Monadic Second Order Logic

Hossein Hojjat

LARA

November 26, 2010

Hossein Hojjat (LARA)

November 26, 2010 1 / 28

- ∢ ศ⊒ ▶

3

Quest for Expressiveness/Decidability

э.

< 17 ▶

Second Order Logic

FOL is the logic of quantification over the elements of a type
 ∀x.Φ(x)

For every individual x, $\Phi(x)$

Second order logic is the logic of quantification over the predicates

∀P.∀x.P(x)For every set of individuals *P* and for every individual *x*, *x* ∈ *P* ∃*R*.∀*x*.*R*(*x*,*x*)

There exists a relation R such that for every individual x, R(x,x)

• *Monadic* Second Order (MSO): The fragment of the second order logic which allows only quantification over sets

S1S

- S1S: Monadic second order logic of one successor
- The fragment of MSO interpreted on discrete linear orders (\leq)
- Let {x₁, ..., x_n} be a family of first-order variables and {X₁, ..., X_n} a family of second-order monadic variables
- S1S is defined on the signature (\mathbb{N}, S) as the following

$$t := 0 | x_i$$

$$f := S(t, t) | X_i(t) | \neg f | f \land f | \exists x_i.f | \exists X_i.f$$

- S is the successor predicate
- The predicate S and \leq can be defined from each other

WS1S: The fragment of S1S which allows only quantification over finite sets

イロト 不得下 イヨト イヨト 二日

WS1S Semantics

- Signature: Natural numbers $\langle \mathbb{N}, \mathcal{S}
 angle$
- Interpretation: $x \xrightarrow{l} n \in \mathbb{N}$ and $X \xrightarrow{l} N \in 2^{\mathbb{N}}$ such that N is finite
- Truth value of a formula with respect to interpretation I

$$\begin{split} I &\models Y(x) & \text{iff} \quad I(x) \in I(Y) \\ I &\models S(x,y) & \text{iff} \quad I(x) + 1 = I(y) \\ I &\models \neg \Phi & \text{iff} \quad I \not\models \Phi \\ I &\models \Phi_1 \land \Phi_2 & \text{iff} \quad I &\models \Phi_1 \text{ and } I &\models \Phi_2 \\ I &\models \exists x.\Phi & \text{iff} \quad I[n/x] &\models \Phi, \text{ for some } n \in \mathbb{N} \\ I &\models \exists X.\Phi & \text{iff} \quad I[N/X] &\models \Phi, \text{ for some finite } N \in 2^{\mathbb{N}} \end{split}$$

Word Model

- Finite alphabet Σ is given
- Word is defined as $\omega = a_0 \cdots a_{n-1}$ where $a_0, \cdots, a_{n-1} \in \Sigma$
- Domain of ω : $dom(\omega) = \{0, \cdots, |\omega| 1\}$
- A unary predicate P_α is defined for every α ∈ Σ such that P_α(i) if and only if a_i = α
- The word ω defines a word model $\underline{\omega} = (\mathit{dom}(\omega), S^{\omega}, P_{a_0}, \cdots, P_{a_{n-1}})$

Example

Let $\Sigma = \{a, b\}$ and $\omega = aabba$ $dom(\omega) = \{0, 1, 2, 3, 4\}$ $P_a = \{0, 1, 4\}$ $P_b = \{2, 3\}$

- 本間下 本臣下 本臣下 三臣

MSO on Words

- Given an alphabet Σ, the logic S1S can also be defined on the signature of the words: {≤, (P_α)_{α∈Σ}} or {S, (P_α)_{α∈Σ}}
- $\exists x \exists y . P_a(x) \land P_b(y) \land x \leq y \land \neg \exists z . (x < z \land z < y)$

• Word contains the substring *ab*

- $\exists x. P_a(x) \land \neg \exists y. (x < y)$
- The last symbol is a: $P_a(last)$

• $\exists X.(X(first) \land \forall y \forall z.(S(y,z) \rightarrow (X(y) \leftrightarrow \neg X(z))) \land \neg X(last))$

• The length of the word is even

イロト 不得下 イヨト イヨト 二日

MSO_0

- We can check a set X to see if it is singleton $Sing(X) \equiv \exists Y. Y \subseteq X \land Y \neq X \land \neg (\exists Z. Z \subseteq Y \land Z \neq Y)$ $(X = Y) \equiv X \subseteq Y \land Y \subseteq X$
- We can remove all the first-order variables if we allow S and \leq to be applied to singleton sets
- The result belongs to MSO₀

$$\Phi ::= X \subseteq Y | S(X,Y) | \exists X.\Phi | \neg \Phi | \Phi_1 \land \Phi_2$$

•
$$\Phi_{MSO} = \forall x \forall y. (P_a(x) \land x < y \rightarrow P_b(y))$$

•
$$\Phi_{MSO_0} = \forall X \forall Y.(Sing(X) \land Sing(Y) \land X \subseteq P_a \land X < Y \rightarrow Y \subseteq P_b)$$

・ 戸 ト ・ ヨ ト ・ ヨ ト

Büchi Theorems

 A language L ⊆ Σ* is regular if and only if it is expressible in weak monadic second-order logic on words

 A language L ⊆ Σ^ω is ω-regular if and only if it is expressible in monadic second-order logic on words

Proof

A language $L \subseteq \Sigma *$ is regular if and only if it is expressible in weak monadic second-order logic on words

$\mathsf{Automata} \Rightarrow \mathsf{Logic}$

- Code the execution of an automaton
- A formula with a structure similar to the following $\exists X_0 \cdots \exists X_n. \Phi_{\text{partition}} \land \Phi_{\text{start}} \land \Phi_{\text{transitions}} \Phi_{\text{accept}}$

$\mathsf{Logic} \Rightarrow \mathsf{Automata}$

 $\bullet\,$ Construction based on induction on the structure of $\Phi\,$

•
$$X_1 \subseteq X_2$$
, $X_1 \subseteq P_a$, $Sing(X_1)$, $S(X_1, X_2)$, $X_1 < X_2$

イロト 不得下 イヨト イヨト 二日

WS1S decidability

Decision Procedure

- Given a WS1S formula Φ
- Translate ¬Φ to an automaton A_{¬Φ} = (Q, Σ, δ, q₀, F) accepting ω iff ω ⊨ ¬Φ
- Output
 - Φ is valid when $A_{\neg \Phi}$ accepts the empty string
 - Return a counter model ω which belongs to the automaton

From Logic to Automaton: Alphabet

- The MSO₀ formula Φ(X₁, · · · , X_n) is interpreted in the word model of ω and the sets K₁, · · · , K_n
- $K_i \in dom(\omega)$ represents a set of positions
- To code the models we use an alphabet $\Sigma imes \{0,1\}^n$

イロト イヨト イヨト イヨト ニヨー

- $\# \in \Sigma$ is an arbitrary symbol
- ullet $*\in\{0,1\}^{n-2}$ is an arbitrary vector

(人間) トイヨト イヨト

Hossein Hojjat (LARA)

November 26, 2010 14 / 28

November 26, 2010 15 / 28

3

イロト イポト イヨト イヨト

$\neg \Phi$

Complement the automaton A_Φ by flipping the final and non-final states

•
$$L(\neg \Phi) = \overline{L(\Phi)} = \overline{L(A_{\Phi})} = L(A_{\neg \Phi})$$

$\Phi_1 \wedge \Phi_2$

- Product construction of A_{Φ_1} and A_{Φ_2}
- $L(\Phi_1 \land \Phi_2) = L(\Phi_1) \cap L(\Phi_2) = L(A_{\Phi_1}) \cap L(A_{\Phi_2}) = L(A_{\Phi_1 \land \Phi_2})$

(4 回 ト 4 ヨ ト 4 ヨ ト

$\exists X_i.\Phi$

- $A_{\exists X_i, \Phi}$ acts as A_{Φ} except that it guesses the values in the set X_i
- Projection on X_i by simply removing its track from the automaton

$\exists X_i.\Phi$

• We should be careful of $(0^{n-1})*$ suffix after projection from $\Phi(X_1, \dots, X_n)$ to $\exists X_i . \Phi(X_1, \dots, X_n)$

		() . .
Hossein	Houst	
1035011	iojjac	(_ ,

$\exists X_i.\Phi$

Right quotient of $L \subseteq \Sigma *$ with $L' \subseteq \Sigma *$ $L/L' = \{\omega \in \Sigma * | \exists u \in L' . \omega u \in L\}$ Define the projection function $\Pi_i : (\{0,1\}^n) * \to (\{0,1\}^{n-1}) *$ such • that $\Pi_i \begin{pmatrix} \vdots \\ b_{i-1} \\ b_i \\ b_{i+1} \\ \vdots \end{pmatrix}) = \begin{pmatrix} b_1 \\ \vdots \\ b_{i-1} \\ b_{i+1} \\ \vdots \\ b_i \end{pmatrix}$ • $L(\exists X_i \Phi) = \prod_i (L(\Phi)) / (\{0\}^{n-1}) = \prod_i (L(A_{\Phi})) / (\{0\}^{n-1}) = L(A_{\exists X_i \Phi})$

Translation: Summary

- Correspondence between logical operators and basic automata
- Constructive proof using induction on the formula structure
- Construction results in a trivial DFA that accepts all the acceptable words
- Shows that WS1S formulas define regular languages
- Give a decision procedure for WS1S

State Explosion

- Negation requires determinization
- Existential quantification introduces non-determinism
- Quantifier alternation results in exponential blow-ups

$$\forall X.\exists Y.\Phi \equiv \neg \exists X.\neg \exists Y.\Phi$$

If
$$|A_{\Phi}| = n$$
 then $|A_{\neg \exists Y.\Phi}| = O(2^{|n|})$

$$|A_{\neg \exists X. \neg \exists Y. \Phi}| = O(2^{2^{|n|}})$$

Corollary

- Presburger arithmetic is decidable
- We can translate a given formula in Presburger arithmetic to its equivalent in MSO logic
- Idea of encoding:
 - Encode $n \in \mathbb{N}$ as the set of positions in which there is a 1 in its binary representation
 - $17 = (10001)_2 \rightsquigarrow \{0,4\}$
 - Encode the addition of $x_1 \in \mathbb{N}$ and $x_2 \in \mathbb{N}$ as the MSO formula $\exists X_{Result} . \exists X_{Carry} . \Phi(X_1, X_2, X_{Result}, X_{Carry})$
 - X_1, X_2, X_{Result} and X_{Carry} represents the bits of x_1, x_2 , result and carry during addition

M2L-STR

- Interpretation with respect to k
- Domain is $[k] = \{0, \dots, k\}$
- Successor relation S restricted to $[k] \times [k]$

Semantics

 $k, l \models Y(x)$ iff $I(x) \in I(Y), I(x) \in [k]$ and $I(X) \subseteq [k]$ $k, l \models S(x, y)$ iff $I(x) + 1 = I(y), I(y) \in [k]$

$$k, I \models \neg \Phi$$
 iff $I \not\models \Phi$

$$I \models \Phi_1 \land \Phi_2$$
 iff $I \models \Phi_1$ and $I \models \Phi_2$

$$I \models \exists x.\Phi$$
 iff $I[n/x] \models \Phi$, for some $n \in [k]$

$$k, I \models \exists X. \Phi$$
 iff $I[N/X] \models \Phi$, for some $N \subseteq [k]$

Validity

$$\models \Phi$$
 if and only if $k, I \models \Phi$, for all I and $k \in \mathbb{N}$

< 17 ▶

Satisfiability Examples

	WS1S	M2L-STR
$X \subseteq Y$	$X \mapsto \{1\}, Y \mapsto \{1, 2\}$	$k = 3, X \mapsto \{1\}, Y \mapsto \{1, 2\}$
$\exists X. \forall p. p \in X$	unsatisfiable	valid $oralk \in \mathbb{N}. X \mapsto \{0, \cdots, k-1\}$
$\exists X. \exists p. p \in X$	valid	satisfiable for $k > 0$ unsatisfiable for $k = 0$

3

イロト イポト イヨト イヨト

Bounded Model Construction

- INSTANCE: A formula Φ and $k \in \mathbb{N}$
- QUESTION: Is there ω such that $|\omega| = k$ and ω satisfies Φ ?

(4 個) トイヨト イヨト

BMC for M2L-STR

$$\Phi ::= X \subseteq Y | S(X, Y) | \exists X. \Phi | \neg \Phi | \Phi_1 \land \Phi_2$$

- Encode $M \subseteq [k]$ by the Booleans b_0, \dots, b_{k-1} so that $i \in M$ iff b_i is true
- Translation from MSO to QBF with $[.]_k : MSO \rightarrow QBF$

$$\begin{split} [X \subseteq Y]_k &= \bigwedge_{0 \le i \le k-1} (x_i \to y_i) \\ [S(X,Y)]_k &= Sing(x_0, \cdots, x_{k-1}) \land Sing(y_0, \cdots, y_{k-1}) \land \\ & \bigvee_{0 \le i \le k-1} (x_i \to y_{i+1}) \\ [\Phi_1 \land \Phi_2]_k &= [\Phi_1]_k \land [\Phi_2]_k \\ [\neg \Phi]_k &= \neg [\Phi]_k \\ [\exists X. \Phi]_k &= \exists x_0 \cdots x_{k-1}. [\Phi]_k \end{split}$$

イロト イポト イヨト イヨト 二日

BMC for WS1S

Theorem

- BMC for WS1S is non-elementary
- Proof.
 - Closed formulas are either valid or unsatisfiable
 - Closed formula Φ has a model of length k iff Φ is valid
 - Validity in WS1S is non-elementary

Reference

- "Bounded Model Construction for Monadic Second-Order Logics"; Ayari, Basin - CAV 2000
- "Languages, Automata, and Logic"; Wolfgang Thomas, Chapter 7 of Handbook of Formal Languages vol. 3, 1997