
Application of Carathéodory bounds for
integer cones in verification

Ruzica Piskac

Presentation of papers:

1 Friedrich Eisenbrand, Gennady Shmonin: Carathéodory bounds for integer
cones. Oper. Res. Lett. 34(5): 564-568 (2006)

2 Ruzica Piskac, Viktor Kuncak: Linear Arithmetic with Stars. In Proceedings of
CAV 2008, to appear.

Mathematical models and algorithms for decision-making
support

Friedrich Eisenbrand, Gennady Shmonin:
Carathéodory bounds for integer cones

Oper. Res. Lett. 34(5): 564-568 (2006)

Basic Definitions

Definition
Let S ∈ Z

d be a finite set of integer vectors. The integer cone of
S is the set

cone(X) = {λ1x1 + . . . + λnxn | n ≥ 0; xi ∈ S; λi ∈ Z; λi ≥ 0}

Definition

• For a vector x , the infinity norm is
||x ||∞ = max{|x1|, . . . , |xn|}

• For a set of vectors S, let MS denote a number
MS = maxx∈S ||x ||∞

Problem Formulation

Question we want to answer
Let X ⊆ Z

d be a set of integer vectors and let b ∈ cone(X).

• Question: how many vectors from X are needed to
generate b?

• (If those would be vectors with real coefficients,
Carathéodory theorem states that b is generated with at
most d vectors)

Towards Solution

Theorem
Let X ⊆ Z

d be a set of integer vectors and let b ∈ cone(X). If
|X | > d log2(2|X |Mx + 1), then there exists a proper subset
X̃ ⊂ X such that b ∈ cone(X̃).

Proof.

Towards Solution

Theorem
Let X ⊆ Z

d be a set of integer vectors and let b ∈ cone(X). If
|X | > d log2(2|X |Mx + 1), then there exists a proper subset
X̃ ⊂ X such that b ∈ cone(X̃).

Proof.

• assume that b =
∑

x∈X λxx , λx > 0

Towards Solution

Theorem
Let X ⊆ Z

d be a set of integer vectors and let b ∈ cone(X). If
|X | > d log2(2|X |Mx + 1), then there exists a proper subset
X̃ ⊂ X such that b ∈ cone(X̃).

Proof.

• assume that b =
∑

x∈X λxx , λx > 0

• for every subset S, ||
∑

x∈S x ||∞ ≤ |X |MX

Towards Solution

Theorem
Let X ⊆ Z

d be a set of integer vectors and let b ∈ cone(X). If
|X | > d log2(2|X |Mx + 1), then there exists a proper subset
X̃ ⊂ X such that b ∈ cone(X̃).

Proof.

• assume that b =
∑

x∈X λxx , λx > 0

• for every subset S, ||
∑

x∈S x ||∞ ≤ |X |MX

• the number of different vectors which are representable as
the sum of vectors of S ⊆ X is bounded by (2|X |Mx + 1)d ,
because coordinates are in {−|X |MX , . . . , |X |MX}

Towards Solution

Theorem
Let X ⊆ Z

d be a set of integer vectors and let b ∈ cone(X). If
|X | > d log2(2|X |Mx + 1), then there exists a proper subset
X̃ ⊂ X such that b ∈ cone(X̃).

Proof.

• assume that b =
∑

x∈X λxx , λx > 0

• for every subset S, ||
∑

x∈S x ||∞ ≤ |X |MX

• the number of different vectors which are representable as
the sum of vectors of S ⊆ X is bounded by (2|X |Mx + 1)d ,
because coordinates are in {−|X |MX , . . . , |X |MX}

• theorem assumption: 2|X | > (2|X |Mx + 1)d ⇒ there are
two different subsets A, B such that

∑

x∈A x =
∑

x∈B x

Towards Solution

Theorem
Let X ⊆ Z

d be a set of integer vectors and let b ∈ cone(X). If
|X | > d log2(2|X |Mx + 1), then there exists a proper subset
X̃ ⊂ X such that b ∈ cone(X̃).

Proof.

• so far: assume b =
∑

x∈X λxx , λx > 0; there are two
different disjoint subsets A, B such that

∑

x∈A x =
∑

x∈B x

Towards Solution

Theorem
Let X ⊆ Z

d be a set of integer vectors and let b ∈ cone(X). If
|X | > d log2(2|X |Mx + 1), then there exists a proper subset
X̃ ⊂ X such that b ∈ cone(X̃).

Proof.

• so far: assume b =
∑

x∈X λxx , λx > 0; there are two
different disjoint subsets A, B such that

∑

x∈A x =
∑

x∈B x

• let λ = min{λx | x ∈ A}

Towards Solution

Theorem
Let X ⊆ Z

d be a set of integer vectors and let b ∈ cone(X). If
|X | > d log2(2|X |Mx + 1), then there exists a proper subset
X̃ ⊂ X such that b ∈ cone(X̃).

Proof.

• so far: assume b =
∑

x∈X λxx , λx > 0; there are two
different disjoint subsets A, B such that

∑

x∈A x =
∑

x∈B x

• let λ = min{λx | x ∈ A}

• b =
∑

x∈X λxx =
∑

x∈X\A λxx +
∑

x∈A λxx
=

∑

x∈X\A λxx +
∑

x∈A(λx − λ)x + λ
∑

x∈A x
=

∑

x∈X\A λxx +
∑

x∈A(λx − λ)x + λ
∑

x∈B x
=

∑

x∈X µxx

Towards Solution

Theorem
Let X ⊆ Z

d be a set of integer vectors and let b ∈ cone(X). If
|X | > d log2(2|X |Mx + 1), then there exists a proper subset
X̃ ⊂ X such that b ∈ cone(X̃).

Proof.

• so far: assume b =
∑

x∈X λxx , λx > 0; there are two
different distinct subsets A, B such that

∑

x∈A x =
∑

x∈B x ;
b =

∑

x∈X µxx , where

Towards Solution

Theorem
Let X ⊆ Z

d be a set of integer vectors and let b ∈ cone(X). If
|X | > d log2(2|X |Mx + 1), then there exists a proper subset
X̃ ⊂ X such that b ∈ cone(X̃).

Proof.

• so far: assume b =
∑

x∈X λxx , λx > 0; there are two
different distinct subsets A, B such that

∑

x∈A x =
∑

x∈B x ;
b =

∑

x∈X µxx , where

• µx =











λx , x ∈ X \ (A ∪ B)

λx − λ, x ∈ A

λx + λ, x ∈ B

Towards Solution

Theorem
Let X ⊆ Z

d be a set of integer vectors and let b ∈ cone(X). If
|X | > d log2(2|X |Mx + 1), then there exists a proper subset
X̃ ⊂ X such that b ∈ cone(X̃).

Proof.

• so far: assume b =
∑

x∈X λxx , λx > 0; there are two
different distinct subsets A, B such that

∑

x∈A x =
∑

x∈B x ;
b =

∑

x∈X µxx , where

• µx =











λx , x ∈ X \ (A ∪ B)

λx − λ, x ∈ A

λx + λ, x ∈ B

• at least one µx is zero

Towards Solution

Theorem
Let X ⊆ Z

d be a set of integer vectors and let b ∈ cone(X). If
|X | > d log2(2|X |Mx + 1), then there exists a proper subset
X̃ ⊂ X such that b ∈ cone(X̃).

Proof.

• so far: b =
∑

x∈X µxx and at least one µx is zero

Towards Solution

Theorem
Let X ⊆ Z

d be a set of integer vectors and let b ∈ cone(X). If
|X | > d log2(2|X |Mx + 1), then there exists a proper subset
X̃ ⊂ X such that b ∈ cone(X̃).

Proof.

• so far: b =
∑

x∈X µxx and at least one µx is zero

• X̃ = {x ∈ X | µx > 0}

Towards Solution

Theorem
Let X ⊆ Z

d be a set of integer vectors and let b ∈ cone(X). If
|X | > d log2(2|X |Mx + 1), then there exists a proper subset
X̃ ⊂ X such that b ∈ cone(X̃).

Proof.

• so far: b =
∑

x∈X µxx and at least one µx is zero

• X̃ = {x ∈ X | µx > 0}

• X̃ ⊂ X and b ∈ cone(X̃)

Solution

Theorem
Let X ⊂ Z

d be a finite set of integer vectors and let
b ∈ cone(X). Then there exists a subset X̃ such that
b ∈ cone(X̃) and |X̃ | ≤ 2d log2(4dMx).

Proof.

• Let X̃ be a minimal subset such that b ∈ cone(X̃) and let
us assume that |X̃ | > 2d log2(4dMx)

Solution

Theorem
Let X ⊂ Z

d be a finite set of integer vectors and let
b ∈ cone(X). Then there exists a subset X̃ such that
b ∈ cone(X̃) and |X̃ | ≤ 2d log2(4dMx).

Proof.

• Let X̃ be a minimal subset such that b ∈ cone(X̃) and let
us assume that |X̃ | > 2d log2(4dMx)

• we will show that it implies that |X̃ | > d log2(2|X |Mx + 1)
and using previous theorem, we conclude that there exist
X1, a proper subset of X̃ such that b ∈ cone(X1)

Solution

Theorem
Let X ⊂ Z

d be a finite set of integer vectors and let
b ∈ cone(X). Then there exists a subset X̃ such that
b ∈ cone(X̃) and |X̃ | ≤ 2d log2(4dMx).

Proof.

• Let X̃ be a minimal subset such that b ∈ cone(X̃) and let
us assume that |X̃ | > 2d log2(4dMx)

• we will show that it implies that |X̃ | > d log2(2|X |Mx + 1)
and using previous theorem, we conclude that there exist
X1, a proper subset of X̃ such that b ∈ cone(X1)

• contradicts minimality of X̃

Solution

Left to Prove:

• If |X | > 2d log2(4dMx), then |X | > d log2(2|X |Mx + 1)

Proof.

Solution

Left to Prove:

• If |X | > 2d log2(4dMx), then |X | > d log2(2|X |Mx + 1)

Proof.

• |X | > 2d log2(4dMx) ⇒ Mx < 2|X |/(2d)/(4d)

Solution

Left to Prove:

• If |X | > 2d log2(4dMx), then |X | > d log2(2|X |Mx + 1)

Proof.

• |X | > 2d log2(4dMx) ⇒ Mx < 2|X |/(2d)/(4d)

• ⇒ 2|X |Mx + 1 < |X |/(2d) ∗ 2|X |/(2d) + 1 ≤
2|X |/(2d)(|X |/(2d) + 1)

Solution

Left to Prove:

• If |X | > 2d log2(4dMx), then |X | > d log2(2|X |Mx + 1)

Proof.

• |X | > 2d log2(4dMx) ⇒ Mx < 2|X |/(2d)/(4d)

• ⇒ 2|X |Mx + 1 < |X |/(2d) ∗ 2|X |/(2d) + 1 ≤
2|X |/(2d)(|X |/(2d) + 1)

• ⇒ d log2(2|X |Mx + 1) < |X |/2 + d log2(|X |/(2d) + 1) ≤
|X |/2 + d ∗ |X |/(2d)

Solution

Left to Prove:

• If |X | > 2d log2(4dMx), then |X | > d log2(2|X |Mx + 1)

Proof.

• |X | > 2d log2(4dMx) ⇒ Mx < 2|X |/(2d)/(4d)

• ⇒ 2|X |Mx + 1 < |X |/(2d) ∗ 2|X |/(2d) + 1 ≤
2|X |/(2d)(|X |/(2d) + 1)

• ⇒ d log2(2|X |Mx + 1) < |X |/2 + d log2(|X |/(2d) + 1) ≤
|X |/2 + d ∗ |X |/(2d)

• ⇒ d log2(2|X |Mx + 1) < |X |

Multisets

Multisets

Definition

• Multiset (bag) is a collection of elements where an element
can occur several times

• Formally, multiset m is a function m : E → {0, 1, 2, . . .}
(E - finite universe)

Example
m1 = {a, a, b, b, b} ⇒ m1(a) = 2 m1(b) = 3 m1(c) = 0
m2 = {a, b, c} ⇒ m2(a) = 1 m2(b) = 1 m2(c) = 1

Multisets

Definition

• Multiset (bag) is a collection of elements where an element
can occur several times

• Formally, multiset m is a function m : E → {0, 1, 2, . . .}
(E - finite universe)

Example
m1 = {a, a, b, b, b} ⇒ m1(a) = 2 m1(b) = 3 m1(c) = 0
m2 = {a, b, c} ⇒ m2(a) = 1 m2(b) = 1 m2(c) = 1

Selected operations and relations on multisets:

• Plus (m1 ⊎ m2)(e) = m1(e) + m2(e)
m1 ⊎ m2 = {a, a, b, b, b, b, c}

Multisets

Definition

• Multiset (bag) is a collection of elements where an element
can occur several times

• Formally, multiset m is a function m : E → {0, 1, 2, . . .}
(E - finite universe)

Example
m1 = {a, a, b, b, b} ⇒ m1(a) = 2 m1(b) = 3 m1(c) = 0
m2 = {a, b, c} ⇒ m2(a) = 1 m2(b) = 1 m2(c) = 1

Selected operations and relations on multisets:

• Plus (m1 ⊎ m2)(e) = m1(e) + m2(e)

• Intersection (m1 ∩ m2)(e) = min{m1(e), m2(e)}
m1 ∩ m2 = {a, b}

Multisets

Definition

• Multiset (bag) is a collection of elements where an element
can occur several times

• Formally, multiset m is a function m : E → {0, 1, 2, . . .}
(E - finite universe)

Example
m1 = {a, a, b, b, b} ⇒ m1(a) = 2 m1(b) = 3 m1(c) = 0
m2 = {a, b, c} ⇒ m2(a) = 1 m2(b) = 1 m2(c) = 1

Selected operations and relations on multisets:

• Plus (m1 ⊎ m2)(e) = m1(e) + m2(e)

• Intersection (m1 ∩ m2)(e) = min{m1(e), m2(e)}

• Subset m1 ⊆ m2 ⇐⇒ ∀e. m1(e) ≤ m2(e)

Multisets in Software Analysis and
Verification: Overview

Theorem prover
for mult isets

mult iset formula yes / no

Multisets in Software Analysis and
Verification: Overview

Theorem prover
for mult isets

yes / no
program veri f icat ion
system

Multisets in Software Analysis and
Verification: Example

Example
public void add(Object x)
ensures List = old List ⊎ {x}
{

Node n = new Node();
n.data = x;
n.next = first;
first = n;

}

• Formula expressing the correctness of insertion:
|x | = 1 → |L ⊎ x | = |L| + 1

• To prove that it is valid, it is equivalent to show that its
negation is unsatisfiable:

|x | = 1 ∧ |L ⊎ x | 6= |L| + 1

Decision Procedure: Overview

1 reduce to normal form

2 replace multiset sums with“star” operator

3 find semilinear sets characterizing the set of solutions of
formulas under the sum

4 generate PA formula for the results of sums

5 check satisfiability of resulting formula

Presburger Arithmetic
Presburger Arithmetic (PA) is an arithmetic of natural numbers
(N,≤, +), without multiplication. It is decidable and there are
decision procedures for deciding PA formulas.

Decision Procedure: Example

Example

• express all multiset expressions using ∀e. F

Decision Procedure: Example

Example

• express all multiset expressions using ∀e. F

• |x | = 1 ∧ |L ⊎ x | 6= |L| + 1

Decision Procedure: Example

Example

• express all multiset expressions using ∀e. F

• |x | = 1 ∧ |L ⊎ x | 6= |L| + 1
• |x | = 1 ∧ |y | 6= |L| + 1 ∧ y = L ⊎ x

Decision Procedure: Example

Example

• express all multiset expressions using ∀e. F

• |x | = 1 ∧ |L ⊎ x | 6= |L| + 1
• |x | = 1 ∧ |y | 6= |L| + 1 ∧ y = L ⊎ x
• |x | = 1 ∧ |y | 6= |L| + 1 ∧ ∀e. y(e) = L(e) + x(e)

Decision Procedure: Example

Example

• express all multiset expressions using ∀e. F

• group all sums into one, using vectors:
∑

t1 = k1 ∧
∑

t2 = k2
∑

(t1, t2) = (k1, k2)

Decision Procedure: Example

Example

• express all multiset expressions using ∀e. F

• group all sums into one, using vectors:
∑

t1 = k1 ∧
∑

t2 = k2
∑

(t1, t2) = (k1, k2)

•

∑

x(e) = 1 ∧
∑

y(e) 6=
∑

L(e) + 1 ∧
∀e. y(e) = L(e) + x(e)

Decision Procedure: Example

Example

• express all multiset expressions using ∀e. F

• group all sums into one, using vectors:
∑

t1 = k1 ∧
∑

t2 = k2
∑

(t1, t2) = (k1, k2)

•

∑

x(e) = 1 ∧
∑

y(e) 6=
∑

L(e) + 1 ∧
∀e. y(e) = L(e) + x(e)

•

∑

x(e) = 1 ∧
∑

y(e) = k1 ∧
∑

L(e) = k2 ∧ k1 6= k2 + 1 ∧
∀e. y(e) = L(e) + x(e)

Decision Procedure: Example

Example

• express all multiset expressions using ∀e. F

• group all sums into one, using vectors:
∑

t1 = k1 ∧
∑

t2 = k2
∑

(t1, t2) = (k1, k2)

•

∑

x(e) = 1 ∧
∑

y(e) 6=
∑

L(e) + 1 ∧
∀e. y(e) = L(e) + x(e)

•

∑

x(e) = 1 ∧
∑

y(e) = k1 ∧
∑

L(e) = k2 ∧ k1 6= k2 + 1 ∧
∀e. y(e) = L(e) + x(e)

• k1 6= k2 + 1∧
(1, k1, k2) =

∑

(x(e), y(e), L(e)) ∧ ∀e. y(e) = L(e) + x(e)

Decision Procedure: Example

Example

• express all multiset expressions using ∀e. F

• group all sums into one, using vectors:
∑

t1 = k1 ∧
∑

t2 = k2
∑

(t1, t2) = (k1, k2)

• replace multiset constraints with integer constraints
enriched with “star” operator

Decision Procedure: Example

Example

• express all multiset expressions using ∀e. F

• group all sums into one, using vectors:
∑

t1 = k1 ∧
∑

t2 = k2
∑

(t1, t2) = (k1, k2)

• replace multiset constraints with integer constraints
enriched with “star” operator

• k1 6= k2 + 1∧
(1, k1, k2) =

∑

(x(e), y(e), L(e)) ∧ ∀e. y(e) = L(e) + x(e)

Decision Procedure: Example

Example

• express all multiset expressions using ∀e. F

• group all sums into one, using vectors:
∑

t1 = k1 ∧
∑

t2 = k2
∑

(t1, t2) = (k1, k2)

• replace multiset constraints with integer constraints
enriched with “star” operator

• k1 6= k2 + 1∧
(1, k1, k2) =

∑

(x(e), y(e), L(e)) ∧ ∀e. y(e) = L(e) + x(e)
• k1 6= k2 + 1 ∧ (1, k1, k2) ∈ {(x , y , L) | y = L + x}∗,

Decision Procedure: Example

Example

• express all multiset expressions using ∀e. F

• group all sums into one, using vectors:
∑

t1 = k1 ∧
∑

t2 = k2
∑

(t1, t2) = (k1, k2)

• replace multiset constraints with integer constraints
enriched with “star” operator

• k1 6= k2 + 1∧
(1, k1, k2) =

∑

(x(e), y(e), L(e)) ∧ ∀e. y(e) = L(e) + x(e)
• k1 6= k2 + 1 ∧ (1, k1, k2) ∈ {(x , y , L) | y = L + x}∗,

where S∗ = {x1 + . . . + xn | xi ∈ S ∧ n ≥ 0}
Note: S∗ = cone(S)

Multiset Elimination
Theorem
A formula in the sum normal form:

P ∧ (u1, . . . , un) =
∑

e∈E

(t1, . . . , tn) ∧ ∀e.F

is equisatisfiable with the formula

P ∧ (u1, . . . , un) ∈ {(t ′1, . . . , t ′n) | F ; x1, . . . , xp ∈ N}∗

where t ′i is ti in which each mk (e) is replaced by fresh var xk

and C∗ = {v1 + . . . + vn | vi ∈ C ∧ n ≥ 0}

Example

(1, k1, k2) =
∑

(x(e), y(e), L(e)) ∧ ∀e. y(e) = L(e) + x(e)

(1, k1, k2) ∈ {(x , y , L) | y = L + x ; y , x , L ∈ N}∗

Multiset Elimination

Example

(1, k1, k2) =
∑

(x(e), y(e), L(e)) ∧ ∀e. y(e) = L(e) + x(e)

(1, k1, k2) ∈ {(x , y , L) | y = L + x , y , x , L ∈ N}∗

Proof.
⇐ assume that (u1, . . . , un) = (t1

1 , . . . , t1
n) + . . . + (tk

1 , . . . , tk
n)

We define set E to have k elements: E = {e1, . . . , ek}

mi(ej) has the value of corresponding x j
i .

⇒ analogous, except that E is given

Semilinear Sets

Semilinear Sets

Question
Can we describe (u1, . . . , un) ∈ {(t1, . . . , tn) | F}∗

by PA formula?

Definition
Let C1, C2 ⊆ N

k be sets of vectors of non-negative integers. We
define:
C1 + C2 = {x1 + x2 | x1 ∈ C1 ∧ x2 ∈ C2}
C∗

1 = {x1 + . . . + xn | xi ∈ C1 ∧ n ≥ 0}

Semilinear Sets

Question
Can we describe (u1, . . . , un) ∈ {(t1, . . . , tn) | F}∗

by PA formula?

Definition
Let C1, C2 ⊆ N

k be sets of vectors of non-negative integers. We
define:
C1 + C2 = {x1 + x2 | x1 ∈ C1 ∧ x2 ∈ C2}
C∗

1 = {x1 + . . . + xn | xi ∈ C1 ∧ n ≥ 0}

Semilinear sets
Linear set = set of form {x} + C∗ for x ∈ N

n and C ⊆ N
n finite

Semilinear set = finite union of linear sets

Semilinear Sets

Question
Can we describe (u1, . . . , un) ∈ {(t1, . . . , tn) | F}∗

by PA formula?

Definition
Let C1, C2 ⊆ N

k be sets of vectors of non-negative integers. We
define:
C1 + C2 = {x1 + x2 | x1 ∈ C1 ∧ x2 ∈ C2}
C∗

1 = {x1 + . . . + xn | xi ∈ C1 ∧ n ≥ 0}

Semilinear sets
Linear set = set of form {x} + C∗ for x ∈ N

n and C ⊆ N
n finite

Semilinear set = finite union of linear sets

Example
LS(2; 10) = {2, 12, 22, 32, 42, 52, 62, . . .}
LS(5; 3, 5) = {5, 8, 10, 11, 13, 14, 15, 16, 18, . . .}

Solution

• In [GinsburgSpanier1968] it was shown:
• semilinear sets are closed under union, intersection and

negation
• a solution of PA formula is a semilinear set

Solution

• In [GinsburgSpanier1968] it was shown:
• semilinear sets are closed under union, intersection and

negation
• a solution of PA formula is a semilinear set

• We showed that if S is a semilinear set, then S∗ is also a
semilinear set

Solution

• In [GinsburgSpanier1968] it was shown:
• semilinear sets are closed under union, intersection and

negation
• a solution of PA formula is a semilinear set

• We showed that if S is a semilinear set, then S∗ is also a
semilinear set

•

(u1, . . . , un) ∈ {(t ′1, . . . , t ′n) | F}∗

is effectively expressible as PA formula

Example (Continued)

Example

• k1 6= k2 +1∧ (1, k1, k2) ∈ {(x , y , L) | y = L+ x , y , x , L ∈ N}∗

Example (Continued)

Example

• k1 6= k2 +1∧ (1, k1, k2) ∈ {(x , y , L) | y = L+ x , y , x , L ∈ N}∗

• {(x , y , L) | y = L + x , y , x , L ∈ N}∗ is described with
semilinear set LS((0, 0, 0); (1, 1, 0), (0, 1, 1))

Example (Continued)

Example

• k1 6= k2 +1∧ (1, k1, k2) ∈ {(x , y , L) | y = L+ x , y , x , L ∈ N}∗

• {(x , y , L) | y = L + x , y , x , L ∈ N}∗ is described with
semilinear set LS((0, 0, 0); (1, 1, 0), (0, 1, 1))

• (1, k1, k2) ∈ {(x , y , L) | y = L + x , y , x , L ∈ N}∗ is
equisatisfiable with:
(1, k1, k2) = λ1 (1, 1, 0) + λ2(0, 1, 1)

Solution

• formula derived during the
proof:

∃µi , λij . (u1, . . . , un) =

k
∑

i=1

(µiai +

qi
∑

j=0

λijbij) ∧

k
∧

i=1

(µi = 0 =⇒

qi
∑

j=0

λij = 0)

a_1

a_k

a_2

b_1_1

b_1_2

b_1_m

b_2_1

b_2_2

b_2_l

b_k_1

b_k_2

b_k_n

Bounds on Solution Size

Our exponential formula looks like this:

P ∧ (u1, . . . , un) =
k

∑

i=1

(µiai+

qi
∑

j=1

λijbij) ∧
k

∧

i=1

(µi = 0 =⇒

qi
∑

j=1

λij = 0)

Pottier 1991 - the solution set of Ax = b is a semilinear set with
ai , bij with polynomially many bits

Papadimitriou 1981 - bounds on PA formula solutions
• solution vector (u1, . . . , un) has polynomially

many bits, even for our exponential formulas!
• reason: formulas are exponential, but have

polynomially many conjuncts

Constructing Polynomially Large Formulas

Picking Subset of ai , bij

Our exponential formula looks like this:

P ∧ (u1, . . . , un) =
k

∑

i=1

(µiai+

qi
∑

j=1

λijbij) ∧
k

∧

i=1

(µi = 0 =⇒

qi
∑

j=1

λij = 0)

Theorem
If u is generated by ai , bij , then it is generated by polynomial
subset of them.

• proof generalizes results by Eisenbrand, Shmonin (2006)

Proof

1 let u = a + b

2 apply Eisenbrand-Shmonin
theorem as black box on bij

vectors

3 there are only polynomially
vectors bij needed to
represent b

4 join them with associated ai

vectors

5 apply Eisenbrand-Shmonin
theorem on remaining ai

vectors

a_1

a_k

a_2

b_1_1

b_1_2

b_1_m

b_2_1

b_2_2

b_2_l

b_k_1

b_k_2

b_k_n

Idea: Guess ai , bij?

Problem: how to check if a guessed vector is one of ai or bij?

Approach: instead of guessing ai , bij , guess solutions c where
F (c)

Result:
P ∧ ~u = {~v | F}∗

is equisatisfiable with

P ∧ ~u =
Q

∑

i=1

λi~vi ∧
Q
∧

i=1

F (~vi)

where Q polynomially large, can compute it from F

Last Hurdle

P ∧ ~u =
Q

∑

i=1

λi~vi ∧
Q
∧

i=1

F (~vi)

Polynomially large formula.

• but it multiplies variables λi , vi - not linear?

• nevertheless: vectors bounded, can expand multiplication

Result: NP completeness!

Conclusions

Presented

• result on Carathéodory bounds for integer cones

• language used for reasoning about properties of data
structures

• new decision procedure for quantifier-free multiset
formulas with cardinality operator

• optimal complexity result: NP-completeness

• algorithm: generating polynomially large PA formulas

	Carathéodory bounds for integer cones
	Decision Procedure
	Definitions
	Theorem

	Multisets
	Logic
	Verification
	Decision Procedure
	From Multisets Constraints to Integer Constraints
	Semilinear sets
	Describing Solution

	Bounds
	NP Algorithm

	Conclusions

