Seminar on Automated Reasoning 2010

Lecture 8:
Decomposition Theorem for Polyhedra

X|

A
o
|

Swen Jacobs

12. November 2010



Cones

Aconeisaset CCQ"withx,ye C,\u<1leQ=X+uyecC

A polyhedral cone is an intersection of finitely many linear halfspaces,
defined by an m x n-matrix A:

C={x| Ax < 0}

A finitely generated cone is defined by a finite number of vectors

cone{by, ..., by} ={) Aibj | \; >0} ={BX|X >0}
=1
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Weyl’s Theorem

Theorem: A non-empty finitely generated cone is polyhedral.
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Weyl’s Theorem

Theorem: A non-empty finitely generated cone is polyhedral.
Proof: Let C = {B) | A\ > 0} be a finitely generated cone, where B
IS an n X r-matrix. Then
C ={xcQ"|INcQ":
={xecQ"|INeQ":

><|

BXXgG}
<0, -

— B\ + BXA<0,-)<0}.

>< |
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Weyl’'s Theorem

Theorem: A non-empty finitely generated cone is polyhedral.

Proof: Let C = {B) | A\ > 0} be a finitely generated cone, where B
Is an n X r-matrix. Then

C ={x€Q"|INeQ :x=BX\ >0}
={xe€Q"|INeQ :x—BA<O0,—

X|

+ BXA<0,-)<0}.

b

XI

This is the projection onto the first n coordinates of

X

C’ :{(—> cQ | Xx—BA<0,—x+BX<0,-)<

O

A
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Weyl’'s Theorem

C’ :{G) EQW\Y—BXgﬁ,—erXgG,—Xgﬁ}

We can use Fourier-Motzkin elimination to eliminate variables
A1, ..., A from the system of inequations defining C’, obtaining a

new system of inequations defined by matrix A. Then we can write C
as

C={xeQ" | Ax <0}.
Thus, C is polyhedral.
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Dual Cones

The (polar) dual C* of a cone C is defined as

C*={acQ"|a'x<0forall x e C}.
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Dual Cones

The (polar) dual C* of a cone C is defined as

C*={acQ"|a'x<0forall x e C}.

Proposition 1: If C = {BA| A >0}then C* = {3 € Q" |3’ B <0}.
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Dual Cones

The (polar) dual C* of a cone C is defined as

C*={acQ"|a'x<0forall x e C}.

Proposition 1: If C = {BA| A >0}then C* = {3 € Q" |3’ B <0}.

Proof: 3'x<0forallxe C & 3a'BAN<0A>0 < 3a'B<0

Seminar on Automated Reasoning, L8



Dual Cones

The (polar) dual C* of a cone C is defined as

C*={acQ"|a'x<0forall x e C}.

Proposition 1: If C = {BA| A >0}then C* ={3 € Q"|a’'B < 0}.
Proof: 3’'x <0forallxe C & a'BA<0,A>0 < 3a'B<0
Proposition 2: If C = {x € Q" | Ax < 0}, then C* = {)\T A|X>0}

and C* is finitely generated.
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Dual Cones

The (polar) dual C* of a cone C is defined as

C*={acQ"|a'x<0forall x e C}.

Proposition 1: If C = {BA| A >0}then C* ={3 € Q"|a’'B < 0}.
Proof: 3’'x <0forallxe C & a'BA<0,A>0 < 3a'B<0
Proposition 2: If C = {x € Q" | Ax < 0}, then C* = {)\T A|X>0}

and C* is finitely generated.
Proof: Let D= {} A| x>0} ={ATX| X > 0}.
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Dual Cones

The (polar) dual C* of a cone C is defined as

C*={acQ"|a'x<0forall x e C}.

Proposition 1: If C = {BA| A >0}then C* ={3c Q"|a’'B < 0}.

Proof: 3'x<0forallxe C & 3a'BA<0A>0 < 3’

a
Proposition 2: If C = {x € Q" | Ax < 0}, then C* = {)\T Al
and C* is finitely generated.

Proof: Let D= {} A|X >0} ={ATA|x>0}. ByProp. 1,
D*={xcQ" | x"AT <0} ={xcQ"| Ax <0} =C.

<0
A >0}
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Dual Cones

The (polar) dual C* of a cone C is defined as

C*={acQ"|a'x<0forall x e C}.

Proposition 1: If C = {BA| A >0}then C* ={3 € Q"|a’'B < 0}.
Proof: 3’'x <0forallxe C & a'BA<0,A>0 < 3a'B<0
Proposition 2: If C = {x € Q" | Ax < 0}, then C* = {)\T A|X>0}

and C* is finitely generated.

Proof: Let D= {X' A|X >0} = {ATA | X >0}. By Prop. 1,
D ={xcQ"|x"AT <0} ={xcQ" | Ax<0}=C
Since C* = D = {A" X | A > 0}, C* is finitely generated.
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Minkowski’s Theorem

Theorem: A polyhedral cone is non-empty and finitely generated.
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Minkowski’s Theorem

Theorem: A polyhedral cone is non-empty and finitely generated.

Proof: Let C = {X | Ax<0}. Then0 € C, i.e. C # 0.
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Minkowski’s Theorem

Theorem: A polyhedral cone is non-empty and finitely generated.

Proof: Let C = {X | Ax<0}. Then0 € C, i.e. C # 0.
Let D = {XTA | A > 0}. By Weyl's Theorem, D is polyhedral.
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Minkowski’s Theorem

Theorem: A polyhedral cone is non-empty and finitely generated.

Proof: Let C = {X | Ax<0}. Then0 € C, i.e. C # 0.

Let D = {XTA | A > 0}. By Weyl's Theorem, D is polyhedral.
Then, by Prop. 2, D* = C and D* is finitely generated.
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Decomposition Theorem for Polyhedra

A polyhedron is a finite intersection of affine half-spaces, defined by
P={xecQ"| Ax < b}

A polytope is the convex hull of a finite set of vectors, i.e.

Theorem: A set P C Q" is a polyhedron if and only if there is a
polytope @ and a polyhedral cone C such that P = Q + C.
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Decomposition Theorem for Polyhedra

Proof: =: Let P = {x € Q" | Ax < b}. Consider the polyhedral
cone

Clz{G) EQ"H\AZO,Ay—AEgG}.
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Decomposition Theorem for Polyhedra

Proof: =: Let P = {x € Q" | Ax < b}. Consider the polyhedral

cone B
C; = {(i) c Q" | )\ZO,AY—)\Egﬁ}.
By Minkowski's Theorem, (; is generated by finitely many vectors,

say (ii) ..... (§:> Assume that all \; are either 0 or 1 (otherwise

scale vectors).
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Decomposition Theorem for Polyhedra

Proof: =: Let P = {x € Q" | Ax < b}. Consider the polyhedral
cone B
C; = {(i) c Q" | )\ZO,AY—)\Egﬁ}.

By Minkowski's Theorem, (; is generated by finitely many vectors,

say (ii) ..... (§:> Assume that all \; are either 0 or 1 (otherwise

scale vectors). Let @ be the convex hull of those X; with \; = 1,
and (, the cone generated by the Xx; with \; = 0. Then x € P iff

(T) € (;, and therefore iff (T) € cone { (ii) ..... (i:) }
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Decomposition Theorem for Polyhedra

Proof: =: Let P = {x € Q" | Ax < b}. Consider the polyhedral
cone

C; = {(§> c Q" | )\ZO,AY—)\Egﬁ}.
By Minkowski's Theorem, (; is generated by finitely many vectors,

say (ii) ..... (§:> Assume that all \; are either 0 or 1 (otherwise

scale vectors). Let @ be the convex hull of those X; with \; = 1,
and (, the cone generated by the Xx; with \; = 0. Then x € P iff

(T) € (;, and therefore iff (T) € cone { (ii) ..... (i:) } l.e.,

x € Piffx=>"", wx;and >, uiA; = 1. Since \; = 1 for vertices
of @ and A; = 0 for defining vectors of C, we have P = Q@ + C.
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Decomposition Theorem for Polyhedra

<: Let P = Q + C for some polytope P = hull{xy,...,X,} and
polyhedral cone C = cone{yq,... .V m}-
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Decomposition Theorem for Polyhedra

<: Let P = Q + C for some polytope P = hull{xy, ..., Xn} and
polyhedral cone C = cone{yy, ..., Vot

thensy 211 () ccone (). (%), (5. (%)}
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Decomposition Theorem for Polyhedra

<: Let P = Q + C for some polytope P = hull{xy, ..., Xn} and
polyhedral cone C = cone{yy, ..., Vot

thensy 211 () ccone (). (%), (5. (%)}

By Weyl's Theorem, this cone is polyhedral, i.e. it is equal to

{(3) 14x+ 25 <0}

for some A and b.
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Decomposition Theorem for Polyhedra

<: Let P = Q + C for some polytope P = hull{xy, ..., Xn} and
polyhedral cone C = cone{yy, ..., Vot

thensy 211 () ccone (). (%), (5. (%)}

By Weyl's Theorem, this cone is polyhedral, i.e. it is equal to

{(3) 14x+ 25 <0}

for some A and b. Then, Xp € P iff AXo < —b, and therefore P is a
polyhedron.
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