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Words and Languages

v

A word w is a sequence of symbols in some alphabet ¥.

v

A language is a set of words.

v

For example, {abb, accbba, aa, bab} is a language over
Y ={a,b,c}.

A language can have infinitely many words.

v
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Parikh Image

» If wis a word over some ¥, we denote by My (w) the Parikh
image of w over alphabet ¥.

» Mx(w) maps a character in X to its number of occurences in
w.

» The Parikh image of a language L over X is {[x(w)|w € L}.

It is denoted by MMy (L).

Examples
> My, b,y (becba) = (1,2,2)
where (1,2, 2) stands for {(a,1),(b,2),(c,2)}
> MMy, p,c)(cabaaabb) = (4,3,1)
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Letter-equivalence

» Two words wy and wy over X are letter-equivalent iff
rlz(Wl) = n):(Wg).

» Two languages L1 and L, over ¥ are letter-equivalent iff
nz(Ll) = nz(Lg). It is denoted by L =y L.
» We also define L1 Cp, Lo with the obvious meaning.

Examples

» abbcaa is letter-equivalent to baacab.
» cbaccba is letter-equivalent to ccbaabc.
» {a"b"|n € N} is letter-equivalent to {(ab)"|n € N}.

Remark
The alphabet X will be implicit in the rest of the talk.
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Regular Languages

A language is regular if it is accepted by some finite automaton.
| assume you are familiar with regular languages. ..
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Context-free Grammars

G=(V,T,P,S)
» V is a set of variables, denoted A;, Az, A3 ...
» T is a set of terminal symbols, denoted a, b, c. ..
> S is the start variable.
» P is a set of productions of the form A; — a where
ac(VUT)*
We suppose that S — A; is the only production involving S.

Example
Let V = {Al,Az}, T = {a, b, C}, P = {Al — A1A2|3,A2 — A2A2|b}

Remark
We will now always call our grammar G.

6
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Steps and Derivations

Steps
Given «a, 5 € (VU T)*, (3 is derivable in one step from «, denoted
a = (3, if there exists a production A — v and a3,z € (VU T)*
such that:

a = a1Aas and 6= a1yas

Example

Let V = {A17A2}, T = {a, b7 C}, P= {Al — A1A2]a,A2 — A2A2’b}
A1aA2b = A1aA>Azb because Ay — AxA; is a production.

Ai1aA>b = Ajabb because Ay — b is a production.
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Derivations and Language

» A derivation is a sequence of steps.

> We denote by =" the reflexive transitive closure of =-.

Example

Let V ={A1, A}, T ={a,b,c}, P={A1 — A1Az|a, Ay — ArAz|b}.
A1 = A1As = aAry = aArAr = aAsb = abb is a derivation.

S =* A1A2bbA2b

S =* abbbb

Language of grammar G
The language of G, denoted L(G), is the set {x € T*|S =* x}

Example
abbbb is in L(G) because S =* abbbb and abbbb € {a, b, c}*.
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Context-free Language

A language L is context-free if there is a context-free grammar G
such that L = L(G).
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Parse Trees: Example

Consider derivation A1 = A1A> = aAs = aArA; = aAsb = abb.
It has the following parse tree t:

Ar
VRN
A1 Az
| VRN
a A2 A2
| |
b b

Yield of a parse tree

The yield of t, denoted Y(t), is such that Y(t) = abb.

The yield of a set of trees T, denoted Y(T), is the set of yields of
treesin T.
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Parse Trees are Nice

| think trees are way easier to manipulate and reason about than
derivations.

In our proofs, we'll try to reduce our goals to goals about trees. . .

For example, we can define the language of G in term of trees:
Let T be the set of parse trees of G, then L(G) = Y(Tg).
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Parse Trees and Derivations

The following parse tree produces derivation
A1 = A1A2 = aAg = aA2A2 = aA2b = abb.
Can it produce others?

A1
VRN
A1 Ao
| /7 N\
a A2 A2
| |
b b

Yes! For example:

Al = A1A2 = A1A2A2 = A1A2b = aA2b = abb
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Semilinear Sets

Linear Sets
A subset S of NX is called linear if it is of the form

{uo + kyuy + kouo + - - - + kpun}

Where u; is a vector of N¥ and k; € N.

We write S = ug+ < ug, Up, ..., u, >
Example
(0,0,1)+ < (1,0,0),(1,1,1),(0,1,1) >
{(0,0,1) + k1(1,0,0) + k2(1,1,1) + k3(0,1,1)[ k1, ko, k3 € N}
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Parikh's theorem

Two formulations
» Any context-free language is letter-equivalent to a regular
language.

» The Parikh image of any context-free language is a semilinear
set.

They are equivalent

That's because given a semilinear set S, we can easily build a
regular language L such that MN(L) = S.
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Constructive Proof of Formulation 1

Formulation 1:
Any context-free language is letter-equivalent to a regular
language.

Proof

Given grammar G, we will build a finite automaton M such that
L(G) =n L(M).

Presentation adapted from J.Esparza, P.Ganty, S.Kiefer,
M.Luttenberger: Parikh’s Theorem: A simple and direct
construction.
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Chomsky Normal Form

The construction needs a grammar in Chomsky Normal Form
All productions are of the form A — BC or A — a, where a # ¢

Example

Grammar for balanced parens:
A1 — A1A1|(A1)|€
In Chomsky Normal Form (without ¢):
A1 — A2A3|A1A1|A4A3
A4 — A2A1
A2 — (
A3 —))

CNF is nice because of the shape of its parse trees
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The Construction: Preliminary Definitions

Projections and Parikh image

We consider a grammar G = (V, T, P, S) with axiom S = A;.
Fora € (VUT), let a;y (resp a;7) denote the projection of a
onto V (resp. T).

Let nv(a) = I'I(a/v) and I'IT(a) = I'I(a/T).

Examples
Let V = {Al,AQ}, T = {al, ao, 33}, P = {Al — A1A2\a, A2 — A2A2|b}
Let = a1Ara2A1 A1
Then,
OZ/T = aia and Oé/\/ = A2A1A1
My(a) =(2,1) and M7 (a) = (1,1,0)
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Transitions

Recall that steps are such that:
a = a1Aas = 8= aivas if A— ~ is a production.
The transition associated to a step is the triple

t(a = B) = (Mv(a),v,7, Nv(B)).

Example
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The Construction: k-Parikh automaton

For k € N, the k-Parikh automaton of G is the NFA
ME = (Q, T,6,q0,{qr}) defined as follows:
» Q={(x1,....x) €N x < k}
6 = {t(a= B)Nv(a),Nv(B) € Q}
g =MNy(S) =(1,0,...,0)
gr =MNy(e) =(0,0,...,0).

v

v

v

Recall:
t(AQaAl = A231A2A3) = ((17 17 0)7 €, (07 27 1))

Example on the board
V = {Al,Az}, T = {31, ao, 23}, P = {Al — A1A2|a, A2 — A2A2|b}
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Theorem

Let n = |V/|, the number of variables in the grammar G.

L(G) and L(MZ™) have the same Parikh image.
In other words, L(G) =n L(MZH?)

|Q| = O(4"). Is the construction space efficient?
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Where Are We?

We want to prove formulation 1 of Parikh’s theorem by building a
finite automaton M such that L(G) =n L(M).

» From G in Chomsky Normal Form, we define I\/Ié.
> We choose M to be the (n+1)-Parikh automaton MZ™!.
> We'd like to prove that L(MZ!) =n L(G).
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Observation

>

v

Q={(x,. -, xn) EN"IT x; < k}
6 = {t(a = B)Ny(a),Nv(B) € R}
g0 = Nv(S) = (1,0,...,0)

gr = Ny(e) = (0,0,...,0).

0 suggests that states of the automaton be interpreted as set
of words over (VU T)*.

By definition of @, any word w associated with a state of the
k-Parikh automaton is such that My (w) is of length at most
k.

By definition of §, a run of the k-Parikh automaton
corresponds to a derivation such that at each step the word
obtained w is such that Ny (w) has length at most k.
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More Formally: Index of a derivation

Definitions
A derivation S = a3 = a» = -+ = ap, has index k if for every
aj, a;/v has length at most k.

Example
A1 = A1Ab = A1bb = A1 Axbb = aArbb = abbb has index 2.

Lk(G)
Set set of words derivable through derivations of index at most k is
denoted Li(G).
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Let Us Restate Our Observation
L(ME) =n Lk(G)
Since Lx(G) C L(G) (why?), we already have

Vk > 1.L(MX) Cn L(G)

Hence one inclusion holds:

L(M&) Ch L(G)

Moreover the other inclusion, L(G) Cp L(MZ), reduces to

L(G) Cn Lp+1(G)
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Where Are We?

We want to prove formulation 1 of Parikh’s theorem by building a
finite automaton M such that L(G) =p L(M).

» We choose M to be the (n+1)-Parikh automaton /\/IZH.
We'd like to prove that L(MZ™) =n L(G).

We observed that /\/lé's runs correspond exactly to all
derivations of index up to k: L(M&) =n Lk(G)

Our observation implies that L(MX) Cp L(G).

Hence it remains to prove L(G) Cpy L(I\/IZ-H), which by our
observation reduces to L(G) Cp Lp+1(G).

v

v

v

v
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Current Goal

We would like to prove:
L(G) Cn Lp+1(6)

L,1+1(G) is the language of words generated by derivations of index
at most n+ 1. nis the number of variables in G.

Let us work with parse trees and generalize a bit: how can we
characterize parse trees of words in Ly(G) ?
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Parse Trees and Index of Derivations

The following parse tree t produces (among others) the following
two derivations:

A1 = A1Ay = aAr = aAsAr = aAxb = abb of index 2 and

Al = A1A2 = A1A2A2 = A1A2b = aA2b = abb of index 3.

A1
RN
A1 A
| 7\
a A2 A2
| |
b b

Even though derivation 2 has index 3, Y(t) = abb is in L2(G)
because derivation 1 has index 2.
Hence to determine the minimum k such that Y(t) € Lx(G), we

need to find the derivation in t of minimal index.
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Parse trees and L4(G)

A word w = Y(t) is in Lx(G) if we can find in tree t a derivation
of index smaller or equal to k.

Examples

Find the derivation with minimal index among the possible
derivations. Remember that G is in Chomsky Normal Form.

' AN
N AN
T A A

.
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Parse Trees and Dimension

Dimension of a parse tree
The dimension of a parse tree t is inductively defined as follows:
If t is of the form A — a, then d(t) = 0.

Otherwise,
a() = {d(t1)+ 1 if d(t1) = d(t)
max(d(tl), d(tz)) if d(tl) 75 d(tz)

Where t; and tp are the left and right subtrees of t.

Property
A parse tree of dimension k contains a derivation of index k + 1.

Sets of parse trees

We denote by Té the set of parse trees of G of dimension k.
We denote by T¢ the set of parse trees of G.
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Parse Trees of Restricted Dimension and L, 1(G)

We crafted the definition of dimension so that parse trees of
dimension k contain at least one derivation of index k + 1.

Hence we have:

Yk > 0.Y(TE) C Li;1(G)

Lemma

k
Lenn(6) = [ Y(T§)
i=0

This will allow use to reduce our current goal to something about
parse trees. ..
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Consequence for our goal

Remember: we want to prove that L(G) Cn L(MZT).
By the lemma, it is equivalent to L(G) Cn U/, Y(TE).
Remember: by definition of Tg, L(G) = Y(Tg).

Hence our new goal is

Y(Te) Cn |J Y(T8)
i=0

How to prove it?

We need to show that for any tree t € T thereis a tree t' € Tg
with maximum dimension n such that Y(t) =n Y(t')
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Where Are We?

We want to prove formulation 1 of Parikh’s theorem by building a
finite automaton M such that L(G) =n L(M).

>

>

>

We choose M to be the (n+1)-Parikh automaton MZt?.
We'd like to prove that L(MZ™) =n L(G).

We showed that L(Mg) Cn L(G).

We reduced L(G) Cn L(MZ™) to L(G) Cn Lat1(G).

We related parse trees of G and L,41(G) by

Loy = U?:O Y( TIG)

Hence we need to show that Y(T¢) Cn U, Y(T%): for any

tree t € T there is a tree t’ € T with maximum dimension
n such that Y (t) =n Y(t').
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Final Proof Step

Goal
We need to show that Y(T¢g) Cn UM, Y(TE), ie. that for any
tree t € T there is a tree t’ € T with maximum dimension n

such that Y (t) =n Y(t')

Proof by induction on the board
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Recap

We want to prove formulation 1 of Parikh's theorem by building a
finite automaton M such that L(G) =p L(M).

>

>

>

We choose M to be the (n+1)-Parikh automaton MZt™.
We'd like to prove that L(MZ™) =n L(G).

We observed that I\/Ié's runs correspond exactly to all
derivations of index up to k: L(M&) =n Lk(G)

Our observation implies that L(MX) Cp L(G).

Hence it remains to prove L(G) Cpy L(I\/IZH), which by our
observation reduces to L(G) Cn Lp41(G).

We related parse trees of G and L,;1(G) by

Lnyr = U?:O Y( TIG)

We have shown that for any tree t € T there is a tree

t' € T¢ with maximum dimension n such that

Y (t) =n Y(t'). Hence Y(T¢) Cn UL, Y(TE)

QED
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What About Semilinear Sets?

Sorry, not enough time left. ..
A nice proof appears in:

Dexter C. Kozen, "Automata and Computability”, chapter H.
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Thanks for listening!
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