
Combined Decision Techniques for the
Existential Theory of the Reals

G. O. Passmore, P. B. Jackson

November 26, 2010



Last week...
quantifier elimination for R and C

Now...
special case of deciding the quantifier-free fragment for reals

RAHD - Real Algebra in High Dimension[6]

basic idea:
use different techniques for different types of constraints
→ exploit their ”sweet spots”



Basic problem

Given implicitly existentially quantified formula φ,
which is a boolean combination of terms of the form

p ◦ 0 ◦ ∈ {<,≤,=, 6=,≥, >}

where p is a polynomial,
determine whether φ is unsatisfiable.

Notation
φ: formula to prove
F : set of polynomials in φ

p, f ,g, ...: polynomials



Cylindrical Algebraic Decomposition

Idea: decompose Rn into cells where F is sign-invariant

Projection

recursively compute the sets Fn−1, Fn−2, ..., F1 in Rn−1,Rn−2, ...,R1

such that
if a cell C in Rk−1 is sign-invariant for Fk−1,
then all polynomials in Fk over C have a fixed number of roots
→ we can decompose the cylinder of C in Rk

Construction

starting from F1, for each Fi construct a partition in Ri

at each step
the polynomials f ∈ Fi are univariate
compute test points for each cell



CAD - for open sets

algorithm is dominated by a function doubly-exponential in n

Improvements

not all cells are necessary for deciding the formula
→ reduces number of cells produced
if φ contains only strict inequalities, cells are open sets
→ select only rational test points

References: original strict inequality paper [5], QEPCAD B tool [2], best
explanation I could find [1]



Some algebra

Let R[x1, ..., xn] denote the set of all n-variate polynomials

Ideal
I ⊂ R[x1, ..., xn] such that

0 ∈ I
f ,g ∈ I, then f + g ∈ I
f ∈ I and h ∈ R[x1, ..., xn], then hf ∈ I

→ think of it as an analogue to a vector space, generated by some
polynomials I =< f1, ..., fs >



analogous to vector spaces, different bases are possible

Groebner (standard) basis
special basis with some very nice properties

every ideal has a finite unique (reduced) Groebner basis
Buchberger’s algorithm computes it for any set of polynomials
provides necessary condition for the test g ∈ I

Reference: decent introduction [4]



Elimination property

Given

x2 + y + z = 1

x + y2 + z = 1

x + y + z2 = 1

the ideal is I =< x2 + y + z − 1, x + y2 + z − 1, x + y + z2 − 1 >
then the Groebner basis is

g1 = x + y + z2 − 1

g2 = y2 − y − z2 + z

g3 = 2yz2 + z4 − z2

g4 = z6 − 4z4 + 4z3 − z2



There’s a catch...

The back-substitution necessary for solving the system of equations only
works for C, but

if φ unsatisfiable over C, then also over R
rewriting of polynomials generating the ideal is still valid over R

A note on complexity

rational coefficients created can be very large
degrees in the reduced basis can grow very large
choosing the right monomial ordering can improve things

→ the worst-case complexity not determined yet
→ experimental results show useful for ’normal’ problems



Virtual Term Substitution

Consider only formulas linear or quadratic in the quantified variable:

∃x .[ax2 + bx + c = 0] ∧ F

replace x in F by the three possible solutions αi for x
add constraints for each case
rewrite final expression so that it does not contain square roots

⇒ disjunction of formulas

substitution may increase the degree of other variables
resulting formulas may be unwieldy

⇒ if applicable (with degree-reduction heuristics) gives good
performance for high-dimensional problems

References: original paper [7], improvements [3]



Stengle’s Weak Positivstellensatz

F = p1(x) = 0 ∧ ... ∧ pk(x) = 0
∧ q1(x) ≥ 0 ∧ ... ∧ ql(x) ≥ 0
∧ s1(x) > 0 ∧ ... ∧ sm(x) > 0

is unsatisfiable iff, if

∃f ∈ Ideal(p1, ...,pk),

∃g ∈ Cone(q1, ...,ql),

∃h ∈ Monomials(s1, ...sm)

such that
f + g + h2 = −1



Simpler version

Given a constraint p = 0 or p < 0, then

RC(p) > 0 (degree-zero coefficient)

∧ p ∈ {
k∑

j=1

m2|m monomial with coeff. in Q}

is a witness certificate for unsatisfiability.



Sturm’s theorem

Suppose we have an univariate constraint of the form p = 0. Given a
Sturm chain p,p1, ...,pm

p0(x) = p(x)
p1(x) = p′(x)
p2(x) = −rem(p0,p1) = p1(x)q0(x)− p0(x)
p3(x) = −rem(p1,p2) = p2(x)q1(x)− p1(x)

...

0 = −rem(pm−1,pm)

denote by σ(ξ) the number of sign changes in the sequence

p(ξ),p1(ξ),p2(ξ), ...pm(ξ)

then for a < b, both real, the number of real roots in (a,b] is σ(a)− σ(b).



Application

For constraints of the form

[p > 0, p ∈ Q[x ] ∧ (x > q1) ∧ (x < q2)]

the following is a certificate for unsatisfiability

p(
q2 − q1

2
) ≤ 0

SC(p, (q1,q2)) = 0
q1 < q2



Recap

strict inequalities→ CAD
sum-of-squares→ Positivstellensatz
equalities→ Groebner bases
univariate constraints→ Sturm’s theorem



Dimension reduction

pq = 0⇐⇒ (p = 0 ∨ q = 0)

k∑
i=1

p2
i = 0⇐⇒

k∧
i=1

pi = 0

elimination ideals with Groebner bases
(approximation of real radical ideals)



RAHD

Given a goal φ, show unsatisfiability.

1 put φ in DNF, giving a set of cases
2 normalize so that every case is a conjunction of equalities or strict

inequalities over polynomials
3 use case manipulation functions (CMF) on each case in turn

report sat/unsat
return unchanged
make progress (e.g. by rewriting into equisatisfiable formula)
return boolean formula, but with reduced dimension

→ ordering of CMF’s is crucial



CMF ordering

cheap functions first (Sturm chains before CAD)
functions providing information to others first (Positivstellensatz
search before Sturm)
function is included several times, if it has a chance of making a
more informed decision after certain steps have run (interval
analysis before and after Groebner basis rewriting)

If all else fails, run the general CAD algorithm.



Comparison

Compared to
QEPCAD-B
Redlog/Rlqe (virtual term substitution, fallback on Rlcad)
Redlog/Rlcad (partial CAD)

Results:
RAHD can solve some (high-dimension, high-degree) problems, the
others can not
not the fastest on the other problems
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