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Definition

Basic Definitions
S is the set

Definition

Let S e Z9 be a finite set of integer vectors. The integer cone of
cone(X) ={ Xz +...+AnXn [N >0;% € S; \j € Z; \j > 0}

e For a vector x, the infinity norm is

[X[loo = max{[xa, ... [xn[}

e For a set of vectors S, let Mg denote a number
Ms = maxyes |[X||oo
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Problem Formulation

Question we want to answer

Let X C Z9 be a set of integer vectors and let b € cone(X).
generate b?

e Question: how many vectors from X are needed to

e (If those would be vectors with real coefficients,
most d vectors)

Carathéodory theorem states that b is generated with at
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Towards Solution

Theorem

Let X C Z9 be a set of integer vectors and let b € cone(X). If

IX] > dlog,(2[X|Mx + 1), then there exists a proper subset
X C X such that b € cone(X).

Proof.

O
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Towards Solution

Theorem

Let X C Z9 be a set of integer vectors and let b € cone(X). If

IX] > dlog,(2[X|Mx + 1), then there exists a proper subset
X C X such that b € cone(X).

Proof.

e assume thatb =), .« AxX, Ax >0

O
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Towards Solution

Theorem

Let X C Z9 be a set of integer vectors and let b € cone(X). If

IX] > dlog,(2[X|Mx + 1), then there exists a proper subset
X C X such that b € cone(X).

Proof.

e assume thatb =), .« AxX, Ax >0
o for every subset S, [|> ) .5 X||co < [X[Mx
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Towards Solution

Theorem

Let X C Z9 be a set of integer vectors and let b € cone(X). If

IX] > dlog,(2[X|Mx + 1), then there exists a proper subset
X C X such that b € cone(X).

Proof.

e assume thatb =), .« AxX, Ax >0
o for every subset S, [|> ) .5 X||co < [X[Mx

¢ the number of different vectors which are representable as
the sum of vectors of S C X is bounded by (2|X |[My + 1)¢,
because coordinates are in {—|X|My, ..., |X|Mx}
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Towards Solution

Theorem

Let X C Z9 be a set of integer vectors and let b € cone(X). If

IX] > dlog,(2[X|Mx + 1), then there exists a proper subset
X C X such that b € cone(X).

Proof.

e assume thatb =), .« AxX, Ax >0
o for every subset S, [|> ) .5 X||co < [X[Mx

¢ the number of different vectors which are representable as
the sum of vectors of S C X is bounded by (2|X |[My + 1)¢,
because coordinates are in {—|X|My, ..., |X|Mx}

o theorem assumption: 2% > (2|X|Myx + 1)¢ = there are
two different subsets A, B suchthat ) A X =3, (g X
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Towards Solution

Theorem

Let X C Z9 be a set of integer vectors and let b € cone(X). If

IX] > dlog,(2|X[Mx + 1), then there exists a proper subset
X C X such that b € cone(X).

Proof.

e sofar: assume b =} .« A&xX, Ax > 0; there are two
different disjoint subsets A,B suchthat ), X =3 g X

O

DA



Towards Solution

Theorem

Let X C Z9 be a set of integer vectors and let b € cone(X). If

IX] > dlog,(2|X[Mx + 1), then there exists a proper subset
X C X such that b € cone(X).

Proof.

e sofar: assume b =} .« A&xX, Ax > 0; there are two
different disjoint subsets A,B suchthat ), X =3 g X

e let \ =min{)\x | x € A}

O
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Towards Solution

Theorem

Let X C Z9 be a set of integer vectors and let b € cone(X). If

IX] > dlog,(2|X[Mx + 1), then there exists a proper subset
X C X such that b € cone(X).

Proof.

e sofar: assume b =} .« A&xX, Ax > 0; there are two
different disjoint subsets A,B suchthat ), X =3 g X

e let \ =min{)\x | x € A}

o b =3 ex MX =D xexia X+ Doyen AXX
=D xex\A X+ D yea(A = X+ A Y caX
=D xex\A X + Dy ea(Ax = AX + A g X
= ZXEX HxX

O
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Towards Solution
Theorem

Let X C Z9 be a set of integer vectors and let b € cone(X). If

IX] > dlog,(2[X|Mx + 1), then there exists a proper subset
X C X such that b € cone(X).

Proof.
e sofar: assume b =, .« A&xX, Ax > 0O; there are two

different distinct subsets A, B such that  , .o X = >, g X;
b =3 ex #xX, where

O

DA



Towards Solution
Theorem

Let X C Z9 be a set of integer vectors and let b € cone(X). If

IX] > dlog,(2[X|Mx + 1), then there exists a proper subset
X C X such that b € cone(X).

Proof.
e sofar: assume b =, .« A&xX, Ax > 0O; there are two

different distinct subsets A, B such that  , .o X = >, g X;
b =3 ex #xX, where

Axs x e X\ (AUB)
® lx = )\X_)\, X eA
Mx+A xeB

O
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Towards Solution

Theorem

Let X C Z9 be a set of integer vectors and let b € cone(X). If

IX] > dlog,(2[X|Mx + 1), then there exists a proper subset
X C X such that b € cone(X).

Proof.

e sofar: assume b =, .« A&xX, Ax > 0O; there are two
different distinct subsets A, B such that  , .o X = >, g X;
b =3 ex #xX, where

Axs x e X\ (AUB)
® lx = )\X_)\, X eA
Mx+A xeB

e at least one puy is zero
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Towards Solution

Theorem

Let X C Z9 be a set of integer vectors and let b € cone(X). If

IX] > dlog,(2[X|Mx + 1), then there exists a proper subset
X X such that b € cone(X).

Proof.

e sofar: b =) .y uxx and at least one j is zero

DA



Towards Solution

Theorem

Let X C Z9 be a set of integer vectors and let b € cone(X). If

IX] > dlog,(2[X|Mx + 1), then there exists a proper subset
X X such that b € cone(X).

Proof.

e sofar: b =) .y uxx and at least one j is zero
o X ={xeX|ux >0}
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Towards Solution

Theorem

Let X C Z9 be a set of integer vectors and let b € cone(X). If

IX] > dlog,(2[X|Mx + 1), then there exists a proper subset
X X such that b € cone(X).

Proof.
e sofar: b =) .y uxx and at least one j is zero

o X ={xeX|pu >0}
e X c X and b € cone(X)
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Solution

Theorem

Let X c Z9 be a finite set of integer vectors and let
b € cone(X). Then there exists a subset X such that
b € cone(X) and |X| < 2d log,(4dMy).

Proof.

e Let X be a minimal subset such that b € cone(X) and let
us assume that |X| > 2d log,(4dMy)
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Solution

Theorem

Let X c Z9 be a finite set of integer vectors and let
b € cone(X). Then there exists a subset X such that
b € cone(X) and |X| < 2d log,(4dMy).

Proof.

e Let X be a minimal subset such that b € cone(X) and let
us assume that |X| > 2d log,(4dMy)

o we will show that it implies that |X| > d log,(2|X |Mx + 1)

and using previous theorem, we conclude that there exist
X1, a proper subset of X such that b € cone(X3)
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Solution

Theorem

Let X c 79 be a finite set of integer vectors and let
b € cone(X). Then there exists a subset X such that
b € cone(X) and |X| < 2d log,(4dMy).

Proof.

e Let X be a minimal subset such that b € cone(X) and let
us assume that |X| > 2d log,(4dMy)

o we will show that it implies that |X| > d log,(2|X |Mx + 1)
and using previous theorem, we conclude that there exist
X1, a proper subset of X such that b € cone(X1)

« contradicts minimality of X
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Left to Prove:

Solution
Proof.

o If|X| > 2d log,(4dMy), then [X| > d l0g,(2|X My + 1)
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Left to Prove:

Solution
Proof.

o If|X| > 2d log,(4dMy), then [X| > d l0g,(2|X My + 1)

o |X| > 2d log,(4dMy) = My < 2XI/(2d) /(4d)
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Left to Prove:

Solution
Proof.

o If|X| > 2d log,(4dMy), then [X| > d l0g,(2|X My + 1)

o |X| > 2d log,(4dMy) = My < 2XI/(2d) /(4d)
o = 2|X|My +1 < [X]|/(2d) % 2XI/(2d) 4 1 <
2K/ (x| /(2d) + 1)
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Left to Prove:

Solution
Proof.

o If [X| > 2d log,(4dMy), then |X| > d log,(2|X My + 1)
o |X| > 2d log,(4dMy) = My < 2XI/(2d) /(4d)

o = 2|X|My +1 < [X]|/(2d) % 2XI/(2d) 4 1 <
2K/ (x| /(2d) + 1)

e = dlog,(2|X|My + 1) < |X]|/2+dlog,(|X|/(2d) + 1) <
IX]/2+d «|X|/(2d)
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Solution

Left to Prove:

o If|X| > 2d log,(4dMy), then [X| > d l0g,(2|X My + 1)

Proof.

o |X| > 2d log,(4dMy) = My < 2XI/(2d) /(4d)
o = 2|X|My +1 < [X]|/(2d) % 2XI/(2d) 4 1 <
2K/ (x| /(2d) + 1)

e = dlog,(2|X|My + 1) < |X]|/2+dlog,(|X|/(2d) + 1) <
IX]/2+d «|X|/(2d)

e = dlog,(2|X|Mx + 1) < [X]|
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Multisets
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Definition

Multisets
can occur several times

e Multiset (bag) is a collection of elements where an element
(E - finite universe)

e Formally, multiset m is a functionm : E — {0,1,2,...}
Example

m; = {a,a,b,b,b} = my(a) =2my(b) =3 my(c)=0
my ={a,b,c} = my(a)=1my(b)=1my(c)=1



Multisets
Definition
e Multiset (bag) is a collection of elements where an element
can occur several times

e Formally, multiset m is a function m : E — {0,1,2,...}
(E - finite universe)

Example

m1 ={a,a,b,b,b} = my(a)=2my(b) =3my(c)=0
m, = {a,b,c} = my(a)=1my(b)=1my(c)=1
Selected operations and relations on multisets:

e Plus (m; wmy)(e) = my(e) + my(e)
my; ¥my = {a,a,b,b,b,b,c}
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Multisets
Definition
e Multiset (bag) is a collection of elements where an element
can occur several times

e Formally, multiset m is a function m : E — {0,1,2,...}
(E - finite universe)

Example
m1 ={a,a,b,b,b} = my(a)=2my(b) =3my(c)=0
my ={a,b,c} = my(a)=1my(b)=1my(c)=1
Selected operations and relations on multisets:

e Plus (m; wmy)(e) = my(e) + my(e)

e Intersection (m; N my)(e) = min{my(e), my(e)}
my Nmy = {a,b}
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Definition

Multisets
can occur several times

e Multiset (bag) is a collection of elements where an element
(E - finite universe)

e Formally, multiset m is a functionm : E — {0,1,2,...}
Example

m; = {a,a,b,b,b} = mj(a)=2my(b) =3my(c)=0
my ={a,b,c} = my(a) =1my(b) =1my(c)=1
Selected operations and relations on multisets:

e Plus (my wm;)(e) =ma(e) + my(e)

e Intersection (m; Nmy)(e) = min{my(e), my(e)}

e Subsetm; C m, < Ve.my(e) < my(e)

[m]

=
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Multisets in Software Analysis and

Verification: Overview

multiset formula I yes / no
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Multisets in Software Analysis and

Verification: Overview

“ yes,no
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Multisets in Software Analysis and
Verification: Example
Example

public void add(Object x)
ensures List = old List & {x}

{
Node n = new Node();
n.data = x;
n.next = first;
first = n;
}

e Formula expressing the correctness of insertion:
X|=1—|Lwx|=|L|+1
e To prove that it is valid, it is equivalent to show that its
negation is unsatisfiable:
IX| =1A|LWx]|#|LI+1
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Decision Procedure: Overview

@ reduce to normal form
@ replace multiset sums with“star” operator

® find semilinear sets characterizing the set of solutions of
formulas under the sum

@ generate PA formula for the results of sums
@ check satisfiability of resulting formula

Presburger Arithmetic

Presburger Arithmetic (PA) is an arithmetic of natural numbers
(N, <, +), without multiplication. It is decidable and there are
decision procedures for deciding PA formulas.
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Decision Procedure: Example
Example

e express all multiset expressions using Ve. F
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Decision Procedure: Example
Example

e express all multiset expressions using Ve. F
o X|=1ALWX|#|L|+1
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Decision Procedure: Example
Example

e express all multiset expressions using Ve. F
o X|=1ALWX|#|L|+1

o X|=1Aly|#IL|+1Ay =LWX

DA



Decision Procedure: Example
Example

e express all multiset expressions using Ve. F
o X|=1ALWX|#|L|+1

o X|=1Aly|#IL|+1Ay =LWX

e X|=1Aly|#|L|+1AVe.y(e)=L(e)+x(e)
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Decision Procedure: Example
Example

e express all multiset expressions using Ve. F

e group all sums into one, using vectors:

Yot =k AYtr =ka ~ (s, t2) = (kg ko)
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Decision Procedure: Example
Example

e express all multiset expressions using Ve. F
e group all sums into one, using vectors:

Dt =kiAYte =ka v 3 o(t,12) = (Ka, ka)
e >x(e)=1A3y(e) #> L(e)+1A
ve.y(e) =L(e) +x(e)
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Decision Procedure: Example
Example

e express all multiset expressions using Ve. F

e group all sums into one, using vectors:

Dt =kiAYte =ka v 3 o(t,12) = (Ka, ka)
e >x(e)=1A3y(e) #> L(e)+1A
ve.y(e) =L(e) +x(e)

ve.y(e) = L(e) + x(e)

e x(e)=1AYy(e) =k A L(e) = ko Aky #£ ko +1A
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Decision Procedure: Example
Example

e express all multiset expressions using Ve. F
e group all sums into one, using vectors:
Yti=ki A Y tr =Ko~ Dot 1) = (Ka, ko)
e Yx()=1AYy(e) # Y L(e) +1A
Ve.y(e) =L(e) +x(e)
Ve.y(e) = L(e) + x(e)
o ki #ky + 1IN

e x(e)=1AYy(e) =k A L(e) = ko Aky #£ ko +1A

(1, ki, ko) =3 (x(e),y(e),L(e)) A Ve.y(e) = L(e) +x(e)
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Decision Procedure: Example

Example

e express all multiset expressions using Ve. F
e group all sums into one, using vectors:
Yoti =K AY te = ko v Do(t1, 12) = (ki ko)

e replace multiset constraints with integer constraints
enriched with “star” operator
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Decision Procedure: Example

Example

e express all multiset expressions using Ve. F
e group all sums into one, using vectors:
Yoti =K AY te = ko v Do(t1, 12) = (ki ko)
e replace multiset constraints with integer constraints
enriched with “star” operator
o ki # Kk + 1A
(1,k1, ko) = >2(x(e),y(e),L(e)) A Ve.y(e)=L(e)+x(e)
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Decision Procedure: Example

Example

e express all multiset expressions using Ve. F
e group all sums into one, using vectors:
Yoti =K AY te = ko v Do(t1, 12) = (ki ko)
e replace multiset constraints with integer constraints
enriched with “star” operator
o ki # Kk + 1A

(1,ke, ko) = >2(x(e),y(e),L(e)) A Ve.y(e)=L(e)+ x(e)

o ki #Fka+1 A (1,k1,k2)e{(x,y,L)|y:L+x}*,
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Decision Procedure: Example

Example

e express all multiset expressions using Ve. F

e group all sums into one, using vectors:
Yoti =K AY te = ko v Do(t1, 12) = (ki ko)

e replace multiset constraints with integer constraints
enriched with “star” operator

o ki # ko + 1A
(1,k1,k2) = >-(x(e),y(e),L(e)) A Ve.y(e) =L(e)+x(e)
o ki #ka+1 A (1,ki, ko) € {(x,y,L) |y =L+x}*,

where S* = {X; +...+ X, | Xi € SAN >0}
Note: S* = cone(S)
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Theorem

A formula in the sum normal form:

Multiset Elimination
P A (Ul,

,Un) = Z(tl, ..

ecE
is equisatisfiable with the formula

,th) A VelF
P A (Ug,...,un) € {(t1,... 1) | F; Xq,...,Xp € N}
where t/ is t; in which each my(e) is replaced by fresh var x

andC*={vi+...+Vvy|vieCAN>0}

Example

(Lki k) = Y (x(e).y(e).L(e)) A Ve.y(e) =L(e) +x(e)

(1, kg, ko) e {(x,y,L) |y =L+x; y,x,Le N}*

[m]

=
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Multiset Elimination

Example

(L ki, ko) =) “(x(e),y(e),L(e)) A Ve.y(e)=L(e)+x(e)
(1,ky, ko) € {(x,y,L) |y =L+x,y,x,L e N}*

Proof.
< assume that (ug,...,un) = (th, .. 1) + ..+ (1., 1K)
We define set E to have k elements: E = {e;,...,ex}
mi(e;j) has the value of corresponding x!.
= analogous, except that E is given
L]
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Semilinear Sets
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Semilinear Sets

Question
Can we describe (ug,...,un) € {(ty,...,ta) | F}*
by PA formula?

Definition

Let C;, C, C NK be sets of vectors of non-negative integers. We
define:

C1+C, = {Xl + X2 |X1 eCiLAXy € Cz}

Ci={Xx1+...+% |x€CiAn >0}
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Semilinear Sets

Question
Can we describe (ug,...,un) € {(ty,...,ta) | F}*
by PA formula?

Definition

Let C;, C, C NK be sets of vectors of non-negative integers. We
define:

C1+C, = {Xl + X2 |X1 eCiLAXy € Cz}

Ci={Xx1+...+% |x€CiAn >0}

Semilinear sets
Linear set = set of form {x} + C* for x € N" and C C N" finite
Semilinear set = finite union of linear sets
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Semilinear Sets

Question
Can we describe (ug,...,un) € {(ty,...,ta) | F}*
by PA formula?

Definition

Let C;, C, C NK be sets of vectors of non-negative integers. We
define:

C1+C, = {Xl + X2 |X1 eCiLAXy € Cz}

Ci={Xx1+...+% |x€CiAn >0}

Semilinear sets
Linear set = set of form {x} + C* for x € N" and C C N" finite
Semilinear set = finite union of linear sets

Example
LS(2;10) = {2,12,22,32,42,52,62,...}
LS(5;3,5) = {5,8,10,11,13,14,15,16,18,...}
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Solution

¢ In [GinsburgSpanier1968] it was shown:
negation

e semilinear sets are closed under union, intersection and

e a solution of PA formula is a semilinear set
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Solution
¢ In [GinsburgSpanier1968] it was shown:
negation

e semilinear sets are closed under union, intersection and
semilinear set

e a solution of PA formula is a semilinear set

e We showed that if S is a semilinear set, then S* is also a
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Solution

¢ In [GinsburgSpanier1968] it was shown:
negation

e semilinear sets are closed under union, intersection and
semilinear set
[ ]

e a solution of PA formula is a semilinear set

(Ul,.

¢ We showed that if S is a semilinear set, then S* is also a
-,Un) € {(t3,
is effectively expressible as PA formula

L) R
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Example (Continued)
Example

b kl 3& k2+1/\(1)k17k2) € {(X7y7L) | y = I-—i_)(7y7x7|—E N}*
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Example (Continued)
Example

b kl#k2+1/\(1)k17k2) € {(Xﬂy’L) ’y = L+X7y7X)L€N}*

e {(x,y,L) ]y =L+Xx,y,x,L € N}* is described with
semilinear set LS((0,0,0);(1,1,0),(0,1,1))
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Example (Continued)

Example

b kl#k2+1/\(1)k17k2) € {(X7y7L) ‘ y = L+X7an7L€N}*

e {(x,y,L) ]y =L+Xx,y,x,L € N}* is described with
semilinear set LS((0,0,0);(1,1,0),(0,1,1))

° (17k1,k2) € {(Xaya L) | y = L+Xay7X7L € N}* is
equisatisfiable with:

(15 kl, k2) = >‘1 (17 17 O) + )‘2(05 1) 1)
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Solution
b_1 1
 formula derived during the at < b_12
proof: b_1_m
Jpi, Aj- (Ug, ..., Un) = Vo
K Gi a_2 b 22
> (pias + ) Ajby) A -
i=1 j=0 . -
k ol .
N =0 = > Xj=0)
i=1 ]:O

a_k
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Bounds on Solution Size
k

Our exponential formula looks like this:
P A (Ul,

Qi k
i=1

aun):Z(#iaiJFZ;)\ijbij)/\/\(#i =0 = ) %=0)
i=

j=1
a;, by with polynomially many bits

di

i=1
Pottier 1991 - the solution set of Ax = b is a semilinear set with
Papadimitriou 1981 - bounds on PA formula solutions

e solution vector (uy,

., Up) has polynomially
many bits, even for our exponential formulas!
e reason: formulas are exponential, but have

polynomially many conjuncts
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Constructing Polynomially Large Formulas
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Picking Subset of a;, b

Our exponential formula looks like this:

k i k i

P A (ug, Un)—ZM|a|+Z)\ijb|J /\/\ pi=0 = Z)\u—o
i=1 =1 i=1 =1

Theorem

subset of them

If u is generated by a;, bjj, then it is generated by polynomial

e proof generalizes results by Eisenbrand, Shmonin (2006)
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@letu=a+b

@® apply Eisenbrand-Shmonin

Proof
b 1.1
a_1l b_1_2
theorem as black box on bj
vectors
® there are only polynomially
vectors bj needed to
represent b

a_2
@ join them with associated g;
vectors

@® apply Eisenbrand-Shmonin

b 2|
theorem on remaining a;
vectors
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ldea: Guess a;, b;?

Problem: how to check if a guessed vector is one of a; or b;;?

Approach: instead of guessing a;, bj;, guess solutions ¢ where
F(c)

Result:
PAU={V]|F}

is equisatisfiable with

Q Q
PAG=> XviA \F(¥)
i=1 i=1

where Q polynomially large, can compute it from F

n}
L)
1
w
i

DA



Last Hurdle

§=3 i
i=1
Polynomially large formula

E>o
3

e but it multiplies variables );, v;

Result: NP completeness!

not linear?
e nevertheless: vectors bounded, can expand multiplication
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Conclusions

Presented
e result on Carathéodory bounds for integer cones

e language used for reasoning about properties of data
structures

e new decision procedure for quantifier-free multiset
formulas with cardinality operator

e optimal complexity result: NP-completeness
e algorithm: generating polynomially large PA formulas
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