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Cones

A cone is a set C ⊆ Qn with x , y ∈ C ,λ,µ ≤ 1 ∈ Q ⇒ λx + µy ∈ C

A polyhedral cone is an intersection of finitely many linear halfspaces,

defined by an m × n-matrix A:

C = {x | Ax ≤ 0}

A finitely generated cone is defined by a finite number of vectors

bi :

cone{b1, . . . , bn} = {
n

∑

i=1

λibi | λi ≥ 0} = {Bλ | λ ≥ 0}
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Weyl’s Theorem

Theorem: A non-empty finitely generated cone is polyhedral.
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Weyl’s Theorem

Theorem: A non-empty finitely generated cone is polyhedral.

Proof: Let C = {Bλ | λ ≥ 0} be a finitely generated cone, where B

is an n × r -matrix. Then

C = {x ∈ Qn |

E

λ ∈ Qr : x = Bλ,λ ≥ 0}

= {x ∈ Qn |

E

λ ∈ Qr : x − Bλ ≤ 0,−x + Bλ ≤ 0,−λ ≤ 0}.
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Weyl’s Theorem

Theorem: A non-empty finitely generated cone is polyhedral.

Proof: Let C = {Bλ | λ ≥ 0} be a finitely generated cone, where B

is an n × r -matrix. Then

C = {x ∈ Qn |

E

λ ∈ Qr : x = Bλ,λ ≥ 0}

= {x ∈ Qn |

E

λ ∈ Qr : x − Bλ ≤ 0,−x + Bλ ≤ 0,−λ ≤ 0}.

This is the projection onto the first n coordinates of

C ′ =

{(

x

λ

)

∈ Qn+r | x − Bλ ≤ 0,−x + Bλ ≤ 0,−λ ≤ 0

}

.
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Weyl’s Theorem

C ′ =

{(

x

λ

)

∈ Qn+r | x − Bλ ≤ 0,−x + Bλ ≤ 0,−λ ≤ 0

}

We can use Fourier-Motzkin elimination to eliminate variables

λ1, . . . ,λr from the system of inequations defining C ′, obtaining a

new system of inequations defined by matrix A. Then we can write C

as

C = {x ∈ Qn | Ax ≤ 0}.

Thus, C is polyhedral.
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Dual Cones

The (polar) dual C∗ of a cone C is defined as

C∗ = {a ∈ Qn | aT x ≤ 0 for all x ∈ C}.
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Dual Cones

The (polar) dual C∗ of a cone C is defined as

C∗ = {a ∈ Qn | aT x ≤ 0 for all x ∈ C}.

Proposition 1: If C = {Bλ | λ ≥ 0} then C∗ = {a ∈ Qn | aT B ≤ 0}.
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Dual Cones

The (polar) dual C∗ of a cone C is defined as

C∗ = {a ∈ Qn | aT x ≤ 0 for all x ∈ C}.

Proposition 1: If C = {Bλ | λ ≥ 0} then C∗ = {a ∈ Qn | aT B ≤ 0}.

Proof: aT x ≤ 0 for all x ∈ C ⇔ aTBλ ≤ 0,λ ≥ 0 ⇔ aTB ≤ 0

Seminar on Automated Reasoning, L8 5



Dual Cones

The (polar) dual C∗ of a cone C is defined as

C∗ = {a ∈ Qn | aT x ≤ 0 for all x ∈ C}.

Proposition 1: If C = {Bλ | λ ≥ 0} then C∗ = {a ∈ Qn | aT B ≤ 0}.

Proof: aT x ≤ 0 for all x ∈ C ⇔ aTBλ ≤ 0,λ ≥ 0 ⇔ aTB ≤ 0

Proposition 2: If C = {x ∈ Qn | Ax ≤ 0}, then C∗ = {λ
T

A | λ ≥ 0}

and C∗ is finitely generated.
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Dual Cones

The (polar) dual C∗ of a cone C is defined as

C∗ = {a ∈ Qn | aT x ≤ 0 for all x ∈ C}.

Proposition 1: If C = {Bλ | λ ≥ 0} then C∗ = {a ∈ Qn | aT B ≤ 0}.

Proof: aT x ≤ 0 for all x ∈ C ⇔ aTBλ ≤ 0,λ ≥ 0 ⇔ aTB ≤ 0

Proposition 2: If C = {x ∈ Qn | Ax ≤ 0}, then C∗ = {λ
T

A | λ ≥ 0}

and C∗ is finitely generated.

Proof: Let D = {λ
T

A | λ ≥ 0} = {ATλ | λ ≥ 0}.
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Dual Cones

The (polar) dual C∗ of a cone C is defined as

C∗ = {a ∈ Qn | aT x ≤ 0 for all x ∈ C}.

Proposition 1: If C = {Bλ | λ ≥ 0} then C∗ = {a ∈ Qn | aT B ≤ 0}.

Proof: aT x ≤ 0 for all x ∈ C ⇔ aTBλ ≤ 0,λ ≥ 0 ⇔ aTB ≤ 0

Proposition 2: If C = {x ∈ Qn | Ax ≤ 0}, then C∗ = {λ
T

A | λ ≥ 0}

and C∗ is finitely generated.

Proof: Let D = {λ
T

A | λ ≥ 0} = {ATλ | λ ≥ 0}. By Prop. 1,

D∗ = {x ∈ Qn | xTAT ≤ 0} = {x ∈ Qn | Ax ≤ 0} = C .
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Dual Cones

The (polar) dual C∗ of a cone C is defined as

C∗ = {a ∈ Qn | aT x ≤ 0 for all x ∈ C}.

Proposition 1: If C = {Bλ | λ ≥ 0} then C∗ = {a ∈ Qn | aT B ≤ 0}.

Proof: aT x ≤ 0 for all x ∈ C ⇔ aTBλ ≤ 0,λ ≥ 0 ⇔ aTB ≤ 0

Proposition 2: If C = {x ∈ Qn | Ax ≤ 0}, then C∗ = {λ
T

A | λ ≥ 0}

and C∗ is finitely generated.

Proof: Let D = {λ
T

A | λ ≥ 0} = {ATλ | λ ≥ 0}. By Prop. 1,

D∗ = {x ∈ Qn | xTAT ≤ 0} = {x ∈ Qn | Ax ≤ 0} = C .

Since C∗ = D = {AT λ | λ ≥ 0}, C∗ is finitely generated.
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Minkowski’s Theorem

Theorem: A polyhedral cone is non-empty and finitely generated.
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Minkowski’s Theorem

Theorem: A polyhedral cone is non-empty and finitely generated.

Proof: Let C = {x | Ax ≤ 0}. Then 0 ∈ C , i.e. C 6= ∅.
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Minkowski’s Theorem

Theorem: A polyhedral cone is non-empty and finitely generated.

Proof: Let C = {x | Ax ≤ 0}. Then 0 ∈ C , i.e. C 6= ∅.

Let D = {λ
T

A | λ ≥ 0}. By Weyl’s Theorem, D is polyhedral.
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Minkowski’s Theorem

Theorem: A polyhedral cone is non-empty and finitely generated.

Proof: Let C = {x | Ax ≤ 0}. Then 0 ∈ C , i.e. C 6= ∅.

Let D = {λ
T

A | λ ≥ 0}. By Weyl’s Theorem, D is polyhedral.

Then, by Prop. 2, D∗ = C and D∗ is finitely generated.
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Decomposition Theorem for Polyhedra

A polyhedron is a finite intersection of affine half-spaces, defined by

P = {x ∈ Qn | Ax ≤ b}

A polytope is the convex hull of a finite set of vectors, i.e.

Q = hull{x1, . . . , xn}

Theorem: A set P ⊆ Qn is a polyhedron if and only if there is a

polytope Q and a polyhedral cone C such that P = Q + C .
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Decomposition Theorem for Polyhedra

Proof: ⇒: Let P = {x ∈ Qn | Ax ≤ b}. Consider the polyhedral

cone

C1 =

{(

x
λ

)

∈ Qn+1 | λ ≥ 0,Ax − λb ≤ 0

}

.
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Decomposition Theorem for Polyhedra

Proof: ⇒: Let P = {x ∈ Qn | Ax ≤ b}. Consider the polyhedral

cone

C1 =

{(

x
λ

)

∈ Qn+1 | λ ≥ 0,Ax − λb ≤ 0

}

.

By Minkowski’s Theorem, C1 is generated by finitely many vectors,

say

(

x1

λ1

)

, . . . ,

(

xm

λm

)

. Assume that all λi are either 0 or 1 (otherwise

scale vectors).
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Decomposition Theorem for Polyhedra

Proof: ⇒: Let P = {x ∈ Qn | Ax ≤ b}. Consider the polyhedral

cone

C1 =

{(

x
λ

)

∈ Qn+1 | λ ≥ 0,Ax − λb ≤ 0

}

.

By Minkowski’s Theorem, C1 is generated by finitely many vectors,

say

(

x1

λ1

)

, . . . ,

(

xm

λm

)

. Assume that all λi are either 0 or 1 (otherwise

scale vectors). Let Q be the convex hull of those x i with λi = 1,

and C2 the cone generated by the x i with λi = 0. Then x ∈ P iff
(

x
1

)

∈ C1, and therefore iff

(

x
1

)

∈ cone

{(

x1

λ1

)

, . . . ,

(

xm

λm

)}

.
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Decomposition Theorem for Polyhedra

Proof: ⇒: Let P = {x ∈ Qn | Ax ≤ b}. Consider the polyhedral

cone

C1 =

{(

x
λ

)

∈ Qn+1 | λ ≥ 0,Ax − λb ≤ 0

}

.

By Minkowski’s Theorem, C1 is generated by finitely many vectors,

say

(

x1

λ1

)

, . . . ,

(

xm

λm

)

. Assume that all λi are either 0 or 1 (otherwise

scale vectors). Let Q be the convex hull of those x i with λi = 1,

and C2 the cone generated by the x i with λi = 0. Then x ∈ P iff
(

x
1

)

∈ C1, and therefore iff

(

x
1

)

∈ cone

{(

x1

λ1

)

, . . . ,

(

xm

λm

)}

. I.e.,

x ∈ P iff x =
∑

m

i=1 µix i and
∑

m

i=1 µiλi = 1. Since λi = 1 for vertices

of Q and λi = 0 for defining vectors of C , we have P = Q + C .
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Decomposition Theorem for Polyhedra

⇐: Let P = Q + C for some polytope P = hull{x1, . . . , xn} and

polyhedral cone C = cone{y1, . . . , ym
}.

Seminar on Automated Reasoning, L8 9



Decomposition Theorem for Polyhedra

⇐: Let P = Q + C for some polytope P = hull{x1, . . . , xn} and

polyhedral cone C = cone{y1, . . . , ym
}.

Then x0 ∈ P iff

(

x0

1

)

∈ cone

{(

x1

1

)

, . . . ,

(

xn

1

)

,

(

y1
0

)

, . . . ,

(

y
m

0

)}

.
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Decomposition Theorem for Polyhedra

⇐: Let P = Q + C for some polytope P = hull{x1, . . . , xn} and

polyhedral cone C = cone{y1, . . . , ym
}.

Then x0 ∈ P iff

(

x0

1

)

∈ cone

{(

x1

1

)

, . . . ,

(

xn

1

)

,

(

y1
0

)

, . . . ,

(

y
m

0

)}

.

By Weyl’s Theorem, this cone is polyhedral, i.e. it is equal to
{(

x
λ

)

| Ax + λb ≤ 0

}

for some A and b.
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Decomposition Theorem for Polyhedra

⇐: Let P = Q + C for some polytope P = hull{x1, . . . , xn} and

polyhedral cone C = cone{y1, . . . , ym
}.

Then x0 ∈ P iff

(

x0

1

)

∈ cone

{(

x1

1

)

, . . . ,

(

xn

1

)

,

(

y1
0

)

, . . . ,

(

y
m

0

)}

.

By Weyl’s Theorem, this cone is polyhedral, i.e. it is equal to
{(

x
λ

)

| Ax + λb ≤ 0

}

for some A and b. Then, x0 ∈ P iff Ax0 ≤ −b, and therefore P is a

polyhedron.
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