
Parikh’s Theorem

Giuliano Losa

November 15, 2010

1 / 36

Words and Languages

I A word w is a sequence of symbols in some alphabet Σ.

I A language is a set of words.

I For example, {abb, accbba, aa, bab} is a language over
Σ = {a, b, c}.

I A language can have infinitely many words.

2 / 36

Parikh Image

I If w is a word over some Σ, we denote by ΠΣ(w) the Parikh
image of w over alphabet Σ.

I ΠΣ(w) maps a character in Σ to its number of occurences in
w .

I The Parikh image of a language L over Σ is {ΠΣ(w)|w ∈ L}.
It is denoted by ΠΣ(L).

Examples

I Π{a,b,c}(bccba) = (1, 2, 2)
where (1, 2, 2) stands for {(a, 1), (b, 2), (c , 2)}

I Π{a,b,c}(cabaaabb) = (4, 3, 1)

3 / 36

Letter-equivalence

I Two words w1 and w2 over Σ are letter-equivalent iff
ΠΣ(w1) = ΠΣ(w2).

I Two languages L1 and L2 over Σ are letter-equivalent iff
ΠΣ(L1) = ΠΣ(L2). It is denoted by L1 =ΠΣ

L2.

I We also define L1 ⊆ΠΣ
L2 with the obvious meaning.

Examples

I abbcaa is letter-equivalent to baacab.

I cbaccba is letter-equivalent to ccbaabc.

I {anbn|n ∈ N} is letter-equivalent to {(ab)n|n ∈ N}.

Remark
The alphabet Σ will be implicit in the rest of the talk.

4 / 36

Regular Languages

A language is regular if it is accepted by some finite automaton.
I assume you are familiar with regular languages. . .

5 / 36

Context-free Grammars

G = (V ,T ,P,S)

I V is a set of variables, denoted A1,A2,A3 . . .

I T is a set of terminal symbols, denoted a, b, c . . .

I S is the start variable.

I P is a set of productions of the form Ai → α where
α ∈ (V ∪ T)∗

We suppose that S → A1 is the only production involving S .

Example

Let V = {A1,A2}, T = {a, b, c}, P = {A1 → A1A2|a,A2 → A2A2|b}

Remark
We will now always call our grammar G.

6 / 36

Steps and Derivations

Steps

Given α, β ∈ (V ∪ T)∗, β is derivable in one step from α, denoted
α⇒ β, if there exists a production A→ γ and α1, α2 ∈ (V ∪ T)∗

such that:
α = α1Aα2 and β = α1γα2

Example

Let V = {A1,A2}, T = {a, b, c}, P = {A1 → A1A2|a,A2 → A2A2|b}.
A1aA2b ⇒ A1aA2A2b because A2 → A2A2 is a production.
A1aA2b ⇒ A1abb because A2 → b is a production.

7 / 36

Derivations and Language

I A derivation is a sequence of steps.

I We denote by ⇒∗ the reflexive transitive closure of ⇒.

Example

Let V = {A1,A2}, T = {a, b, c}, P = {A1 → A1A2|a,A2 → A2A2|b}.
A1 ⇒ A1A2 ⇒ aA2 ⇒ aA2A2 ⇒ aA2b ⇒ abb is a derivation.
S ⇒∗ A1A2bbA2b
S ⇒∗ abbbb

Language of grammar G

The language of G, denoted L(G), is the set {x ∈ T ∗|S ⇒∗ x}

Example

abbbb is in L(G) because S ⇒∗ abbbb and abbbb ∈ {a, b, c}∗.

8 / 36

Context-free Language

A language L is context-free if there is a context-free grammar G
such that L = L(G).

9 / 36

Parse Trees: Example

Consider derivation A1 ⇒ A1A2 ⇒ aA2 ⇒ aA2A2 ⇒ aA2b ⇒ abb.
It has the following parse tree t:

A1

A1 A2

a A2 A2

b b

Yield of a parse tree

The yield of t, denoted Y (t), is such that Y (t) = abb.
The yield of a set of trees T , denoted Y (T), is the set of yields of
trees in T .

10 / 36

Parse Trees are Nice

I think trees are way easier to manipulate and reason about than
derivations.

In our proofs, we’ll try to reduce our goals to goals about trees. . .

For example, we can define the language of G in term of trees:
Let TG be the set of parse trees of G, then L(G) = Y (TG).

11 / 36

Parse Trees and Derivations

The following parse tree produces derivation
A1 ⇒ A1A2 ⇒ aA2 ⇒ aA2A2 ⇒ aA2b ⇒ abb.
Can it produce others?

A1

A1 A2

a A2 A2

b b

Yes! For example:

A1 ⇒ A1A2 ⇒ A1A2A2 ⇒ A1A2b ⇒ aA2b ⇒ abb

12 / 36

Semilinear Sets

Linear Sets
A subset S of Nk is called linear if it is of the form

{u0 + k1u1 + k2u2 + · · ·+ knun}

Where ui is a vector of Nk and ki ∈ N.

We write S = u0+ < u1, u2, . . . , un >

Example

(0, 0, 1)+ < (1, 0, 0), (1, 1, 1), (0, 1, 1) >
=

{(0, 0, 1) + k1(1, 0, 0) + k2(1, 1, 1) + k3(0, 1, 1)|k1, k2, k3 ∈ N}

13 / 36

Parikh’s theorem

Two formulations

I Any context-free language is letter-equivalent to a regular
language.

I The Parikh image of any context-free language is a semilinear
set.

They are equivalent

That’s because given a semilinear set S , we can easily build a
regular language L such that Π(L) = S .

14 / 36

Constructive Proof of Formulation 1

Formulation 1:
Any context-free language is letter-equivalent to a regular
language.

Proof
Given grammar G , we will build a finite automaton M such that
L(G) =Π L(M).

Presentation adapted from J.Esparza, P.Ganty, S.Kiefer,
M.Luttenberger: Parikh’s Theorem: A simple and direct
construction.

15 / 36

Chomsky Normal Form

The construction needs a grammar in Chomsky Normal Form

All productions are of the form A→ BC or A→ a, where a 6= ε

Example

Grammar for balanced parens:
A1 → A1A1|(A1)|ε

In Chomsky Normal Form (without ε):
A1 → A2A3|A1A1|A4A3

A4 → A2A1

A2 → (
A3 →)

CNF is nice because of the shape of its parse trees

16 / 36

The Construction: Preliminary Definitions

Projections and Parikh image

We consider a grammar G = (V ,T ,P, S) with axiom S = A1.
For α ∈ (V ∪ T)∗, let α/V (resp α/T) denote the projection of α
onto V (resp. T).
Let ΠV (α) = Π(α/V) and ΠT (α) = Π(α/T).

Examples

Let V = {A1,A2}, T = {a1, a2, a3}, P = {A1 → A1A2|a,A2 → A2A2|b}
Let α = a1A2a2A1A1

Then,
α/T = a1a2 and α/V = A2A1A1

ΠV (α) = (2, 1) and ΠT (α) = (1, 1, 0)

17 / 36

Transitions

Recall that steps are such that:
α = α1Aα2 ⇒ β = α1γα2 if A→ γ is a production.
The transition associated to a step is the triple
t(α⇒ β) = (ΠV (α), γ/T ,ΠV (β)).

Example

t(A2aA1 ⇒ A2A2aA1) = ((1, 1), ε, (1, 2))
t(A2A1bA1 ⇒ bA1bA1) = ((2, 1), b, (2, 0))

18 / 36

The Construction: k-Parikh automaton

For k ∈ N, the k-Parikh automaton of G is the NFA
Mk

G = (Q,T , δ, q0, {qf }) defined as follows:

I Q = {(x1, . . . , xn) ∈ Nn|
∑n

i=1 xi ≤ k}
I δ = {t(α⇒ β)|ΠV (α),ΠV (β) ∈ Q}
I q0 = ΠV (S) = (1, 0, . . . , 0)

I qf = ΠV (ε) = (0, 0, . . . , 0).

Recall:
t(A2aA1 ⇒ A2a1A2A3) = ((1, 1, 0), ε, (0, 2, 1))

Example on the board

V = {A1,A2}, T = {a1, a2, a3}, P = {A1 → A1A2|a,A2 → A2A2|b}

19 / 36

Theorem

Let n = |V |, the number of variables in the grammar G .

L(G) and L(Mn+1
G) have the same Parikh image.

In other words, L(G) =Π L(Mn+1
G)

|Q| = O(4n). Is the construction space efficient?

20 / 36

Where Are We?

We want to prove formulation 1 of Parikh’s theorem by building a
finite automaton M such that L(G) =Π L(M).

I From G in Chomsky Normal Form, we define Mk
G .

I We choose M to be the (n+1)-Parikh automaton Mn+1
G .

I We’d like to prove that L(Mn+1
G) =Π L(G).

21 / 36

Observation

I Q = {(x1, . . . , xn) ∈ Nn|
∑n

i=1 xi ≤ k}
I δ = {t(α⇒ β)|ΠV (α),ΠV (β) ∈ Q}
I q0 = ΠV (S) = (1, 0, . . . , 0)

I qf = ΠV (ε) = (0, 0, . . . , 0).

I δ suggests that states of the automaton be interpreted as set
of words over (V ∪ T)∗.

I By definition of Q, any word w associated with a state of the
k-Parikh automaton is such that ΠV (w) is of length at most
k.

I By definition of δ, a run of the k-Parikh automaton
corresponds to a derivation such that at each step the word
obtained w is such that ΠV (w) has length at most k .

22 / 36

More Formally: Index of a derivation

Definitions
A derivation S ⇒ α1 ⇒ α2 ⇒ · · · ⇒ αm has index k if for every
αi , αi/V has length at most k .

Example

A1 ⇒ A1A2b ⇒ A1bb ⇒ A1A2bb ⇒ aA2bb ⇒ abbb has index 2.

Lk(G)

Set set of words derivable through derivations of index at most k is
denoted Lk(G).

23 / 36

Let Us Restate Our Observation

L(Mk
G) =Π Lk(G)

Since Lk(G) ⊆ L(G) (why?), we already have

∀k ≥ 1.L(Mk
G) ⊆Π L(G)

Hence one inclusion holds:

L(Mk
G) ⊆Π L(G)

Moreover the other inclusion, L(G) ⊆Π L(Mn+1
G), reduces to

L(G) ⊆Π Ln+1(G)

24 / 36

Where Are We?

We want to prove formulation 1 of Parikh’s theorem by building a
finite automaton M such that L(G) =Π L(M).

I We choose M to be the (n+1)-Parikh automaton Mn+1
G .

I We’d like to prove that L(Mn+1
G) =Π L(G).

I We observed that Mk
G ’s runs correspond exactly to all

derivations of index up to k: L(Mk
G) =Π Lk(G)

I Our observation implies that L(Mk
G) ⊆Π L(G).

I Hence it remains to prove L(G) ⊆Π L(Mn+1
G), which by our

observation reduces to L(G) ⊆Π Ln+1(G).

25 / 36

Current Goal

We would like to prove:

L(G) ⊆Π Ln+1(G)

Ln+1(G) is the language of words generated by derivations of index
at most n + 1. n is the number of variables in G .

Let us work with parse trees and generalize a bit: how can we
characterize parse trees of words in Lk(G) ?

26 / 36

Parse Trees and Index of Derivations
The following parse tree t produces (among others) the following
two derivations:
A1 ⇒ A1A2 ⇒ aA2 ⇒ aA2A2 ⇒ aA2b ⇒ abb of index 2 and
A1 ⇒ A1A2 ⇒ A1A2A2 ⇒ A1A2b ⇒ aA2b ⇒ abb of index 3.

A1

A1 A2

a A2 A2

b b

Even though derivation 2 has index 3, Y (t) = abb is in L2(G)
because derivation 1 has index 2.
Hence to determine the minimum k such that Y (t) ∈ Lk(G), we
need to find the derivation in t of minimal index.

27 / 36

Parse trees and Lk(G)
A word w = Y (t) is in Lk(G) if we can find in tree t a derivation
of index smaller or equal to k .

Examples

Find the derivation with minimal index among the possible
derivations. Remember that G is in Chomsky Normal Form.

�

� �

� � �

� �

�

� �

� � � �

� � � � � �

� � � �
28 / 36

Parse Trees and Dimension

Dimension of a parse tree

The dimension of a parse tree t is inductively defined as follows:
If t is of the form A→ a, then d(t) = 0.
Otherwise,

d(t) =

{
d(t1) + 1 if d(t1) = d(t2)

max(d(t1), d(t2)) if d(t1) 6= d(t2)
Where t1 and t2 are the left and right subtrees of t.

Property

A parse tree of dimension k contains a derivation of index k + 1.

Sets of parse trees

We denote by T k
G the set of parse trees of G of dimension k .

We denote by TG the set of parse trees of G .

29 / 36

Parse Trees of Restricted Dimension and Ln+1(G)

We crafted the definition of dimension so that parse trees of
dimension k contain at least one derivation of index k + 1.

Hence we have:

∀k ≥ 0.Y (T k
G) ⊆ Lk+1(G)

Lemma

Lk+1(G) =
k⋃

i=0

Y (T i
G)

This will allow use to reduce our current goal to something about
parse trees. . .

30 / 36

Consequence for our goal

Remember: we want to prove that L(G) ⊆Π L(Mn+1
G).

By the lemma, it is equivalent to L(G) ⊆Π
⋃n

i=0 Y (T i
G).

Remember: by definition of TG , L(G) = Y (TG).
Hence our new goal is

Y (TG) ⊆Π

n⋃
i=0

Y (T i
G)

How to prove it?

We need to show that for any tree t ∈ TG there is a tree t ′ ∈ TG

with maximum dimension n such that Y (t) =Π Y (t ′)

31 / 36

Where Are We?

We want to prove formulation 1 of Parikh’s theorem by building a
finite automaton M such that L(G) =Π L(M).

I We choose M to be the (n+1)-Parikh automaton Mn+1
G .

I We’d like to prove that L(Mn+1
G) =Π L(G).

I We showed that L(Mk
G) ⊆Π L(G).

I We reduced L(G) ⊆Π L(Mn+1
G) to L(G) ⊆Π Ln+1(G).

I We related parse trees of G and Ln+1(G) by
Ln+1 =

⋃n
i=0 Y (T i

G)

I Hence we need to show that Y (TG) ⊆Π
⋃n

i=0 Y (T i
G): for any

tree t ∈ TG there is a tree t ′ ∈ TG with maximum dimension
n such that Y (t) =Π Y (t ′).

32 / 36

Final Proof Step

Goal
We need to show that Y (TG) ⊆Π

⋃n
i=0 Y (T i

G), i.e. that for any
tree t ∈ TG there is a tree t ′ ∈ TG with maximum dimension n
such that Y (t) =Π Y (t ′)

Proof by induction on the board

33 / 36

Recap
We want to prove formulation 1 of Parikh’s theorem by building a
finite automaton M such that L(G) =Π L(M).

I We choose M to be the (n+1)-Parikh automaton Mn+1
G .

I We’d like to prove that L(Mn+1
G) =Π L(G).

I We observed that Mk
G ’s runs correspond exactly to all

derivations of index up to k: L(Mk
G) =Π Lk(G)

I Our observation implies that L(Mk
G) ⊆Π L(G).

I Hence it remains to prove L(G) ⊆Π L(Mn+1
G), which by our

observation reduces to L(G) ⊆Π Ln+1(G).

I We related parse trees of G and Ln+1(G) by
Ln+1 =

⋃n
i=0 Y (T i

G)

I We have shown that for any tree t ∈ TG there is a tree
t ′ ∈ TG with maximum dimension n such that
Y (t) =Π Y (t ′). Hence Y (TG) ⊆Π

⋃n
i=0 Y (T i

G)

I QED

34 / 36

What About Semilinear Sets?

Sorry, not enough time left. . .
A nice proof appears in:

Dexter C. Kozen, ”Automata and Computability”, chapter H.

35 / 36

Thanks for listening!

36 / 36

