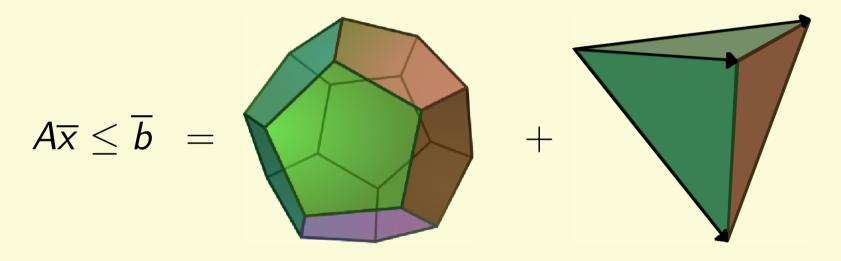
Seminar on Automated Reasoning 2010

Lecture 8: Decomposition Theorem for Polyhedra



Swen Jacobs

12. November 2010

A cone is a set $C \subseteq \mathbb{Q}^n$ with $\overline{x}, \overline{y} \in C, \lambda, \mu \leq 1 \in \mathbb{Q} \Rightarrow \lambda \overline{x} + \mu \overline{y} \in C$

A **polyhedral cone** is an intersection of finitely many linear halfspaces, defined by an $m \times n$ -matrix A:

$$C = \{ \overline{x} \mid A\overline{x} \le 0 \}$$

A finitely generated cone is defined by a finite number of vectors \overline{b}_i :

$$cone\{\overline{b}_1,\ldots,\overline{b}_n\}=\{\sum_{i=1}^n\lambda_i\overline{b}_i\mid\lambda_i\geq 0\}=\{B\overline{\lambda}\mid\overline{\lambda}\geq\overline{0}\}$$

Theorem: A non-empty finitely generated cone is polyhedral.

Theorem: A non-empty finitely generated cone is polyhedral.

Proof: Let $C = \{B\overline{\lambda} \mid \overline{\lambda} \ge \overline{0}\}$ be a finitely generated cone, where *B* is an $n \times r$ -matrix. Then

$$C = \{ \overline{x} \in \mathbb{Q}^n \mid \exists \overline{\lambda} \in \mathbb{Q}^r : \overline{x} = B\overline{\lambda}, \overline{\lambda} \ge \overline{0} \}$$
$$= \{ \overline{x} \in \mathbb{Q}^n \mid \exists \overline{\lambda} \in \mathbb{Q}^r : \overline{x} - B\overline{\lambda} \le \overline{0}, -\overline{x} + B\overline{\lambda} \le \overline{0}, -\overline{\lambda} \le \overline{0} \}.$$

Theorem: A non-empty finitely generated cone is polyhedral.

Proof: Let $C = \{B\overline{\lambda} \mid \overline{\lambda} \ge \overline{0}\}$ be a finitely generated cone, where *B* is an $n \times r$ -matrix. Then

$$C = \{ \overline{x} \in \mathbb{Q}^n \mid \exists \overline{\lambda} \in \mathbb{Q}^r : \overline{x} = B\overline{\lambda}, \overline{\lambda} \ge \overline{0} \}$$
$$= \{ \overline{x} \in \mathbb{Q}^n \mid \exists \overline{\lambda} \in \mathbb{Q}^r : \overline{x} - B\overline{\lambda} \le \overline{0}, -\overline{x} + B\overline{\lambda} \le \overline{0}, -\overline{\lambda} \le \overline{0} \}.$$

This is the projection onto the first *n* coordinates of

$$C' = \left\{ \left(\frac{\overline{x}}{\overline{\lambda}} \right) \in \mathbb{Q}^{n+r} \mid \overline{x} - B\overline{\lambda} \leq \overline{0}, -\overline{x} + B\overline{\lambda} \leq \overline{0}, -\overline{\lambda} \leq \overline{0} \right\}.$$

$$C' = \left\{ \left(\frac{\overline{x}}{\overline{\lambda}} \right) \in \mathbb{Q}^{n+r} \mid \overline{x} - B\overline{\lambda} \leq \overline{0}, -\overline{x} + B\overline{\lambda} \leq \overline{0}, -\overline{\lambda} \leq \overline{0} \right\}$$

We can use Fourier-Motzkin elimination to eliminate variables $\lambda_1, \ldots, \lambda_r$ from the system of inequations defining C', obtaining a new system of inequations defined by matrix A. Then we can write C as

$$C = \{ \overline{x} \in \mathbb{Q}^n \mid A\overline{x} \le 0 \}.$$

Thus, C is polyhedral.

Dual Cones

The (polar) **dual** C^* of a cone C is defined as

$$C^* = \{\overline{a} \in \mathbb{Q}^n \mid \overline{a}^T \overline{x} \leq 0 \text{ for all } \overline{x} \in C\}.$$

Dual Cones

The (polar) dual C^* of a cone C is defined as

$$C^* = \{ \overline{a} \in \mathbb{Q}^n \mid \overline{a}^T \overline{x} \le 0 \text{ for all } \overline{x} \in C \}.$$

Proposition 1: If $C = \{B\overline{\lambda} \mid \overline{\lambda} \geq \overline{0}\}$ then $C^* = \{\overline{a} \in \mathbb{Q}^n \mid \overline{a}^T B \leq \overline{0}\}.$

$$C^* = \{ \overline{a} \in \mathbb{Q}^n \mid \overline{a}^T \overline{x} \le 0 \text{ for all } \overline{x} \in C \}.$$

Proposition 1: If $C = \{B\overline{\lambda} \mid \overline{\lambda} \ge \overline{0}\}$ then $C^* = \{\overline{a} \in \mathbb{Q}^n \mid \overline{a}^T B \le \overline{0}\}$. **Proof**: $\overline{a}^T \overline{x} \le 0$ for all $\overline{x} \in C \iff \overline{a}^T B \overline{\lambda} \le 0, \overline{\lambda} \ge \overline{0} \iff \overline{a}^T B \le \overline{0}$

$$C^* = \{ \overline{a} \in \mathbb{Q}^n \mid \overline{a}^T \overline{x} \leq 0 \text{ for all } \overline{x} \in C \}.$$

Proposition 1: If $C = \{B\overline{\lambda} \mid \overline{\lambda} \ge \overline{0}\}$ then $C^* = \{\overline{a} \in \mathbb{Q}^n \mid \overline{a}^T B \le \overline{0}\}$. **Proof**: $\overline{a}^T \overline{x} \le 0$ for all $\overline{x} \in C \iff \overline{a}^T B \overline{\lambda} \le 0, \overline{\lambda} \ge \overline{0} \iff \overline{a}^T B \le \overline{0}$ **Proposition 2**: If $C = \{\overline{x} \in \mathbb{Q}^n \mid A\overline{x} \le \overline{0}\}$, then $C^* = \{\overline{\lambda}^T A \mid \overline{\lambda} \ge \overline{0}\}$ and C^* is finitely generated.

$$C^* = \{ \overline{a} \in \mathbb{Q}^n \mid \overline{a}^T \overline{x} \le 0 \text{ for all } \overline{x} \in C \}.$$

Proposition 1: If $C = \{B\overline{\lambda} \mid \overline{\lambda} \ge \overline{0}\}$ then $C^* = \{\overline{a} \in \mathbb{Q}^n \mid \overline{a}^T B \le \overline{0}\}$. **Proof**: $\overline{a}^T \overline{x} \le 0$ for all $\overline{x} \in C \iff \overline{a}^T B \overline{\lambda} \le 0, \overline{\lambda} \ge \overline{0} \iff \overline{a}^T B \le \overline{0}$ **Proposition 2**: If $C = \{\overline{x} \in \mathbb{Q}^n \mid A\overline{x} \le \overline{0}\}$, then $C^* = \{\overline{\lambda}^T A \mid \overline{\lambda} \ge \overline{0}\}$ and C^* is finitely generated.

Proof: Let $D = \{\overline{\lambda}^T A \mid \overline{\lambda} \ge \overline{0}\} = \{A^T \overline{\lambda} \mid \overline{\lambda} \ge \overline{0}\}.$

$$C^* = \{ \overline{a} \in \mathbb{Q}^n \mid \overline{a}^T \overline{x} \leq 0 \text{ for all } \overline{x} \in C \}.$$

Proposition 1: If $C = \{B\overline{\lambda} \mid \overline{\lambda} \ge \overline{0}\}$ then $C^* = \{\overline{a} \in \mathbb{Q}^n \mid \overline{a}^T B \le \overline{0}\}$. **Proof**: $\overline{a}^T \overline{x} \le 0$ for all $\overline{x} \in C \iff \overline{a}^T B \overline{\lambda} \le 0, \overline{\lambda} \ge \overline{0} \iff \overline{a}^T B \le \overline{0}$ **Proposition 2**: If $C = \{\overline{x} \in \mathbb{Q}^n \mid A\overline{x} \le \overline{0}\}$, then $C^* = \{\overline{\lambda}^T A \mid \overline{\lambda} \ge \overline{0}\}$ and C^* is finitely generated.

Proof: Let $D = \{\overline{\lambda}^T A \mid \overline{\lambda} \ge \overline{0}\} = \{A^T \overline{\lambda} \mid \overline{\lambda} \ge \overline{0}\}$. By Prop. 1, $D^* = \{\overline{x} \in \mathbb{Q}^n \mid \overline{x}^T A^T \le \overline{0}\} = \{\overline{x} \in \mathbb{Q}^n \mid A\overline{x} \le \overline{0}\} = C.$

$$C^* = \{ \overline{a} \in \mathbb{Q}^n \mid \overline{a}^T \overline{x} \le 0 \text{ for all } \overline{x} \in C \}.$$

Proposition 1: If $C = \{B\overline{\lambda} \mid \overline{\lambda} \ge \overline{0}\}$ then $C^* = \{\overline{a} \in \mathbb{Q}^n \mid \overline{a}^T B \le \overline{0}\}$. **Proof**: $\overline{a}^T \overline{x} \le 0$ for all $\overline{x} \in C \iff \overline{a}^T B \overline{\lambda} \le 0, \overline{\lambda} \ge \overline{0} \iff \overline{a}^T B \le \overline{0}$ **Proposition 2**: If $C = \{\overline{x} \in \mathbb{Q}^n \mid A\overline{x} \le \overline{0}\}$, then $C^* = \{\overline{\lambda}^T A \mid \overline{\lambda} \ge \overline{0}\}$ and C^* is finitely generated.

Proof: Let $D = \{\overline{\lambda}^T A \mid \overline{\lambda} \ge \overline{0}\} = \{A^T \overline{\lambda} \mid \overline{\lambda} \ge \overline{0}\}$. By Prop. 1, $D^* = \{\overline{x} \in \mathbb{Q}^n \mid \overline{x}^T A^T \le \overline{0}\} = \{\overline{x} \in \mathbb{Q}^n \mid A\overline{x} \le \overline{0}\} = C$. Since $C^* = D = \{A^T \overline{\lambda} \mid \overline{\lambda} \ge \overline{0}\}$, C^* is finitely generated.

Minkowski's Theorem

Theorem: A polyhedral cone is non-empty and finitely generated.

Theorem: A polyhedral cone is non-empty and finitely generated.

Proof: Let $C = \{\overline{x} \mid A\overline{x} \leq 0\}$. Then $\overline{0} \in C$, i.e. $C \neq \emptyset$.

Theorem: A polyhedral cone is non-empty and finitely generated.

Proof: Let $C = \{\overline{x} \mid A\overline{x} \le 0\}$. Then $\overline{0} \in C$, i.e. $C \neq \emptyset$. Let $D = \{\overline{\lambda}^T A \mid \overline{\lambda} \ge 0\}$. By Weyl's Theorem, D is polyhedral. **Theorem**: A polyhedral cone is non-empty and finitely generated.

Proof: Let $C = \{\overline{x} \mid A\overline{x} \leq 0\}$. Then $\overline{0} \in C$, i.e. $C \neq \emptyset$. Let $D = \{\overline{\lambda}^T A \mid \overline{\lambda} \geq 0\}$. By Weyl's Theorem, D is polyhedral. Then, by Prop. 2, $D^* = C$ and D^* is finitely generated. A polyhedron is a finite intersection of affine half-spaces, defined by

$$P = \{ \overline{x} \in \mathbb{Q}^n \mid A\overline{x} \le \overline{b} \}$$

A **polytope** is the convex hull of a finite set of vectors, i.e.

$$Q = hull\{\overline{x}_1, \ldots, \overline{x}_n\}$$

Theorem: A set $P \subseteq \mathbb{Q}^n$ is a polyhedron if and only if there is a polytope Q and a polyhedral cone C such that P = Q + C.

Decomposition Theorem for Polyhedra

Proof: \Rightarrow : Let $P = \{\overline{x} \in \mathbb{Q}^n \mid A\overline{x} \leq \overline{b}\}$. Consider the polyhedral cone

$$C_1 = \left\{ \begin{pmatrix} x \\ \lambda \end{pmatrix} \in \mathbb{Q}^{n+1} \mid \lambda \ge 0, A\overline{x} - \lambda \overline{b} \le \overline{0} \right\}.$$

Decomposition Theorem for Polyhedra

Proof: \Rightarrow : Let $P = \{\overline{x} \in \mathbb{Q}^n \mid A\overline{x} \leq \overline{b}\}$. Consider the polyhedral cone

$$C_1 = \left\{ \begin{pmatrix} \overline{x} \\ \lambda \end{pmatrix} \in \mathbb{Q}^{n+1} \mid \lambda \ge 0, A\overline{x} - \lambda \overline{b} \le \overline{0}
ight\}.$$

By Minkowski's Theorem, C_1 is generated by finitely many vectors, say $\begin{pmatrix} \overline{x}_1 \\ \lambda_1 \end{pmatrix}, \ldots, \begin{pmatrix} \overline{x}_m \\ \lambda_m \end{pmatrix}$. Assume that all λ_i are either 0 or 1 (otherwise scale vectors). **Proof**: \Rightarrow : Let $P = \{\overline{x} \in \mathbb{Q}^n \mid A\overline{x} \leq \overline{b}\}$. Consider the polyhedral cone

$$C_1 = \left\{ \begin{pmatrix} \overline{x} \\ \lambda \end{pmatrix} \in \mathbb{Q}^{n+1} \mid \lambda \ge 0, A\overline{x} - \lambda \overline{b} \le \overline{0}
ight\}.$$

By Minkowski's Theorem, C_1 is generated by finitely many vectors, say $\begin{pmatrix} \overline{x}_1 \\ \lambda_1 \end{pmatrix}, \ldots, \begin{pmatrix} \overline{x}_m \\ \lambda_m \end{pmatrix}$. Assume that all λ_i are either 0 or 1 (otherwise scale vectors). Let Q be the convex hull of those \overline{x}_i with $\lambda_i = 1$, and C_2 the cone generated by the \overline{x}_i with $\lambda_i = 0$. Then $\overline{x} \in P$ iff $\begin{pmatrix} \overline{x} \\ 1 \end{pmatrix} \in C_1$, and therefore iff $\begin{pmatrix} \overline{x} \\ 1 \end{pmatrix} \in cone \left\{ \begin{pmatrix} \overline{x}_1 \\ \lambda_1 \end{pmatrix}, \ldots, \begin{pmatrix} \overline{x}_m \\ \lambda_m \end{pmatrix} \right\}$. **Proof**: \Rightarrow : Let $P = \{\overline{x} \in \mathbb{Q}^n \mid A\overline{x} \leq \overline{b}\}$. Consider the polyhedral cone

$$C_1 = \left\{ \begin{pmatrix} \overline{X} \\ \lambda \end{pmatrix} \in \mathbb{Q}^{n+1} \mid \lambda \ge 0, A\overline{x} - \lambda \overline{b} \le \overline{0}
ight\}.$$

By Minkowski's Theorem, C_1 is generated by finitely many vectors, say $\begin{pmatrix} \overline{x}_1 \\ \lambda_1 \end{pmatrix}, \ldots, \begin{pmatrix} \overline{x}_m \\ \lambda_m \end{pmatrix}$. Assume that all λ_i are either 0 or 1 (otherwise scale vectors). Let Q be the convex hull of those \overline{x}_i with $\lambda_i = 1$, and C_2 the cone generated by the \overline{x}_i with $\lambda_i = 0$. Then $\overline{x} \in P$ iff $\begin{pmatrix} \overline{x} \\ 1 \end{pmatrix} \in C_1$, and therefore iff $\begin{pmatrix} \overline{x} \\ 1 \end{pmatrix} \in cone \left\{ \begin{pmatrix} \overline{x}_1 \\ \lambda_1 \end{pmatrix}, \ldots, \begin{pmatrix} \overline{x}_m \\ \lambda_m \end{pmatrix} \right\}$. I.e., $\overline{x} \in P$ iff $\overline{x} = \sum_{i=1}^m \mu_i \overline{x}_i$ and $\sum_{i=1}^m \mu_i \lambda_i = 1$. Since $\lambda_i = 1$ for vertices of Q and $\lambda_i = 0$ for defining vectors of C, we have P = Q + C. $\Leftarrow: \text{Let } P = Q + C \text{ for some polytope } P = hull \{\overline{x}_1, \dots, \overline{x}_n\} \text{ and} \\ \text{polyhedral cone } C = cone \{\overline{y}_1, \dots, \overline{y}_m\}.$

 $\Leftarrow: \text{ Let } P = Q + C \text{ for some polytope } P = hull \{\overline{x}_1, \dots, \overline{x}_n\} \text{ and}$ polyhedral cone $C = cone\{\overline{y}_1, \dots, \overline{y}_m\}.$ Then $\overline{x}_0 \in P$ iff $\begin{pmatrix}\overline{x}_0\\1\end{pmatrix} \in cone\left\{\begin{pmatrix}\overline{x}_1\\1\end{pmatrix}, \dots, \begin{pmatrix}\overline{x}_n\\1\end{pmatrix}, \begin{pmatrix}\overline{y}_1\\0\end{pmatrix}, \dots, \begin{pmatrix}\overline{y}_m\\0\end{pmatrix}\right\}.$ $\Leftarrow: \text{ Let } P = Q + C \text{ for some polytope } P = hull \{\overline{x}_1, \dots, \overline{x}_n\} \text{ and} \\ \text{polyhedral cone } C = cone \{\overline{y}_1, \dots, \overline{y}_m\}. \\ \text{Then } \overline{x}_0 \in P \text{ iff } \begin{pmatrix} \overline{x}_0 \\ 1 \end{pmatrix} \in cone \left\{ \begin{pmatrix} \overline{x}_1 \\ 1 \end{pmatrix}, \dots, \begin{pmatrix} \overline{x}_n \\ 1 \end{pmatrix}, \begin{pmatrix} \overline{y}_1 \\ 0 \end{pmatrix}, \dots, \begin{pmatrix} \overline{y}_m \\ 0 \end{pmatrix} \right\}. \\ \text{By Weyl's Theorem, this cone is polyhedral, i.e. it is equal to}$

$$\left\{ \begin{pmatrix} \overline{x} \\ \lambda \end{pmatrix} \mid A\overline{x} + \lambda\overline{b} \leq 0 \right\}$$

for some A and b.

 $\leftarrow: \text{Let } P = Q + C \text{ for some polytope } P = hull\{\overline{x}_1, \dots, \overline{x}_n\} \text{ and} \\ \text{polyhedral cone } C = cone\{\overline{y}_1, \dots, \overline{y}_m\}. \\ \text{Then } \overline{x}_0 \in P \text{ iff } \begin{pmatrix} \overline{x}_0 \\ 1 \end{pmatrix} \in cone\left\{\begin{pmatrix} \overline{x}_1 \\ 1 \end{pmatrix}, \dots, \begin{pmatrix} \overline{x}_n \\ 1 \end{pmatrix}, \begin{pmatrix} \overline{y}_1 \\ 0 \end{pmatrix}, \dots, \begin{pmatrix} \overline{y}_m \\ 0 \end{pmatrix}\right\}. \\ \text{By Weyl's Theorem, this cone is polyhedral, i.e. it is equal to}$

$$\left\{ \begin{pmatrix} \overline{x} \\ \lambda \end{pmatrix} \mid A\overline{x} + \lambda\overline{b} \leq 0 \right\}$$

for some A and \overline{b} . Then, $\overline{x}_0 \in P$ iff $A\overline{x}_0 \leq -\overline{b}$, and therefore P is a polyhedron.