic. Primeness, finally, follows from the facttliais Scott-open
and hence equal t(F' N K(L)). Conversely, a filte(7 in K(L) generates a filtetG
in L. For complete primeness let be a subset of. with join in 1G. L is algebraic.
So we may replacd by B = | AN K(L) and\/ B € 1G will still hold. BecauselG
is Scott-open, there is a finite subségtof B with \/ M € 1G. Some element off
must be belowy/ M and primeness then gives us that some elemehtf belongs ta&
already.

The statement about the topologymii L) follows from the fact that every element
of L is a join of compact elements. O

A frame-homomorphism between algebraic arithmetic latioeed not preserve
compact elements, so in order to represent it through basesesd to resort to re-
lations, as in Section 2.2.6, Definition 2.2.27. Two addiibaxioms are needed,
however, because frame-homomorphisms are more speaiebttat-continuous func-
tions.

Definition 7.2.24. A relation R between lattice¥ andW is calledjoin-approximable
if the following conditions are satisfied:

1L Ve, eVVy,y eW. (2’ >z Ry >y =2’ Ry');
2.V2 e VVNC,, W.(Vye N. 2 Ry=z R (\VN));
B.YVMC,, VVyeW. Vzee M.z Ry=— (AM) Rvy);

4.YM Cy V Ve € W. (V M) Rz = 3N C,, W.
(x=\VNAYne€ NImeM. mRn)).

The following is then easily established:

Proposition 7.2.25. The category of algebraic arithmetic lattices and frame-
homomorphisms is equivalent to the category of distrileutiattices and join-
approximable relations.

By Proposition 7.2.23 we can replace the compound fungter Idl by a direct
construction of a topological space out of a distributiitida. We denote this functor
by spec, standing for thespectrumof a distributive lattice. We also contraksto (2 to
KQ. Then we can say:

Theorem 7.2.26.The category of spectral spaces and continuous functiodsasly
equivalent to the category of distributive lattices andchjaipproximable relations via
the contravariant functor&) andspec.

We supplement the table in Section 7.2.2 with the followingnparison of con-
cepts in a topological space and concepts in the spectrurdisfrébutive lattice.
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space spec(L)

point prime filter
specialization order  inclusion order
compact-open set prime filters containing same L
open set union of compact open sets
saturated set prime filters containing some upper set
compact saturated set  prime filters containing a filter

It has been argued that the category of spectral spacesiigtiaetting for deno-
tational semantics, precisely because these have a fiflitgigal’ description through
their distributive lattices of compact-open subsets, Seay[92], for example. However,
this category is neither cartesian closed, nor does it hapeifits for endofunctions,
and hence does not provide an adequate universe for the Sesnafrcomputation. An
intriguing question arises, of how the kinds of spaces tiaaklly studied in topology
and analysis can best be reconciled with the computatiomaitions reflected in the
very different kinds of spaces which arise in Domain Theoly interesting recent
developmentis Abbas Edalat’s use of Domain Theory as this fzasa novel approach
to the theory of integration [Eda93a].

7.2.6 Domains

Let us now see how continuous domains come into the pictunest Wwe note that
sobriety no longer needs to be assumed:

Proposition 7.2.27. Continuous domains egipped with the Scott-topology arersob
spaces.

Proof. Let A be an irreducible closed set in a continuous dondaiand letB = | A.
We show thatB is directed. Indeed, givem andy in B, then neitherD \ T2 nor
D\ Ty contain all of A. By irreducibility, then, they can’t coved. Hence there is
a € Antznty. Butsincefz N1y is Scott-open, there is also some a in this set.
This gives us the desired upper bound foandy. It is plain from Proposition 2.2.10
that A is the closure of | B. O

The following result of Jimmie Lawson and Rudolf-Eberharaftshann, [Law79,
Hof81], demonstrates once again the central role playedhtirtuous domains.

Theorem 7.2.28.The functors2 andpt restrict to a dual equivalence betwe€ONT
and the category of completely distributive lattices.

Proof. A Scott-open seO in a continuous domai® is a union of sets of the form
T2 wherexz € O. For each of these we hafe << O in op. This proves complete
distributivity, as we have seen in Theorem 7.1.3.

For the converse, ldt be completely distributive. We already know that the points
of L form a dcpo (where the order is given by inclusion of filtersjiahat the topol-
ogy onpt(L) is contained in the Scott-topology of this dcpo. Now we shbat £v-
ery completely prime filtei® has enough approximants. Observe that< F cer-
tainly holds in all those cases whefeF’ is an element of’ as directed suprema
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of points are unions of filters. Now given € F we get from prime-continuity
thatz = \/{y | y <« =} and so there must be somec F with y <« z. Suc-
cessively interpolating betweenandx gives us a sequence of elements such that
Yy K ... <Ky, K ... ¥y ¥ z,|ustas in the proof of Lemma 2.3.8. The
set{J,.en 19n then is a completely prime filter containingwith infimum in F'. The
directedness of these approximants is clear becauisefiltered. As a consequence,
we have tha#” < F holds if and only if A F’ belongs toF'.

We are not quite finished, though, because we also need to thlabwe get the
Scott-topology back. To this end |6tbe a Scott-open set of points, thatis2> F’ €
O impliesF € O andUTiGI F; € O impliesF; € O for somei € I. Letz be the
supremum of all elements of the for/yF', F € O. We claim thatd = O,. First of
all, for eachF € O there isF’ € O with F/ <« F, which, as we have just seen, is
tantamount tg\ F’ € F, hencer belongs to allFF and® C 0, is proved.

Conversely, if a poinfz containse then it must contain somg F', F' € O, because
it is completely prime. Hencé& belongs td), too, and we have showi, C 0. [

To this we can add coherence and we get a dual equivalencedrt@oherent
domains and completely distributive arithmetic lattic®s we can add algebraicity and
get a dual equivalence between algebraic domains and aigelempletely distributive
lattices. Adding both properties characterizes what cacdfled 2/3-bifinite domains
in the light of Proposition 4.2.17. We prefer to speak of aeh¢ algebraic domains.
As these are spectral spaces, we may also ask how they camatzeiehized through
the lattice of compact open subsets. The answer is rath@lesirA compact open set
in an algebraic domaif is a finite union of sets of the forrfx for ¢ € K(D). These,
in turn, are characterized by beingirreducible and als@-prime.

Theorem 7.2.29.The dual equivalence of Theorem 7.2.26 cuts down to a dual-equ
alence of coherent algebraic domains and lattices in whigrgelement is the join of
finitely manyv-primes.

Proof. We only need to show that if a lattice satisfies the condittatesl in the theo-
rem, then its ideal completion is completely distributiiut this is trivial because a
principal ideal generated by\a-prime is completely/-prime in the ideal completion
and so the result follows from Theorem 7.1.3. O

All the combined strength of complete distributivity, atgaicity and multiplica-
tivity of the order of approximation, however, does stilltmestrict the corresponding
spaces far enough so as to bring us into one of our cartesiaedaicategories of do-
mains. Let us therefore see what we have to add in order tacteize bifinite do-
mains. The only solution in this setting appears to be a katina of mub-closures
into the lattice of compact-open subsets, that is to saysubeset of/-primes has the
upside-down finite mub property (Definition 4.2.1). Let ussup these considerations
in a theorem:

Theorem 7.2.30.A lattice V' is isomorphic to the lattice of compact-open subsets of
an F-B-domain(Definition 4.3.7)if and only if, firstly,V has a least element, secondly,
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each element of is the supremum of finitely manyprimes and, thirdly, for every
finite setM of vV-primes there is a finite supersat of vV-primes such that

VA C M 3B CN. /\A:\/B.

The additional requirement that there be a largest eleménithvis alsov-prime, char-
acterizes the lattices of compact-open subsets of bifipiteaihs.

The extra condition about finite mub-closures is not a firsteo axiom and cannot
be replaced by one as was shown by Carl Gunter in [Gun86]. Meler class of
algebraic bc-domains has a rather nicer description:

Theorem 7.2.31.A lattice V' is isomorphic to the lattice of compact-open subsets of
an algebraic bc-domain if and only if it has a least elemeatheelement of is the
supremum of finitely many-primes and the set of-primes plus least elementis closed
under finite infima.

7.2.7 Summary

We have summarized the results of this section in Figure 16Table 1. As labels
we have invented a few mnemonic names for categories. Wetwea’'them outside
this subsection. The filled dots correspond to categoriewffiich there is also a char-
acterization in terms of compact-open subsets (specteades). A similar diagram
appears in [GHK 80] but there not everything, which appears to be an intémeof
categories, really is one.

7.3 The logical viewpoint
This material is based on [Abr91b].

7.3.1 Working with lattices of compact-open subsets

Having established the duality between algebraic domaims their lattices of
compact-open subsets we can now ask to what extent we camtmmtheory through
these lattices. We have already indicated that such an apipraffers many new in-
sights but for the moment our motivation could simply be tatking with lattices is
a lot easier than working with dcpo’s. ‘Doing domain theamgfers to performing the
domain constructions of Sections 3.2, 3.3, 5 and 6, at leasfirst approximation.

Let us try this out. Suppose you knd¢f2( D) for some bifinite domairD, how do
you construcKQ(D | ), the lattice of compact-open subsets of the lifted domain@ T
answer is simple, just add a new top eleméf®2 (D, ) = KQ(D)T. Coalesced sum
also works fine:

KQDa E) = (KQD)\{D}) x (KUE)\{E}) U{Da® E}.

We encounter the first problems when we look at the cartes@augt. While it is clear
that every compact-open subset/of E is a finite union of products of compact-open
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TOP
SOB
L-C

COH

C-O

CONT

SPEC

C-CONT
ALG
C-ALG

aBC

Topological spaces. No Stone-dual.
Sober spaces vs. spatial lattices.

Locally-compact sober spaces vs. continuous distributive
lattices.

Coherent spaces (= locally compact, sober, and interseofio
compact saturated is compact) vs. arithmetic lattices gtridu-
tive, continuous, and order of approximation is multiptica).

Sober spaces with a base of compact-open sets vs. distabuti
algebraic lattices.

Continuous domains with Scott-topology vs. completely- dis
tributive lattices.

Spectral spaces vs. algebraic arithmetic lattices vstildligive
lattices.

Coherent domains vs. arithmetic completely distributatti¢es.
Algebraic domains vs. algebraic completely distributatices.

Coherent algebraic domains vs. algebraic arithmetic cetapl
distributive lattices vs. distributive lattices in whickezy ele-
ment is the finite join of/-primes.

F-B-domains (Definition 4.3.7) (= bilimits of finite posets)
Stone-dual only described through the basis (or base) of
compact-open subsets, which is a distributive lattice wittra
properties as stated in Theorem 7.2.30.

Bifinite domains. Stone-dual only described through thésafs
compact-open subsets, which is a distributive lattice wittra
properties as stated in Theorem 7.2.30.

Algebraic bounded-complete domains. Stone-dual only de-
scribed through the basis of compact-open subsets, which is
a distributive lattice with extra properties as stated inedh
rem7.2.31.

Table 1: The categories and their Stone-duals.
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o TOP

5 SOB

COH CONT

SPEC ALG

e aBC

Figure 16: An overview of Stone-dualities in domain theory.

subsets in the factors, there seems to be no simple critenignch unions which would
guarantee unique representation.

The moral then is that we must allow for multiple represeatet of compact-open
subsets. Instead of lattices we shall study certain preeddgructures. At first glance
this may seem as an unwanted complication but we will soorirsset really makes
the whole programme work much more smoothly.

Lattices are determined by either their order structureheirtalgebraic structure
but this equivalence no longer holds in the preordered dastéead we must mention
both preorder and lattice operations. We also mak@imeness explicit in our axiom-
atization. The reason for this is that we want to keep all @finitions inductive. This
point will become clearer when we discuss the function sgaostruction below.

Definition 7.3.1. A coherent algebraic prelocalé is a preordered algebra with two
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binary operationsv and A, two nullary operation$) and1, and a unary predicat€
on A, such thata Vv b is a supremum fofa, b}, a A b is an infimum for{a, b}, 0 is a
least, and! is a largest element. The preorder dris denoted by, the corresponding
equivalence relation by:. The predicateC(a) is required to hold if and only i is
Vv-prime. Finally, every element of must be equivalent to a finite join gfprimes.

We will not distinguish between a prelocale and its undadyset. The set
{a € A | C(a)} is abbreviated a&£(A).

This is essentially the definition which appears in [AbrQ1bhere another pred-
icate is included. We can omit this because we will not lookhat coalesced sum
construction. The expressions ‘a supremum’, ‘an infimunc,,emay seem contra-
dictory but they are exactly appropriate in the preordenegarse. It is seen without
difficulties that every coherent algebraic prelocdlgives rise to a latticel /. which
is V-generated by/-primes and hence distributive.

A domain prelocalés gotten by incorporating the two extra conditions from The
orem 7.2.30:

o Vu G C(A) v G, C(A). uCvand(Vw Cu Iz Cou. Aw=1\z2);
e C(1).

Definition 7.3.2. Let A and B be domain prelocales. A functian A — B is called

a pre-isomorphisnif it is surjective, order-preserving and order-reflectini A is a
domain prelocale and is a bifinite domain and if further there is a pre-isomorphism
[]: A — KQ(D) then we say tha#l is alocalic descriptiorof D via [-].

A pre-isomorphismgp: A — B must preserve suprema, infima, and least and
largest element (up to equivalence). Furthermore, itistand corestricts to a surjec-
tive mapp”: C(A) — C(B). Letus look more closely at the case of a pre-isomorphism
[]: A — KQ(D). A diagram may be quite helpful:

C(A) A

[1° [

K(D) 2w C(KQ(D)) —» KQ(D)

Remember tha€(KQ (D)) are just those compact-open subsets which are of the
form 7c¢ for ¢ € K(D). The inclusion order between such principal filters is doahe
usual order oK (D).

Let us now lift the pre-isomorphism to the domain level. Ie irevious chapters,
the natural approach would have been to apply the ideal aetioplfunctor to the pre-
isomorphism betweefi(A)°? andK (D). Here we use Stone-duality and apphec
to [-]. This yields an isomorphism betwespec(A) andspec(KQ(D)). Composed
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with the inverse of the unij it gives us the isomorphism: spec(A) — D.

spec(A)

spec([-])~"

spec(KQ(D))

It will be good to have a concrete idea of the behaviour-pht least for compact
elements ofpec(A). These are filters inl which are generated by-prime elements.
So letFF = Ta with a € C(A). Itis easily checked that(F') equals that compact
elemente of D which is least in the compact-open subgdt .

Proposition 7.3.3. There exists a map]: A — KQ(D) such that the domain prelo-
cale A is a localic description of the bifinite domaifi if and only ifspec(A) and D
are isomorphic.

Proof. We have just described how to derive an isomorphism from agmeorphism.
For the converse observe that the unitA — K((spec(A4)) is surjective, order-
preserving and order-reflecting (Proposition 7.2.4). O

For more general functions between domains, we can tranglet-approximable
relations into the language of domain prelocales. The fidlig is then just a slight
extension of Theorem 7.2.30.

Theorem 7.3.4. The category of domain prelocales and join-approximablatiens
is dually equivalent to the category of bifinite domains andtScontinuous functions.

Our attempt to mimic the cartesian product constructioeddrus to pass to pre-
ordered structures but once we have accepted this we caregaiemfarther and make
the prelocales syntactic objects in which no identificagiane made at all. More pre-
cisely, it is no loss of generality to assume that the undeglglgebra is a term algebra
with respect to the operations A, 0, and1. As an example, let us describe the one-
point domairil in this fashion. We take the term algebra on no generataasighevery
term is a combination di's and1’s. The preorder is the smallest relation compatible
with the requirements in Definition 7.3.1. The effect of isithat there are exactly two
equivalence classes with respectipthe terms equivalent tb and the terms equiva-
lentto0. The former are precisely the-prime terms. We denote the resulting domain
prelocale byl.

The syntactic approach also suggests that we look at thefioity relation between
domain prelocales:

Definition 7.3.5. Let A and B be domain prelocales. We say th&is asub-prelocale
of B if the following conditions are satisfied:

1. Ais a subalgebra oB3 with respecttov/, A,0 and1.

2. The preorder o is the restriction of the preorder oB to A.
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3. C(A) equalsA N C(B).
We writeA < B if A is a sub-prelocale oB.

Proposition 7.3.6. If A is a sub-prelocale oB3 then the following defines an embed-
ding projection pair betweespec(A) andspec(B):

e: spec(A) — spec(B),  e(F) = 15(F);
p: spec(B) — spec(A), p(F)=FnNA.

Proof. Itis clear that botke andp are continuous because directed joins of elements in
spec(A), resp.spec(B), are just directed unions of prime filters. We havee = id
because the preorder ohis the restriction of that of3. Fore o p C id we don’t need
any special assumptions.

The crucial point is that the two functions are well-definedhie sense that they
indeed produce prime filters. The filter part follows aganfrthe fact that both oper-
ations and preorder oA are the restrictions of those di. For primeness assume that
\V M € 15(F) for some finiteM C B. This means: < \/ M for somex € F. This
element itself is a supremum efprimes of A and becausé’ is a prime filter inA we
have somev-prime element’ below\/ M in F. But we have also required that the
V-prime elements ofd are precisely thosg-prime elements oB which lie in A and
therefore somen € M must be above’.

Primeness o’ N A, on the other hand, follows easily because suprema are
also suprema i3. O

Corollary 7.3.7. Assume thatl is a localic description oD via [-] 4, that B describes
E via[-]s, and thatA < B. Then the following defines an embeddiraf D into E:
If c € K(D), a € C(A), [a]% = Te, [a]% = 1d, thene(c) = d.

Proof. If we denote by’ the embedding fronspec(A) into spec(B) as defined in the

preceding proposition, then the embeddingD — FE is nothing else butg o ¢’ o
-1

Ty - O

Of course, it happens more often thgkc(A) is a sub-domain ofpec(B) than
that A is a sub-prelocale oB but the fact is that it will be fully sufficient and even
advantageous to work with the stronger relation when it cotoesolving recursive
domain equations.

7.3.2 Constructions: The general technique

Before we demonstrate how function space and Plotkin powveaih can be con-
structed through prelocales, let us outline the generdirtiecie. The overall picture
is in the following diagram. We explain how to get its ingrextis step by step below.

C(T(A,A")) s T(A,A)
[1° []
K(Fr(D,D")) 2 C(KQ(Fr(D,D"))) > KQ(Fr(D,D"))
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1. The set-up. We want to study a constructidfi on (bifinite) domains. This
could be any one from the table in Section 3.2.6 or a bilimitioe of the powerdomain
constructions from Section 6.2. The diagram illustrateghafy construction. We can
assume that we understand the action of the associate@funcbn bifinite domains.
In particular, we know what the compact element&ef D, D’) are, how they compare
and howFr acts on embeddings (Proposition 5.2.6). Thus we should aaslear
understanding of the bottom row of the diagram, in detail:

e Fp(D, D) is the effect of the functoFr on objectsD andD’.
e K(Fr(D, D)) are the compact elements bf-(D, D’).

o KQ(Fr (D, D)) are the compact-open subsetdf(D, D') and these are pre-
cisely those upper sets which are of the fofmfor a finite setu of compact
elements.

o C(KQ(Fr(D,D"))) are thev-prime elements okQ(Fr(D, D)) and these are
precisely those subsets 6% (D, D’) which are of the form¢ for ¢ a compact
element. The order is inclusion which is dual to the usuakowh compact
elements.

Furthermore, we assume that we are given domain prelogadesi A’ which describe
the bifinite domaingD and D’, respectively. These descriptions are encoded in pre-
isomorphismg-]4: A — KQ(D) and[-]a: A" — KQ(D").

2.The goal. We want to define a domain prelocdl& A, A’) which is a localic
description of (D, D). This is achieved in the following series of steps.

3. Definition of T'(A4, A"). This is the creative part of the enterprise. We search
for a description of compact-open subsetsfgf(D, D) based on our knowledge of
the compact-open subsets Bfand D’. The point is to do this directlypot via the
compact elements d?, D', andFr-(D, D’). There will be an immediate payoff, as we
will gain an understanding of the construction in terms afperties rather than points.
Our treatment of the Plotkin powerdomain below illustratds most convincingly.

The definition of'(A, A”) will proceed uniformly in all concrete instances. First
a setGr of generators is defined and th@H A, A’) is taken to be the term alge-
bra overGr with respect tov, A,0, and1. An interpretation functiorf-]: Gr —
KQ(Fr(D,D’)) is defined based on the interpretatidrs, and[-]4-. It is extended
toall of T'(A, A’) as a lattice homomorphisre Vv b] = [a] U[b], etc. Finally, axioms
and rules are given which govern the preorder angfimeness predicate.

Next we have to check that our definitions work. This task sodiroken into a
series of steps as follows.

4. Soundness.We check that axioms and rules translate [vfainto valid state-
ments about compact-open subsetd®{D, D’). This is usually quite easy. From
soundness we infer th§] is monotone and can be restricted and corestricted to a map
[[1°: C(T(A, A")) — C(KQ(Fr(D, D"))).

5. Prime generation. Using the axioms and rules, we prove that every element
of T(A, A”) can be transformed (effectively) into an equivalent ternichhs a finite
supremum of expressions which are asserted to4peime. This is the crucial step
and usually contains the main technical work. It allows ugptove the remaining
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properties of-] through[-]° and for the latter we can use our knowledge of the basis
of Fr(D, D).

6. Completeness for/-primes. We show thaf-]° is order reflecting.

7. Definability for v-primes. We show thaf/-]° is surjective.

At this point we can fill in the remaining pieces without refece to the concrete
construction under consideration.

8. CompletenessThe interpretation functiofft] itself is order-reflecting.

Proof. Leta,b € T(A, A") be such thafa] C [0]. By 5 we can replace these ex-
pressions by formal joins of-primes:a ~ a1 V...V a, andb = by V...V b,,.

Soundness ensures that the value under the interpretatictidn remains unchanged
and that eaclie;] (resp.[b;]) is of the form?¢; (resp.7d;) for ¢;, d; compact elements
in Fr(D,D’"). The inclusion order oiKQ(Fr(D, D)) translates into the formula
Vi 3j5. Te; € Td; which by the completeness fat-primes can be pulled back into
T(A,A"): Vi 3j. a; < bj. In every preordered lattice it must follow that < b

~

holds. O

9. Definability. The surjectivity off-] is an easy consequence of the surjectivity
of []° because we know that compact-open subsets in an algebraiinare finite
unions of compactly generated principal filters.

10. Well-definedness Of course KQ(Fr(D, D')) is a domain prelocale and we
have just shown that preorder and primeness predicaf&(dn A’) are preserved and
reflected by[-]. This constitutes a semantic proof tiatA, A’) satisfies the two extra
conditions for domain prelocales. In other words,s a well-defined operation on
domain prelocales.

11. Stone-duality. At this point we have shown th{] is a pre-isomorphism. As
in the previous subsection we lift it to an isomorphisrhetweerspec(7T'(A, A’)) and
Fr(D, D") via Stone duality:

spec(T(4,A"))

spec([-])~"

77—1

spec(KQ(Fr (D, D'))) Fr(D,D')

So much for the correspondence on the object level. We alst teasee how
the construction” harmonizes with the sub-prelocale relation, one the onalhan
and the isomorphisnr, on the other hand. Thus we assume that we are given
two more prelocalesB and B’, which are localic descriptions of bifinite domains
E and E’, such thatd < B and A’ < B’ hold. In Corollary 7.3.7 we have seen
how to define from this embeddings D — E ande’: D' — E’. In Proposi-
tion 5.2.6 we have shown how the functors associated witleréifit constructions
act on embeddings, hence we may unambiguously wWfjtée, ¢’) for the result of
this action, which is an embedding frofy (D, D’) to Fr(E, E’). Embeddings pre-
serve compact elements $&- (e, ') restricts and corestricts to a monotone function
Fr(e,e)°: K(Fr(D,D")) — K(Fr(E, E")). Now for bothT'(A, A’) andT (B, B')
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we have a diagram such as depicted at the beginning of thgestibn. We connect
the lower left corners of these bir (e, e’)?. This gives rise also to a mapfrom
C(KQ(Fr(D,D"))) to C(KQ(Fr(E,E"))). Our way of definingl’(A, A") will be
such that it is immediate th&(T'(A, A")) is a subset o€(7'(B, B’)) and hence there
is an inclusion map connecting the upper left corners. Out tezhnical step then is
the following.

12. Naturality. We show that the diagram

AT (4,4")) —— U(T(B, B))

[['HOT(A,Af) [['HOT(B,B')

C(KUF(D, D)) —» C(KQUF(E, E')))

commutes. On the element level this readst B C(T'(A, A")) and[[a]]OT(AA,) = Tc
and[a]7. g py = 1d thenFr(e,e’)’(c) = d. Now we can again get the remaining
missing information in a general manner.

13. Monotonicity. We show thatl'(A, A’) < T(B, B’). From the form of our
construction it will be clear thaf'(A, A’) is a subset of (B, B’) and the axioms and
rules will be such that whatever can be derivedlif4, A’) can also be derived in
T (B, B’). We must show that in the larger prelocale nothing extra @prbved for
elements of'(A, A’). The argument is a semantic one.

Proof. Leta,a’ € C(T'(A, A")) such thatt < o’ holds inT'(B, B’). Let [[a]}%(AA,) =

Te, [[GHOT(B,B/) = 1d and similarly fora’. Correctness says thatl C 1d’ and hence

d 3 d'. By naturality we haver(e,e’)(c) = d 3 d' = Fr(e,e’')?(c’). Embeddings
are order reflecting se 3 ¢’ follows. Completeness then allows us to conclude that
a < a’ holdsinT (A, A') as well.

In the same way it is seen that the predidaen7'(4, A’) is the restriction of that
onT (B, B"). O

14. Least prelocale.lt follows from the correctness of the construction thaf
T(A, A") holds.

15. Naturality of 7. Having established the relatidhi(A, A’) < T(B, B’) we
can look at the embedding spec(T(A, A’)) — spec(T (B, B')) which we defined in
Proposition 7.3.6. We claim that the following diagram coutes:

spec(T'(4, A"))

spec(T(B, B"))

TA TB

FT (67 6/)

FT(D7DI) FT(E7E/)

In other words Frr (e, €’) equals the embedding which can be derived fibfd, A’) <
T(B, B’) in the general manner of Corollary 7.3.7.
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Proof. This is a diagram of bifinite domains and Scott-continuoufions. It there-
fore suffices to check commutativity for compact elementscofnpact element in
spec(T'(A4, A")) is afilter F generated by a termne C(T'(4, A")). Its image under4
is the compact elemertwhich generates the compact-open sukﬂsﬁ(AA,). The
filter I(F) is generated by the same teem Applying 75 to it gives us a compact
elementd which is least irﬂa]}%(AﬁA,). Step 12 ensures thay (e, ') mapsctod. O

7.3.3 The function space construction

We start out with two preparatory lemmas. The following tiotawill be helpful. We
write (A = B) for the set of functions which map all of into B.

Lemma 7.3.8. The Scott-topology on the function spaée — D’] for bifinite do-
mainsD and D’ equals the compact-open topology.

Proof. Let A C D be compact and C D’ be open and lef' C [D — D’| be a
directed set of continuous functions for which! ' mapsA into O. For everyr € A
we have(| |TF)(x) € O and becaus@ is open, there i, € F with f.(z) € O. The
collection of open sets of the forf 1 (O), » € A, coversA. By compactness, this
is true for finitely manyf. - (O) already. If we letf be an upper bound if’ for these
fz, thenA C £71(O) holds which is equivalent tg(A) C O. Hence(A = O) is a
Scott-open set ilD — D’].

If, on the other handf belongs to a Scott-open open etC [D — D'] then
this is true also for some approximatigh, o f o g,, with g,, an idempotent deflation
on D, ¢/, an idempotent deflation of’. For each element in the image ofg,, we
have the setlz = (Tg., o f o gn(x))). The intersection of all these belongs to the
compact-open topology, contaiisand is contained i®. O

Lemma 7.3.9.Let D and D’ be bifinite andletd € D andA’ C D’ be compact-open.
Then(A = A’) is compact-open ifD — D’].

Proof. We know that(A = A’) defines an open set by the previous lemma. From
bifiniteness we get idempotent deflatignson D andg/,, on D’ such thatd = 1g,,(A)
andA’ = 1g,,(A’). Itfollows that(A = A’) = 1G,.m(A = A’) for the idempotent
deflationG,,,,, on[D — D’] which mapsf to g/, o f o gn. O

Now let A and A’ be domain prelocales describing bifinite domainand D’, as
outlined in the general scheme in the previous subsectidre tivo lemmas justify
the following choice of generators and interpretation tiorcfor our localic function
space construction:

G- = {(a—d)|acAd e}
[(a—a)] = ([a]a= [a']a)

Note that the elemenig — «') are just syntactic expressions. Here are axioms
and rules for the preorder arfdpredicate.
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Axioms.

(= =7 (@ = Nier ai) = Nicrla — aj).

(= =Vv=10) Viegai—d) = N\pelai — a).

(dist) anN(bVe)x(aAd)V(aAc).

Rules.

(= —=Vv—=r) IfCla)then(a — V,;c;a)) = V,c;(a — aj).

(- -5 If b < aanda’ SV then(a — o) < (b= V).

(- -0 If Viel. (C(a;) and C(a})) and if VK C I 3ILCI.

(Aper ax = Viepaand(Vk € K,l € L. aj, < a;)) then
CAier(ai — aj)).

A few comments about these formulae are in place. First agaion: we assume
that all index sets are finite, so that the expressjans; a;, etc., do indeed belong to
the term algebra over_,. Observe the use of tiepredicate in the rulé— — v — 7).
Without it, it would be very difficult to express this propgrAlso note that we enforce
distributivity. This will be a prerequisite to prove primegeration below.

Itis clear that the rules are sound for the given interpietatn particular(— — C)
is the exact mirror image of our definition of joinable farasiof step functions, Def-
inition 4.2.2. Let us therefore immediately turn to the ¢alistep 5. We cannot use
Lemma 7.3.9 directly because we have not encoded the idempdéflations. We
must find the minimal elements of a compact-open subsetathpliWe illustrate the
general technique in an example.

Supposda] 4 is of the form{c U 1d and[a’] 4+ is of the form?T¢’ U 7d’. We get
a minimal element of(Tc U 1d) = (T¢’ U 1d’)) by choosing a valug(c) and a value
f(d) from {¢/,d’}. Then we must look at the intersecti¢nn 1d which again is of
the formfe; U ... U Te, by coherence. For each we must choose a value from
mub{f(c), f(d)} = {e},...,el,}. And so on. Bifiniteness of the argument domain
ensures that this process stops after a finite number ofidtesaand that the result is
a joinable family of pair§z, f(x)). Coherence of the result domain guarantees that
all in all only finitely many choices are possible. (Note thaan happen that a set of
minimal upper bounds in the image domain is empty. In thig cas have just been
unlucky with our choices. Ifa’] 4+ is not empty then some minimal function exists.)

We can mimic this procedure in the prelocale as follows. apficity and to make
the analogy apparent, we letd stand for terms such th&i(c), C(d) anda ~ ¢ Vv d.
Similarly fora’. We get:

(a—d) ~

~ ((cvd) — (¢ Vvd)) (—-3)

~ (c=(dVd)A(d—(dVd)) (= —=Vv-=1
~ (e=d)Vvie—=d)A((d—)V(d—d)) (= —=V=r)
~ ((c—=d)AN(d—d))V...(3moreterms) (dist)

We follow up only the first of these four terms. The trick is tawgggle in thev-prime
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termsey, . .., e, Whose join equals A d.

(c=d)N(d—-d)~
((cVerV...Vep) = )AN((dVerV...Vey) = d) (——-X)
(c=d)AN(d—->d)N((e1V...Vey) = (¢ ANd)) (——-—Vv-—=1)
(c=d)N(d—->d)N((e1V...Vey) = () V...Vel))

Qa

and now induction may do its job. Eventually we will have stormed(a — d/)
into a disjunction of joinable families. For theseprimeness may be inferred through
rule (— — C). Note that distributivity allows us to replace every termdyequivalent
term of the form\/(A(a; — a})) and for each term of the forrh\(a; — af) the
transformation works as illustrated.

Next we show completeness fgrprimes. So assumeandb are terms for which
the C-predicate holds and for whicku] C [b]. It must be the case thatandb are
equivalent to joinable familieg\,.;(a; — a}) and A\, ;(b; — b}) as there is no
other way of deriving/-primeness ifA — A’]. The order relation between joinable
families has been characterized in Lemma 4.2.3. Here it $&ys I 35 € J. ([b;] C
[ai] and[ai] < [5]). Since we assume completeness for the constituting pleloca
AandA’, we may infervi € I 35 € J. (b; < a; anda} < b}). The relationa < b is
now easily derived fronf— — <).

Definability for v-primes is immediate because we know that all compact fansti
arise from joinable families (Lemma 4.2.3 and Propositich4)).

Properties 8 through 11 follow for all constructions unifdy. We are left with
proving Naturality, Property 12. To this end, let us first demv the embedding
[e — €'] transforms a step functiofu \, a’). We have:[e — ¢'|((a \, @)) =
(a\ €' (a))oe*and(a \, €' (a’))ce*(z) = €'(a/) <= aLCe*(z) < e(a)C z.
We get the step functiofe(a) \, ¢’(a’)).

Now leta ~ A,;.,(a; — a}) be an element ofA — A’] for which C(a) holds.
The interpretatiorﬂa]]‘[)A Y of a is the upper set generated by the joinable family
of step functiongc; \, c;), where[a;]% = Tc; and[a}]%, = 1¢ foralli € I. Ap-
plying the embeddinge — €] to these gives us the step functidasc;) \, ¢'(c}))
as we have just seen. By Corollary 7.3.7 we can rewrite theséd,a\, d;), where
[a:]% = 1d; and[a;]%, = 1d;. The supremum of the joinable famifyd; \, d;))ic1
is least in[[a]]([)B B This was to be proved.

Taking D to bespec(A) and E' to bespec(B) we can express the faithfulness of
our localic construction quite concisely as follows:

Theorem 7.3.10.Let A and B be domain prelocales. Then
[spec(A) — spec(B)] = spec([A — B])

and this isomorphism is natural with respect to the subqarele relation.

7.3.4 The Plotkin powerlocale

Next we want to describe the lattice of compact-open suludete Plotkin powerdo-
main of a bifinite domainD. By Theorem 6.2.22 we know th&?"(D) is concretely
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represented as the set of lenseslin ordered by the Egli-Milner ordering (Defini-
tion 6.2.2). The compact elementsR¥’(D) are those lenses which are convex clo-
sures of finite non-empty subsetskfD) (Proposition 6.2.6). Idempotent deflatiahs
on D can be lifted toP?(D) becausé’ is a functor. They map a lensto the convex
closure ofd(L).

The compact-open subsetsRf(D), however, are not so readily described. The
problem is that one half of the Egli-Milner ordering refecsdlosed lower sets rather
than upper sets. We do not follow this up as there is no logiattiway from the order
theory to the axiomatization we are aiming for. It is much mefficient to either
consult the mathematical literature on hyperspaces (se21y Vie22, Smy83b]) or
to remind ourselves that powerdomains were introduced tdehoon-deterministic
behaviour. If we think of the compact-open subset®ims observations that can be
made about outcomes of a computation, then it is pretty ¢hesirthere are two ways
of using these to make statements about non-determinigtgrgms: It could be the
case that all runs of the program satisfy the property orul@de that at least one run
satisfies it. Let us check the mathematics:

Lemma 7.3.11.If D is a bifinite domain and is compact-open irD, then the fol-
lowing are compact-open subsetsAfi( D):

A(O) = {Lelens(D)|LC O},

E(O) = {Le€lens(D)|LNO # 0},

Furthermore, if we le© range over all compact-open subsetdirthen the collection
of all A(O) andE(O) forms a base for the Scott-topology BA(D).

Proof. Let O be compact-open. Thef is the upper set of finitely many compact
elements and we find an idempotent deflatissuch thatO = 1d(O). Itis clear that
for d = PF(d) we have bottA(O) = 1d(A(O)) andE(O) = 1d(E(0)). Hence these
sets are compact-open, too.

Let K be a compact lens, that is, of the foftr(u) for u Cy, K(D). The upper set
of K in P¥(D) can be written a#\(Tu) N, E(T¢). O

The following definition then comes as no surprise:

Definition 7.3.12. Let A be a domain prelocale which is a localic description of the
bifinite domainD. We define thBlotkin powerlocal®’(A) over A as the term algebra
over the generators

Gp={Oa|a€ A U{Ca|a € A}
with the interpretation functiofi] : P¥(A) — KQ(PF(D)) defined by
[Oa] = A(lal),  [©a] = E([a])

on the generators and extendedt( A) as a lattice homomorphism.
Preorder andC-predicate are defined as follows
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(@ -A) D(/\ie[ a;) = /\iel Ua;,
(0D—0) ©0=0,

(©=V)  O(Vierai) = Vier ©as,
©-1) ©l=1,

(

O-—V) O(aVbd) <OaV O,

(G —=A) OaAnObS Oland),

(dist) aN(bVe)=(aNb)V(aAec).
Rules

(P—X) Ifa<bthenOa < ObandCa < OO,
(P —C) If C(a;) holds for alli € I andI is non-empty, then
C(D(\/iel ai) A /\iel <a;).

Note that we again require distributivity explicitly. Thervation scheme is almost
minimal (in combination with the res{,0 — 0) and (¢ — 1) are equivalent). The
following derived axioms are more useful thén — v) and(<& — A):

(D1) O(aVb)~OaV (O(aVb)AOb),
(D2) BaAOb~OaA<(aAb).

We leave it to the interested reader to check soundness asdspaight on to the
central Step 5, which is generation byprime elements.

Proof. Given an expression iR(A) we first transform it into a disjunction of con-
junctions by using the distributivity axiom. Thus it sufficto represent a term of the

form

/\ Oa; A /\ <>bj

il jeJ
as a disjunction of/-primes. But we can simplify further. Usir@ — A) we can pack
all d-generators into a single termu and by (D2) we can assume that for egch J
we haveb; < a. We represent eadly as a disjunction of/-primes ofA and applying
(¢ — V) and distributivity again we arrive at a disjunction of terofghe form

Oa N K <>dj
j=1

where eachl; € C(A). Now we writeq as a disjunction of/-primesc;. Since eachi;
is belowa, it doesn’t hurt to add these, too. We get:

D(cl\/...\/cn\/dl\/...\/dm)/\/\<>dj.
j=1

As yet we can not apply the/-primeness rule(P — C) because the two sets
{c1,...,¢n,dy,...,dy} and{dy,...,d,} may fail to coincide. Looking at the se-
mantics for a moment, we see that in the compact-open suhsetiescribed the min-
imal lenses are (the convex closures of) the least elememtsdach[d;]% plus some
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of the generators of thir;]%. We therefore take our term further apart so as to have
a V-prime expression for each subset{ef,...,c,}. For this we use (D1). One
application (plus some distributivity) yields

(O(c2 V... Ven VL V... Vdy) A\ Odj) v
j=1

(O(er V. Ve Vi V.. Vi) AOer A J\ Ody)
=1

and the picture becomes obvious. O
Next we check thaf-]° is order-reflecting.

Proof. Assume[O(V,c; ai) A Nic; Cai]® C [O(V,er05) A Njes Ob;1° and let
¢; andd; be the least compact elements]in], respectively[b;]%. Then we have
{dj |j€J}Crm {ci | i € I}, thatis,

Viel3jeld fecCld;,
ViedJdiel. TQgTdJ

Since we assume th{)‘, is order-reflecting, we get from the first equatigh_; a; <
Ve bj and from the seconfd;_; Ca; < Ajc; Cb;. O

The definability forv-primes was shown in Lemma 7.3.11 already. Hence we are
left with checking Naturality, which is Step 12.

Proof. Lett = O(\/,c;ai) A A\, ©a; be av-prime element inP?(A4) and letA
be a sub-prelocale aB. Let e be the associated embedding frdmto E. The least
element in[[t]}?jp(A) is the convex closure of the set of minimal element® [a;]%.

Applying P(e) to it gives the convex closure dk(c;) | i € I}, as we have argued
in the remark following Theorem 6.1.9. Corollary 7.3.7 selis that this is the least
elementinft], . O
(B)
As in the case of the function space construction we sumemsariz

Theorem 7.3.13.Let A be a domain prelocale. Then
PP(spec(A)) = spec(PF(A))
and this isomorphism is natural with respect to the subqarele relation.

The prelocales for Hoare and Smyth powerdomain are muckrdasilescribe. All
we have to do is to elide all generators and rules which refer, respectively®.
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7.3.5 Recursive domain equations

In this subsection we will treat bilimits in the same fashaswe have studied finitary
constructions. We assume that we are given domain prelodaled A; < A <.
such that eacl,, describes some bifinite domain,. Corollary 7.3.7 states how the
sub-prelocale relation betweeh), and A,,,, for n < m, translates into an embedding
€mn : Dy, — Dy, Itis seen easily tha( D,, ) nen, (€mn)n<m) IS an expanding system,
thatis, forn < m < k, exn = exm © emn holds. We claim that the directed union
A = ,,en An is @ domain prelocale which describBs= bilimD,,. The first claim

is fairly obvious as all requirements about prelocalesrraddinitely many elements
only and hence a property of can be inferred from its validity in soma,,. For the
second claim we need to specify the interpretation functinthis end let,,, be the
embedding ofD,,, into the bilimit (as defined in Theorem 3.3.7). Then we can set
[a] = lm([a] 4,,) wherem € N is such that: is contained ind,,,. The exact choice
of m does not matter; ifn. < k then by Corollary 7.3.7 we havéa] 4, = erm([a]a,,)
and applying, to this yieldsl;([a]4,) = Ik © exm([a]a,,) = ln([a]a,,). The in-
terpretation function is well-defined because embeddingsgove the order of approx-
imation (Proposition 3.1.14), hence compact elements angpact-open subsets are
also preserved.

In order to see thdlt] is a pre-isomorphism we proceed as before, checking Steps
4,5,6,7,and 12. ltis, actually, rather simple. Soundneddshbecause thk, are
monotone and map compact elements to compact elementse Bereration holds
because it holds in each,,. Since thd,, are also order-reflecting we get completeness
from the completeness of tHe] 4, . Definability follows from Theorem 3.3.11; the
only compact elements iV are the images (undéy,) of compact elements in the
approximatingD,,. If we are given a second sequenBg < B; < By « ... of
prelocales (describingy, E1, . . .) such that for each € N we haveA,, < B, theniit
is clear thatd < B = J,,cy B, holds, too. For Naturality (Step 12) we must relate
this to the embedding from D to E = bilimFE,,. The exact form of the latter can be
extracted from Theorem 3.3.¢:= | |, kn © e, 0 I};, Wherek,, is the embedding of
E, into E ande,,: D,, — E,, is the embedding derived from,, < B,,. Now leta be
V-prime in A. We have

e(lalh) = ([ knoenol)(ln(lalh,))

neN

= |_| Ky o en([[a]]OAm)

n>m

= | kallal$,)

n>m
= [al%
and our proof is complete.
Theorem 7.3.14.1f Ay < A; < A, < ... is achain of domain prelocales, then

spec( ) An) 2 bilim(spec(Ay))nen -
neN
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Observe how simple the limit operation for prelocales iifipared with a bilimit.
This comes to full flower if we look at recursive domain eqaa$. If 7" is a construc-
tion built from those which can be treated localically (wevb@een function space,
Plotkin powerdomain, and bilimit, but all the others fromc8en 3.2 can also be in-
cluded) then we can find the initial fixpoint of the funct®f on the localic side by
simply taking the union ot < 7'(1) < T(T'(1)) < ... . Why does this work and why
does the result describe the canonical fixpoink'e® First of all, we havd < T'(1) by
Step 14. Successively applyifigto this relation gives ug™ (1) < 7"*1(1) by Mono-
tonicity (Step 13). Hence we do have a chaig 7'(1) < T(7'(1)) < ... as stated and
we can form its uniord. It obviously is a fixpoint of the constructich and therefore
the domainD described by it is a fixpoint of the functdfy. But notice that we have
T(A) = A rather than merel{’(4) = A. This is not so surprising as it may seem at
first sight. Domain prelocales are only representationoofains and what we are ex-
ploiting here is the simple idea that we canetepresent bottD and F'r (D) via two
differentinterpretation functions. Let us now address the questimutcanonicity. It
suffices to check that the embedding correspondifiy(t < 72(1) is equal toFr (e)
wheree: T — Frp(I) corresponds td < T'(1). This is precisely the naturality af
which we listed as Step 15. It follows that the bilimit is ttzeree as the one constructed
in Chapter 5.

7.3.6 Languages for types, properties, and points
We define a formal language tfpeexpressions by the following grammar:
o := 1|X|(6—0)|(ox0) | (c®0c) | (¢)L | PH(o) | recX.o

where X ranges over a séfV of type variables. More constructions can be added to
this list, of course, such as strict function space, smastymt, Hoare powerdomain,
and Smyth powerdomain. On the other hand, we do not inclugeessions for basic
types, such as integers and booleans, as these can be encodeldnguage by simple
formulae.

We have seen two ways to interpret type expressions. Thérfiespretation takes
values directly irB, the category of bifinite domains, and is based on the coetiins
in Sections 3.2, 3.3, 5.1, and 6.2. Since a type expressigrcorgtain free variables,
the interpretation can be defined only relative teeamironmenpp : TV — B, which
assigns to each type variable a bifinite domain. The semdlatises corresponding to
the individual rules of the grammar are as follows:

Ip(Lpp) = T
Ip(X;pp) = po(X);
Ip((c = 7);pp) = [Ip(o;pp) — Ip(T;pD)];
etc.
Jp(recX.o;5pp) = FIX(Fr),

WhereFT(D) = jp(O';pD[X — D])

The expressiopp[X — D] denotes the environment which mafisto D and coin-
cides withpp at all other variables .

137



Our work in the preceding subsections suggests that we animterpret type
expressions in the categoDomPreloc of domain prelocales. Call the corresponding
mappingsy;, andpy,. The semantic clauses for this localic interpretation are:

Ie(Lpr) = L
IL(XspL) = po(X);
(o —=1)pL) = [Tulospr) — Iu(ripL)l;
etc.
Jp(recX.o;pr) = UT"(l)

whereT'(A) = 31 (o;pL[X — A4]).
The preceding subsections were meant to convince the reathe following:

Theorem 7.3.15.1f p;, and pp are environments such that for each € T'V the
domain prelocaley;, (X) is a localic description op (X), then for every type expres-
siono it holds thatd (o py,) is a localic description o (o; pp). As a formula:

spec(Jr(o;pr)) = Ip(o;pp) -

The next step is to define for each type expressianformal languaget(o) of
(computational or observationgdjoperties This is done through the following induc-
tive definition:

= true,false € £(0);
oY €L(o) = oA,V E Llo);
peL(o),vel(r) = (p—¢)€Llo—T),
peLo),yelt) = (pxv)e L(oxT);
¢ € L(oc) = (odfalse) € L(odT);
e L(t) = (falsed)) € L(odT);
pello) = (d)r€L((o)r);
peLloc) = 0O¢,0pc L(PH0));
¢ € L(ofrecX.0/X]) = ¢e€ L(o).

Here we have used the expressigr/X] to denote the substitution of for X
in 0. The usuakaveatabout capture of free variables applies but let us not dwell o
this. The rules exhibited above will generate for eadhe carrier set of a (syntactical)
domain prelocale in the style of the previous subsectionste Mhat we don't need
special properties for a recursively defined type as thesguat the properties of the
approximating domains bundled together (Theorem 7.3.14).

On eachg(o) we define a preordef and predicate§ andT (the latter is needed
for the coalesced sum construction) through yet anotherdtine definition. For exam-
ple, the following axioms and rules enforce that e&¢h) is a preordered distributive
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lattice.

¢S ¢

¢S X

¢ < true;

¢ S P1 A s

PNY S

PNY S Y

false < ¢;

1V b2 S s

¢SOV Y

VS OVY;

PA[WVX)S (@AY V(6 AX);

We have seen some type specific axioms and rules in the dafirgfi the function
space prelocale and the Plotkin powerlocale. For the fsilvie refer to [Abr91b],

p. 49ff. If o is a closed type expression then the domain prelogédg describes the
intended bifinite domain:

¢SV SX

¢S Y1, 0 S Y2

o1 S, d2 S

Frreiirreill

Theorem 7.3.16.If o is a closed type expression then
spec(£(0)) 2 Tp(o) .

(Note that this is a special case of Theorem 7.3.15.)

The whole scheme for deriving, C, andT is designed carefully so as to have
finite positive information in the premise of each rule onyence the whole system
can be seen as a monotone inductive definition (in the teahsénse of e.g. [Acz77]).
Furthermore, we have already established close connactietween the syntactical
rules and properties of the described domains. This is this ledithe following result.

Theorem 7.3.17.The language of properties is decidable.

Proof. The statement is trivial for the domain prelocdléecause only combinations
of true andfalse occur in£(1). For composite types we rely on the general develop-
ment in Section 7.3.2, which at least for three concreteaim=ts we have verified in
Sections 7.3.3-5. First of all, every expressiorti) can be effectively transformed
into a finite disjunction ofv-primes (i.e. expressions satisfying tGepredicate); this

is Step 5, ‘prime generation’. Soundness and completemsssethat the expressions
satisfying theC-predicate are precisely the-primes in the preordered latticé(o).
Hence we can decide the preorder between arbitrary expresgiwe can decide the
preorder betweew-primes. For the latter we note that our constructions aquism
more than we have stated so far. Aflprimes, which are produced by the transfor-
mation algorithms, are of the explicit form occuring in thdes for deriving theC-
predicate; rather than merely expressions which happee &ghivalent to/-primes.
The preorder between these expli¢iprimes is (for each construction) easily charac-
terized through the semantic interpretation functfgf. The task of establishing the
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preorder between these primes is then reduced to estatgisbime formula defined by
structural induction on the type. Since every expression (o) is derived fromtrue
andfalse in finitely many steps, we will eventually have reduced osktto checking
the preorder between certain expressionsg(ih). O

Finally, we introduce a formal language to speak about pafidomains. So far,
we have done this in a rather roundabout way, trusting in ¢aeer's experience with
sets and functions. Doing it formally will allow us to estishl a precise relationship
between (expressions for) points and (expressions fopepties.

We assume that for each (closed) type expressiave have a denumerable set
V(o) = {z°,y°,27,...} of typed variables. The terms are defined as follows (where
M : o stands for M is a term of types”):

= ¥4 .0,
= 27 :0;
M:7 = Xt M:(0—71);
M:(c—=71),N:o = (MN):;
M:o,N:7 = (M,N): (ox71);
M :(oxT),N:v = letM be (z°,y").N:v;
M:o = inl(M): (c@7)andinr(M): (t®0);
M :(o®7),N1:v,No:v = cases M of inl(z?).Ny else inr(y").Nz : v;
M:o = up(M):(o)i;
M:(o),,N:7 = lift Mtoup(z?).N:T;
M:o = {M[:P"o);
M :PPo),N:PP(r) = over M extend {lz°[}.N : P(7);
M :PPo),N:P o) = MUN:Po);
M :PPo),N:PH(r) = M®N:Ploxr7);
M :ofrecX.0/X] = fold(M) : recX.o;
M :recX.o = unfold(M): olrecX.0c/X];
M:0 = uz°.M:o.

In the same fashion as for type expressions we have two attees for interpreting
atermM of typeos. We can either give a direct denotational semantics in tfieitei
domainJp (o) or we can specify a prime filter in the corresponding domaigiger
cale£(c). The denotational semantics suffers from the fact that dreoto single out
a particular element in a domain we use a mathematical layegwhich looks embar-
rassingly similar to the formal language we intend to intetpSome of the semantic
clauses to follow will therefore appear to be circular.

Again we need environments to deal with free variables. They maps

p: U, V(o) — UU Jp (o) which we assume to respect the typing. In the following
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clauses we will also suppress the type information.

[*-]p = L, theleastelementifip(c);
[zlp = »p(2);
[\z.M]p = (d+ [M]plz—d]);
[(MN)]p = [MIp(INTp);
[(M,N)lp = ([M]p,[N]p);
[let M be (z,y).N]p = [N]p[z—d,y—e],
where d = m([M]p),
e = m([M]p);
inl(M)]p = inl([M]p);
linr(M)]p = inr([M]p);
{[[Nlnp[m], [M]p = (d: 1)
[cases M of inl(x).Ny else inr(y).NaJp = [N2]ply—e]l, [M]p = (e: 2);
1, [[Mﬂp:J_;
up(M)]p = up([M]p);
[lift M to up(z”).N]p = {[[l]\,[]]p[wd]’ Fﬁ%ﬁi“ﬁ(d*
MR = {IM]p};
[over M extend {z°}.N]p = 11X nNCI(X),
whereX = | J{[N]plz—d] | d € [M]p};
[MEN]p = [M]pd[N]p;
[M®N]p = {(d.e)|de[M]p,ec[N]p}
[fold(M)]p = fold([M]p);
[unfold(M)]p = unfold([M]p);
[paM]p = fix(f),
wheref(d) = [M]plz—d].

Now let us give the localic, or, as we are now justified in sgylagical interpre-
tation. We use a sequent calculus style of presentingditiisain logic The problem
of free variables is dealt with this time by including a finiigt T" of assumptions on
variables. We write them in the form— ¢ and assume thdt contains at most one of
these for each variable A sequent then takes the fodm- M : ¢ and should be read
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as ‘M satisfiesp under the assumptions Iri.

{PEM:¢ite; = THEM: o

oS oS,
(T,x—p b+ M:v) = T,o—¢' = M:y;
o= =M 4}, = F,x»—>\/¢i|—M:¢;
iel
TFM:¢y = T,z—¢FM:;
= a—okx:
Dia—obEM:¢y = TFAx.M: (¢p—v);
'-M:(¢p—¢);TEFN:¢ = TF(MN):;
'rE-M:pTEN:¢p = TF(MN):(¢x1);
TE M (gx9),
D,a—¢,y—pFN:x = TkletM be (x,y).N:y;
'EM:¢ = THFinl(M): (¢pdfalse);
'EM:¢ = TFinr(M): (falsedo);
' M : (¢pdfalse), T(¢),
Ia—¢pb Ny :p = T cases M of inl(x).N;
else inr(y).Na : ¢;
I'E M : (false®o), T(¢@),
I,y—¢t No:¢p = T F cases M of inl(z).N;
else inr(y).Na : ¢;
'tM:¢p = ThFup(M):(¢);
'-M:(¢);T,a—obN:¢p = T FIift Mtoup(z?).N :;
'EM:¢p = THF{M]}:0O¢
'FM:¢9 = TH{M[}: O
'EM:0¢T,2—¢F N:Oyp = Tt over M extend {z°}.N : O;
EM: 09T a0 N:Op = Tk over M extend {|z°[}.N : O
TFM:04THN:Op — TFMUN:Op
T'EM:C¢p = THEMUYN:OP;
T'EN:Cp = THEMUN: O
TFM:OaTHFN: Oy = Tk MN : O(éx1);
P-M:05THN:O¢Yp = T'FM®N:O(¢pxy);
'tM:¢p = TFfold(M): ¢,
'M:¢ = Tk unfold(M): ¢,
'rupuxM:¢;U,x—opb-M:Yp = TFpuxM:.

A few comments may help in reading these clauses. The firstives guarantee
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that the set of properties which can be deduced for a téfniorms a filter in the
domain prelocale. The third rule expresses the fact thayeerticularz will satisfy
properties from a prime filter. In particular, it entails tha x—false - M : ¢ is always
true. The fourth rule (which is the last of the structurales)lis ordinary weakening.
We need it to get started in a derivation. In the two rules li@rdases-construct the
predicateT shows up. Instead df(¢) we could have writter) % false but as we
said before, we want to keep the whole logic positive, thabisay, we want to use
inductive definitions only. The two rules fdold andunfold may seem a bit boring,
but it is precisely at this point where we take advantage efféttt that in the world
of domain prelocales we solve domain equation up to equalite last rule, finally,
has to be applied finitely many times, starting fronr px. M : true, in order to yield
something interesting. Here we may note with regret thatvhole system is based on
the logic of observable properties. A standard proof ppltecsuch as fixpoint induction
for admissible predicates, Lemma 2.1.20, does not fit iredridamework. On the other
hand, it is hopefully apparent how canonical the whole appihds. For applications,
see [Abr90c, Abr91la, Bou91l, Hen93, Ong93, Jen91, Jen92].

Let us now compare denotational and logical semantics. \We mesay how en-
vironmentsp and assumption fit together. First of all, we assume thatmaps each
variablez? into spec(£(c)). Secondly, we want thai(x) belongs to the compact-
open subset described by the corresponding entty. irBut since environments are
functions defined on the whole set of variables while assigngptare finite lists, the
following definition is a bit delicate. We writg = T if for all entriesax—¢ in T we
havep(z) € [¢]. Using this convention, we can formulate validity for assers about
terms:

F'EM:¢ifandonlyifvp.(p F T = [M]p € [4]) .

The final tie-up between the two interpretations of type ezpions and terms then is
the following:

Theorem 7.3.18.The domain logic is sound and complete. As a formula:
VM, T,¢. THM:¢ ifandonlyif TE M :¢.

Exercises 7.3.19. 1. Prove that a completely distributive lattice also satisfthe
dual distributivity axiom:\/,.; A A; = /\f' 190, Vier ().

2. [Ran60] Prove that a complete lattideis completely distributive if and only if
the following holds for alk: € L:

x:\/ /\b.

aZxr bZa
(Hint: Use Theorem 7.1.3.)

3. Show that a topological space is sober if and only if eveediucible closed set
is the closure of a unique point.

4. Find a complete latticé for whichpt(L) is empty.
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10.
11.

. Show that every Hausdorff space is sober. Firif} aspace which is not sober.

The converse, a sober space, which isTAigtought to be easy to find.

. Find a dcpo which is not sober in the Scott-topology. (Refee: [Joh81]. For

an example which is a complete lattice, see [Isb82]. Themmiknown example
which is a distributive lattice.)

. Describe the topological spage(L) in terms ofA-prime elements of the com-

plete latticeL.

. LetD be a continuous domain. Identify with the set ofA-prime elements in

Q(D). Prove that the Lawson-topology dp is the restriction of the Lawson-
topology onQ2(D) to D.

. Suppos¢g: V — W is a lattice homomorphism. Show thatdefined by: Ry if

y < f(x) is ajoin-approximable relation. Characterize the contus functions
between spectral spaces which arise from these particalizwgpproximable
relations.

Extend Lemma 7.3.8 to other classes of domains.

Try to give a localic description of the coalesced sunstioiction.
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8 Further directions

Our coverage of Domain Theory is by no means comprehensimenily-five years
after its inception, the field remains extremely active aitdlv We shall try in this
Section to give a map of the parts of the subject we have nareov

8.1 Further topics in “Classical Domain Theory”

We mention four topics which the reader is likely to encouetsewhere in the litera-
ture.

8.1.1 Effectively given domains

As we mentioned in the Introduction, domain-theoretic gurity provides a qualita-
tive substitute for explicit computability considerat®nn order to evaluate this claim
rigorously, one should give an effective version of Domalredry, and check that the
key constructions on domains such as product, functionespeast fixpoints, and solu-
tions of recursive domain equations, all “lift” to this eftéeve setting. For this purpose,
the use of abstract bases becomes quite crucial; we saylifgimgp a little for this
thumbnail sketch) that an-continuous domain isffectively giverif it has an abstract
basis(B, <) which is numbered a® = {b,, },c., in such a way thak is recursive
in the indices. Similarly, a continuous functign D — E between effectively given
domainsiis effective if the corresponding approximable piragis recursively enumer-
able. We refer to [Smy77, Kan79, WD80] and the chapter ondffe Structures in
this Handbook for developments of effective domain theoryrese lines.

There have also been some more sophisticated approaches aihi at making
effectivity “intrinsic” by working inside a constructiveniverse for set theory based
on recursive realizability [McC84, Ros86, Pho91]. We shetilirn to this idea in sub-
section 8.5.

8.1.2 Universal Domains

LetC be a cartesian closed category of domains,@rddomain inC. We say that/ is
universalfor C if, for every D in C, there is an embeddirg D — U. Thus universal-
ity means that we can, in effect, replace the cate@bhy the single domai®/. More
precisely, we can regard the domdinas represented by the idempotept = e o p,
wherep is the projection corresponding to Sinceep: U — U, and[U — U] is
again inC and hence embeddablelih we can ultimately identifyD with anelement
up € U, which we can think of as a “code” fab. Moreover, constructions such as
product and function space induce continuous functions

fun,prod : U2 — U
which act on these codes, so that e.g.

fun(up,ur) = Up — E] -
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In this way, the whole functorial level of Domain Theory whiwe developed as a
basis for the solution of recursive domain equations in i8edd can be eliminated,
and we can solve domain equatiansto equality on the coddsy finding fixpoints of
continuous functions ovér.

This approach was introduced by Scott in [Sco76], and fadidwn the first text-
book on denotational semantics [Sto77]. However, it musehe that, as regards appli-
cations, universal domains have almost fallen into dislike.main reason is probably
that the coding involved in the transition from to up is confusing and unappealing;
while more attractive ways of simplifying the treatment ohdain equations, based on
information systems, have been found (see 8.1.4). Howthag have been two recent
developments of interest. Firstly, a general approachéoctinstruction of universal
domains, using tools from Model Theory, has been develogdaunter and Jung and
Droste and Gobel, and used to construct universal domaimadiny categories, and to
prove their non-existence in some cases [GJ88, DG90, DGG93D

Secondly, there is one application where universal doméinplay an important
role: to provide models for type theories with a type of gfpés. Again, the original
idea goes back to [Sco76]. We say that a univeral dorbiaadmits a universal type
if the subdomairi” of all up for D in C is itself a domain inC—and hence admits
a representationy, € U. We can think ofuy as a code for the type of all types. In
[Sco76], Scott studied the powergg{w) as a univeral domain for two categories: the
category ofw-continuous lattices (for which domains are taken to beesgnted by
idempotents of3(w)), and the category @f-algebraic lattices (for which domains are
represented by closures). Ershov [Ers75] and Hosono ard[B8{77] independently
proved thatl3(w) does not admit a universe for the former category; Hancoak an
Martin-Lof proved that it does for the latter (reported Bico76]). For recent examples
of the use of universal domains to model a type of all type§Eme37, Coq89, Ber91].

8.1.3 Domain-theoretic semantics of polymorphism

We have seen the use of continuity in Domain Theory to circembeardinality prob-
lems in finding solutions to domain equations such as

D%[D—>D]

A much more recent development makes equally impressiveiusentinuity to give

a finitary semantics for impredicative polymorphism, asha second-orddumbda-
calculus (Girard’s “System F”) [Gir86, CGW87, Coq89]. Thismantics makes essen-
tial use of the functorial aspects of Domain Theory. Thensehalso been semantics
for implicit polymorphism based on ideals [MPS86] and réiquivalence relations
[AP90] over domains. We refer to the chapter in this volumehaf Handbook on
Semantics of Types for comprehensive coverage and refesenc

8.1.4 Information Systems

Scott introduced information systems for bounded-conepledlgebraic dcpo’s (“Scott
domains”) in [Sco82]. The idea is, roughly, to represent gegary of domains by
a category of abstract bases and approximable mappingsdsorems 2.2.28 and
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2.2.29. One can then define constructions on domains in tefrtise bases, as in
Propositions 3.2.4 and 4.2.4. This gives a natural settimgffective domain theory
asin 8.1.1 above. Moreover, bilimits are given by unionsédimation systems, and
domain equations solved up to equality, much as in 7.3.5eMenerally, information
systems correspond to presenting just the coprime elerfrentgshe domain prelocales
of 7.3. Information system representations of variousgates of domains can be
found in [Win88, Zha91, Cur93]. A general theory of infornat systems applicable
to a wide class of topological and metric structures can badan [ES93].

8.2 Stability and Sequentiality

Recall thee-§ style definition of continuity given in Proposition 2.2.1gjivene €
C(x) it providesd € B, with f(d) E e. However, there is neanonicalchoice ofd
from e. In an order-theoretic setting, it is natural to ask for ther be deastsuchd.
This leads to the idea of thmodulus of stability M (f, z, ), wheref(z) 3 e, is the
least suchd, if it exists. We say that a continuous functionsigbleif the modulus
always exists, and define tk&able orderingon such functions by

fEsg <= [fEg A VzeecCpyy. M(f,z,e)=M(g,z,¢).

We can think of the modulus as specifying the minimum infaiioraactually required
of a given inputz in order that the functiory yields a given informatiory on the
output; the stable ordering refines the usual pointwiserdrgleéaking this intensional
information into account.

It turns out that these definitions are equivalent to elegagebraic notions in the
setting of the lattice-like domains introduced (for contgle different purposes!) in
Section 4.1. LetD, E be domains irL. Then a continuous functiofi: D — FE is
stable iff it preserves bounded non-empty infima (which gkwexist inL; cf. Propo-
sition 4.1.2), andf C; g iffforall z C y, f(x) = f(y) N g(x). Thisis the first step in
an extensive development of “Stable Domain Theory” in wistdble functions under
the stable ordering take the place which continuous funstay in standard Domain
Theory. Stable Domain theory was introduced by Berry [BeB&79]. Some more
recent references are [Gir86, CGW87, Tay90, Ehr93].

Berry’s motivation in introducing stable functions wasuadty to try to capture the
notion of sequentially computable function at higher tyges the theory of sequential
functions on concrete domains, we refer to [KP93, Cur93].

8.3 Reformulations of Domain Theory

At various points in our development of Domain Theory (see &ection 3.2), we
have referred to the need to switch between different vessiy C,, C,, of some
category of domains, depending on whether bottom elemeatseguired, and if so
whether functions are required to preserve them. In somseferandC,, are the
mathematically natural categories, since what the mompisiust preserve matches
the structure that the objects are required to have; wdileis the preferred category
for semantics, since endomorphisfhs D — D need not have fixpoints at all i@,
while least fixpoints irC |, are necessarily trivial.
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All this suggests that something is lacking from the math@abframework in or-
der to get a really satisfactory tie-up with the applicatiowe shall describe a number
of attempts to make good this deficiency. While no definitd@son has yet emerged,
these proposals have contributed important insights to &oheory and its applica-
tions.

8.3.1 Predomains and partial functions

The first proposal is due to Gordon Plotkin [Plo85]. The ide&oi use thebjectsof
C (“predomains”, i.e. domains without any requirement oftbot elements), but to
change the notion of morphism fmartial continuous functionwhere we say that a
partial functionf: D — FE'is continuous if its domain of definition is a Scott-open
subset ofD, and its restriction to this subset is a (total) continuowmsction. The
resulting category is denoted Bp. This switch to partial continuous functions carries
with it a change in the type structure we can expect to havaiicategories of domains:
they should beartial cartesian closed categories, as defined e.g. in [RR88, Ros86
One advantage of this approach is that it brings the usagewfdh Theory closer
to that of recursion theory. For example, the hierarchy tidi§ partial continuous
functionals over the natural numbers will be given by

N, [N — N],[[N = N] = NJ,...

rather than R R K
Ny, [N, — N, |,[[N, = N ] —Ng],....

This avoidance of bottom elements also leads to a simpleeptation of product and
sum types. For example, there is just one notion of sum, tsieidt unionD U E,
which is indeed the coproduct {Dy.

An important point is that there is a good correspondencedmt the operational
behaviour of functions with a call-by-value parametergiag mechanism and the par-
tial function type[. — ]. For example, there is a good fit betwelen—~ ] and the
function type constructor in Standard ML [MT91, MTH90].

To balance these advantages, we have the complication lrigleath partially de-
fined expressions and partial cartesian closure; and aéssatraightforward treatment
of fixpoints. It is not the case that an arbitrary partial donous functionf: D — D
has a well-defined least fixpoint. However,[¥ itself is a partial function type, e.qg.
D = [E — E], thenf does have a well-defined least fixpoint. This is in accord with
computational intuition for call-by-value programmingnguages, but not so pleasant
mathematically.

As a final remark, note that in fa@j is equivalent toC,,! Thus, in a sense,
this approach brings nothing new. However, there is a distonceptual difference,
and alsoCy is more amenable to constructive proof and categoricalmatzation
[Ros86].

8.3.2 Computational Monads

Computational monads have been proposed by Eugenio Moggi@seral structuring
mechanism for denotational semantics [Mog91]. A compaieti monad on a carte-
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sian category is a monadT, n, i) together with a “tensorial strength”, i.e. a natural
transformation
tap: AxTB—T(AxB)

satisfying some equational axioms. The import of the stiterggthat the monad can be
internalised along the lines mentioned after Propositidnd Now letC be a category
of (pre)domains and total continuous functions. Moggispgwsal is to make a distinc-
tion betweervaluesand (denotations ofjomputationsAn element ofA is a value, an
element ofl" A is a computation. A (call-by-value) procedure will denot@arphism
A — T B which accepts an input value of typeand produces a computation over
Composition of such morphisms is by Kleisli extensionf ifA — T'B, g: B — TC,
then composition is defined by

AL X rre ke e,

with identities given by the unif4 : A — T A.

In particular, partiality can be captured in this way usiheg lifting monad, for
which see 3.2.5. Note that this particular example is rgallyanother way of present-
ing the categonL, of the previous subsection; there is a natural isomorphism

The value of the monadic approach lies in its generality anithé type distinction it
introduces between values and computations. To illustregdirst point, note that the
various powerdomain constructions presented in Sect@alrhave a natural structure
as strong monads, with the monad unit and multiplicatioegivy suitable versions of
the singleton and big union operations. For the second pemtrefer to the elegant
axiomatization of general recursion in terms of fixpointexis given by Crole and Pitts
[CP92], which makes strong use of the monadic approach. Wik really belongs to
Axiomatic Domain Theory, to which we will return in subsexti4 below.

8.3.3 Linear Types

Another proposal by Gordon Plotkin is to use Linear Typestlii@ sense of Linear
Logic [Gir87]) as a metalanguage for Domain Theory [Plo9Bhis is based on the
following observation. Consider a categd®y; of domains with bottom elements
and strict continuous functions. This category has pragland coproducts, given by
cartesian products and coalesced sums. It also has a mbaoloisied structure given
by smash product and strict function space, as mentione®id.3Now lifting, which
is a monad orC by virtue of the adjunction mentioned in 3.2.5, is duallg@nonad
onC,; and the co-Kelisli category for this comonadls .

Indeed, Linear Logic has broader connections with Domaiecr A key idea of
Linear Logic is the linear decomposition of the functionspa

[A— B~ 14— B].

One of the cardinal principles of Domain Theory, as we haeasis to look for carte-
sian closed categories of domains as convenient univess¢bd semantics of com-
putation. Linear Logic leads us to look for linear decomfioss of these cartesian

149



closed structures. For example, the cartesian closedagte§ complete lattices and
continuous maps has a linear decomposition via the categfargmplete lattices and
sup-lattice homomorphisms—i.e. maps presenatigoins, with | = PH(L), the

Hoare powerdomain of. There are many other examples [H0092, Ehr93, Hut94].

8.4 Axiomatic Domain Theory

We began our account of Domain Theory with requirementstermet certain forms
of recursive definitions, and to abstract some key struttestures of computable par-
tial functions. We then introduced some quite specific $tmas for convergence and
approximation. The elaboration of the resulting theoryebo that these structures do
indeedwork; they meet the requirements with which we began. The questimains
whether another class of structures might have served dsowbktter. To address
this question, we should try to axiomatize the key featurfes category of domains
which make it suitable to serve as a universe for the semmaficomputation. Such
an exercise may be expected to yield the following benefits:

e By making it clearer what the essential structure is, it $tdéead to an improved
meta-language and logic, a refinement of Scott’s Logic of @atable Functions
[Sco93].

e Having a clear axiomatization might lead to the discovergifferent models,
which might perhaps be more convenient for certain purpasesuggest new
applications. On the other hand, it might lead to a reprediemt theorem, to the
effect that every model of our axioms for a “category of domsdican in fact
be embedded in one of the concrete categories we have babnngtun this
Chapter.

Thus far, only a limited amount of progress has been madeisptbgramme. One
step that can be made relatively cheaply is to generalize émncrete categories of do-
mains to categories enriched over some suitable subcgte§®CPO. Much of the
force of Domain Theory carries over directly to this more gethsetting [SP82, Fre92].
Moreover, this additional generality is not spurious. Agetdevelopment in the se-
mantics of computation has been towards a refinement of daiional denotational
paradigm, to reflect more intensional aspects of computatibehaviour. This has
led to considering as semantic universes certain categorigvhich the morphisms
are not functions but sequential algorithms [Cur93], infation flows [AJ94b], game-
theoretic strategies [AJ94a], or concurrent processesdAb These are quite different
from the “concrete” categories of domains we have been denisig, in which the mor-
phisms are always functions. Nevertheless, they have miieaelevant properties
of categories of domains, notably the existence of fixpaants of canonical solutions
of recursive domain equations. The promise of axiomaticaartheory is to allow the
rich theory we have developed in this Chapter to be trangptussuch settings with a
minimum of effort.

The mostimpressive step towards Axiomatic Domain Theodate has been Peter
Freyd's work on algebraically compact categories [Fre929R]. This goes consider-
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ably beyond what we covered in Section 5. The work by Crole Ritd on FIX-
categories should also be mentioned [CP92].

In another direction, there are limitative results whiclowstthat certain kinds of
structuresannotserve as categories of domains. One such result appearee asse
5.4.11(3). For another, see [HM93].

8.5 Synthetic Domain Theory

A more radical conceptual step is to try to absorb all thectme of convergence and
approximation, indeed of computability itself, into the laient universe of sets, by
working inside a suitable constructive set theory or topbke slogan is: “Domains
are Sets”. This leads to a programme of “Synthetic Domairofyieby analogy with
Synthetic Differential Geometry [Koc81], in which smoo#ss rather than effectivity
is the structure absorbed into the ambient topos.

The programme of Synthetic Domain Theory was first adumbrhjeDana Scott
around 1980. First substantial steps on this programme waken by Rosolini
[Ros86], and subsequently by Phoa [Pho91], and Freyd, M&ogolini and Scott
[FMRS90]. Axioms for Synthetic Domain Theory have been stigated by Hyland
[Hyl91] and Taylor [Tay91], and the subject is currently endctive development.
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9 Guide to the literature

As mentioned in the Introduction, there is no book on Domdiedry. For systematic
accounts by the two leading contributors to the subject,eferto the lecture notes of
Scott [Sco81] and Plotkin [Plo81]. There is also an intrdducexposition by Gunter
and Scott in [GS90]. An exhaustive account of the theory aiticmous lattices can
be found in [GHK"80]; a superb account of Stone duality, with a good chapter on
continuous lattices, is given in [Joh82]; while [DP90] is@rcellent and quite gentle
introduction to the theory of partial orders.
Some further reading on the material covered in this Chapter

Section 2: [DP90, Joh82];

Section 3: [Plo81, Gun92b, Win93];

Section 4: [Jun89, Jun90];

Section 5: [SP82, Fre91, Fre92, Pit93b, Pit93a];

Section 6: [Plo76, Smy78, Win83, Hec91, Sch93];

Section 7: [Abr90c, Abr91a, AO93, Ong93, Hen93, Bou94, Jen92, JenAiy83h].

Applications of Domain Theory

There is by now an enormous literature on the semantics @fraroming languages,
much of it using substantial amounts of Domain Theory. Weé sifihply list a number
of useful textbooks: [Sch86, Ten91, Gun92b, Win93].

In addition, a number of other applications of Domain Thelmaye arisen: in Ab-
stract Interpretation and static program analysis [Abr8MA86, AJ91] (see also the
article on Abstract Interpretation in this Handbook); detses [BDW88, BJO91]; com-
putational linguistics [PS84, PM90]; artificial intelligee [RZ94]; fractal image gen-
eration [Eda93b]; and foundations of analysis [Eda93a].

Finally, the central importance of Domain Theory is wellitated by the num-
ber of other chapters of this Handbook which make substiaefiarence to Domain-
theoretic ideas: Topology, Algebraic Semantics, Semamidypes, Correspondence
between Operational and Denotational Semantics, Abskndetpretation, Effective
Structures.
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closure operator, 41 filtered set, 13
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cofinal subset, 14 finite mub property, 58
coherent algebraic prelocale, 123 finitely separated function, 60
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i-c-pairs, 40

ideal, 13

ideal completion, 26
idempotent deflation, 59
index set of a net, 14
inductive closure system, 19
infimum, 12

inflationary semilattices, 96
interpolation property, 24
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lattice, 12
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reduct, 104
round ideal, 26

s-r-pair, 34

saturated set, 62
schizophrenic object, 111
Scott-closed set, 29
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strongly separated function, 61
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