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Basic Definitions

Definition
Let S ∈ Z

d be a finite set of integer vectors. The integer cone of
S is the set

cone(X ) = {λ1x1 + . . . + λnxn | n ≥ 0; xi ∈ S; λi ∈ Z; λi ≥ 0}

Definition

• For a vector x , the infinity norm is
||x ||∞ = max{|x1|, . . . , |xn|}

• For a set of vectors S, let MS denote a number
MS = maxx∈S ||x ||∞



Problem Formulation

Question we want to answer
Let X ⊆ Z

d be a set of integer vectors and let b ∈ cone(X ).

• Question: how many vectors from X are needed to
generate b?

• (If those would be vectors with real coefficients,
Carathéodory theorem states that b is generated with at
most d vectors)



Towards Solution

Theorem
Let X ⊆ Z

d be a set of integer vectors and let b ∈ cone(X ). If
|X | > d log2(2|X |Mx + 1), then there exists a proper subset
X̃ ⊂ X such that b ∈ cone(X̃ ).

Proof.



Towards Solution

Theorem
Let X ⊆ Z

d be a set of integer vectors and let b ∈ cone(X ). If
|X | > d log2(2|X |Mx + 1), then there exists a proper subset
X̃ ⊂ X such that b ∈ cone(X̃ ).

Proof.

• assume that b =
∑

x∈X λxx , λx > 0



Towards Solution

Theorem
Let X ⊆ Z

d be a set of integer vectors and let b ∈ cone(X ). If
|X | > d log2(2|X |Mx + 1), then there exists a proper subset
X̃ ⊂ X such that b ∈ cone(X̃ ).

Proof.

• assume that b =
∑

x∈X λxx , λx > 0

• for every subset S, ||
∑

x∈S x ||∞ ≤ |X |MX



Towards Solution

Theorem
Let X ⊆ Z

d be a set of integer vectors and let b ∈ cone(X ). If
|X | > d log2(2|X |Mx + 1), then there exists a proper subset
X̃ ⊂ X such that b ∈ cone(X̃ ).

Proof.

• assume that b =
∑

x∈X λxx , λx > 0

• for every subset S, ||
∑

x∈S x ||∞ ≤ |X |MX

• the number of different vectors which are representable as
the sum of vectors of S ⊆ X is bounded by (2|X |Mx + 1)d ,
because coordinates are in {−|X |MX , . . . , |X |MX}



Towards Solution

Theorem
Let X ⊆ Z

d be a set of integer vectors and let b ∈ cone(X ). If
|X | > d log2(2|X |Mx + 1), then there exists a proper subset
X̃ ⊂ X such that b ∈ cone(X̃ ).

Proof.

• assume that b =
∑

x∈X λxx , λx > 0

• for every subset S, ||
∑

x∈S x ||∞ ≤ |X |MX

• the number of different vectors which are representable as
the sum of vectors of S ⊆ X is bounded by (2|X |Mx + 1)d ,
because coordinates are in {−|X |MX , . . . , |X |MX}

• theorem assumption: 2|X | > (2|X |Mx + 1)d ⇒ there are
two different subsets A, B such that

∑

x∈A x =
∑

x∈B x
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x∈X λxx , λx > 0; there are two
different disjoint subsets A, B such that

∑

x∈A x =
∑

x∈B x

• let λ = min{λx | x ∈ A}
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∑

x∈X λxx =
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Theorem
Let X ⊆ Z
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• at least one µx is zero
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Towards Solution

Theorem
Let X ⊆ Z

d be a set of integer vectors and let b ∈ cone(X ). If
|X | > d log2(2|X |Mx + 1), then there exists a proper subset
X̃ ⊂ X such that b ∈ cone(X̃ ).

Proof.

• so far: b =
∑

x∈X µxx and at least one µx is zero

• X̃ = {x ∈ X | µx > 0}



Towards Solution

Theorem
Let X ⊆ Z

d be a set of integer vectors and let b ∈ cone(X ). If
|X | > d log2(2|X |Mx + 1), then there exists a proper subset
X̃ ⊂ X such that b ∈ cone(X̃ ).

Proof.

• so far: b =
∑

x∈X µxx and at least one µx is zero

• X̃ = {x ∈ X | µx > 0}

• X̃ ⊂ X and b ∈ cone(X̃ )



Solution

Theorem
Let X ⊂ Z

d be a finite set of integer vectors and let
b ∈ cone(X ). Then there exists a subset X̃ such that
b ∈ cone(X̃ ) and |X̃ | ≤ 2d log2(4dMx).

Proof.

• Let X̃ be a minimal subset such that b ∈ cone(X̃ ) and let
us assume that |X̃ | > 2d log2(4dMx)
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Solution

Theorem
Let X ⊂ Z

d be a finite set of integer vectors and let
b ∈ cone(X ). Then there exists a subset X̃ such that
b ∈ cone(X̃ ) and |X̃ | ≤ 2d log2(4dMx).

Proof.

• Let X̃ be a minimal subset such that b ∈ cone(X̃ ) and let
us assume that |X̃ | > 2d log2(4dMx)

• we will show that it implies that |X̃ | > d log2(2|X |Mx + 1)
and using previous theorem, we conclude that there exist
X1, a proper subset of X̃ such that b ∈ cone(X1)

• contradicts minimality of X̃



Solution

Left to Prove:

• If |X | > 2d log2(4dMx), then |X | > d log2(2|X |Mx + 1)

Proof.
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Left to Prove:

• If |X | > 2d log2(4dMx), then |X | > d log2(2|X |Mx + 1)

Proof.

• |X | > 2d log2(4dMx) ⇒ Mx < 2|X |/(2d)/(4d)

• ⇒ 2|X |Mx + 1 < |X |/(2d) ∗ 2|X |/(2d) + 1 ≤
2|X |/(2d)(|X |/(2d) + 1)

• ⇒ d log2(2|X |Mx + 1) < |X |/2 + d log2(|X |/(2d) + 1) ≤
|X |/2 + d ∗ |X |/(2d)



Solution

Left to Prove:

• If |X | > 2d log2(4dMx), then |X | > d log2(2|X |Mx + 1)

Proof.

• |X | > 2d log2(4dMx) ⇒ Mx < 2|X |/(2d)/(4d)

• ⇒ 2|X |Mx + 1 < |X |/(2d) ∗ 2|X |/(2d) + 1 ≤
2|X |/(2d)(|X |/(2d) + 1)

• ⇒ d log2(2|X |Mx + 1) < |X |/2 + d log2(|X |/(2d) + 1) ≤
|X |/2 + d ∗ |X |/(2d)

• ⇒ d log2(2|X |Mx + 1) < |X |



Multisets



Multisets

Definition
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m2 = {a, b, c} ⇒ m2(a) = 1 m2(b) = 1 m2(c) = 1
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Multisets

Definition

• Multiset (bag) is a collection of elements where an element
can occur several times

• Formally, multiset m is a function m : E → {0, 1, 2, . . .}
(E - finite universe)

Example
m1 = {a, a, b, b, b} ⇒ m1(a) = 2 m1(b) = 3 m1(c) = 0
m2 = {a, b, c} ⇒ m2(a) = 1 m2(b) = 1 m2(c) = 1

Selected operations and relations on multisets:

• Plus (m1 ⊎ m2)(e) = m1(e) + m2(e)

• Intersection (m1 ∩ m2)(e) = min{m1(e), m2(e)}

• Subset m1 ⊆ m2 ⇐⇒ ∀e. m1(e) ≤ m2(e)
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Verification: Overview

Theorem prover 
for mult isets 

yes / no 
program veri f icat ion
system



Multisets in Software Analysis and
Verification: Example

Example
public void add(Object x)
ensures List = old List ⊎ {x}
{

Node n = new Node();
n.data = x;
n.next = first;
first = n;

}

• Formula expressing the correctness of insertion:
|x | = 1 → |L ⊎ x | = |L| + 1

• To prove that it is valid, it is equivalent to show that its
negation is unsatisfiable:

|x | = 1 ∧ |L ⊎ x | 6= |L| + 1



Decision Procedure: Overview

1 reduce to normal form

2 replace multiset sums with“star” operator

3 find semilinear sets characterizing the set of solutions of
formulas under the sum

4 generate PA formula for the results of sums

5 check satisfiability of resulting formula

Presburger Arithmetic
Presburger Arithmetic (PA) is an arithmetic of natural numbers
(N,≤, +), without multiplication. It is decidable and there are
decision procedures for deciding PA formulas.
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Decision Procedure: Example

Example

• express all multiset expressions using ∀e. F

• group all sums into one, using vectors:
∑

t1 = k1 ∧
∑

t2 = k2  
∑

(t1, t2) = (k1, k2)

• replace multiset constraints with integer constraints
enriched with “star” operator

• k1 6= k2 + 1∧
(1, k1, k2) =

∑

(x(e), y(e), L(e)) ∧ ∀e. y(e) = L(e) + x(e)
• k1 6= k2 + 1 ∧ (1, k1, k2) ∈ {(x , y , L) | y = L + x}∗,

where S∗ = {x1 + . . . + xn | xi ∈ S ∧ n ≥ 0}
Note: S∗ = cone(S)



Multiset Elimination
Theorem
A formula in the sum normal form:

P ∧ (u1, . . . , un) =
∑

e∈E

(t1, . . . , tn) ∧ ∀e.F

is equisatisfiable with the formula

P ∧ (u1, . . . , un) ∈ {(t ′1, . . . , t ′n) | F ; x1, . . . , xp ∈ N}∗

where t ′i is ti in which each mk (e) is replaced by fresh var xk

and C∗ = {v1 + . . . + vn | vi ∈ C ∧ n ≥ 0}

Example

(1, k1, k2) =
∑

(x(e), y(e), L(e)) ∧ ∀e. y(e) = L(e) + x(e)

(1, k1, k2) ∈ {(x , y , L) | y = L + x ; y , x , L ∈ N}∗



Multiset Elimination

Example

(1, k1, k2) =
∑

(x(e), y(e), L(e)) ∧ ∀e. y(e) = L(e) + x(e)

(1, k1, k2) ∈ {(x , y , L) | y = L + x , y , x , L ∈ N}∗

Proof.
⇐ assume that (u1, . . . , un) = (t1

1 , . . . , t1
n ) + . . . + (tk

1 , . . . , tk
n )

We define set E to have k elements: E = {e1, . . . , ek}

mi(ej) has the value of corresponding x j
i .

⇒ analogous, except that E is given



Semilinear Sets



Semilinear Sets

Question
Can we describe (u1, . . . , un) ∈ {(t1, . . . , tn) | F}∗

by PA formula?

Definition
Let C1, C2 ⊆ N

k be sets of vectors of non-negative integers. We
define:
C1 + C2 = {x1 + x2 | x1 ∈ C1 ∧ x2 ∈ C2}
C∗

1 = {x1 + . . . + xn | xi ∈ C1 ∧ n ≥ 0}
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Semilinear Sets

Question
Can we describe (u1, . . . , un) ∈ {(t1, . . . , tn) | F}∗

by PA formula?

Definition
Let C1, C2 ⊆ N

k be sets of vectors of non-negative integers. We
define:
C1 + C2 = {x1 + x2 | x1 ∈ C1 ∧ x2 ∈ C2}
C∗

1 = {x1 + . . . + xn | xi ∈ C1 ∧ n ≥ 0}

Semilinear sets
Linear set = set of form {x} + C∗ for x ∈ N

n and C ⊆ N
n finite

Semilinear set = finite union of linear sets

Example
LS(2; 10) = {2, 12, 22, 32, 42, 52, 62, . . .}
LS(5; 3, 5) = {5, 8, 10, 11, 13, 14, 15, 16, 18, . . .}
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• In [GinsburgSpanier1968] it was shown:
• semilinear sets are closed under union, intersection and

negation
• a solution of PA formula is a semilinear set
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Solution

• In [GinsburgSpanier1968] it was shown:
• semilinear sets are closed under union, intersection and

negation
• a solution of PA formula is a semilinear set

• We showed that if S is a semilinear set, then S∗ is also a
semilinear set

•

(u1, . . . , un) ∈ {(t ′1, . . . , t ′n) | F}∗

is effectively expressible as PA formula



Example (Continued)

Example

• k1 6= k2 +1∧ (1, k1, k2) ∈ {(x , y , L) | y = L+ x , y , x , L ∈ N}∗



Example (Continued)

Example

• k1 6= k2 +1∧ (1, k1, k2) ∈ {(x , y , L) | y = L+ x , y , x , L ∈ N}∗

• {(x , y , L) | y = L + x , y , x , L ∈ N}∗ is described with
semilinear set LS((0, 0, 0); (1, 1, 0), (0, 1, 1))



Example (Continued)

Example

• k1 6= k2 +1∧ (1, k1, k2) ∈ {(x , y , L) | y = L+ x , y , x , L ∈ N}∗

• {(x , y , L) | y = L + x , y , x , L ∈ N}∗ is described with
semilinear set LS((0, 0, 0); (1, 1, 0), (0, 1, 1))

• (1, k1, k2) ∈ {(x , y , L) | y = L + x , y , x , L ∈ N}∗ is
equisatisfiable with:
(1, k1, k2) = λ1 (1, 1, 0) + λ2(0, 1, 1)



Solution

• formula derived during the
proof:

∃µi , λij . (u1, . . . , un) =

k
∑

i=1

(µiai +

qi
∑

j=0

λijbij) ∧

k
∧

i=1

(µi = 0 =⇒

qi
∑

j=0

λij = 0)

a_1

a_k

a_2

b_1_1

b_1_2

b_1_m

b_2_1

b_2_2

b_2_l

b_k_1

b_k_2

b_k_n



Bounds on Solution Size

Our exponential formula looks like this:

P ∧ (u1, . . . , un) =
k

∑

i=1

(µiai+

qi
∑

j=1

λijbij) ∧
k

∧

i=1

(µi = 0 =⇒

qi
∑

j=1

λij = 0)

Pottier 1991 - the solution set of Ax = b is a semilinear set with
ai , bij with polynomially many bits

Papadimitriou 1981 - bounds on PA formula solutions
• solution vector (u1, . . . , un) has polynomially

many bits, even for our exponential formulas!
• reason: formulas are exponential, but have

polynomially many conjuncts



Constructing Polynomially Large Formulas



Picking Subset of ai , bij

Our exponential formula looks like this:

P ∧ (u1, . . . , un) =
k

∑

i=1

(µiai+

qi
∑

j=1

λijbij) ∧
k

∧

i=1

(µi = 0 =⇒

qi
∑

j=1

λij = 0)

Theorem
If u is generated by ai , bij , then it is generated by polynomial
subset of them.

• proof generalizes results by Eisenbrand, Shmonin (2006)



Proof

1 let u = a + b

2 apply Eisenbrand-Shmonin
theorem as black box on bij

vectors

3 there are only polynomially
vectors bij needed to
represent b

4 join them with associated ai

vectors

5 apply Eisenbrand-Shmonin
theorem on remaining ai

vectors

a_1

a_k

a_2

b_1_1

b_1_2

b_1_m

b_2_1

b_2_2

b_2_l

b_k_1

b_k_2

b_k_n



Idea: Guess ai , bij?

Problem: how to check if a guessed vector is one of ai or bij?

Approach: instead of guessing ai , bij , guess solutions c where
F (c)

Result:
P ∧ ~u = {~v | F}∗

is equisatisfiable with

P ∧ ~u =
Q

∑

i=1

λi~vi ∧
Q
∧

i=1

F (~vi)

where Q polynomially large, can compute it from F



Last Hurdle

P ∧ ~u =
Q

∑

i=1

λi~vi ∧
Q
∧

i=1

F (~vi)

Polynomially large formula.

• but it multiplies variables λi , vi - not linear?

• nevertheless: vectors bounded, can expand multiplication

Result: NP completeness!



Conclusions

Presented

• result on Carathéodory bounds for integer cones

• language used for reasoning about properties of data
structures

• new decision procedure for quantifier-free multiset
formulas with cardinality operator

• optimal complexity result: NP-completeness

• algorithm: generating polynomially large PA formulas
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