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Abstract

This dissertation presents a pointer analysis for Java programs, together with several
practical analysis applications.

For each program point, the analysis is able to construct a points-to graph that
describes how local variables and object fields point to objects. Each points-to graph
also contains escape information that identifies the objects that are reachable from
outside the analysis scope.

Our pointer analysis can extract correct information by analyzing only parts of a
whole program. First, our analysis analyzes a method without requiring information
about its calling context. Instead, our analysis computes parameterized results that
are later instantiated for each relevant call site. Second, our analysis correctly handles
calls to unanalyzable methods (e.g., native methods). Hence, our analysis can trade
precision for speed without sacrificing correctness: if the analysis of a call to a specific
callee requires too much time, the analysis can treat that callee as unanalyzable.

The results of our analysis enable standard program optimizations like the stack
allocation of local objects. More interestingly, this dissertation explains how to extend
the analysis to detect pure methods. Our analysis supports a flexible definition of
method purity: a method is pure if it does not mutate any object that exists in the
program state before the start of the method. Therefore, our analysis allows pure
methods to allocate and mutate temporary objects (e.g., iterators) and/or construct
complex object structures and return them as a result.

Thesis Supervisor: Martin C. Rinard
Title: Professor, Electrical Engineering and Computer Science
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Chapter 1

Introduction

The presence of pointers in a programming language significantly complicates the
analysis of programs written in that language, because the analysis system cannot
determine the memory locations pointed to by a pointer variable by a simple in-
spection of the program statements. In the absence of detailed knowledge about the
memory locations manipulated by the program, compilers have to make very conser-
vative assumptions about the objects that pointers may reference, and therefore very
conservative assumptions about the effects of instructions that use these pointers.
This limits the impact of compiler optimizations, and that of program understanding
and testing tools. This problem is very important for programs written in modern
object-oriented languages like Java [4], because these programs allocate all objects
dynamically and access them using pointers.

The thesis of this dissertation is that one can use pointer analysis to perform inter-
esting compiler optimizations and program understanding applications on significant
Java programs. To prove our thesis, this dissertation presents a pointer analysis algo-
rithm for Java programs, together with two pointer analysis applications: a program
optimization (stack allocation of local objects) and a program understanding applica-
tion (detection of pure methods). We briefly explain our analysis and its applications
in the next paragraphs.

Overview of Our Pointer Analysis

Our pointer analysis is a combined points-to and escape analysis. Given a program
point inside a method m, the analysis is able to construct a points-to graph that
models the program state accessed by the execution of the analysis scope up to that
point. The analysis scope consists of the method m and all its transitive callees. A
points-to graph models the objects pointed to by m’s local variables and the heap
references1 created by the analysis scope. Additionally, the points-to graph identifies
the objects that escape from the analysis scope. An object escapes from the analysis
scope if other parts of the program may access it.

1There exists a heap reference from object o1 to object o2, along field f, if the value of the field
f of o1 is the address of o2.
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The key feature that distinguishes our analysis from most other pointer analyses
is its built-in ability to obtain correct information by analyzing only parts of a whole
program:

• First, our analysis examines each method without knowing its calling context.
Unless otherwise specified, the expression “calling context” denotes the objects
transitively pointed to by the method parameters. Our analysis computes pa-
rameterized results (points-to graphs) that use special constructs to abstract
over the calling context. These points-to graphs can later be instantiated for
the calling context at each invocation of the analyzed method.

• Second, our analysis correctly handles unanalyzable method calls. Calls that
invoke native methods are unanalyzable, because the analysis cannot access the
source code of the native methods.2 Additionally, the analysis can consider any
call to be unanalyzable if, e.g., one of the invoked methods is too expensive to
analyze. This operation loses precision, but preserves correctness.3

Another important feature of our analysis is its compositional nature. Our analysis
uses the points-to graph from the end of a method as a summary of that method’s
execution. The inter-procedural analysis uses the summary of a method to process
each call to that method. The inter-procedural analysis achieves context sensitivity
by instantiating the method summary for the calling context at each relevant call
site. This compositional strategy avoids the re-analysis of a method for each calling
context.

To model the heap, our analysis uses an extension of the object allocation site
model [18]. Our analysis uses one inside node to model all objects created by a
specific instruction during the current execution of the analysis scope. Our analysis
abstracts over the calling context by using parameter and load nodes. The parameter
nodes model the objects pointed to by the actual arguments. The load nodes model
the objects whose addresses are read from fields of escaped objects (e.g., an object read
from a field of a parameter). Intuitively, the parameter/load nodes are placeholders
for nodes from the unknown calling context. For each method invocation, the inter-
procedural analysis computes a node map that disambiguates these placeholders,
according to the current calling context. The analysis handles aliasing in the calling
context by mapping aliased nodes to the same node.

In general, precise pointer analyses tend to have large worst-case time complexity,
and our analysis is no exception. The asymptotic worst-case time complexity of our
analysis is polynomial, but a very high polynomial: O(N10), where N is the size of the
analysis scope. However, the ability to extract correct results by analyzing only parts
of a whole program allows the analysis to trade precision for speed by reducing the

2However, the analysis can use manually-generated summaries for common native methods.
3The presence of unanalyzable calls requires an update of the definition of the analysis scope:

during the analysis of the method m, the analysis scope consists of the method m and all the methods
it transitively invokes through analyzable calls.
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analysis scope until the analysis can terminate in a reasonable amount of time. E.g.,
if the processing of a method call instruction takes too much time, the analysis can
simply consider it unanalyzable. In practice, our prototype implementation analyzes
all methods from a large benchmark like the JDK 1.0.2 javac compiler (more than
50, 000 bytecode instructions) from the industry-standard SPECjvm98 bechmarks
suite [76] in less than a minute, on a 2.8GHz Pentium 4 with 1G of RAM.

To avoid any confusion, we would like to clarify the distinction between the analysis
of separate libraries and the analysis of parts of a whole program.

Any significant Java library contains virtual calls that may invoke unknown meth-
ods from outside the analyzed library. First, Java libraries use virtual calls to perform
“upcalls” into the user code. E.g., hash-based implementations of sets invoke the vir-
tual method hashCode on the set elements. Additionally, virtual methods allow the
user to add new functionality by subclassing library classes and overriding certain
methods. E.g., the class java.util.AbstractMap provides a skeleton implementa-
tion of an association map; library users are free to subclass this class and define
customized maps by implementing the abstract entrySet method.

Theoretically, our analysis can analyze separate libraries by considering each vir-
tual call as unanalyzable. However, virtual calls are ubiquitous in Java and currently,
we do not have experimental evidence that the results of separate library analysis
are sufficiently precise to be useful. Therefore, we do not claim that our analysis
can analyze arbitrary groups of methods. Instead, we present our analysis as able
to analyze parts of a whole program. Given a whole program, a compiler can use a
relatively cheap whole-program analysis (e.g., Rapid Type Analysis [5]) to construct
a static call graph that identifies all possible callees of each virtual call. Next, the
compiler can use our more expensive pointer analysis to analyze only certain parts
of the program. Vivien and Rinard [83] modified an early implementation of our
analysis in order to analyze only the program parts “around” allocations sites that
allocate a large number of objects (as indicated by profile data).

Other pointer analyses, although initially designed as whole-program analyses, were
later modified to analyze only parts of a program. E.g., Rountev [69] presents a mod-
ification of Andersen’s pointer analysis [3] that can analyze “program fragments”.4 In
general, these modified analyses model the rest of the program using worst-case as-
sumptions and next use the original whole-program analysis. In contrast, our analysis
computes parameterized results that can be instantiated for any calling context.

First Analysis Application: Stack Allocation

Java programs allocate all objects in the garbage-collected heap. This technique is
essential for Java’s type safety, provides an elegant programming model, and elimi-
nates hard-to-find programming bugs like dangling pointers. Unfortunately, garbage-

4In Rountev’s analysis [69], a “program fragment” is an arbitrary collection of C procedures, not
necessarily from the same program/library.
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collection may incur a large runtime overhead. Our analysis detects allocation sites
(i.e., new instructions) that allocate only objects that are unreachable from outside
the enclosing method. When the method terminates, these objects become unreach-
able and can be deallocated. The compiler changes these allocation sites to allocate
memory from a stack; our current implementation uses the execution stack, but a
different, dedicated stack can be used too. When the method terminates, the stack
pointer returns to its original value and all objects stack allocated inside the method
are deallocated without any garbage-collection overhead.

One important reason for actually performing the stack allocation optimization is
to empirically test the correctness of our analysis design and implementation: wrong
stack allocation decisions by the analysis usually result in very visible runtime errors.
Our implementation successfully performs the stack allocation optimization on a large
set of twenty benchmarks, including the entire SPECjvm98 benchmark suite [76]. For
the SPECjvm98 applications, our analysis stack allocates up to 95% of all dynamically
allocated objects (32% on average). For each application, we manually checked that
the optimized version produces the same results as the original version.

Second Analysis Application: Purity Analysis

Our analysis can detect pure methods. Our analysis supports a flexible definition of
method purity: A method is pure if it does not mutate any object that exists in the
prestate, i.e., the program state right before the method invocation. This is the same
definition that the Java Modeling Language (JML) [55] uses. This definition allows
a pure method to allocate and mutate temporary objects (e.g., iterators) and/or
construct complex object structures and return them as a result.

The knowledge that a method is pure (according to our definition) is important for
several tasks: Pure methods can safely be used in program assertions and specifica-
tions [55, 10]. Pure methods can safely be invoked at runtime by invariant-detection
tools [30] and by specification-mining tools [27]. In program understanding tools, local
invariants about existing objects can be propagated over a call to a pure method.

Intuitively, our purity analysis examines assignments “v1.f = v2” and uses the
points-to information to detect the mutated objects (i.e., the objects that v1 may
point to). The purity analysis benefits from the fact that the inside nodes represent
only new objects, i.e., only objects that do not exist in the prestate. The purity
analysis ignores mutations on inside nodes. A method is pure if it does not mutate
any other node.

In the absence of information about the objects pointed to by the pro-
gram variables, other implemented side-effect analyses are unsound [17] or overly-
conservative [53], e.g., by forbidding pure methods from mutating any object (not
even local ones), thus preventing pure methods from using common programming
constructs like iterators. Other researchers have used different pointer analyses to
infer side effects [65, 44, 70, 20]. However, these analyses do not use special abstrac-
tions for the new objects. Therefore, they do not allow pure methods to mutate new
objects. At most, these analyses allow pure methods to mutate captured objects [70];
still, they do not allow pure methods to allocate, initialize, and return new objects.
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In practice, our purity analysis checked the purity of several complex data con-
sistency predicates. Our purity analysis implementation is already used by several
other researchers; e.g., Dallmeier et al. used our purity analysis in a published object
behavior mining tool [27].

Contributions

This dissertation makes the following contributions:

• Pointer Analysis: We present a compositional pointer analysis for Java pro-
grams. Our analysis is able to extract correct information by analyzing only
parts of a whole program. First, our analysis analyzes a method without requir-
ing information about its calling context. Second, our analysis correctly handles
unanalyzable call instructions (e.g., calls to native methods). This second fea-
ture allows our analysis to analyze large benchmarks by trading precision for
speed without sacrificing correctness : if the processing of a specific call instruc-
tion takes too much time, the analysis can treat that call as unanalyzable.

Our analysis uses many ideas from the analysis of Whaley and Rinard [85]. In
order to formalize and prove the analysis correctness, we had to completely re-
design the original analysis, obtaining a new analysis. For example, we had to
modify the inter-procedural analysis in order to make it handle all aliasing sit-
uations correctly. Additionally, the presentation of our analysis is much clearer
and easier to reason about.

The analysis presented in this dissertation improves over the analysis presented
in Sălcianu’s SM dissertation [78]: First, we re-designed the inter-procedural
analysis, obtaining a simpler and more intuitive analysis. Second, we designed
several analysis optimizations that allow our prototype to analyze large bench-
marks in reasonable time.

• Purity Analysis: We extend our pointer analysis to detect pure methods. We
support a flexible definition of purity: a method is pure if it does not mutate
any object that existed before the start of the method; a pure methods is free to
allocate and mutate new objects. Our analysis uses special abstractions for the
objects allocated by the analyzed method: hence, our analysis conservatively
identifies and filters out mutations that occur only on new objects.

• Correctness Proof: The flexibility of our analysis — namely, the ability to ob-
tain correct information by analyzing only parts of a whole program — comes at
the cost of increased complexity in the analysis design. Due to this complexity,
the correctness of the analysis is non-trivial, and requires a detailed proof.

We define a concrete semantics for a non-trivial subset of the Java bytecode lan-
guage (including threads, static fields, and virtual-calls). We use this concrete
semantics to formalize a set of properties of the analysis results and prove that
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these properties hold. These properties are strong enough to imply the correct-
ness of the stack allocation optimization and the correctness of the detection of
pure methods.

Our correctness proof is one of very few correctness proofs for pointer analyses.
We presented a preliminary correctness proof in Sălcianu’s SM dissertation [78].
In this dissertation, we updated the proof to cover the new inter-procedural
analysis and the detection of pure methods.

During the correctness proof, we discovered and fixed several correctness prob-
lems in our initial analysis algorithm. Moreover, the intuition we gained as part
of this process enabled us to find fundamental conceptual errors in the design
of other previously published algorithms [85, 21]. Given this experience, we
are extremely skeptical of the correctness of complex program analyses (such
as compositional inter-procedural dataflow analyses) that do not come with a
correctness proof.

• Implementation: A prototype implementation of our analysis is publicly avail-
able [79] and is currently used by other researchers. In a recent publication [27],
Dallmeier et al. from Universität des Saarlandes (Germany) provide the fol-
lowing evaluation of our prototype implementation:

“Currently, we use the purity analysis provided by Sălcianu and Ri-
nard (2005), which is the only scalable implementation we are aware
of. It is based on the FLEX compiler infrastructure, which unfortu-
nately restricts analysis to programs compiled against the GNU Class-
path API 0.08 [implementation of the Java standard library]. Besides
this limitation, the analysis is sufficiently fast and produces reliable
results.”

Implementing program analyses requires an impressive infrastructure. Unfor-
tunately, the program analysis community lacks generic and public implemen-
tations of many useful algorithms.5 To address this problem, we designed and
implemented jpaul [31], a stand-alone Java library of generic, high-level algo-
rithms for program analysis: graph algorithms, constraint solving, finite state
automata, etc. The jpaul library is publicly available as an open-source library
under the Free BSD licence. Although jpaul is a very niche library, there were
more than 150 downloads of jpaul during the first five months of 2006.

• Experimental Validation: To evaluate our analysis, we used our prototype
implementation to conduct several experiments.

5As an anecdotal example, when we started implementing program analyses in late 1999, we
had troubles finding something as simple as a flexible Java implementation of the construction of
the strongly-connected components of a directed graph. Different compiler infrastructures were
re-implementing basic graph algorithms for various graph representation.
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First, we used our analysis to perform stack allocation, a classic application of
pointer analysis. Stack allocation is a good empiric test for the correctness of
the analysis implementation: incorrect stack allocation decisions usually lead
to visible runtime errors. For the applications from the SPECjvm98 benchmark
suite [76], our analysis stack allocates between 0% and 95% of all dynamically
allocated objects (32% on average). Second, we used our analysis to detect
several complex pure methods that are beyond the reach of previously published
purity analyses. Third, as a scalability test, we applied our purity analysis to
several large benchmarks, and measured the proportion of pure methods in
these benchmarks.

Many previously published analyses are designed to enable compiler optimiza-
tions. However, presumably due to the difficulty of carrying the analysis infor-
mation through the various stages of the compiler to perform the transformation
that implements the optimization, many of these analyses [71, 60] do not ac-
tually come with an implementation of the corresponding optimization. One
usual approach is to instrument the code to obtain statistics that characterize
how successful the analysis was in enabling the application of the corresponding
optimization. We note that when an optimization like stack allocation is really
performed, incorrect analysis results often show up as runtime errors. With
no correctness proof and no implemented application that may reveal potential
analysis errors, we are even more skeptical about the correctness of a proposed
complex analysis.

Dissertation Outline

The rest of this dissertation has the following structure. Chapter 2 introduces the
basic concepts of our analysis through a non-trivial, self-contained example. Chap-
ter 3 discusses the representation of the analyzed programs. Chapter 4 describes our
pointer analysis. Chapter 5 presents two applications of our pointer analysis: the
stack allocation of captured objects and the detection of pure methods. Chapter 6
presents a correctness proof for our analysis. More specifically, Chapter 6 defines
a precise semantics for the analyzed language, formalizes several properties of the
points-to graphs that the analysis computes, and proves that these properties hold.
These properties imply the correctness of the stack allocation optimization and the
purity analysis. Chapter 7 describes a few techniques for increasing the analysis speed
and/or precision. Chapter 8 explains our implementation and presents experimental
results. Chapter 9 discusses related work and Chapter 10 concludes our dissertation.
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Chapter 2

Example

This chapter introduces the basic concepts of our analysis through a non-trivial, self-
contained example. Chapter 4 contains a detailed description of our analysis.

Sample Program: Figure 2-1 presents a sample Java program that manipulates
singly linked lists of bidimensional points. Class List implements a list using list cells
of class Cell, and supports two operations: add(e) adds the object e to the front
of the list; iterator() returns an iterator over the list elements. Class ListItr

implements a list iterator: the field cell maintains a reference to the current list
cell; each invocation of the method next() returns the data from the current cell,
and also updates the field cell to point to the next cell.1 Class Point implements
a bidimensional point. The method Main.sumX(list) computes the sum of the x

coordinates of all points from the list list. The method sumX uses an iterator to
explore all the list elements.

We explain how our analysis works on the sample program in the next two sections.
For the moment, we describe two analysis uses for this sample program:

Stack Allocation: In line 50, the method Main.sumX invokes the method
List.iterator that allocates an iterator object (in line 7) and returns it. Our analy-
sis detects that the iterator object is captured inside sumX, i.e., it is unreachable from
outside sumX. Once sumX terminates, the iterator object becomes unreachable from
the entire program and can be deallocated. Therefore, instead of allocating the itera-
tor object in the garbage-collected heap, the program can allocate it in the stack frame
of the method sumX. Stack allocated objects are deallocated without any garbage col-
lection overhead, when the method terminates and its stack frame is discarded. The
stack allocation optimization (1) inlines the call from line 50, and (2) changes the
instruction “new ListItr(head)” from the inlined copy of List.iterator to allo-
cate the iterator object on the stack. Stack allocation requires a simple adjustment

1In a real implementation, the classes Cell and ListItr would be implemented as inner classes
of List; we use a flat format for simplicity. As another simplification, we wrote the body of
ListItr.next() using simple instructions.
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1 class List {

2 Cell head = null;

3 void add(Object e) {

4 head = new Cell(e, head);

5 }

6 Iterator iterator() {

7 return new ListItr(this.head);

8 }

9 }

10

11 class Cell {

12 Cell(Object d, Cell n) {

13 this.data = d; this.next = n;

14 }

15 Object data;

16 Cell next;

17 }

18

19 interface Iterator {

20 boolean hasNext();

21 Object next();

22 }

23

24 class ListItr implements Iterator {

25 ListItr(Cell head) {

26 this.cell = head;

27 }

28 Cell cell;

29 public boolean hasNext() {

30 return this.cell != null;

31 }

32 public Object next() {

33 Cell c = this.cell;

34 Object result = c.data;

35 Cell c2 = c.next;

36 this.cell = c2;

37 return result;

38 }

39 }

40 class Point {

41 Point(float x, float y) {

42 this.x = x; this.y = y;

43 }

44 float x, y;

45 }

46

47 class Main {

58 static float sumX(List list) {

59 float s = 0;

50 Iterator it = list.iterator();

51 while(it.hasNext()) {

52 Point p = (Point) it.next();

53 s += p.x;

54 }

55 return s;

56 }

57

58 public static void main(String args[]) {

59 List list = new List();

60 /* add some points to the list */

61 list.add(new Point(1,2));

62 list.add(new Point(1,3));

63 list.add(new Point(2,7));

64 /* compute sum of the x coordinates */

65 int s = sumX(list);

66 }

67 }

Figure 2-1: Example source code.

of the stack pointer to make space for the new object.2 The inlining step brings the
allocation site into a method where it is captured. Notice that the iterator object is
not captured in the method List.iterator that allocates it, because List.iterator
returns the iterator object.

Purity Analysis: The method sumX uses the iterator method next in order to
explore the list elements. The method next mutates the iterator state; in our im-
plementation, it mutates the field cell of the iterator object. However, the iterator
object did not exist at the beginning of sumX. In spite of the mutation on the iter-
ator, our analysis infers that sumX is pure, i.e., sumX does not mutate objects that
existed before its invocation. Notice that a simple purity analysis that just checks
the absence of field write instructions would not be able to detect the purity of sumX.

2E.g., if the stack grows up, we add to the stack pointer the size of the object we want to allocate.
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Figure 2-2: Points-To Graph for the end of Main.sumX(list)

2.1 Analysis Overview

The analysis examines individual methods from the analyzed program. For each
program point inside an analyzed method m, our analysis constructs a points-to
graph that models the execution of the analysis scope up to that program point.
During the analysis of the method m, the analysis scope consists of the method m
and all its transitive callees.3 The analysis scope does not include the method callers:
our analysis examines a method without knowing the calling context.

A points-to graph describes how local variables and object fields point to objects.
Additionally, a points-to graph identifies the objects that escape from the analysis
scope, i.e., the objects that are reachable from other parts of the program. Both the
points-to information and the escape information are may-approximations;4 therefore,
the authoritative information is the negative one: e.g., an object does not escape.

The escape information allows the stack allocation optimization to detect the
captured (i.e., non-escaped) objects. Knowing which objects are pointed to by local
variables allows the purity analysis to identify mutated objects. Additionally, the
escape information and the points-to information are important for the analysis inner-
working.

Figure 2-2 presents the points-to graph for the end of the method Main.sumX. This
points-to graph models the execution of the analysis scope consisting of the method
sumX and all its transitive callees. The rest of this section describes the meaning of
this points-to graph. Later, Section 2.2 explains how the analysis constructs such
points-to graphs.

In a points-to graph, the nodes model heap objects and the edges model heap
references.5 Each edge is labeled with the field it corresponds to. We write 〈n1, f, n2〉

3During this example, we ignore the possibility of unanalyzable CALLs.
4As a trivial application of Rice’s theorem [67], points-to and escape information is undecidable;

therefore, any static analysis computes an approximation of this information.
5There exists a heap reference from object o1 to object o2, along field f, if the value of the field

f of o1 is the address of o2.
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to denote an edge from node n1 to node n2, labeled with the field f. The edge 〈n1, f, n2〉
models a heap reference from an object that n1 models to a node that n2 models,
along field f. Our analysis uses several kinds of nodes and edges:

• Inside nodes model objects created by the analysis scope.6 There is one in-
side node for each allocation site (i.e., each new instruction); this node models
all objects allocated at that site during the current execution of the analyzed
method. We write nI

l to denote the inside node for the allocation site from line
l. In Figure 2-2, the inside node nI

7 models the iterator object allocated by the
new instruction from line 7.

• Parameter nodes model objects passed as arguments; there is one parameter
node for each formal parameter of object type (i.e., not an int, boolean, etc.).
We write nP

i to denote the parameter node for the ith formal parameter of the
analyzed method. In Figure 2-2, the parameter node nP

0 models the List object
pointed to by the formal parameter list of the method sumX.

• Load nodes and outside edges: The analysis scope may read heap references
from fields of objects that escape, i.e., objects that are reachable from outside
the analysis scope. As an example, the method sumX reads the field head of its
list parameter.7 The object whose address is read depends on the particular
(unknown) calling context.

In such situations, the analysis abstracts over the unknown calling context by
using a load node to model the unknown object. There is at most one load
node for each load instruction. We write nL

l to denote the load node for the
load instruction from line l. Additionally, the analysis uses outside edges to
record where each load node is read from.

In Figure 2-2, the outside edge 〈nP
0 , head, n

L
7 〉 indicates that the load node nL

7

models an object that was read from the field head of the list object (modeled
by the parameter node nP

0 ).

• Inside edges model heap references created by the analyzed method. In Fig-
ure 2-2, the inside edges 〈nI

7, cell, n
L
7 〉 and 〈nI

7, cell, n
L
35〉 model the references

created by sumX8 from the iterator nI
7 to the first (respectively, to the next) list

cells.

Points-to graphs also indicate the nodes that each local variable may point to,
and the nodes that the analyzed method may return. E.g., in Figure 2-2, the local
variable it points to the node nI

7 (the node that models the iterator object); sumX
does not return any node (it returns an integer, not an object).

For the purpose of purity analysis, each points-to graph contains a set W of
modified prestate abstract fields. An abstract field is a field of a specific node, i.e., a

6We use the adjective “inside” for entities created by the analysis scope.
7Indirectly, in line 7 of the callee List.iterator.
8Indirectly, through the iterator-related methods it invokes.
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pair of the form 〈n, f〉. Our purity analysis studies only mutations on prestate objects
(i.e., objects that already existed when the analyzed method was invoked). As inside
nodes model only new objects, the analysis ignores mutations on inside nodes. There
are no modified prestate abstract fields for the method sumX: W = ∅; hence, sumX is
pure.

Finally, a points-to graph records the nodes pointed to by the arguments of unan-
alyzable method calls (none in this example). These nodes escape from the analysis
scope. Our analysis conservatively approximates object escapability by reachability
from parameter nodes, returned nodes, and nodes passed as arguments to unana-
lyzable calls. In Figure 2-2, the inside node nI

7 is unreachable from any such node.
Therefore, the iterator object that nI

7 models is captured and can be stack allocated.

A few important observations are in order:

• For each analysis scope, the number of nodes is bounded, ensuring the termi-
nation of our fixed-point computations.

• “Loop” edges like 〈nL
35, next, n

L
35〉 are typical for methods that manipulate re-

cursive data structures.

• The analysis does not need load nodes and outside edges to process reads from
fields of captured objects. As a captured object is not accessible from outside
the analysis scope, the analysis has “seen” all relevant field assignments and
modeled the created heap references using inside edges. To process such a read,
the analysis simply “follows” the inside edges. E.g., if method sumX read the
field it.cell, the loaded object is modeled by one of the nodes nL

7 and nL
35, the

two nodes targeted by the cell-labeled inside edges that start in nI
7, the only

node pointed to by the local variable it.

• The parameter nodes, load nodes, and the outside edges allow our analysis to
abstract over the unknown calling context. Intuitively, the parameter and the
load nodes are “placeholders” for nodes from the caller analysis scope. The
inter-procedural analysis (Section 2.2.2) replaces these placeholders with ap-
propriate nodes, function of the calling context of each relevant call site.

Section 4.1 presents the analysis abstractions more formally.

2.2 Analysis of the Example

This section explains how the analysis examines the program from Figure 2-1 and
computes points-to graphs similar to the one from Figure 2-2.

Intra-procedurally, our analysis is a dataflow analysis: it starts with an initial
points-to graph for the beginning of the analyzed method. Next, the analysis applies
the transfer functions for the method instructions and computes the points-to graphs
for the other points inside the method.
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Inter-procedurally, the analysis propagates information from the callees into the
caller. Therefore, the analysis of method m requires the analysis of m’s transitive
callees.9 E.g., the analysis of the method sumX requires the analysis of the method
ListItr.next (invoked by sumX in line 52).

Section 2.2.1 below illustrates the intra-procedural analysis on the example of
method ListItr.next(), a method that does not contain any method invocation.
Next, Section 2.2.2 explains how the inter-procedural analysis handles method invo-
cations.

2.2.1 Intra-procedural Analysis

Figure 2-3 presents the Java source code of ListItr.next() (a fragment of the code
from Figure 2-1), and the points-to graphs that the analysis computes for the program
points inside ListItr.next().

At the beginning of the method, the formal parameter this points to nP
0 , the

parameter node that models the receiver object (of class ListItr). The first in-
struction (line 33) reads the field this.cell to obtain the address of the current list
cell. The analysis does not know what the field cell of nP

0 points to because the
analysis examines each method without knowing the calling context. Instead, the
analysis sets the local variable c to point to the load node nL

33, and adds the outside
edge 〈nP

0 , cell, n
L
33〉 to record where it read nL

33 from. The next instruction (line 34)
is similar: it reads the field data of the current list cell (the obtained object will
be returned as the result of this method); the analysis generates the outside edge
〈nL

33, data, n
L
34〉.

In line 35, the program reads c.next to obtain the address of the next list cell;
accordingly, the analysis generates the outside edge 〈nL

33, next, n
L
35〉 and sets local

variable c2 to point to nL
35. Next, in line 36, the program sets this.cell to point to

the newly read object; accordingly, the analysis adds the inside edge 〈nP
0 , cell, n

L
35〉

to model the new heap reference. This instruction mutates the field cell of the
parameter object; accordingly, the analysis adds the pair 〈nP

0 , cell〉 to the set W of
modified prestate abstract fields.

The analysis processes the final instruction, “return result”, by recording the
fact that the method returns the node nL

35 (the only node pointed to by result).
In addition, as the local variables no longer exist once the method terminates, the
points-to graph for the end of the method does not contain any information about
the local variables.

2.2.2 Inter-procedural Analysis

Given the points-to graph for the program point before a call instruction, the analysis
needs to produce the points-to graph for the program point right after the call. For
this purpose, the analysis needs to model the effect of the callee execution on the
points-to graph before the call.

9Except those invoked through unanalyzable CALLs.
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24 class ListItr implements Iterator {

...

32 public Object next() {

33 Cell c = this.cell;

34 Object result = c.data;

35 Cell c2 = c.next;

36 this.cell = c2;

37 return result;

38 }

39 }

a. Java source
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Figure 2-3: Intra-procedural analysis for method ListItr.next(). In the points-to
graphs, we depict new elements in bold.
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Intuition

The key idea behind the inter-procedural analysis is that the points-to graph from the
end of a method is an abstraction not only of the heap manipulated by the method, but
also of the execution of that method: e.g., inside edges abstract store instructions10

and outside edges abstract load instructions. The analysis assigns an operational
meaning to the elements of the callee points-to graph (e.g., inside/outside edges).
The analysis uses this operational meaning to “execute” the callee on the points-to
graph before the call.

Some of the actions of the callee may involve parameter/load nodes, that are
just placeholders for nodes that were unknown during the analysis of the callee. To
interpret such actions in the context of the caller points-to graph before the call,
the analysis maintains a node map that maps each callee node to the nodes it may
represent. Initially, each parameter node is mapped to the node(s) pointed to by the
corresponding actual argument; the analysis discovers mappings for the load nodes
during the execution of the operational meaning of the callee points-to graph.

The points-to graph for the end of the callee does not contain information about
the instruction ordering, nor about the number of times each instruction executes.
Hence, the inter-procedural analysis has to assume that any ordering/repetition is pos-
sible: the analysis repeatedly executes the elements of the callee points-to graph until
it reaches a fixed-point. The execution of each element may add new inside/outside
edges to the callee points-to graph and may also extend the node map with new
mappings for the load nodes.

Example

Consider the call it.next() from line 52 inside method Main.sumX(list). The only
possible callee is the method ListItr.next().11 Line 52 is inside a while loop; as
with any dataflow analysis, our analysis iterates over the loop body until it reaches a
fixed-point. We consider the processing for the call from line 52, in the first analysis
iteration over the loop body.

Figure 2-4 contains a graphic representation of four steps from a possible execution
of the inter-procedural analysis in this case. For this example, ignore the particular
way we computed the points-to graph before the call. Here are a few steps from a
possible execution of the inter-procedural analysis:

1. Initially, the analysis maps the parameter node nP
0 to nI

7, the only node pointed
to by the actual argument it.

2. Consider the callee outside edge 〈nP
0 , cell, n

L
33〉. This outside edge abstracts a

10A store instruction is an instruction that creates a heap reference, i.e., an instruction of the form
“v1.f = v2”, where f is a field of object type.

11The details of the call graph construction are beyond the scope of this example. For the moment,
notice that in our analyzed program, the only instantiated iterator is of class ListItr (see line 7).
Therefore, the only possible callee for the call from line 52 is ListItr.next().
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Figure 2-4: Graphic representation of the first 4 steps from the inter-procedural
analysis for the call to ListItr.next() in line 52 of Main.sumX(). We use the same
graphic conventions as in Figure 2-2 on page 23. Additionally, dashed curved arrows
represent node mappings and bold graphic elements represent new node mappings
and new edges and nodes added to the points-to graph after the call. Note: both the
analysis of the callee and the analysis of the caller use the parameter node nP

0 : in
the callee points-to graphs, nP

0 models the iterator object pointed to by the (implicit)
formal parameter this; in the caller points-to graphs, nP

0 models the list object
pointed to by the formal parameter list.
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load instruction. As nP
0 may represent nI

7,
12 this load instruction may read the

reference modeled by the inside edge 〈nI
7, cell, n

L
7 〉. As a consequence, nL

33 may
represent nL

7 ; the analysis extends the map to record this fact.

3. Consider the callee outside edge 〈nL
33, next, n

L
35〉. nL

33 may represent nL
7 , a node

that escapes even in the caller (it is reachable from the parameter list). There-
fore, even the analysis of the caller does not know what the corresponding load
instruction reads.

Notice the difference between this case and the previous one: in the previous
case, the analysis was able to “resolve” the load, i.e., the analysis was able to
find the node(s) that nL

33 represents. In the current case, the analysis cannot
find the node(s) that nL

35 represents. Hence, the analysis has to represent this
unresolved load in the caller points-to graph, using an outside edge.

The analysis adds the caller outside edge 〈nL
7 , next, n

L
35〉 to record the fact that

nL
35 is a placeholder for the nodes that may be read from the escaped node nL

7 ,
along field cell. The analysis also maps nL

35 to itself to indicate that nL
35 is

present in the points-to graph after the call.

4. The callee inside edge 〈nP
0 , cell, n

L
35〉 models a store instruction between the

node(s) that nP
0 represents (i.e., nI

7) and the node(s) that nL
35 models (i.e., nL

35).
Therefore, the analysis adds the caller inside edge 〈nI

7, cell, n
L
35〉.

The inter-procedural analysis executes a few more similar steps. As the set of nodes
is finite, the inter-procedural analysis will eventually reach a fixed-point.

At the end of the inter-procedural analysis, the analysis uses the final node map
to project the set of mutated abstract fields in the context of the caller. The callee
ListItr.next() mutates the field cell of the parameter node nP

0 . As nP
0 represents

only the inside node nI
7, a node that models only new objects allocated after the start

of sumX, the analysis of the caller can ignore this mutation. This example illustrates
two aspects of our purity analysis: (1) the analysis uses the inter-procedural node
map to project the mutated abstract fields from the callee to the caller, and (2) the
analysis ignores the mutation on inside nodes.

Discussion

A natural question is whether the inter-procedural analysis described above has any
advantage over a solution based on inlining the callee and next using standard intra-
procedural analysis. Besides being able to deal with recursive methods, the current
solution has the advantage that the points-to graph for the end of the callee is a
simplified model of the callee execution: less precise (e.g., no information about the
instruction ordering) but smaller and faster to execute. Intuitively, the points-to

12In this particular example, nP
0 represents only nI

7. We write “nP
0 may represent nI

7” because,
in general, a parameter/load node may be mapped to more than one node; e.g., just consider the
case where the actual argument it points to two nodes, each allocated on a separate branch of the
program.
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graph for the end of the callee is a pre-processed form of the analysis of an inlined
copy of the callee. We discuss this issue in more detail in Section 4.6.1.

To summarize, here are the main features of the inter-procedural analysis:

• The inter-procedural analysis interprets the points-to graph for the end of the
callee as an abstraction of the callee execution.

• The inter-procedural analysis maintains a map that disambiguates the callee
parameter/load nodes for the calling context from the currently analyzed call.
This map allows the analysis to interpret the actions of the callee in the context
of the caller.

Section 4.4 contains a detailed presentation of the inter-procedural analysis.
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Chapter 3

Program Representation

3.1 General Mathematical Notations

This thesis uses the following notations: “{a0, a1, . . . , ak}” represents the set of dis-
tinct elements a0, a1, . . . , ak, and ∅ denotes the empty set. For any set A, P(A) is the
set of all subsets of A, i.e., P(A) = {B | B ⊆ A}. “[a0, a1, . . . , ak]” is the list whose
elements are, in order, a0, a1, . . . , ak. In a list, the order is important, and the same
element can appear multiple times. “list of A” denotes the set of all the lists with
elements from the set A. “a : l” is the list obtained by adding the element a at the
head of list l, and “l1@l2” is the list obtained by appending list l2 at the end of list
l1.

“{ai 7→ bi}i∈I” denotes a partial function f such that f(ai) = bi,∀i ∈ I, and f is
undefined in the other points; in particular, “{}” denotes a partial function that is
not defined in any point. If f : A→ B is a function from A to B, a ∈ A, and b ∈ B,
“f [a 7→ b]” denotes the function that has the value b in the point a, and behaves
exactly like f in the other points of the domain A.

If 〈L,v 〉 is a lattice and a, b ∈ L, we write a w b iff b v a; we write a @ b iff a v b
and a 6= b; similarly, a A b iff a w b and a 6= b.

If µ ⊆ A × B is a relation between the sets A and B, and a ∈ A, then µ(a) =
{b | 〈a, b〉 ∈ µ}. If S ⊆ A, µ(S) =

⋃
a∈S µ(a). We write a µ b for 〈a, b〉 ∈ µ. Finally,

µ−1 denotes the reverse relation: µ−1 = {〈b, a〉 | 〈a, b〉 ∈ µ}.

3.2 Program Representation

We present our analysis in the context of SmallJava, a language similar to a small but
non-trivial subset of the Java bytecode. It is easy to extend the analysis to handle
most of the Java bytecode language. Section 8.1.2 explains how our implementation
deals with the most complex features of Java (exceptions, reflection, dynamic loading,
etc.)

Figure 3-1 presents the sets and the notations for the representation of the an-
alyzed program. A program consists of a set of classes, Class , and a set of meth-
ods, Method . Each method has a list of parameters, a set of local variables, and
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a body consisting of a list of instructions. Method m has k = arity(m) parame-
ters: p0, p1, . . . , pk−1. The first parameter p0 is the “this” parameter. For simplicity,
we consider that all parameters, local variables, object fields and return values have
object type; the few integers that appear in our intermediate representation are all
constants.

The execution of the program starts with the first instruction from the special
method mmain ∈ Method . Each instruction from the body of a method m has a unique
label lb = 〈m, a〉, where a is the index/address into m’s list of instructions; the first
instruction of method m has the label 〈m, 0〉. P (lb) denotes the instruction associated
with the label lb . Each class C ∈ Class has a set of fields fields(C) = {f0, f1, . . . , fq−1}.
Some fields are static, i.e., attached to a class C, not to a specific instance of C; static
fields act as global variables. We distinguish between static and non-static fields by
using different instructions for manipulating them. The special field “[∗]” cannot
appear in a program; the analysis uses it internally to model array cells.

C ∈ Class = {C0,C1, . . .}
m ∈ Method = {m0,m1 . . .}
s ∈ MethodName = {“foo”, “bar”, . . .}

lb ∈ Label = Method × Address

a ∈ Address = N
P : Label → Instruction (see Figure 3-2 for the list of instructions)

f ∈ Field = {f0, f1, . . .} ∪ {[∗]}
fields : Class → P(Field)

v, p ∈ Var = {v0, v1, . . .} ∪ {p0, p1, . . .}
next : Label → Label = λ〈m, a〉.〈m, a + 1〉
arity : Method → N

Figure 3-1: Sets and notations for the program representation.

We suppose that prior to the analysis, the program is converted into an inter-
mediate representation that contains only the instructions from Figure 3-2; e.g., we
convert a complex instruction like “v2 = v1.f1.f2” into a sequence of two simple LOAD
instructions: “vtemp = v1.f1” followed by “v2 = vtemp.f2”. The informal semantics of
our instructions is presented in the last column of Figure 3-2; we give the formal
semantics in Section 6.1.

Normally, the intra-procedural control flow goes from label lb = 〈m, a〉 to label
next(lb) = 〈m, a + 1〉. An IF instruction may alter this normal flow of control by
branching to a specific address in the same method. CALL invokes a virtual method:
“vR = v0.s(. . . )” calls the method named s from the class C of the object pointed to
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Instruction Name Instruction Format Informal Semantics

COPY v1 = v2 copy one local variable into
another

NEW v = new C create a new object of class C; all
fields of the new object are initial-
ized to null

NEW ARRAY v = new C[k] create an array of k references to
objects of class C; all array cells
are initialized to null

NULLIFY v = null assign null to v
STORE v1.f = v2 store a reference into an object

field
STATIC STORE C.f = v store a reference into a static field
ARRAY STORE v1[i ] = v2 store a reference into an array cell
LOAD v2 = v1.f load a reference from an object

field
STATIC LOAD v = C.f load a reference from a static field
ARRAY LOAD v2 = v1[i ] load a reference from an array cell
IF if (. . .) goto at conditional transfer of control (the

condition is irrelevant for our anal-
ysis; we just require it has no heap
side effects)

CALL vR = v0.s(v1, . . . , vj) call method named s of object
pointed to by v0

RETURN return v return from the currently execut-
ing method with the result v

THREAD START start v start the thread pointed to by v
NOP nop, other instructions that do not manipulate pointers

Figure 3-2: SmallJava instructions.

by v0. The parameter passing semantics is call-by-value. Although we did not give
any mechanism for calls to native methods, the analysis handles the more general case
of unanalyzable calls, i.e., calls to methods whose code is unavailable or too expensive
to analyze.

In Java, threads are instances of the java.lang.Thread class; a thread is started
by calling a special native method (java.lang.Thread.start()) on the thread ob-
ject. The body of the newly started thread is the run method of the thread object.
Equivalently, in our language, we start a thread by executing the THREAD START
instruction “start v.” No thread object can be started twice.

The analysis does not interpret the explicit synchronization instructions (these
instructions are treated as NOPs). Thread synchronization restricts the set of possible
thread interleavings. As our analysis ignores these restrictions, the analysis results
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are valid for a conservative superset of the possible program executions. This choice
may affect the analysis precision, but preserves its correctness.

The control flow graph of a method m, denoted CFGm , is a directed graph whose
nodes are the labels of the instructions from the body of m. For every two labels
lb1 and lb2 that might be consecutive on an execution path inside method m, there
is an arc from lb1 to lb2. We add the special label entrym to guarantee that CFGm

contains an isolated entry point (no arc points to it); similarly, we add the special
label exitm to guarantee that CFGm has a single exit point. Given a label lb from a
method m, pred(lb) is the set of direct predecessors of lb in CFGm , and succ(lb) is
the set of direct successors of lb in CFGm .

Our analysis requires a conservative static call graph CG . Constructing a call
graph for a language like Java is very delicate, because of the ubiquity of dynamic
dispatch (i.e., virtual method invocations) and the dynamic loading of classes that are
unknown at compile time. Describing a precise algorithm for call graph construction
is beyond the scope of this thesis.

Instead, we assume that we already have a static call graph such that for any given
CALL from label lb , either (1) the call graph reports that that CALL is unanalyzable
(e.g., because it may invoke a method from an unknown dynamically-loaded class);
or (2) CG(lb) contains all methods that may be called by that CALL (and possibly
some other methods). The particular call graph construction algorithm is irrelevant
for the correctness of the analysis (as long as the call graph is conservative); still,
the precision of the call graph is important for the precision and the running time of
the analysis.1 Section 8.1.2 contains a brief description of the call graph construction
algorithm that we use in our implementation.

A program terminates when all its threads terminate. It is possible to have infi-
nite executions. We did not mention anything about failure modes: we require our
programs to treat exceptional situations explicitly; e.g., there is a null pointer check
before each pointer dereferencing.

1For example, an imprecise call graph could report very large groups of (allegedly) mutually
recursive methods. This imprecision increases the analysis execution time, because the analysis
needs to iterate over larger sets of methods in order to reach a fixed-point.
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Chapter 4

Pointer Analysis

This chapter provides a detailed description of our pointer analysis. We encourage
the reader to read the example from Chapter 2 before reading this chapter.

Analysis Overview: Our pointer analysis processes individual methods from the
analyzed program. For each program point inside a method m, the analysis computes
a points-to graph that models the parts of the heap that the analysis scope accesses
up to that point. The analysis scope consists of the method m plus the methods
it transitively invokes using analyzable CALL instructions. A CALL instruction is
analyzable only if the following two conditions hold: (1) The static call graph identifies
all possible callees for that CALL; and (2) For each possible callee, the analysis can
analyze the callee code, or the analysis user provides a manually-generated summary
for that callee. Hence, a CALL to a native method is unanalyzable, unless the analysis
user supplies a summary for that native method.1 Additionally, the analysis can
consider any CALL to be unanalyzable, in order to reduce the analysis scope; this
operation sacrifices precision for speed, but preserves correctness.

Our analysis analyzes each method m without knowing its calling context, i.e.,
without knowing the objects transitively pointed to by the formal parameters at the
start of m’s execution. Instead, the analysis uses special constructs to abstract over
the calling context.

Inter-procedurally, when the analysis of method m processes an analyzable CALL
instruction, the analysis uses the points-to graph Gcallee for the end of the callee as a
summary of the callee’s execution. The inter-procedural analysis uses this summary
in conjunction with the calling context at the current CALL instruction. Therefore,
inter-procedurally, our analysis propagates information from callees to callers.

The rest of this chapter is organized as follows. Section 4.1 formally defines the
points-to graphs and the other analysis abstractions. Section 4.2 describes the in-
tended meaning of the analysis results. This meaning is essential for understanding
the correctness of the analysis applications. Section 4.3 presents the intra-procedural

1For precision reasons, our analysis implementation uses manually-generated summaries for sev-
eral common native methods (see Section 8.1.2).
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“Plain” nodes:
n ∈ Node = INode ∪ PNode ∪ LNode ∪ {nGBL}

INode ⊆ {INSIDE} × Label ; Inside nodes
PNode ⊆ {PARAM} × N ; Parameter nodes
LNode ⊆ {LOAD} × Label ; Load nodes

Nodes with context:
n ∈ CNode = Node × Context
c ∈ Context = N

nI
lb ,c ∈ CINode = INode × Context nI

lb ,c
def
= 〈〈INSIDE, lb〉, c〉

nP
i,c ∈ CPNode = PNode × Context nP

i,c
def
= 〈〈PARAM, i〉, c〉

nL
lb ,c , n

L ∈ CLNode = LNode × Context nL
lb ,c

def
= 〈〈LOAD, lb〉, c〉

nGBL,c ∈ G = {nGBL} × Context nGBL,c
def
= 〈nGBL, c〉

Figure 4-1: Pointer Analysis Abstractions - Part 1 of 2: Nodes.

analysis, while Section 4.4 presents the inter-procedural analysis. Section 4.5 dis-
cusses algorithms for computing the analysis results. Finally, Section 4.6 discusses
several aspects of the analysis design.

4.1 Analysis Abstractions

Nodes: Our analysis models the potentially unboundedly many objects from the
program execution using a statically bounded number of nodes.

Figure 4-1 presents the formal definitions for the analysis nodes. Our analysis uses
an extension of the object allocation site model [18]. Our analysis uses one inside node
to model all objects allocated at the same allocation site; an allocation site is a NEW
/ ARRAY NEW instruction.

Our analysis uses several other kinds of nodes in order to analyze methods without
knowing their calling context. First, our analysis uses one parameter node for each
formal parameter of the analyzed method; a parameter node models the object that
the corresponding formal parameter points to.

Some LOAD instructions read references from fields of escaped objects, i.e., ob-
jects accessible from outside the analyzed scope. The analysis does not know what
these fields point to (e.g., consider the case when we read a field of a parameter).
Instead, for each label lb that corresponds to such a LOAD / ARRAY LOAD in-
struction, our analysis introduces a load node that models the objects read at label
lb from fields of escaped objects.

The parameter/load nodes are essential for our ability to analyze the method
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m without knowing its calling context. Intuitively, a parameter/load node n is a
placeholder for the inside nodes associated with the objects that n models. For
each call to method m, the inter-procedural analysis computes a node map that
disambiguates these placeholders, according to the current calling context.

The special global node nGBL models objects that are read from a static field and
objects returned by unanalyzable CALLs. We use the term “global” because these
objects may be accessed by the entire program.

A node may model multiple objects: e.g., consider an inside/load node for an
instruction inside a loop. Similarly, several nodes may model the same objects: e.g.,
if several formal parameters point to the same object, the corresponding parameter
nodes model the same object.

Sometimes in the analysis and in the correctness proof, we need to distinguish
between several versions of the same node. For this purpose, we use nodes with
context. A node with context is a pair 〈n, c〉 of a node n and a numeric context
c ∈ Context = N. We use the term “node” for both plain nodes and nodes with
context; the distinction is usually clear from the context.

Notation-wise, nI
lb ,c denotes the inside node for the allocation site from label lb ,

with context c. nP
i,c denotes the parameter node for the i-th formal parameter, with

context c. nL
lb ,c denotes the load node for the LOAD instruction from label lb , with

context c; occasionally, we write nL to denote a generic load node. nGBL,c is the special
node nGBL with context c.

General Points-to Graphs: Figure 4-2 presents the formal definitions for the
points-to graph abstraction. A general points-to graph G ∈ PTGraph is a tuple
G = 〈L :J, I, O,E,R〉, consisting of an abstract stack L :J with at least one element,
a set I of inside edges, a set O of outside edges, a set E of directly globally escaped
nodes, and a set R of returned nodes.

The abstract stack L : J models the state of the local variables. The symbol “:”
denotes the addition of an element at the head of a list (see Section 3.1); hence, L :J
is a stack with the top element L and the stack tail J. In the points-to graphs that
the analysis manipulates, the abstract state has exactly one element, i.e. J = []. The
only element, the abstract local variable state L, maps each local variable v to the set
L(v) of nodes; these nodes model the objects that v may point to during program
execution. In the special abstract local variable state Lall−empty, each local variable v
points to an empty set of nodes.

During the analysis correctness proof (Chapter 6), we define an abstract semantics
that uses multi-element abstract stacks in order to model the values of the callee
variables.

Example 1. Consider a method m with two parameters p0 and p1. In the points-to
graph that the analysis computes for the beginning of m, the abstract stack is L : [],
where

L = Lall−empty

[
p0 7→ {nP

0,0}, p1 7→ {nP
1,0}

]
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General points-to graphs:

G ∈ PTGraph = { 〈L :J, I, O,E,R〉 | L :J ∈ AStack ;
I ∈ IEdges ; O ∈ OEdges ; E,R ∈ P(Node) }

J ∈ AStack = list of ALocVar ; Abstract stacks
L ∈ ALocVar = Var → P(Node) ; Abstract local variable states

Lall−empty = λv.∅
I ∈ IEdges = P(CNode × Field × CNode) ; Sets of inside edges
O ∈ OEdges = P(CNode × Field × CLNode) ; Sets of outside edges

Analysis points-to graphs:

PTGrapha = { G ∈ PTGraph | G = 〈L : [], I, O,E,R〉,
∀〈n, c〉 ∈ nodes(G). c = 0 }

Set of nodes that appear in a node-based structure:

nodes(G = 〈J, I, O,E,R〉) = nodes(J) ∪ nodes(I) ∪ nodes(O) ∪ E ∪R
nodes(J = [L1, . . . , Lk]) =

⋃k
i=1 nodes(Li) nodes(L) =

⋃
v L(v)

nodes(I) =
⋃
〈n1,f,n2〉 ∈ I{n1, n2} nodes(O) =

⋃
〈n,f,nL〉 ∈ O{n, nL}

Figure 4-2: Pointer Analysis Abstractions - Part 2 of 2: Points-To Graphs.

Recall from Section 3.1 that the notation f [a1 7→ b1, . . . , ak 7→ bk] denotes a function
that is equal to f in any point, except that f(ai) = bi,∀i ∈ {1, 2, . . . k}. Therefore, in
L, parameter p0 points to the parameter node nP

0,0, p1 points to nP
1,0, and other local

variables do not point to any node. Both parameter nodes have context 0. 4

The inside edges from I model the heap references created by the analyzed scope:
the inside edge 〈n1, f, n2〉 models the fact that the field f of an object that n1 models
may point to an object that n2 models.

The outside edges from O model read actions of the analyzed scope: the outside
edge 〈n, f, nL

lb 〉 models the fact that, at label lb , the analyzed scope reads the f field
of an object that (1) n models, and (2) is reachable from outside the analyzed scope.
An outside edge always ends in a load node. We use the outside edges in the inter-
procedural analysis (Section 4.4).

Arrays are just a special kind of objects; hence, the analysis uses nodes to model
the array objects. If an array has elements of a non-primitive type, the values stored
in the array cells are addresses of objects. We use edges to represent these heap
references. We do not distinguish between individual array cells: the special field [∗]
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represents all cells of an array.

The fourth component of a points-to graph, the set E of directly globally escaped
nodes contains: (1) nodes that are stored in static fields, (2) nodes that correspond to
started threads, and (3) nodes passed as arguments to unanalyzable CALLs. These
nodes model objects that are potentially reachable from the entire program (hence
the name “globally escaped”).

The last component of a points-to graph, the set R, contains the nodes that may
have been returned from the analyzed method m. This information is used by the
inter-procedural analysis while processing calls to method m. This component is
empty for almost all points-to graph, except those from the end of a method.2

The function nodes takes a node-based structure and returns the set of nodes that
appear inside that structure: e.g., nodes(I) returns the set of nodes that appear
as endpoints of the inside edges from I, nodes(G) returns the set of nodes that
appear in the points-to graph G, etc. The bottom part of Figure 4-2 contains the
straightforward definition of nodes .

Escape information: Intuitively, a node escapes if some of the objects it models
may be reachable from outside the analyzable scope. We have already encountered
several nodes that escape: the nodes from the set E of directly globally escaped
nodes and the nodes from the set R of returned nodes (obviously reachable from the
caller). Other escaped nodes include the parameter nodes, the load nodes (they model
objects read from objects reachable from outside the analyzed scope) and the global
nodes nGBL,c ∈ G (nodes of the form nGBL,c model objects returned from unanalyzable
CALLs and/or read from a static field). In addition, escapability propagates along
edges: nodes reachable from an escaped node escape too. More rigorously, we use the
following definitions:

Definition 1 (General graph reachability). Consider a general directed graph
(not necessarily a points-to graph); if R is a set of “root” vertices, and A is a set of
arcs, then reachable(R,A)(v) is true iff there exists a (possibly empty) path of arcs
from A that starts in a vertex from R and ends in the vertex v.

Definition 2 (Escape predicate). Given a points-to graph G = 〈L :J, I, O, E, R〉,
we define the escape predicate on nodes, e(G) : CNode → {true, false}, as follows:

e(G)(n) = reachable(CPNode ∪ CLNode ∪ G ∪ E ∪R, I)(n)

e(G)(n) checks whether there exists a (possibly empty) path of inside edges that
reaches n from (1) a parameter node, (2) a load node, (3) a global node from G,

2Hence, we need only one set of returned nodes, for the end of the method, instead of one
for each program point. We use the current flow-sensitive formalism due to its uniformity. Our
implementation uses only one set of returned nodes per method.
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(4) a globally escaped node, or (5) from a returned node. A node n escapes from G
iff e(G)(n) is true. Otherwise, n is captured in G.

Notice that the predicate e(G) does not use all components of G: it uses only I,
E and R. Moreover, for all points-to graphs except those for the end of a method, R
is empty. This motivates us to define a simplified escape predicate, that we use later
in the analysis presentation and in the correctness proof:

Definition 3 (Simplified escape predicate).

e2(E, I)(n) = reachable(CPNode ∪ CLNode ∪ G ∪ E, I)(n)

If e2(E, I)(n) holds, we say that n escapes according to 〈E, I〉.
Clearly, for any points-to graph G of the form 〈L :J, I, O, E, ∅〉, e(G) = e2(E, I).

Analysis Points-to Graphs: The pointer analysis computes only analysis points-
to graphs. Analysis points-to graphs are general points-to graphs with the following
two simplifications:

1. The abstract stack has only one element, i.e., G has the form 〈L : [], I, O,E,R〉.
2. All nodes that appear in G have context 0.

PTGrapha ⊆ PTGraph denotes the set of analysis points-to graphs.3 We define
an order relation between analysis points-to graphs, using standard techniques from
lattice theory: the order between tuples is defined component-wise,4 the order between
functions is defined element-wise,5 and the order between sets is the inclusion order.

Definition 4 (Order relation between analysis points-to graphs).

〈L1 : [], I1, O1, E1, R1〉 v 〈L2 : [], I2, O2, E2, R2〉 def↔
L1 v L2 ∧ I1 ⊆ I2 ∧ O1 ⊆ O2 ∧ E1 ⊆ E2 ∧ R1 ⊆ R2

where L1 v L2
def↔ ∀v ∈ Var . L1(v) ⊆ L2(v)

By standard lattice theory [66, Appendix A.2], 〈PTGrapha,v 〉 is a lattice, with
the associated join operation:

〈L1 : [], I1, O1, E1, R1〉 t 〈L2 : [], I2, O2, E2, R2〉 =

〈(L1 t L2) : [], I1 ∪ I2, O1 ∪O2, E1 ∪ E2, R1 ∪R2〉

where
L1 t L2 = λv. L1(v) ∪ L2(v)

The least element of PTGrapha is ⊥PTGrapha= 〈Lall−empty : [], ∅, ∅, ∅, ∅〉.

3Not surprisingly, the superscript a stands for “analysis”.
4I.e., 〈a1, a2, . . . , ak〉 v 〈b1, b2, . . . , bk〉 iff ai v bi, ∀i.
5I.e., f v g iff ∀x.f(x) v g(x).
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The size of an analysis scope is the number of instructions from the scope plus the
maximum number of parameters of a method from the scope. Consider an analysis
scope of size N . The number of plain nodes (i.e., nodes without context) is O(N):
there is at most one inside or load node for each label from the program, P parameter
nodes, where P < N is the maximum number of parameters of a method, and the
special node nGBL. Therefore, the number of nodes with context 0 is O(N). The
number of local variables and fields used by the analysis scope is also O(N). Hence,
we can prove the following lemma:

Lemma 1. For each analysis scope of size N , the lattice 〈PTGrapha,v〉 has depth
O(N3): any strictly ascending chain G1 @ G2 @ . . . has length O(N3).

Proof. As Gi @ Gi+1, Gi+1 contains all elements of Gi plus (at least) a new node
pointed to by a variable, a new inside edge, a new outside edge, a new globally escaped
node or a new returned node. There are O(N3) possible inside/outside edges, O(N)
nodes, and O(N2) pairs of variables and nodes. Hence, the length of any strictly
ascending chain in PTGrapha is O(N2 +N3 +N3 +N +N) = O(N3).

We use this lemma to prove the termination of our analysis in Section 4.5.

4.2 Intended Meaning of the Analysis Results

This section presents the intended meaning of the points-to graphs that the analysis
computes. The style of this section is informal; we formalize our ideas during the
correctness proof from Chapter 6, when we prove that the analysis results satisfy the
properties presented in this section. The list of properties we present is not exhaustive:
for brevity, we focus on those properties that are important for the correctness of the
two analysis applications that we present later in this thesis: the stack allocation
optimization and the purity analysis.

Consider a method m and let lb be either (1) a label inside m’s code, or (2) the
special label exitm for the end of m. In each case, we select a program state and an
activation, i.e., an execution of m: In the first case, we consider one of the possible
states of the program right before executing the instruction from label lb . Let A(m)
be the current activation of method m; in case of recursion, we take the inner-most
activation. In the second case, we consider one program state right after an activation
A(m) terminates.

The activation A(m) contains all instructions executed between the CALL that
starts A(m) and the RETURN that finishes A(m), including the instructions from all
transitive callees invoked through analyzable CALLs.

We say that an object o escapes from A(m) if o is reachable from outside A(m):
from a static field, from the caller, from an unanalyzed method, or from the local
variables from the execution stack of a parallel thread. An object is captured in A(m)
if it does not escape.

Let G = 〈L : [], I, O,E,R〉 = ◦A(lb) be the points-to graph that the analysis
computes for the program point before lb .
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With these notations, our analysis guarantees that there exists a modeling relation
between nodes and objects ρ ⊆ CNode × Object such that the following properties
hold:

Property 1. If lb 6= exitm, then the abstract state of local variables L conservatively
models the state of the local variables of method m: if in the program state, a local
variable v of m points to an object o, then there exists a node n such that n models
o (i.e., n ρ o) and n ∈ L(v).

The case lb = exitm is irrelevant for the property above, because after the end of
A(m), the local variables of m no longer exist.

Property 2. The set I of inside edges conservatively models all heap edges created
by A(m): if o1 and o2 are reachable objects and A(m) created the heap edge 〈o1, f, o2〉,
then there exists nodes n1 and n2 such that n1 models o1 (i.e., n1 ρ o1), n2 models o2

(i.e., n2 ρ o2), and 〈n1, f, n2〉 ∈ I.
The above property refers only to edges between objects that are reachable in the

program state. For efficiency purposes, the analysis reserves the right to ignore the
references between objects that the program can no longer access.6

Property 3. Any inside node nI
lb ,0 models only objects allocated by A(m) by executing

the NEW / ARRAY NEW instruction from label lb .

Property 4. Let o be an object allocated by A(m) by executing the NEW / ARRAY
NEW instruction from label lb . If the inside node nI

lb ,0 is captured, then

1. The object o is captured in A(m).

2. The inside node nI
lb ,0 is the only node that models the object o.

The modeling relation ρ is specific to the program state we selected: we may have
different modeling relations for distinct program states. A node may model several
objects: e.g., the inside node for a NEW inside a loop models all objects allocated
there by A(m). Conversely, several nodes may model the same object (e.g., two
parameter nodes may model the same object, in the case of aliased arguments); as
a consequence, the information about an object may be “scattered” among different
nodes. For example, suppose the local variable v points to the object o1, whose field
f points to o2. By Property 1, there exists a node n1 such that n1 models o1 and
v points to n1 in L. By Property 2, there exists nodes n′1, n2 such that n′1 models
o1, n2 models o2, and 〈n′1, f, n2〉 ∈ I. However, there is no guarantee that n1 = n′1!
In general, reachability in the program state (e.g., in our example, reachability of
the object o2 from the local variable v), does not translate into reachability in the
points-to graphs that the analysis computes.

Fortunately, Part 2 of Property 4 guarantees that if o is an object allocated by
A(m) at the allocation site from label lb and the corresponding inside node nI

lb ,0

is captured, then all information about o is concentrated at the level of nI
lb ,0; the

information about the other objects may be distributed among different nodes.

6In a Java Virtual Machine, such objects are eventually deallocated, modulo the imprecision of
the garbage collector.
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We use the above properties to prove the correctness of our two analysis applica-
tions: Part 1 of Property 4 guarantees us that if nI

lb ,0 is captured in the points-to
graph for the end of m, then all objects allocated by A(m) by executing the NEW
/ ARRAY NEW instruction from lb are unreachable from outside A(m). Hence, the
program cannot access these objects after the end of A(m). Therefore, we can change
the instruction from lb to allocate objects on the stack, instead of allocating them in
the garbage-collected heap.

Property 3 is directly relevant for the purity analysis. As an inside node models
only objects allocated by A(m), i.e., objects that did not exist when A(m) started, we
can ignore mutations on inside nodes. Hence, Property 3 increases the flexibility of
our purity analysis: we support pure methods that allocate and mutate new objects,
as long as they do not mutate “old” objects allocated before the invocation of the
method.

Properties 1 and 2 are useful for understanding the points-to relation abstracted
by the abstract state of local variables L and the set of inside edges I. In addition,
during the correctness proof from Chapter 6, Properties 1 and 2 are useful for proving
Properties 3 and 4.

4.3 Intra-procedural Analysis

The analysis of method m computes an analysis points-to graph for each program
point inside method m. More specifically, for each label lb from method m, the
analysis of method m computes the analysis points-to graph ◦A(lb) ∈ PTGrapha

for the program point right before lb , and the analysis points-to graph A◦(lb) ∈
PTGrapha for the program point right after lb .7 During the analysis of a method m,
the scope of the analysis is the method m plus the methods it transitively invokes
using analyzable CALLs.

We express the analysis of method m as a set of forward dataflow constraints:

◦A(entrym) w Gm
init

◦A(lb) w ⊔{A◦(lb ′) | lb ′ ∈ pred(lb)}
A◦(lb) w [[lb ]]a(◦A(lb))

(4.1)

Intuitively, the analysis points-to graph for the beginning of the method m is (at
least) Gm

init. In control-flow join points, the analysis joins the points-to graphs for
the predecessors using the join operator t for the lattice of analysis points-to graphs
〈PTGrapha,v 〉 (see Section 4.1). The transfer function [[lb ]]a propagates information
across the instruction from label lb . There is one transfer function for each program
label. The transfer function [[lb ]]a takes as argument the points-to graph for the

7We use the symbol “◦” to indicate the position of the program point relative to the label lb :
right before or right after.
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program point before label lb and returns the points-to graph for the program point
after lb .

Constraints 4.1 use inequality instead of equality because upper approximations
(i.e., bigger points-to graphs) preserve the analysis properties from Section 4.2. Ad-
ditionally, inequality constraints allow additional flexibility to the constraint solver;
e.g., the above constraints have a solution even for non-monotonic transfer functions
(see Section 4.5.1).

The points-to graph for the beginning of m is:

Gm
init = 〈 (Lall−empty

[
pi 7→ {nP

i,0}
]
0≤i≤k−1

) : [], ∅, ∅, ∅, ∅ 〉

where p0, p1, . . . , pk−1 are the k parameters of m. Each parameter pi points to the
corresponding parameter node nP

i ; Gm
init is otherwise empty: no inside/outside edges,

globally escaped nodes, etc.

Instead of directly describing the analysis transfer functions, we first introduce a
generalization of them, the abstract semantics transfer functions. Unlike the analysis
transfer functions [[.]]a : Label → PTGrapha → PTGrapha, that work only with
analysis points-to graphs (points to graphs with a single-element abstract state), the
abstract semantics transfer functions [[.]] : Label → PTGraph → PTGraph work
with general points-to graphs, including points-to graphs whose abstract stack has
more than one element. The analysis transfer functions are just a special case of the
abstract semantics transfer functions. The correctness proof (Chapter 6) defines and
uses an abstract semantics that is very similar to the analysis, and we wanted to avoid
having two sets of almost identical definitions.

We define the intra-procedural analysis transfer functions as the restriction of the
abstract semantics transfer functions to the set PTGrapha. More specifically,

[[lb ]]a(G) =

{
[[lb ]](G), if the instruction from lb is not an analyzable CALL.
the case of analyzable CALL presented later in Sec. 4.4

We prove later in this section that this definition respects the type signature of [[lb ]],
i.e., if G ∈ PTGrapha and lb is the label of an instruction that is not an analyzable
CALL, then [[lb ]](G) ∈ PTGrapha.

Figure 4-3 presents the definition of the abstract semantics transfer functions,
on a case by case basis, based on the kind of the instruction from label lb . During
the pointer analysis, the abstract stack tail J for the argument points-to graph is
always empty: J = []; equivalently, |J| = 0. Hence, all nodes explicitly mentioned in
Figure 4-3 (e.g., the inside node nI

lb ,|J| for a NEW instruction) have context 0.

Figure 4-4 presents a graphic representation of several transfer functions.

As a general rule, assignments to variables are destructive, i.e., assigning something
to v “removes” all previous values of L(v), while assignments to node fields are non-
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[[.]] : Label → PTGraph → PTGraph

[[entrym ]] and [[exitm ]] are the identity function; see other cases below:

P (lb) [[lb ]](G = 〈L :J, I, O, E, R〉)
v1 = v2 〈L [v1 7→ L(v2)] :J, I, O, E, R〉
v = new C 〈L[v 7→ {nI

lb ,|J|}] :J, I, O, E, R〉
v = new C[k] 〈L[v 7→ {nI

lb ,|J|}] :J, I, O, E, R〉
v = null 〈L[v 7→ ∅] :J, I, O, E, R〉
v1.f = v2 〈L :J, I ∪ (L(v1)× {f} × L(v2)), O, E, R〉
v1[i ] = v2 〈L :J, I ∪ (L(v1)× {[∗]} × L(v2)), O, E, R〉
C.f = v 〈L :J, I, O, L, E ∪ L(v), R〉
v2 = v1.f process load(G, v2, v1, f, lb) (see Fig. 4-5)

v2 = v1[i ] process load(G, v2, v1, [∗], lb) (see Fig. 4-5)

v = C.f 〈L[v 7→ {nGBL,|J|}] :J, I, O, E, R〉
if (. . .) goto at 〈L :J, I, O, L, E, R〉 (unmodified)

start v 〈L :J, I, O, E ∪ L(v), R〉
nop 〈L :J, I, O, L, E, R〉 (unmodified)

vR = v0.s(v1, . . . , vj)

1. unanalyzable CALL

〈L[vR 7→ nGBL,|J|] :J, I, O, E ∪
⋃j

i=0 L(vi), R〉
2. analyzable CALL — presented later in Fig. 6-5.

return v
1. if J = [], 〈L : [], I, O, E, L(v)〉
2. otherwise — presented later in Fig. 6-5.

Figure 4-3: Definition of abstract semantics transfer functions [[lb ]], lb ∈ Label . The
transfer functions [[lb ]]a from the intra-procedural part of the pointer analysis are
restrictions of the abstract semantics transfer functions [[lb ]] to analysis points-to
graphs. During the analysis, J is always empty (equivalently, |J| = 0): the points-to
graphs manipulated by the analysis have exactly one stack frame, corresponding to
the state of the local variables from the analyzed method.
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Figure 4-4: Graphic representation of several intra-procedural transfer functions. Cir-
cles represent general nodes, dashed circles represent load and parameter nodes, solid
arrows represent inside edges, and dashed arrows represent outside edges. Bold circles
and arrows indicate potentially new nodes and edges. All nodes have context 0; for
brevity, we omit this constant context.
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process load : PTGraph × Var × Var × Field × Label → PTGraph
= λ〈〈L :J, I, O, E, R〉, v2, v1, f, lb〉.

let A = {n ∈ Node | ∃n1 ∈ V(v1), 〈n1, f, n〉 ∈ I}
B = {n ∈ V(v1) | e2(E, I)(n)} in

if (B = ∅)
then 〈L [v2 7→ A] :J, I, O, E, R〉
else 〈L

[
v2 7→

(
A ∪ {nL

lb ,|J|}
)]

:J, I, O ∪ (B × {f} × {nL
lb ,|J|}), E, R〉

fi

Figure 4-5: Definition of the function process load . Its arguments are, in order, the
points-to graph before the load (G = 〈L : J, I, O, E, R〉), the variable v2 we load
into, the variable v1 we load from, the loaded field f, and the label lb of the LOAD
instruction “v2 = v1.f.” It returns the points-to graph after the instruction.

destructive:8 assigning something to n1.f does not remove the existing edges that
start from n1. The reason is that a node might represent multiple objects and so,
updating n1.f might not overwrite the edge 〈n1, f, n2〉 because the update instruction
and the edge might concern different objects.

The two special labels entrym and exitm do not correspond to any concrete instruc-
tion. The transfer function for them is naturally the identity function. This is also
the case for the labels that correspond to IF, NOP, or any other instruction that does
not manipulate pointers.

A COPY instruction “v1 = v2” makes v1 point to all nodes that v2 points to. As
previously mentioned, the analysis “forgets” the previous value of L(v1). The transfer
function for a label lb that corresponds to a NEW instruction “v = new C” makes v
point to the inside node attached to the label lb , nI

lb ,0. The case of ARRAY NEW
is identical. A NULLIFY instruction “v = null” sets v to point to an empty set of
nodes.

For a STORE instruction “v1.f = v2,” the analysis introduces an f-labeled inside
edge between each node pointed to by v1 and each node pointed to by v2. The case of
an ARRAY STORE instruction “v1[i ] = v2” is similar, except that we use the special
field “[∗]” that models the references coming from all the cells of the array. For a
STATIC STORE “C.f = v,” we add all nodes pointed to by v to the set of globally
escaped nodes E.

The transfer function for a LOAD instruction “v2 = v1.f” uses the auxiliary function
process load from Figure 4-5. Before the instruction, v1 points to the nodes from the

8An equivalent term is weak updates; the opposite term, strong updates, denotes the updates that
remove the previous edges.
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set L(v1); some of these nodes are the starting points for f-labeled inside edges. Let
A be the set of target nodes of these inside edges. After the instruction, v2 points to
all nodes from A.

In addition, if we load from nodes that escape the analyzed scope, i.e., B 6= ∅ in
Figure 4-5, v2 also points to the load node nL

lb ,0. In this case, for each escaped node n
we load from, the analysis introduces an f-labeled outside edge from n to nL

lb ,0. Later,
when we analyze calls to m, we use these outside edges to detect the nodes that the
placeholder nL

lb ,0 stands for. To identify the nodes that escape the analyzed scope, we
use the predicate e2(E, I). The transfer function for an ARRAY LOAD instruction
is similar to the one for a LOAD, except that it uses the special field [∗].

A STATIC LOAD “v = C.f” sets v to point to the node nGBL,0, a node that models
unknown objects that may be accessed from the entire program.

We describe the transfer function for an analyzable CALL when we present
the inter-procedural analysis in Section 4.4. An unanalyzable CALL “vR =
v0.s(v1, . . . , vj)” makes its argument objects reachable from unanalyzed parts of the
program. Therefore, the analysis adds all nodes pointed to by v0, . . . , vj to E, the set
of globally escaped nodes. Also, in the points-to graph after the unanalyzable CALL,
we set vR to point to the node nGBL,0. Similarly, for a START THREAD instruction
“start v,” the analysis adds all nodes pointed to by v to E.

Figure 4-3 contains two cases for a RETURN instruction “return v.” The pointer
analysis works only with points-to graphs with abstract stacks of length one. Hence,
it suffices to examine the first case: J = []. The transfer function records the fact the
method returns the nodes pointed to by v, i.e., the nodes from the set L(v).

Example 2. We encourage the reader to revisit the example from Section 2.2.1.
That example does not take node contexts into account; the reader can assume that
all missing node contexts are 0. The reader can also ignore the sets W of mutated
abstract fields from that example; we discuss purity analysis in Section 5.2. 4

The following lemma proves that for each label lb that does not correspond to an
analyzable CALL, our definition of the analysis transfer function [[lb ]]a = [[lb ]] respects
its signature: if given an analysis points-to graph, [[lb ]]a returns an analysis points-to
graph too. In the next section, we extends this lemma to cover the analyzable CALLs
too, thus proving that the pointer analysis works only with analysis points-to graphs.

Lemma 2. Consider an arbitrary label lb ∈ Label that does not correspond to an
analyzable CALL, and an arbitrary analysis points-to graph G ∈ PTGrapha. Then,
[[lb ]](G) ∈ PTGrapha too.

Proof. Case analysis on the kind of the instruction from label lb , followed by a simple
inspection of the definitions from Figure 4-3. We notice that (1) none of the instruc-
tions increases the size of the stack, and (2) the nodes from [[lb ]](G) are either nodes
that appear in G or new, explicitly mentioned nodes with context |J|, where J is the
empty tail of the abstract stack from G ∈ PTGrapha; hence, all nodes from [[lb ]](G)
have context 0.
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4.4 Inter-procedural Analysis

This section presents the transfer functions for the labels that correspond to analyz-
able CALLs. Consider a CALL instruction at label lb , and let G be the points-to
graph for the program point right before the CALL. The analysis needs to compute
[[lb ]]a(G), the points-to graph for the program point right after the CALL.

4.4.1 Intuition

Method Summaries: One naive solution for the inter-procedural analysis is to
inline the callee(s) and to perform the intra-procedural analysis. Besides having
problems with recursive methods, this solution is very inefficient even for non-recursive
methods, as it may inline and re-analyze a method multiple times. Instead, our
analysis computes a single method summary for each method, and uses this summary
for all CALLs that may invoke that method. Intuitively, the summary of a method
is a pre-computed, simplified version of the pointer analysis of an inlined copy of
the method. We discuss the advantages of method summaries in more detail in
Section 4.6.1.

Let callee be one of the methods that the CALL from label lb may invoke.9 The
summary of callee should allow us to compute the points-to graph after the CALL,
in the case when callee is invoked: the new inside and outside edges, the new globally
escaped nodes, and the nodes that vR points-to after the CALL.

Our idea is to compute callee’s summary based on the points-to graph Gcallee for
the end of callee. Notice thatGcallee is not only an abstraction of the heap manipulated
by the execution of callee, but also an abstraction of the execution of callee: the
inside edges abstract the STORE instructions, the outside edges abstract the LOAD
instructions, and the set of globally escaped nodes abstracts all instructions that
globally escape nodes (e.g., STATIC STOREs, unanalyzable CALLs, etc.). Finally,
Gcallee contains information about the nodes that may be returned from callee.

The core of callee’s summary is an inter-procedural transformer that “executes”
the instructions of callee on the points-to graph G before the CALL. To construct
this transformer, the analysis assigns an atomic transformer to each inside edge, each
outside edge, and each globally escaped node from Gcallee . Next, the analysis combines
these atomic transformers into a transformer for the entire callee.

Inter-procedural Node Maps: The instructions of callee may involve parameter
and load nodes, which are placeholders for nodes from the calling context. To interpret
these instructions for a particular CALL site, the analysis needs to know what the
callee parameter / load nodes stand for. E.g., assume that Gcallee contains an inside
edge 〈n1, f, n2〉, where n1 and n2 may be parameter/load nodes. This inside edge
corresponds to a STORE instruction executed by callee; to understand what inside

9Due to dynamic dispatch, different executions of the same CALL may invoke different methods.
A static analysis like ours must consider all possible callees.
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edges this instruction may create in the caller, the analysis needs to know the nodes
that n1 and n2 may represent.

To address this problem, each transformer maintains a map between callee’s nodes
and the nodes they stand for:

µ ∈ Map = P(CNode × CNode)

At the beginning of callee, each parameter node is mapped to the nodes pointed to by
the corresponding argument. Some atomic transformers may add new node mappings
for the load nodes. The analysis always maps inside and global nodes to themselves:
in our transformers, inside/global nodes are similar to the constants from a classic
programming language, while parameter/load nodes are similar to the variables.

4.4.2 Putting the Intuition to Work

The analysis transfer function for a label lb that corresponds to an analyzable CALL
instruction is

[[lb ]]a(G) =
⊔

callee∈CG(lb )

interproc(G, ◦A(exitcallee), P (lb)) (4.2)

For each possible callee callee ∈ CG(lb), the analysis uses the function interproc to
compute a points-to graph for the program point after the CALL, for the case when
callee is called. Next, the analysis joins the resulting points-to graphs.

Figure 4-6 presents the definition of the function interproc. The arguments of
interproc are, in order, (1) the points-to graph G for the program point before the
CALL, (2) the points-to graph Gcallee for the end of the callee, and (3) the CALL
instruction. For the moment, assume that the functions ρ, gc, τ , and α0 are identities;
in particular, τ(gc(ρ(Gcallee))) = Gcallee . We explain these functions in Section 4.4.3.

Function interproc corresponds to the following algorithm:

1. Use Gcallee to obtain the method summary for callee. The summary of callee
consists of two elements:

(a) An inter-procedural transformer Tcallee that executes (a simplified model
of) callee’s instructions in order to update the set of inside edges, the set
of outside edges, the set of globally escaped nodes, and the node map:

Tcallee ∈ IPTransformer = IPState → IPState, where

IPState = IEdges ×OEdges × P(CNode)×Map

We explain later in this section how to construct Tcallee .

(b) The set of nodes Rcallee ⊆ CNode that callee returns (the last component
of Gcallee).

2. Construct an initial map µ0: µ0 maps each parameter node nP
i,0 to the nodes
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interproc: PTGrapha × PTGrapha × Instruction → PTGrapha

interproc(G, Gcallee , “vR = v0.s(v1, . . . , vj)”) =

let 〈L : [], I, O, E, R〉 = G

〈Tcallee , Rcallee〉 = summary(τ(gc(ρ(Gcallee))))

µ0 =
(⋃k

i=0{nP
i,1} × L(vi)

)
∪ {〈n, n〉 | n ∈ CINode ∪ G}

〈Ia, Oa, Ea, µa〉 = Tcallee(I, O, E, µ0)

La = L [vR 7→ µa(Rcallee)] in

α0(〈La : [], Ia, Oa, Ea, ∅〉)

summary : PTGraph → IPTransformer × P(CNode)

summary(Gcallee) = let 〈 , , , , Rcallee〉 = Gcallee in 〈mct(Gcallee), Rcallee〉

Notation: we use a tuple of identifiers on the left-hand side of a let-definition to
name the components of a tuple. We use (“don’t care”) for irrelevant tuple
components.

Figure 4-6: Definition of the function interproc. We define the auxiliary functions ρ,
gc, τ , and α0 in Section 4.4.3. On a first reading, one may assume that these four
auxiliary functions are all identities.

from L(vi), where vi is the corresponding argument.10 Additionally, µ0 maps
each inside or global node to itself.

3. Apply Tcallee to obtain the sets of inside edges, outside edges and globally es-
caped nodes after the CALL, and also a final map:

〈Ia, Oa, Ea, µa〉 = Tcallee(I, O,E, µ0)

4. Project Rcallee through µa to obtain the nodes that the caller variable vR points
to after the CALL. This projection is necessary because Rcallee may contain
parameter/load nodes. Set vR to point to the resulting nodes in the points-to
graph after the CALL.

The difficult part is the construction of the inter-procedural transformer Tcallee .
First, we define one atomic transformer for each basic element from Gcallee : there is
one atomic transformer for each inside edge, outside edge and globally escaped node
from Gcallee . Next, we present how to “assemble” the atomic transformers to obtain
Tcallee .

10The meticulous reader may notice that in Figure 4-6, we use nP
i,1 instead of nP

i,0. We clarify this
node context difference in Section 4.4.3, when we explain the use of the functions τ and α0.
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Atomic Inter-procedural Transformers

Figure 4-7 defines the set AT (Gcallee) of atomic transformers for the points-to
graph Gcallee . For each node n ∈ Ecallee that callee escapes globally, the associated
transformer gesc(n) ensures that all nodes that n stands for (i.e., the nodes from
µ(n)) escape globally in the caller. For each inside edge 〈n1, f, n2〉 from Gcallee , the
associated transformer store(n1, f, n2) creates inside edges between all nodes that
n1 stands for and all nodes that n2 stands for. Figure 4-8.a contains a graphic
representation of store(n1, f, n2).

The transformer load(n, f, nL) associated to an outside edge 〈n, f, nL〉 is more
complex. Figure 4-8.b contains a graphic representation of this transformer. If n
represents node n1 (i.e., n1 ∈ µ(n)) and there exists an inside edge 〈n1, f, n2〉 ∈ I,
then the LOAD instruction that created the outside edge may read the inside edge
〈n1, f, n2〉. Hence, the transformer extends the map µ to record the fact that nL

may represent n2. However, nodes like n2 above may not be the only nodes that nL

represents: if n1 escapes in the caller (i.e., if e2(E, I)(n1) holds), then even the analysis
of the caller may not know all the nodes that n1.f points to. In this case, the analysis
still needs the load node nL to represent the unknown nodes that the program may
read from the escaped node n1. Hence, the transformer adds the mapping 〈nL, nL〉.
Also, in this case, the points-to graph for the program point after the CALL contains
an outside edge 〈n1, f, n

L〉, to record that nL models nodes loaded from n1.f.

Example 3. We encourage the reader to revisit the example from Section 2.2.2 on
page 26. Steps 2, 3 and 4 from that example correspond to the execution
of the atomic transformers load(nP

0 , cell, n
L
33), load(nL

33, next, n
L
35), respectively

store(nP
0 , cell, n

L
35) (the example ignores the node contexts, the reader can assume

they are all 0). The graphic representation of the inter-procedural analysis from Fig-
ure 2-4 on page 29 displays only the non-trivial mappings: for brevity, we ignored the
mapping of each inside or global node to itself. 4

Inter-procedural Transformer for the Entire Callee

Figure 4-9 defines the set Trans(Gcallee) of inter-procedural transformers that one
can build with the atomic transformers from AT (Gcallee) (see Figure 4-7), using func-
tional composition “◦”, join “t”, and transitive closure “star.” For technical reasons,
we also introduce the identity inter-procedural transformer id.

To obtain the inter-procedural transformer Tcallee for the entire callee, the analysis
combines the atomic transformers from AT (Gcallee). In the presence of ordering in-
formation, the analysis could simply compose the atomic transformers. E.g., suppose
Gcallee contains only an inside edge and an outside edge, and suppose the analysis has
information that the STORE that created the inside edge always executes before the
LOAD that created the outside edge. In this case, the analysis could define Tcallee

to be the composition of the load for the outside edge with the store for the inside
edge.

However, the points-to graph Gcallee does not contain ordering information. Ad-
ditionally, Gcallee does not contain information about the number of executions of
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IPState = IEdges ×OEdges × P(CNode)×Map

µ ∈Map = P(CNode × CNode)

T ∈ IPTransformer = IPState → IPState

Atomic inter-procedural transformers for a points-to graph:
AT : PTGraph → P(IPTransformer)
AT (〈Jcallee , Icallee , Ocallee , Ecallee , Rcallee〉) =

{ gesc(n) | n ∈ Ecallee }
{ store(n1, f, n2) | 〈n1, f, n2〉 ∈ Icallee } ∪
{ load(n, f, nL) | 〈n, f, nL〉 ∈ Ocallee } ∪

gesc(n)(I, O,E, µ) = 〈I, O, E ∪ µ(n), µ〉

store(n1, f, n2)(I, O,E, µ) = 〈I ∪ (µ(n1)× {f} × µ(n2)), O, E, µ〉

load(n, f, nL)(I, O,E, µ) =
let µ2 = µ ∪ {〈nL, n2〉 | n1 ∈ µ(n). 〈n1, f, n2〉 ∈ I}

A = {n1 ∈ µ(n) | e2(E, I)(n1)} in
if A = ∅ then 〈I, O, E, µ2〉

else 〈I, O ∪ (
A× {f} × {nL}) , E, µ2 ∪ {〈nL, nL〉}〉

Figure 4-7: Inter-procedural transformers - Part I: Atomic transformers.
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caller
I ′, O′ f

a. T = store(n1, f, n2). b. T = load(n, f, nL) for e2(E, I)(n1).

Figure 4-8: Graphic representation of the atomic inter-procedural transformers store
and load. In each case, if T is the transformer, 〈I ′, O′, E ′, µ′〉 = T(I, O,E, µ). Circles
represent general nodes, dashed circles represent load nodes, solid straight arrows
represent inside edges, dashed straight arrows represent outside edges, and curved
arrows represent node mappings. Bold arrows represent possibly new edges and node
mappings; an inside edge is new if it appears in I ′ \ I, an outside edge is new if it
appears in O′ \O, and a node mapping is new if it appears in µ′ \ µ.
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Compound inter-procedural transformers for a points-to graph:
Trans : PTGraph → P(IPTransformer)
Trans(Gcallee) = AT (Gcallee) ∪ { id } ∪

{ T1 ◦ T2, T1 t T2 | T1, T2 ∈ Trans(Gcallee) } ∪
{ star(T) | T ∈ Trans(Gcallee) }

id(I, O,E, µ) = 〈I, O,E, µ〉

(T1 ◦ T2)(I, O,E, µ) = T1(T2(I, O,E, µ))

(T1 t T2)(I, O,E, µ) = T1(I, O,E, µ) t T2(I, O,E, µ)

star(T)(I, O,E, µ) =
⊔

k≥0 T
k(I, O,E, µ)

where T 0 = id and T i+1 = T ◦ T i, ∀i ≥ 0.

Most conservative transformer for a points-to graph:

mct : PTGraph → IPTransformer
mct(Gcallee) = star(

⊔AT (Gcallee))

Figure 4-9: Inter-procedural transformers - Part II: Compound transformers.

each action. For example, the analysis has no information whether the LOAD in-
struction corresponding to an outside edge is executed once, or several times. To be
conservative, our analysis uses the most conservative transformer from Trans(Gcallee),
mct(Gcallee). mct(Gcallee) is the transitive closure of the join of all atomic transformers
for Gcallee :

mct(Gcallee) = star(
⊔
AT (Gcallee))

As we prove in Lemma 19 on page 170, mct(Gcallee) is bigger than any other trans-
former from Trans(Gcallee). Therefore, it conservatively approximates any ordering of
the atomic transformers (even with possible repetitions).

4.4.3 Additional Elements

This section explains the functions ρ, gc, τ , and α0, and their use in the inter-
procedural analysis (see definition of interproc in Figure 4-6).

The size of the method summary for callee is proportional with the size of the
points-to graph Gcallee for the end of callee. The inter-procedural analysis uses the
function gc (“garbage collection”) to remove from Gcallee all captured nodes. Intu-
itively, the captured nodes model objects that are unreachable from the caller. The
correctness proof from Chapter 6 shows that this simplification preserves the analysis
correctness.

Figure 4-10 presents the definition of gc. The definition is more general than
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gc : PTGraph → PTGraph
gc(G) = del garbage(G)(G)

garbage : PTGraph → P(CNode)
garbage(G = 〈J, I, O,E,R〉) = {n ∈ nodes(G) | ¬reachable(A, I)(n)},
where A = CPNode ∪ CLNode ∪ G ∪ E ∪R ∪ nodes(J)

Note: for a points-to graph G where local variables do not point to
any node, garbage(G) = {n ∈ nodes(G) | ¬e(G)(n)}

The overloaded symbol delS denotes a transformation that takes
a node-based structure and removes all nodes from the set S:

delS(〈J, I, O,E,R〉) = 〈delS(J), delS(I), delS(O), delS(E), delS(R)〉
delS([L1, L2, . . . , Lk]) = [delS(L1), delS(L2), . . . , delS(Lk)]
delS(L) = λv. L(v) \ S
delS(I) = {〈n1, f, n2〉 ∈ I | n1 6∈ S ∧ n2 6∈ S}
delS(O) = {〈n, f, nL〉 ∈ O | n 6∈ S ∧ nL 6∈ S}
delS(A) = A \ S, for any set of nodes A ⊆ CNode.

ρ : PTGrapha → PTGrapha

ρ(〈L : [], I, O,E,R〉) = 〈Lall−empty : [], I, O,E,R〉

Figure 4-10: Definition of the function gc. gc(G) preserves only the nodes that are
reachable, along (possibly empty) paths of inside edges, from nodes pointed to by
local variables or from escaped nodes; gc(G) removes all other nodes from G. The
auxiliary function ρ sets each local variable to point to an empty set of nodes.

what the pointer analysis requires: gc handles general points-to graphs, and it does
not remove nodes that are transitively reachable, along (possibly empty) paths of
inside edges, from nodes pointed to by local variables. This feature is irrelevant for
the analysis: ρ(Gcallee) is a points-to graph identical to Gcallee , except that each local
variable points to an empty set of nodes (see definition of ρ in Figure 4-10). We use
the full definition of gc during the correctness proof.

To summarize, gc(ρ(Gcallee)) is a simplified version of Gcallee where each local
variable points to an empty set of nodes, and all captured nodes have been removed.

Figure 4-11 presents the formal definitions of the functions τ and α0. The function
τ takes a structure built with nodes (e.g., a points-to graph) and produces a similar
structure, but with all node contexts incremented by one. If k ∈ N, function αk

takes a structure built with nodes and produces a similar structure, but where all
node contexts bigger than k have been replaced with k (the other node contexts are
unaffected). The interproc function (Figure 4-6) uses τ and α0 as follows:

1. interproc uses τ(gc(ρ(Gcallee))) to construct the summary for the callee. The
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τ : CNode → CNode
τ(〈n, c〉) = 〈n, c + 1〉

αk : CNode → CNode, k ∈ N
αk(〈n, c〉) = 〈n,min(k, c)〉

We overload the symbols τ and αk to denote functions that apply not only to nodes,
but to any structures built with nodes. The functions τ and αk propagate deep
inside such structures; they preserve the structure, but may change the encountered
nodes. E.g.,
τ(〈J, I, O, E, R〉) = 〈τ(J), τ(I), τ(O), τ(E), τ(R)〉,
τ(I) = { 〈τ(n1), f, τ(n2)〉 | 〈n1, f, n2〉 ∈ I }, etc.

Figure 4-11: Definitions of the functions τ and αk, k ∈ N.

points-to graph τ(gc(ρ(Gcallee))) is similar to gc(ρ(Gcallee)), except that all nodes
have context 1, instead of 0. In particular, the context of the parameter nodes
from τ(gc(ρ(Gcallee))) is 1, explaining our use of nP

i,1 (instead of nP
i,0) in the

definition of the initial map µ0 (Figure 4-6).

2. interproc uses α0 to ensure that the context of all nodes from the points-to
graph after the CALL is 0, as it should be in an analysis points-to graph.

The use of τ and α0 has two purposes:

• To obtain additional context sensitivity during the inter-procedural analysis: G
and τ(gc(ρ(Gcallee))) have disjoint sets of nodes (G has only nodes with context
0, while τ(gc(ρ(Gcallee))) has only nodes with context 1).

• To allow the correctness proof from Chapter 6; we comment more on this topic
in Section 6.4.

The computation of τ(gc(ρ(Gcallee))) is expensive (due to gc). Our analysis im-
plementation caches this result and uses it at each CALL that may invoke callee.

4.4.4 Computational Aspects

The transfer function for an analyzable CALL is far more complex than any other
transfer function. Let G2 = τ(gc(ρ(Gcallee))) and F =

⊔AT (G2). The function
interproc uses the transformer Tcallee = mct(G2) = star(F ). The definition of
star(F ) involves a join operation over an infinite set: star(F ) =

⊔
i≥0 F

i. Therefore,
it is not obvious that Tcallee(I, O,E, µ0) exists and that it can be computed. In the
next paragraphs, we show that Tcallee(I, O,E, µ0) exists and that the analysis can
compute it in polynomial time in the size N of the analysis scope.
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First, notice that interproc manipulates only nodes with context 0 or 1. Hence, it
suffices to consider only inter-procedural transformers that operate on IPState2 , the
restriction of

IPState = IEdges ×OEdges × P(CNode)×Map

to nodes with context ≤ 1. For any analysis scope of size N , there are O(N) nodes
with contexts ≤ 1 (see the discussion before Lemma 1 on page 43). As the analysis
scope uses O(N) fields, the depth of the lattice IPState2 is O(N3 +N3 +N +N2) =
O(N3).

Next, consider the following result:

Lemma 3. Each atomic transformer is extensive11 and monotonic.12

Proof. Simple inspection of the definitions from Figure 4-7. The only non-trivial
case is the monotonicity of load(n, f, nL) transformers: still, as graph reachability is
monotonic in the set of roots and the set of edges, the predicate e2(E, I) is monotonic
in E and I.

By consequence, the transformer F =
⊔AT (G2) is extensive and monotonic.

As F is extensive, the series (F i(I, O,E, µ0))i≥0 constitutes an ascending chain in
IPState2 . This chain stabilizes after some finite number of steps k = O(N3), with
the value F k(I, O,E, µ0). Hence, Tcallee(I, O,E, µ0) =

⊔
i≥0 F

i(I, O,E, µ0) exists and

has the value F k(I, O,E, µ0), for some finite k = O(N3).

A naive algorithm for computing Tcallee(I, O,E, µ0) applies F repeatedly on
〈I, O,E, µ0〉, until it reaches a fixed point. Such an algorithm requires O(N3) it-
erations; each iteration applies all the atomic transformers from AT (G2) and joins
the results. There are O(N3) such transformers: there is one atomic transformer for
each of the O(N3) inside edges, O(N3) outside edges, and O(N) globally escaped
nodes from Gcallee (see the proof of Lemma 1 on page 43.) A naive implementation
of the atomic transformers requires O(N) time for a gesc transformer, O(N2) for a
store transformer, and O(N3) for a load transformer (because load uses the pred-
icate e2(E, I) that involves reachability over the O(N3) edges from I). The overall
complexity of this naive algorithm is polynomial, but huge, O(N9).

The naive algorithm “blindly” executes all atomic transformers in each iteration.
Our implementation uses an optimized algorithm that keeps track of the changes (new
mappings, new inside edges and new escaped nodes) and executes only those atomic
transformers that have a chance of producing new information. For example, the
optimized algorithm executes a gesc(n) transformer only if there are new mappings
for n. The optimized algorithm has complexity O(N5). Appendix A presents our
optimized algorithm and proves its correctness and its asymptotic complexity.

The other steps of interproc are far less time-intensive than the computation of
Tcallee(I, O,E, µ0). Therefore, interproc has time complexity O(N5).

11If 〈A,v 〉 is a lattice, a function f : A→ A is extensive iff ∀a ∈ A. a v f(a).
12If 〈A,vA〉 and 〈B,vB〉 are lattices, a function f : A→ B is monotonic iff
∀a1, a2 ∈ A. a1 vA a2 → f(a1) vB f(a2).
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Lemma 2 on page 50 already proved that the analysis transfer functions for labels
that do not correspond to analyzable CALLs produce only analysis points-to graphs.
For analyzable CALLs, a simple inspection of the definition of interproc (Figure 4-6)
reveals that in the resulting graph (1) the abstract stack has exactly one element, and
(2) each node has context 0 (due to the application of the function α0). Hence, we
extend Lemma 2 to cover all labels, showing that the pointer analysis manipulates
only analysis points-to graphs:

Lemma 4. ∀lb ∈ Label . ∀G ∈ PTGrapha. [[lb ]](G) ∈ PTGrapha.

4.5 Computation of the Analysis Results

Previous sections presented the analysis in a declarative style, as a set of dataflow con-
straints. This section explains how to compute the analysis results, i.e., how to solve
the dataflow constraints. Section 4.5.1 presents a general algorithm. Section 4.5.2
presents an algorithm that reduces the analysis memory consumption.

4.5.1 General Algorithm

Assume that an analysis client requires the analysis points-to graph for a program
point from a method m. The dataflow constraints for method m (Equations 4.1 on
page 45) use the points-to graphs for the end of the methods that m may transi-
tively invoke through analyzable CALLs. Therefore, the analysis needs to examine
all methods that m may transitively invoke through analyzable CALLs. Let S be
the set of such methods (including m). The algorithm from this section computes
points-to graphs for all program points from the methods in the set S. The algorithm
generates the dataflow constraints for all labels inside the methods in the set S and
next uses a constraint solver. We describe these two steps below.

Constraint Generation

Our analysis generates constraints of the general form v w f(v1, v2, . . . , vk), where v,
v1, . . . , vk are flow variables, and f is a function (not necessarily monotonic). The flow
variables represent the values (i.e., the points-to graphs) that our analysis computes;
they are unrelated to the variables from the analyzed program. Our analysis uses the
flow variable vb

lb for the points-to graph before the label lb , and the flow variable va
lb for

the points-to graph after the label lb . The constraints between flow variables are an
almost straightforward transcription of the Constraints 4.1, replacing ◦A(lb) with vb

lb

and A◦(lb) with va
lb .

13 A solution for the resulting system of constraints is a valuation
ψ that assigns to each variable v an analysis points-to graph ψ(v) ∈ PTGrapha, such
that all constraints are satisfied. Each solution ψ corresponds to a set of valid analysis
results: ◦A(lb) = ψ(vb

lb ) and A◦(lb) = ψ(va
lb ).

13Conceptually, the difference between vb
lb and ◦A(lb) is the difference between an equation un-

known (e.g., x in x− 1 = 0), and its value in a valid solution (e.g., 1).
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For each method m2 ∈ S, the analysis generates a constraint vb
entrym2

w Gm2
init.

For each label lb inside a method from S and for each predecessor lb ′ ∈ pred(lb),
the analysis generates a constraint vb

lb w va
lb′ . These simple constraints encode the

analysis constraint

◦A(lb) w
⊔
{A◦(lb ′) | lb ′ ∈ pred(lb)}

A complex constraint of the form v w t1 t t2 t . . . tk (where ti’s are some terms) is
equivalent to the set of simpler constraints v w t1, v w t2, . . . , v w tk.

For each label lb that does not correspond to an analyzable CALL, the analysis
generates the constraint va

lb w [[lb ]]a(vb
lb ). For each label lb that corresponds to an an-

alyzable CALL, we use the definition of the transfer function for an analyzable CALL
(Equation 4.2 on page 52) to expand the analysis constraint A◦(lb) w [[lb ]]a(◦A(lb))
as follows:

A◦(lb) w
⊔

callee∈CG(lb)

interproc(◦A(lb), ◦A(exitcallee), P (lb))

Accordingly, for each possible callee callee ∈ CG(lb), the analysis generates the con-
straint

va
lb w interproc(vb

lb , v
a
exitcallee

, P (lb))

Constraint Solving

Solving constraints over a finite-depth lattice (like PTGrapha; see Lemma 1) is a well-
understood problem. To provide the background for the discussion on the analysis
termination and complexity, we describe below a simple worklist-based solver, the
“Chaotic Iteration Algorithm.” Reference [66, Chapter 6] discusses several other
worklist-based constraint solvers that have the same asymptotic complexity as the
“Chaotic Iteration Algorithm,” but are much faster in practice.

Chaotic Iteration Algorithm: The algorithm maintains a worklist W of poten-
tially unsatisfied constraints. Initially, W contains all the constraints, and the valu-
ation ψ assigns to each variable v the bottom value ⊥PTGrapha . The solver iterates
as long as W is not empty. In each iteration, the solver extracts one constraint “v
w f(v1, v2, . . . , vk)” from W and increases the value of v in order to satisfy the con-
straint. More precisely, the solver computes the value of the right-hand side of the
constraint, with respect to the current valuation ψ. Let l be this value; the solver
joins l to the current value for the variable v, i.e., the solver updates the valuation ψ
as follows:

ψ ← ψ [v 7→ ψ(v) t l] (4.3)

If this update causes ψ(v) to increase strictly,14 then the constraints that use v on
their right-hand side may become unsatisfied. Accordingly, the solver adds all such

14As we use t, the value of v can either remain unchanged, or increase strictly.
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constraints to the worklistW . The solver terminates when W is empty. The valuation
ψ at the end of the algorithm is a solution for the system of constraints.

Correctness: One can easily prove that at the beginning and at the end of each
iteration, the worklist W contains all constraints that are not satisfied by the current
valuation ψ. This property is trivially true at the beginning of the first iteration,
when W contains all the constraints. In each iteration, if the value for a variable v
has strictly increased, the algorithm adds to W all constraints that use v on their
right-hand side. These are the only constraints that may become unsatisfied after the
increase of v’s value: constraints that do not use v are unaffected, and constraints
that use v on their left-hand side remain valid. Therefore, if the algorithm terminates
(i.e., if W becomes empty), it terminates with a valuation ψ that satisfies all the
constraints.

Termination and Complexity: The algorithm adds a constraint to the worklist
W in two cases: (1) in the initialization step, and (2) when the value for a right-hand
side variable strictly increases. As the value of a variable never decreases during the
algorithm, the value of a variable can increase at most d times, where d is the finite
depth of the lattice PTGrapha. Therefore, the algorithm processes each constraint
at most 1 + d · M times, where M is the maximum number of distinct variables
that may appear of the right side of a constraint. Let R be the time required for
computing the value of the right-hand side of a constraint, and J be the time for the
join operation. Each time the algorithm processes a constraint extracted from the
worklist W , the algorithm spends time R + J . For a system with C constraints, the
asymptotic complexity of the entire algorithm is O(d ·M · C · (R + J)).

Asymptotic Complexity of the Pointer Analysis

We use the notations from the complexity analysis for the constraint solver. For our
analysis, d = O(N3) (Lemma 1 on page 43), M = 2 (due to the interproc constraints),
R = O(N5) (due to the complexity of interproc), and J = O(N3) (points-to graphs
are structures of size O(N3)). To estimate C, the number of constraints, notice that
apart from the interproc constraints, there is one constraint for the beginning of each
method and one constraint for each control flow edge. There are O(N) methods and
O(N) control flow edges: each label has at most two successors.15 In addition, there
are O(N2) interproc constraints: there are O(N) analyzable CALLs and each of them
may have O(N) callees. This accounts for C = O(N2) constraints. Hence, the entire
algorithm has time complexity O(N3 · 2 ·N2 · (N3 +N5)) = O(N10).

Discussion: The asymptotic complexity of our analysis is polynomial, but huge . . .
Part of the reason is the coarseness of the complexity analysis and the fact that we

15Even if the analyzed program contained switch-like instructions with arbitrarily many cases,
notice that each switch case has exactly one predecessor.
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analyze the worst-case complexity. Fortunately, our analysis can obtain correct infor-
mation by analyzing only parts of the program. Hence, our analysis can decrease N
(the size of the analysis scope) in order to decrease the analysis time. For example,
the analysis can consider as unanalyzable all CALLs to very large methods. Also,
the analysis can impose a constant bound on the number of callees at each analyz-
able CALL. This modification reduces the number of the interproc constraints to
O(N), reducing the overall analysis complexity to O(N9). Chapter 7 describes a few
techniques for improving the analysis speed. In practice, our implemented prototype
analyzes applications on the scale of javac (1960 analyzed methods from 332 classes,
with more than 50, 000 bytecode instructions) in less than one minute.

4.5.2 Reducing Memory Consumption

The algorithm from Section 4.5.1 simultaneously maintains in memory the points-to
graphs for all program points from all methods from the set S. If this is a concern,
then one can use the following algorithm:

1. Apply a simple reachability algorithm to determine the set S of all methods
that m may transitively invoke through analyzable CALLs.

2. Compute the strongly-connected components of the caller-callee relation be-
tween methods from S. Each strongly-connected component corresponds to a
set of mutually recursive methods.

3. Process the strongly-connected components bottom-up, from the callees toward
the callers. For each strongly-connected component scc of methods:

(a) Initialize the points-to graphs for the end of all methods from scc to
⊥PTGrapha .

(b) Add all methods from scc to a worklist Winter.

(c) As long as the worklist Winter is non-empty:

i. Extract a method m2 from Winter.

ii. Use a worklist-based algorithm [66, Chapter 6] to solve the dataflow
equations for the labels inside m2. The constraints for interproc use
the currently-available points-to graphs for the end of the callees.

iii. Consider the points-to graph for the end of m2 and ignore the points-
to graphs for the other program points inside m2. If the points-to
graph for the end of m2 has changed, we add to the worklist Winter all
methods from scc that call m2 through an analyzable CALL.

At any moment, the algorithm keeps in memory at most the points-to graphs for
the end of all methods, and the points-to graphs for the program points inside the
currently analyzed method m2. The algorithm computes the points-to graphs for the
end of all methods from S. The analysis can compute the points-to graph for any
program point inside any method from S: the analysis (re)computes the solution of
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the dataflow equations for that method only (the analysis already knows the points-to
graphs for the end of any callee).

Notice that the analysis of method m performs the analysis of any method from
S. Hence, if we apply the algorithm above repeatedly, for different methods m, then
the computation of the set S from step 1 can ignore the already analyzed methods:
the analysis already knows the points-to graphs for the end of these methods and for
the end of their callees.

4.6 Discussion

This section discusses a few aspects of the analysis design and presentation.

4.6.1 Inter-procedural Analysis

The inter-procedural analysis performs an abstract execution of a model of the callee.
It is natural to inquire whether this solution is really better than simply inlining the
callee and performing standard intra-procedural analysis. We list below some of the
advantages of the current solution:

• For each callee, the analysis constructs the inter-procedural transformer on
the basis of the analysis points-to graph for the end of the callee. As the
set PTGrapha of analysis points-to graphs is finite (for each analysis scope),
our inter-procedural analysis terminates even for recursive methods.

• The inter-procedural transformer for a callee is a simplified model of the callee,
less detailed than the callee’s source code:

1. The inter-procedural transformer ignores all callee’s instructions that do
not manipulate pointers.

2. The inter-procedural transformer is a pre-computed form of the analysis
of an inlined copy of the callee. For example, the inter-procedural trans-
former does not deal with the flow of nodes between local variables. This
flow has already been resolved during the intra-procedural analysis for the
callee. Also, the LOAD instructions that read only from captured nodes do
not generate any outside edge; as such, they do not generate atomic trans-
formers. The intra-procedural analysis of the callee already discovered all
nodes loaded by these instructions.

3. The transfer function for RETURN (see Figure 4-3 on page 47) eliminates
captured nodes from the points-to graph for the end of the callee. There-
fore, the inter-procedural transformer ignores all captured nodes from the
callee, and all instructions that manipulate these nodes.

4. As we explain in Section 7.3, in addition to eliminating the captured nodes,
the analysis can perform other simplifications on the points-to graph from
the end of the callee, to reduce its size, and, implicitly, the cost of executing
the corresponding inter-procedural transformer.
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4.6.2 Strong vs. Weak Updates

The analysis transfer functions perform destructive updates on the local variables,
and weak updates on the node fields (see Figure 4-3): adding a new inside edge
〈n1, f, n2〉 does not remove the previous inside edges from n1.f. The reason is that a
node may represent multiple objects and so, updating n1.f might not overwrite the
edge 〈n1, f, n2〉 because the update instruction and the edge may concern different
objects. Still, it is conceivable to extend the analysis to do strong updates in the
case of STORE statements “v1.f = v2” that definitely write exactly one object: i.e.,
v1 points to exactly one node, and that node is guaranteed to represent only one
object in each activation of the analyzed method. Examples of such nodes include
the parameter nodes and the inside nodes corresponding to allocation sites outside
loops. Adding support for strong updates is an interesting direction for future work.

4.6.3 Handling of the Static Fields

Our analysis treats static fields very conservatively: when a reference to a node n is
stored in a static field, the analysis records the fact that n escapes globally (by adding
n to the E component of the points-to graph) and ignores other information about n,
e.g., the analysis does not record the static field that points to n. Similarly, reading a
static field (the STATIC LOAD instruction) produces the general, globally-escaping
node nGBL,0, that we also use to model the result of an unanalyzable CALL.

The main reason for this design choice is our desire to reduce the size of the points-
to graphs. In addition, obtaining complete information about the nodes reachable
from the static fields would require examining the entire source code (including all
the native methods). For example, the analysis would need to check that no parallel
thread mutates a static field. In our analysis, we focus on the information that can
be detected by analyzing only parts of a whole program.

Most likely, a more precise treatment of the static fields would not benefit the stack
allocation optimization: in general, programmers use static fields to store references
to long-lived, non-local data.

Still, some other analysis clients may benefit from a more precise treatment of
static fields. For example, consider the case of the purity analysis, and assume that
the analysis analyzes a method whose body consists of the following two instructions:

v = C.f;

v.f2 = null;

Currently, the analysis can report to the user only that the method is impure because
it mutates the field f2 of some unknown object that is either read from an unspecified
static field, or returned from an unanalyzable CALL (the analysis uses nGBL,0 in both
cases). Imagine that we change the analysis to process a STATIC LOAD similar to
the way we process a LOAD from an escaped node, i.e., using a load node and an
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outside edge to tell us where the load node is read from.16 Such a modification would
allow us to provide more information to the user: e.g., “the method is impure because
it mutates the field f2 of the object read from C.f, i.e., the field C.f.f2”.

Our current implementation is optimized toward reducing the size of the points-to
graphs. Still, a more precise processing for the static fields is an interesting direction
for future work.

4.6.4 Flow Sensitivity

We presented the analysis in a flow-sensitive framework: the analysis takes into ac-
count the order of the instructions17 and computes one points-to graph for each pro-
gram point. One advantage of flow-sensitivity is that it simplifies reasoning about
the analysis: the execution of the analysis is a simulation of the program execution,
with one state at each point. Another advantage is the possible increase in analysis
precision (unproven experimentally yet). The disadvantage is the size of the data
that the analysis manipulates, which influences negatively the analysis speed.

Notice that the analysis does not need to maintain all components of the points-to
graphs flow-sensitively:

Outside Edges: During the intra-procedural analysis of a method m, some transfer
functions may generate new outside edges, but no transfer function uses these
edges. Only after the intra-procedural analysis of m terminates, the inter-
procedural analysis uses the outside edges from the end of m, while processing
CALLs to m. Hence, for each method, it suffices to maintain only one set of
outside edges: the set for the end of the method. This set collects all outside
edges that LOAD/CALL instructions may generate.

Set of Returned Nodes: For similar reasons, the analysis can use a single set of
returned nodes for each method. After this modification, each RETURN in-
struction adds nodes to the method-wide set of returned nodes.

Abstract State of Local Variables: The analysis can use the SSA form [26] to
maintain a single, flow-insensitive state of the local variables: in the SSA form,
each variable is assigned by a single instruction.

The SSA form introduces φ instructions in the control-flow join points. A φ
instruction “v = φ(v1, v2, . . . , vk)” copies into v one of the vi’s, depending on
which predecessor the program executes right before the φ instructions.18 The
analysis processes a φ instruction by setting v to point to all nodes pointed

16We may also add a special node, different from nGBL,0, to serve as an “envelope” for all static
fields. The updated analysis could interpret all static fields as fields of this special node.

17E.g., consider the use of the pred function in the dataflow equations from Section 4.3.
18A detailed presentation of the SSA form is beyond the scope of this dissertation. The interested

reader should consult Reference [26] for more information on the SSA form.
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to by any of the variables vi; the other pieces of information that the analysis
maintains (e.g., inside edges) do not change.

Our prototype implementation (see Section 8.1) uses these optimizations to reduce
the size of the manipulated data. The remaining flow-sensitive pieces of information
are the set of inside edges and the set of globally escaped nodes.

More Flow-Insensitivity

An interesting question is whether an analysis that maintains flow-insensitive sets of
inside edges and globally escaped nodes can achieve similar precision and run much
faster. We experimented with a completely flow-insensitive version of our analy-
sis. This version computes a single points-to graph for each method and completely
disregards the control-flow information (e.g., the analysis computes the same result
for different permutations of the method instructions). We describe the completely
flow-insensitive analysis below and explain why it is much slower in practice than the
flow-sensitive analysis. We close this section by sketching an improved flow-insensitive
version of the analysis that computes a single points-to graph for each method, but
takes into account the control-flow graph. Due to time constraints, the implementa-
tion and evaluation of the improved flow-insensitive analysis is left for future work.

Completely Flow-Insensitive Analysis (CFIA): For each analyzed method m,
CFIA computes a single points-to graphG, such that the pair 〈◦A,A ◦ 〉 with ◦A(lb) =
A◦(lb) = G for any label lb from m, satisfies the Constraints 4.1. Equivalently, CFIA
computes a points-to graph G that satisfies the following constraints:

G w Gm
init

G w [[lb ]]a(G), ∀ label lb from m
(4.4)

The constraints for the control-flow join points, ◦A(lb) w ⊔{A◦(lb ′) | lb ′ ∈ pred(lb)},
∀lb , are trivially satisfied if ◦A(lb) = A◦(lb) = G, ∀lb . The control-flow graph of the
analyzed method m (i.e., the ordering of the instructions from m) is irrelevant for the
constraints above.

Intuitively, CFIA computes a particular solution for the flow-sensitive analysis,
where the points-to graphs for all program points inside m are equal to G. Therefore,
the flow-insensitive solution G satisfies the properties from Section 4.2.

The CFIA algorithm is the same as the algorithm for the flow-sensitive analysis
(see Section 4.5), except that it uses the same flow variable v for all program points
inside an analyzed method, i.e., vb

lb = va
lb = v, ∀lb .

Unfortunately, CFIA introduces data dependencies that force the constraint solver
to iterate even for loop-free methods. Every time the method-wide points-to graph
G changes, the constraint solver needs to re-evaluate all constraints.19 This prob-
lem persists even if the analysis represents data at sub-points-to graph granularity.

19Except the constraint for the beginning of the analyzed method m.
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1. Initialize G ← Gm
init.

2. Compute the strongly-connected components of m’s control-flow graph.

3. Examine the strongly-connected components in topological order, from
the beginning of the method toward the end. For each component scc ,

(a) If scc contains a single label lb , and there is no control-flow loop
arc from lb to lb , then update G ← G t [[lb ]]a(G).

(b) Otherwise, as long as there exists a label lb in scc such that
G t [[lb ]]a(G) A G, update G ← G t [[lb ]]a(G).

Figure 4-12: Sketch of an algorithm for the Improved Flow-Insensitive Analysis
(IFIA). For brevity, we present only the algorithm for the intra-procedural analy-
sis of a method m. If the method m invokes other methods, the algorithm from
Section 4.5.2 can serve as a top-level driver for the analysis, using the algorithm from
this figure in Step 3(c)ii.

Consider the case of a straight-line method containing two CALL instructions: the
transfer function for each CALL reads and updates the method-wide set of inside
edges. Therefore, the analysis needs to iterate the two (expensive) transfer functions
in order to reach a fixed-point that satisfies the flow-insensitive constraints. In con-
trast, the flow-sensitive analysis executes each transfer function exactly once: first
the transfer function for the first CALL, and next the transfer function for the sec-
ond CALL. In practice, CFIA behaved much slower than the flow-sensitive analysis,
prompting us to abandon CFIA as a viable idea.

Improved Flow-Insensitive Analysis (IFIA): As the CFIA algorithm, IFIA
computes a single points-to graph for each method. Unlike CFIA, IFIA uses the
control-flow graph of the analyzed method m to eliminate spurious data dependencies.

Figure 4-12 presents the sketch of an algorithm for IFIA. The key element of IFIA
is that it iterates only over the loops from the control-flow graph.

One can prove the existence of a solution 〈◦A,A ◦ 〉 for the flow-sensitive analysis
(i.e., Constraints 4.1) such that G w ◦A(lb) and G w A◦(lb), for any label lb inside
the analyzed method m.

Proof. Let scc1, scc2, . . . , scck be the strongly-connected components of m’s control-
flow graph, in the topological order the algorithm from Figure 4-12 explores them.
For each strongly-connected component scci, let Gi be the version of the points-
to graph G immediately after the algorithm processed scci. As G never decreases
during the algorithm, Gm

init v Gi v Gj, ∀i < j. For each label lb , let sccl be the
strongly-connected component that lb is an element of. Let ◦A(lb) = A◦(lb) = Gl.
This flow-sensitive solution satisfies Constraints 4.1: First, ◦A(entrym) = G0 w Gm

init.
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Second, ∀lb , lb ′ such that lb ′ ∈ pred(lb), lb ′ and lb belong to the strongly-connected
components scci, respectively sccj, such that i ≤ j. Therefore, A◦(lb ′) = Gi v ◦A(lb).
Third, A◦(lb) w [[lb ]]a(◦A(lb)), due to the termination condition of the Step 3b from
the algorithm in Figure 4-12.

Therefore, the flow-insensitive result G of the algorithm from Figure 4-12 is an
upper-approximation of a flow-sensitive solution. Hence, G satisfies the properties
from Section 4.2 (those properties remain valid for bigger points-to graphs).
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Chapter 5

Analysis Applications

This chapter presents two applications of our analysis: the stack allocation optimiza-
tion (Section 5.1) and the purity analysis (Section 5.2).

5.1 Stack Allocation Optimization

Java programs allocate all objects in a garbage-collected heap. This technique is
essential for Java’s type safety, provides an elegant programming model, and elimi-
nates hard-to-find programming bugs like dangling pointers. Unfortunately, garbage-
collection may incur a significant runtime overhead.

Our analysis detects allocation sites (i.e., NEW / ARRAY NEW instructions)
that allocate only captured objects. Captured objects are unreachable from outside
the enclosing method. When the method terminates, these objects become unreach-
able and can be deallocated. The compiler changes these allocation sites to allocate
memory from a stack. Our current implementation uses the execution stack, but a
different, dedicated stack can be used too. Allocating an object in a stack is very
cheap: it requires a simple adjustment of the stack pointer. When the method ter-
minates, the stack pointer returns to its original value and all objects stack allocated
inside the method are implicitly deallocated without any garbage-collection overhead.

The biggest advantage of the stack allocation optimization is the reduction of the
garbage-collection overhead. Additionally, we use the stack allocation optimization
as an empirical test of the correctness of our analysis design and implementation:
generally, incorrect stack allocation decisions result in severe, visible runtime errors.

Basic Stack Allocation Strategy

Consider a method m and let G = ◦A(exitm) be the points-to graph that the analysis
computes for the end of method m. In the basic stack allocation strategy, the compiler
examines the allocation instructions from the method m. Consider an allocation
instruction at label lb . If the corresponding inside node nI

lb ,0 is captured in G, i.e.,
¬e(G)(nI

lb ,0), the compiler changes the allocation instruction to allocate memory from
the stack.
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Correctness: Consider an activation (i.e., execution) A(m) of the method m. Let
o be one of the objects that A(m) allocates by executing the instruction from label
lb . As nI

lb ,0 is captured in G, by Part 1 of Property 4 on page 44, the object o is
captured in A(m). Therefore, after the end of A(m), o is unreachable from the entire
program. Hence, the lifetime of the object o is included in the lifetime of method m’s
stack frame. This fact ensures the safety of allocating the object o in method m’s
stack frame.

Use of Method Inlining for Enhancing the Stack Allocation Optimization

The compiler can significantly improve the effectiveness of stack allocation by using
method inlining. Inlining extends the lifetime of a method stack frame by merging
the method stack frame into the stack frame of the caller. Therefore, more objects
are likely to have their lifetime included in the lifetime of the stack frame.

With our previous notations, suppose nI
lb ,0 escapes from m, but is captured in

m2, one of m’s callers. In this case, the compiler can inline m in m2 and change
the inlined copy of the NEW instruction from label lb to allocate memory from the
stack. This technique performs only inlining that is potentially beneficial for the stack
allocation: e.g., if no inside node that escapes from m is captured in m2, the compiler
does not need to inline m into m2. This technique can be extended to arbitrarily long
call chains. The correctness argument is the same as in the case of the basic stack
allocation strategy: Property 4 on page 44 refers to all objects allocated inside A(m),
including those allocated by transitive callees of the method m.

Additional Practical Considerations

In the presence of stack allocation, the garbage collector scans stack allocated objects
as any other objects, but does not attempt to move or collect them. The garbage
collector can identify stack allocated objects by using a simple address-based mecha-
nism.

The largest potential drawback of stack allocation is that it may increase memory
consumption by extending the lifetime of the objects that are allocated on the stack.
This problem may be especially acute for the allocation sites that create a statically
unbounded number of objects, i.e., allocation sites inside statically unbounded loops.
To alleviate this problem, our implementation does not stack allocate allocation sites
inside loops and does not inline calls inside loops. Another solution, left for future
work, consists of extending the analysis to recognize loop-local objects.

5.2 Purity Analysis

The knowledge that a method is pure, or has no externally visible side-effects, is
important for several program understanding and verification tasks. Pure methods
can safely be invoked by program instrumentation code whose purpose is to “observe”
the execution of a program without changing the program semantics. Therefore, pure
methods can safely be used in program assertions and specifications [55, 10]. Similarly,
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pure methods can safely be invoked at runtime by invariant-detection tools [30] and by
specification-mining tools [27]. As an additional example, in program understanding
tools, local invariants about existing objects can be propagated over a call to a pure
method.

This section extends our pointer analysis from Chapter 4 to detect pure methods.
We refer to the extended analysis as the “purity analysis”. Section 5.2.1 explains how
our purity analysis detects pure methods. Section 5.2.2 explains additional informa-
tion that our purity analysis can compute for methods that are not pure.

5.2.1 Detection of Pure Methods

Our purity analysis supports a flexible definition of method purity:

Definition 5. A method is pure iff each execution of the method (1) does not per-
form I/O operations, (2) does not mutate any static field, and (3) does not mutate
any prestate object. A prestate object is an object allocated before the start of the
method. The execution of a method includes the execution of the instructions from
the transitive callees.

This is the same definition that is used in the Java Modeling Language (JML) [55].
This definition allows a pure method to allocate and mutate new objects. Hence, pure
methods can use common programming idioms like iterators. Pure methods can also
allocate, initialize, and return complex object structures.

Pure methods can allocate and throw exceptions. In Java, virtually every
instruction can throw an exception (e.g., each field dereference may throw a
NullPointerException). Hence, requiring pure methods not to throw any excep-
tion would result in a definition that is too strict to be useful.

Our purity analysis is conservative: if the analysis reports that a method is pure,
the method satisfies Definition 5. However, the analysis can report false negatives,
i.e., the analysis can fail to identify certain pure methods.

Challenges

Checking the absence of I/O operations and static field mutations is simple once we
have a static call graph.1 Therefore, this section focuses on the last condition from
Definition 5, the absence of mutations on prestate objects.

To detect mutations on prestate objects, the analysis needs to process store in-
structions of the form “v1.f = v2”. More specifically, the analysis needs to detect
whether v1 may point to a prestate object. Assuming that any assignment instruc-
tion may mutate a prestate object would prevent the analysis from detecting pure
methods that mutate newly-allocated objects.

1This does not imply that computing a static call graph for Java programs is an easy task; it is
not! However, the construction of static call graphs for Java programs is beyond the scope of this
thesis.
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Inter-procedurally, the analysis needs to propagate mutations from callees into
callers. A challenging fact is that objects that are prestate objects for the callee may
be new objects for the caller (i.e., the caller allocated those objects before invoking the
callees). Therefore, it is possible to have pure methods that invoke impure methods.
For example, the pure method sumX from Chapter 2 uses a newly-allocated iterator to
iterate over a list. The method that advances the iterator through the list is impure:
it mutates the iterator state to update the iterator position into the list.

Purity Analysis Overview

The key property that makes our pointer analysis suitable for purity analysis is the
fact that inside nodes are guaranteed to model only new objects, i.e., objects al-
located in the current execution of the analyzed method (Property 3 on page 44).
Additionally, the pointer analysis computes conservative points-to information: as-
sume that the local variable v1 points to the object o before a store instruction of the
form “v1.f = v2”. Then, in the points-to graph that the analysis computes for that
program point, v1 points to at least one node that models the object o (Property 1 on
page 44).

Intra-procedurally, our purity analysis uses the points-to information to collect
the set of non-inside nodes that are mutated by store instructions. Inter-procedurally,
our purity analysis uses the inter-procedural node map to project mutations from the
callee into the caller; the purity analysis ignores the inside nodes from the projected
set of mutated nodes. To detect pure methods, the purity analysis checks the absence
of mutations on non-inside nodes.

Technical Details

We extend the points-to graphs with a new component, a set of mutated abstract
fields. An abstract field is a field of a specific node, i.e., a pair of the form 〈n, f〉.
The abstract field 〈n, f〉 records a mutation on the field f of an object modeled by the
node n. Because our analysis studies only mutations on prestate objects, it considers
only abstract fields of non-inside nodes. Formally,

G ∈ PTGraph = { 〈L :J, I, O, E, R, W〉 | L :J ∈ AStack ,
I ∈ IEdges , O ∈ OEdges , E,R ∈ P(Node),
W ∈ P(AbstrField) }

AbstrField = (CNode \ CINode)× Field

To check whether a method is pure, the analysis checks that: (1) the set of mutated
abstract fields is empty at the end of the method, and (2) the method does not
transitively contain any unanalyzable CALL. The analysis uses the static call graph
to check condition (2).

Discussion: Our purity analysis uses sets of abstract fields for the following reasons:
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• An analysis that uses just a boolean flag pure/impure has to assume that the
caller of an impure method is impure itself. This choice is sometimes too con-
servative. For example, it would prevent our analysis from detecting the pure
method sumX in the example from Chapter 2.

Instead, our analysis keeps track of the mutated nodes. The inter-procedural
analysis may discover that a parameter/load node from the callee represents
only inside nodes from the caller. In this case, the analysis of the caller ignores
the mutations that the callee performs on the parameter/load node.

• Using abstract fields instead of nodes does not gain any precision in the purity
analysis. However, recording the mutated field(s) for each node is useful for
other purposes, such as generating informative messages about why the analysis
considers a method impure (see Section 5.2.2).

Intra-procedural Analysis: We update the transfer functions from Figure 4-3 to
maintain the set of mutated abstract fields. In the case of a STORE instruction “v1.f
= v2” at label lb , the updated transfer function records the mutation of the field f of
all non-inside nodes pointed to by v1:

[[lb ]](〈L :J, I, O, E, R, W〉) =

〈L :J, I ′, O, E, R, W ∪ ((L(v1) \ CINode)× {f})〉

The underlined parts of the formula above correspond to the new elements on top of
the plain pointer analysis from Chapter 4. As in the plain pointer analysis, if f is a
field of object type, then I ′ = I ∪ (L(v1)× {f} × L(v2)). Otherwise, I ′ = I.

The other intra-procedural transfer functions simply propagate the set of mutated
abstract fields unchanged.

Inter-procedural Analysis: We update the inter-procedural analysis to propa-
gate the mutations from the callee into the caller. Figure 5-1 presents the updated
definition of the function interproc. The set of mutated abstract fields for the pro-
gram point after the CALL contains (1) the abstract fields mutated before the CALL
(i.e., the abstract fields from the set W), and (2) the mutated abstract fields from
the callee, projected through the inter-procedural node map µa. The purity analysis
“filters out” the projected abstract fields that refer to inside nodes.

Optimization: As presented above, the purity analysis maintains the sets of mu-
tated abstract fields flow-sensitively: there is one such set for each program point.
However, for each method m, the purity analysis uses only the set of modified abstract
fields for the end of the method. The analysis uses that set for two purposes: (1) to
detect the absence of prestate mutation (i.e., method purity), and (2) to propagate
m’s mutations to m’s callers. Therefore, it suffices to maintain only one set Wm of
mutated abstract fields for each method m. With this modification the analysis of
STORE/CALL instructions adds each new mutated abstract fields directly to Wm .
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interproc: PTGrapha × PTGrapha × Instruction → PTGrapha

interproc(G, Gcallee , “vR = v0.s(v1, . . . , vj)”) =

let 〈L : [], I, O, E, R, W〉 = G

〈Tcallee , Rcallee ,Wcallee〉 = summary(τ(gc(ρ(Gcallee))))

µ0 = {〈n, n〉 | n ∈ CINode ∪ G} ∪
(⋃k

i=0{nP
i,1} × L(vi)

)

〈Ia, Oa, Ea, µa〉 = Tcallee(I, O, E, µ0)

La = L [vR 7→ µa(Rcallee)]

Wa = W ∪ ⋃
〈n,f〉∈Wcallee

(µa(n) \ CINode)× {f} in

α0(〈La : [], Ia, Oa, Ea, ∅, Wa〉)
summary : PTGraph → IPTransformer × P(CNode)

summary(Gcallee = 〈 , , , , Rcallee ,Wcallee〉) = 〈mct(Gcallee), Rcallee , Wcallee〉

Figure 5-1: Updated definition of interproc for the purity analysis. We underline the
most significant addition, the equation for computing Wa.

5.2.2 Additional Results of the Purity Analysis

For the impure methods,2 our purity analysis can compute information that allows the
programmer to bound the side-effects of the method. Unlike the stack allocation opti-
mization and the detection of the pure methods, the additional information described
in this section is unsound. Therefore, it can be used for program understanding and
debugging tasks, but not for program optimizations.

Informative Messages

The programmer may benefit from knowing why the analysis considers a method
impure. Generating an informative message for a method that transitively executes
an I/O operation or contains an unanalyzable CALL is simple. Generating informa-
tive messages for mutated abstract fields is more complex. Simply reporting that a
load node is mutated is not informative, because a load node is an internal analysis
abstraction. Instead, our analysis generates a regular expression that models heap
paths that start in the method parameters and end in potentially mutated prestate
locations. This task is facilitated by the fact that our analysis uses outside edges to
keep track of the references read from escaped objects.

Example 4. Figure 5-2.a presents the code of the method Main.sumX from Chapter 2-
1, modified to mutate the x field of each point from the list. Figure 5-2.b presents

2The impure methods are those methods that are not pure.
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47 class Main {

58 static float sumX(List list) {

59 float s = 0;

50 Iterator it = list.iterator();

51 while(it.hasNext()) {

52 Point p = (Point) it.next();

53 s += p.x; p.x = 0;

54 }

55 return s;

56 }

...

}

a. Modified code: added mutation
“p.x = 0” in line 53
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b. Points-to graph for the end of the method
Main.sumX. For brevity, we ignore the node con-
texts: they are all 0.

Figure 5-2: Example for the generation of regular expressions.

the points-to graph for the end of the modified method. Notice that the method
sumX is no longer pure, due to the mutation of the abstract field 〈nL

34, x〉. The load
node nL

34 models objects read from the parameter list, along paths modeled by the
outside edges. The paths of outside edges from the only parameter node nP

0 to the
mutated node nL

34 are described by the regular expression head.next*.data. Our
analysis reports that Main.sumX may mutate the locations reachable along the heap
path list.head.next*.data.x. 4

Technically, let G be the points-to graph for the end of a method m. First, the
analysis constructs a finite state automaton with the following states: (1) all the
nodes from G, (2) an initial state s, and (3) an accepting state t. Each outside edge
from G generates a transition in G, labeled with the field of the outside edge. For
each parameter, the analysis adds a transition from s to the corresponding parameter
node, and labels it with the parameter name. For each mutated abstract field 〈n, f〉,
the analysis adds a transition from n to the accepting state t, and labels it with
the field f. Next, the analysis converts the finite state automaton into a regular
expression [74], and reports the regular expression to the user.

Read-Only Parameters

Another possibility of bounding the side-effects of an impure method is to identify
read-only method parameters. The read-only parameters of a method m have the
property that the method m mutates only prestate objects that are reachable from
the other (non-read-only) parameters or from the static fields.

Example 5. Consider the method put of the class java.util.HashMap (a hash-
based implementation of an association map, from the Java standard library). The
method put has the signature:

Object put(Object key, Object value);
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class C {

C f;

}

1 static void m(C p0, C p1, C p2) {

2 p1.f = p0;

3 v = p2.f;

4 v.f = null;

5 }

a. Sample code

p0 p1 p2

f

fv

W = {〈nP

1
, f〉, 〈nL

3
, f〉}

n
P

0
n

P

1
n

P

2

n
L

3

b. Points-to graph for the end of the method m.
For brevity, we ignore the node contexts; they
are all 0.

Figure 5-3: Example of the unsoundness of the read-only parameter detection.

The method put is impure: it mutates its receiver object (the map), to store the asso-
ciation between key and value. However, it does not mutate the objects transitively
reachable from the parameters key and value. Hence, the parameters key and value

are read-only. The implicit parameter this is not read-only. 4
Consider a method m. The analysis detects the read-only parameters of m as

follows. Let G = 〈J, I, O,E,R,W〉 be the points-to graph for the end of m. For each
parameter p of m, the analysis computes the set Sp of nodes transitively and reflexively
reachable from the corresponding parameter node, along outside edges from O. p is
a read-only parameter if any node n ∈ Sp satisfies the following conditions:

1. n is not mutated: ∀f ∈ Field . 〈n, f〉 6∈ W.

2. n is not transitively and reflexively reachable from a directly globally escaped
node from E∪{nGBL,0}, along inside and outside edges from I∪O. The nodes E∪
{nGBL,0} model objects that are potentially reachable from outside the analysis
scope (e.g., from an unanalyzable callee). All objects transitively reachable
from these objects may by mutated.

The next example illustrates a situation when the above algorithm for detecting
read-only parameters is unsound.

Example 6. Consider the code from Figure 5-3.a. The method m has three parame-
ters of class C. First, m creates a reference from its second parameter to the first one:
p1.f = p0. Next, m reads the field f of the third parameter and mutates the result-
ing object. Figure 5-3.b presents the points-to graph for the end of m. There are no
outside edges starting in the parameter node nP

0 ; hence Sp0 = {nP
0 }. The parameter

nP
0 is not mutated and does not escape globally. Therefore, the analysis reports that

p0 is a read-only parameter. The other two parameters are not read-only, due to the
mutations on the nodes nP

1 and nL
3 .

Consider the following invocation of the method m:
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v1 = new C(); v2 = new C();

m(v1, v2, v2);

Notice that the last two parameters of m point to the same object. The only object
transitively reachable from the first parameter is unreachable from the other two (not
read-only) parameters. However, this invocation of m does mutate the object pointed
to by v1! As the parameters p1 and p2 point to the same object, the reference read
in line 3 is the reference created in line 2, i.e., v points to the object pointed to by
the “read-only” parameter p0. In the points-to graph from Figure 5-3.b, the mutated
load node nL

3 may represent the same object as the parameter node nP
0 . 4

There are two reasons for the unsoundness from the previous example:

1. The method creates a new reference toward the object pointed to by the “read-
only” parameter p0. Due to this reference, the object pointed to p0 becomes
reachable from the non-read-only parameters.

2. More importantly, in our analysis, the same escaped object may be represented
by several nodes. E.g., the two parameter nodes nP

0 and nP
1 model the same

object. As a consequence, the analysis does not detect that the load instruction
from line 3 reads the reference created by the instruction from line 2.

Assuming maximal aliasing between objects transitively pointed to parame-
ters leads to results that are too conservative to be useful. For example, for
the method put of java.util.HashMap, assuming that the key and the value
objects are identical to the map object3 leads to the (useless) result that no
parameter of put is read-only.

It is possible to strengthen the conditions for read-only parameters in order to
prevent the unsoundness from Example 6. For example, the analysis can require
that no node transitively reachable from a read-only parameter is the target of an
inside edge (i.e., a new reference). Unfortunately, such additional conditions may
prevent the analysis from detecting genuine read-only parameters in common cases.
For example, consider the following setter method:

void setF(C a) { this.f = a; }

The parameter a is read-only, in spite of the new reference to the object that a points
to.

As stronger conditions complicate the analysis, decrease its precision (as in the
setter method example), and are not covered by the correctness proof from Chapter 6,
we prefer the current unsound algorithm for read-only parameter detection.

3Perfectly possible from a type point of view, as the declared type of both the key and the value
parameters is Object.
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Chapter 6

Correctness Proof

This chapter formalizes and proves correct the properties of the points-to graphs that
the pointer analysis computes. We introduced these properties, in an informal style,
in Section 4.2. This chapter considers the pointer analysis from Chapter 4 with the
modifications for the purity analysis from Section 5.2.1 The analysis properties from
this chapter imply the correctness of the stack allocation optimization (Section 5.1)
and the correctness of the detection of pure methods (Section 5.2.1).

Proof Outline: We present our correctness proof in the context of SmallJava−, a
subset of the analyzed language SmallJava (see Section 3.2). SmallJava− has all the
features of SmallJava, but does not support arrays. We define a concrete semantics
that describes the precise execution of SmallJava− programs. The concrete semantics
allows us to formalize the desired properties of the points-to graphs that the analysis
computes.

To compensate for the big difference between the concrete semantics and the
pointer analysis, we introduce an intermediate layer, the abstract semantics. Given
a program trace, the abstract semantics computes a points-to graph for each “inter-
esting” date2 from the program execution. The abstract semantics uses almost the
same transfer functions as the analysis. However, unlike the analysis, the abstract
semantics “steps into” the called methods: when it encounters an analyzable CALL,
the abstract semantics processes all instructions from the callee, one by one, instead
of using a method summary. Additionally, for each interesting date, the abstract
semantics explicitly constructs a modeling relation between nodes and objects.

First, we prove that the points-to graphs that the abstract semantics constructs
satisfy properties that are even stronger than those from Section 4.2. Next, we prove
that the pointer analysis conservatively approximates the abstract semantics: the
points-to graphs that the analysis computes are bigger than the points-to graphs that
the abstract semantics computes. Intuitively, as the properties from Section 4.2 are
monotonic (i.e., they remain true for bigger points-to graphs), the combination of

1In particular, each points-to graph contains a set of mutated abstract fields.
2We explain later in this chapter what an “interesting date” is.
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the two steps proves that the points-to graphs that the analysis computes satisfy the
desired properties from Section 4.2.

Chapter Outline: First, Section 6.1 presents the concrete semantics of SmallJava−.
Section 6.2 introduces several auxiliary definitions on top of the operational seman-
tics. Section 6.3 uses the concrete semantics and the auxiliary definitions to formalize
the desired properties of the points-to graphs that the pointer analysis computes.
Section 6.4 introduces the abstract semantics. Section 6.5 lists several properties of
the points-to graphs that the abstract semantics computes. These properties are even
stronger than those from Section 6.3. Finally, Section 6.6 proves that the pointer anal-
ysis is more conservative than the abstract semantics and that the analysis properties
from Section 6.3 are valid.

6.1 Concrete Semantics of SmallJava−

SmallJava− has all the features of SmallJava, but does not support arrays. In particu-
lar, SmallJava− has all the instructions of SmallJava, except NEW ARRAY, ARRAY
LOAD, and ARRAY STORE. The concrete semantics describes the precise execution
of SmallJava− programs. Our concrete semantics is an operational semantics, similar
to the semantics from References [68, 8].

Program States: Figure 6-1 presents the sets and notations for the concrete se-
mantics. A program state is a tuple Ξ = 〈A,H, S,TY 〉:
• The thread agenda A ∈ ThreadAgenda maintains the state of the different

threads of execution from the program.

• The heap H ∈ Heap maintains references between objects.

• The static field state S maintains the values of the static fields.

• The type function TY ∈ OTypes assigns to each object its type (i.e., class).
The concrete semantics uses TY to handle virtual method calls.

Each time the program executes a NEW instruction, it creates a new, fresh object
o ∈ Object . There are two special objects: onull (that models the null pointers) and
omain (explained later). The heap H is a curried function: for a given object o1 and
a given field f, o2 = H(o1)(f) is the object that the field f of o1 points to. H is a
partial function: H(o1)(f) is undefined for a (currently) nonexistent object o1, or for a
nonexistent field f. For convenience, we often use the notation 〈o1, f, o2〉 ∈ H instead
of H(o1)(f) = o2. For any o1, f, there is at most one object o2 such that 〈o1, f, o2〉 ∈ H.
In our text, we write that 〈o1, f, o2〉 ∈ H is a “heap reference.”

The thread agenda A maps a thread identifier t to the stack that represents the
local state of the corresponding thread. The identifier of a thread is the thread object
itself. The identifier of the main thread is the dummy object omain ∈ Object =
ThreadId .
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Ξ ∈ State = ThreadAgenda × Heap × Static ×OTypes

o ∈ Object = {onull, omain , o0, o1, . . .}
A ∈ ThreadAgenda = ThreadId → JavaStack

t ∈ ThreadId = Object

K ∈ JavaStack = list of (LocVar × Label)

V ∈ LocVar = Var → Object ; Vall−null = λv. onull

lb ∈ Label = Method × Address

H ∈ Heap = Object → Field → Object

S ∈ Static = Class × Field → Object ; Sall−null = λ〈C, f〉. onull

TY ∈ OTypes = Object → Class

T ∈ Trace = Date → State

d ∈ Date = N
getMeth : MethodName × Class → Method

Figure 6-1: Sets and notations for the concrete semantics. Additionally, we continue
to use the definitions from Section 3.2 (see Figure 3-1 on page 34).

The stack K of a thread t is a list of stack frames, one for each method from the
current call chain in thread t. A stack frame contains the state of the local variables
for the corresponding method and the current address inside that method. The state
V of the local variables attaches to a local variable v the object o = V(v) that v
points to. At the beginning of a method, each local variable points to onull, except
the formal parameters that point to the actual argument objects. In the special local
variable state Vall−null, all local variables point to onull.

The state S of the static fields maps each static field (represented as a pair of the
declaring class and the actual field) to the object it points to. In the special static
field state Sall−null, each static field points to onull.

Program Traces: A concrete execution trace T of a program is a series of states,
indexed by date. The concrete semantics uses a discreet time model: a date is a
natural number, Date = N.

Any trace T starts with the initial state Ξ0. The stack of the unique thread from
Ξ0 contains a single frame for the main method mmain . For simplicity, we assume
that mmain does not have any parameter, i.e., all parameters are hard-coded into the
program. Formally,

Ξ0 = 〈 { omain 7→ [〈Vall−null, 〈mmain , 0〉〉] }, {}, Sall−null, {} 〉

83



Instruction P (lb) Transition

COPY
v1 = v2

〈A [t 7→ 〈V, lb〉 :K] ,H, S,TY 〉 ⇒
〈A [t 7→ 〈V [v1 7→ V(v2)], next(lb)〉 :K] ,H, S,TY 〉

NEW
v = new C

〈A [t 7→ 〈V, lb〉 :K] ,H, S,TY 〉 ⇒
〈A [t 7→ 〈V [v 7→ o], next(lb)〉 :K] ,H2, S,TY 2〉

where o is a fresh object,
H2 = H

[
o 7→ {f 7→ onull}f∈fields(C)

]
and

TY 2 = TY [o 7→ C]

NULLIFY
v = null

〈A [t 7→ 〈V, lb〉 :K] ,H, S,TY 〉 ⇒
〈A [t 7→ 〈V [v 7→ onull], next(lb)〉 :K] ,H, S,TY 〉

STORE
v1.f = v2

〈A [t 7→ 〈V, lb〉 :K] ,H, S,TY 〉 ⇒
〈A [t 7→ 〈V, next(lb)〉 :K] ,H2, S,TY 〉

where H2 = H [V(v1) 7→ H(V(v1)) [f 7→ V(v2)]]

STATIC STORE
C.f = v

〈A [t 7→ 〈V, lb〉 :K] ,H, S,TY 〉 ⇒
〈A [t 7→ 〈V, next(lb)〉 :K] ,H, S [〈C, f〉 7→ V(v)] ,TY 〉

LOAD
v2 = v1.f

〈A [t 7→ 〈V, lb〉 :K] ,H, S,TY 〉 ⇒
〈A [t 7→ 〈V [v2 7→ H(V(v1))(f)], next(lb)〉 :K] ,H, S,TY 〉

STATIC LOAD
v = C.f

〈A [t 7→ 〈V, lb〉 :K] ,H, S,TY 〉 ⇒
〈A [t 7→ 〈V [v 7→ S(C, f)], next(lb)〉 :K] ,H, S,TY 〉

IF
if (. . .) goto at

〈A [t 7→ 〈V, lb〉 :K] ,H, S,TY 〉 ⇒
〈A [t 7→ 〈V, lb2〉 :K] ,H, S,TY 〉

where lb = 〈m, a〉 and

lb2 =

{ 〈m, at〉 if the condition is true
next(lb) otherwise

THREAD START
start v

〈A [t 7→ 〈V, lb〉 :K] ,H, S,TY 〉 ⇒
〈A [t 7→ 〈V, next(lb)〉 :K] [V(v) 7→ Kstartee ] ,H, S,TY 〉

where startee = getMeth(“run”,TY (V(v)))
Kstartee = [〈Vall−null [p0 7→ V(v)], 〈startee, 0〉〉]

NOP
nop

〈A [t 7→ 〈V, lb〉 :K] ,H, S,TY 〉 ⇒
〈A [t 7→ 〈V, next(lb)〉 :K],H, S,TY 〉

Figure 6-2: Transition relation “⇒” for the concrete semantics - Part 1 of 2. P (lb) is
the instruction that the concrete semantics executes in the current transition. next(lb)
is the label immediately after label lb : next(〈m, a〉) = 〈m, a + 1〉 (see Figure 3-1).
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Instruction P (lb) Transition

CALL
vR = v0.s(v1, . . . , vj)

〈A [t 7→ 〈V, lb〉 :K] ,H, S,TY 〉 ⇒
〈A [t 7→ 〈Vcallee , 〈callee, 0〉〉 :〈V, lb〉 :K] ,H, S,TY 〉

where callee = getMeth(s,TY (V(v0)))
Vcallee = Vall−null [pi 7→ V(vi)]0≤i≤j

(A method of arity k has formal parameters
p0, p1, . . . pk−1.)

RETURN
return v

〈A [t 7→ 〈Vcallee , lb〉 :〈V, lb2〉 :K] ,H, S,TY 〉 ⇒
〈A [t 7→ 〈V [vR 7→ Vcallee(v)], next(lb2)〉 :K] ,H, S,TY 〉

where vR is the variable that stores the result of
the corresponding CALL (located at label lb2)

〈A [t 7→ [〈V, lb〉]] ,H, S,TY 〉 ⇒ 〈A,H, S,TY 〉

Figure 6-3: Transition relation “⇒” for the concrete semantics - Part 2 of 2 (continued
from Figure 6-2).

All local variables of the main method have null value. Similarly, all static fields
have null value. The current label for the main thread is the first label inside the
main method, i.e., 〈mmain , 0〉. As no object has been created yet, the initial heap and
object type function are not defined for any object.

Concrete Transitions: Figures 6-2 and 6-3 present the transition relation “⇒” for
the concrete semantics. In each step, the concrete semantics non-deterministically
selects a thread t from the thread agenda and executes its current instruction. If
the stack of thread t is K = 〈V, lb〉 : Ktail , then the concrete semantics executes
the instruction P (lb) from label lb . Most of the instructions do not require any
explanation. In spite of the hairy notation, the transition for a STORE instruction
“v1.f = v2” simply updates the heap to make H(o1)(f) = o2 where o1 = V(v1) and
o2 = V(v2). It does not change the value of H for other combinations of locations
and fields.

Normally, the transition for a RETURN instruction pops the topmost stack frame
and passes the returned value into the caller. If there is no caller stack frame (i.e.,
if Ktail is empty), then the program executes a RETURN from the “root” method of
the thread t. In this case, the concrete semantics removes t from the thread agenda
and ignores the returned value.

The transition for a CALL instruction invokes the method named s of the receiver
object o = V(v0). The concrete semantics retrieves the class of o, C = TY (o),
and uses the auxiliary function getMeth to obtain the appropriate method: callee =
getMeth(s,C). We provide only an informal definition of getMeth: if class C defines
a method names s, then getMeth(C, s) returns that method. Otherwise, getMeth
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searches into C’s superclass, next into the superclass of the superclass, etc., until it
finds a method named s.

Discussion: The concrete semantics of SmallJava− performs several simplifications
over the semantics of Java:

• The concrete semantics of SmallJava− does not handle the execution errors: e.g.,
it does not prevent the program from jumping to an invalid address, nor from
writing a field of the object onull. We consider only programs that avoid these
situations with the help of (1) simple static checks (e.g., for detecting invalid
jumps), and (2) explicit dynamic checks before each potentially “problematic”
instruction (e.g., null-pointer checks before reading/writing an object field).
Our analysis implementation uses an intermediate program representation that
satisfies these conditions (see the “Exceptions” paragraph in Section 8.1.2 on
page 119).

• The concrete semantics of SmallJava− uses the sequential consistency memory
model [51]: the memory actions appear to execute one at a time in a single total
order; the actions of each thread appear in this total order in the same order
in which they appear in the program source code. Java uses a weaker consis-
tency model. However, according to the most recent Java memory model [63]
“correct programs are those that are data-race-free; such programs are guaran-
teed sequential consistency.” We are not aware of any rigorous pointer analysis
correctness proof that considers a weak consistency memory model; in fact, we
are not aware of any such proof that explicitly considers threads.

• SmallJava− has no synchronization instructions; equivalently, the concrete se-
mantics treats each such instruction as a NOP. The schedulings that the concrete
semantics allows are a superset of the possible schedulings in the presence of
synchronization instructions. Therefore, our results remain valid in the presence
of synchronization instructions.

6.2 Auxiliary Definitions

When we presented the intended meaning of the analysis results in Section 4.2, we
used several informally defined concepts: “method activation A(m)”, “objects reach-
able from outside A(m)”, etc. This section formalizes these concepts.

6.2.1 Method Activation and Interesting Dates

Consider a method m. During the analysis of method m, the analysis scope consists
of the method m and the methods it transitively invokes using analyzable CALLs.

An activation A(m) of a method m is an execution of the analysis scope for m.
There can be multiple activations of m in a program execution. We identify a method
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1 class C {

2 C a() {

3 nop;

4 v = this.b();

5 return v;

6 }

7 C b() {

8 v = this.c();

9 return v;

10 }

11 C c() {

12 return this;

13 }

14 }
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Figure 6-4: Sample program execution. An activation of method a starts at date 10,
in thread t. We represent a program state by the height of the stack from thread t,
and the current label in the top-most method in t: this is the label of the instruction
that the thread t executes the next time t is scheduled. E.g., at date 11, the thread
t has a stack of height 2, and the current label in its top-most method is 4.

activation by the date when its first instruction starts executing. Detecting the in-
structions from an activation A(m) is non-trivial because of the possible interleavings
with other threads. For each activation A(m), the list IDA(m) of interesting dates is
the list of the dates when A(m) starts and finishes executing an instruction. We use
the following notation:

IDA(m) = [id0, . . . , id2i, id2i+1, . . .]

The list IDA(m) can be infinite, for non-terminating activations. A(m) executes an
instruction from date id2i to date id2i+1. Usually, id2i+1 = id2i + 1, except for the
case when the executed instruction is an unanalyzable CALL; in this case, id2i+1

is the date when the matching RETURN terminates (A(m) does not contain the
instructions of the methods transitively invoked by an unanalyzable CALL). Between
id2i+1 and id2(i+1), the program executes only instructions from other threads.

Example 7. Consider the program fragment from Figure 6-4.a; the code does not
compute anything interesting, we use it only to illustrate method activations and
interesting dates. Figure 6-4.b presents a possible program execution where method
a starts executing at date 10, in thread t. Let A(a) be the activation of method a

that starts at date 10. The activation A(a) invokes the methods b and c, terminates
at date 35, and is interleaved with instructions from other threads.

First, assume that all CALLs from the example are analyzable. In this case, the
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activation A(a) that starts at date 10 has the following interesting dates:

IDA(a) = [10, 11, 11, 12, 20, 21, 32, 33, 33, 34, 34, 35]

The activation A(a) executes its first instruction between the dates 10 and 11. A(a)
executes its second instruction between the dates 11 and 12. The date 11 appears
twice in the list of interesting dates: once as the termination date for the first in-
struction and once as the starting date for the second one. No instruction from other
threads executes between the first two instructions of A(a). The RETURN executed
in the transition between the dates 32 and 33 matches the CALL executed by A(a)

Next, assume that the CALL from line 4 (executed at date 11) is unanalyzable.
In this case, A(a) does not contain the instructions executed between the CALL to b

and the corresponding RETURN; accordingly,

IDA(a) = [10, 11, 11, 34, 34, 35]

Notice that the successor of the second occurrence of 11 is 34, the date when the
program returns from b: 34 is the earliest date strictly after 11 when the stack of the
thread t has the same height (2) as at date 11. The RETURN instruction executed
at date 34 terminates the activation A(a): at date 35 the stack of thread t is shorter
than at date 10 (the beginning of A(a)). The current label inside t at date 35 is the
current label inside a’s caller; Figure 6-4.b uses the symbolic label exita for the end
of the method a. 4

Technically, we use the following definition:

Definition 6 (Interesting dates for A(m)). Consider a concrete execution trace
Ξ0 ⇒ Ξ1 ⇒ . . . and a method m. Let d0 be a date such that the transition Ξd0 ⇒ Ξd0+1

executes the first instruction of m (i.e., the instruction from label 〈m, 0〉), in a thread t.
Then, the list IDA(m) = [id0, . . . , id2i, id2i+1, . . .] of interesting dates for the activation
A(m) that starts at date d0 is the list constructed by the following algorithm:

1. Set id0 = d0 and initialize a counter i: i← 0.

2. Define id2i+1 by a case analysis on the instruction executed by thread t at date
id2i:

• Unanalyzable CALL: id2i+1 is the earliest date d > id2i such that the stack
for thread t has the same height at date d as at date id 2i (this is the date
when the matching RETURN terminates). If such a date does not exist
(i.e., if the callee does not terminate), then stop.

• Otherwise: id2i+1 = id2i + 1.

3. If the stack of thread t has smaller height at date id 2i+1 than at date d0, then
stop. This case occurs when the instruction executed at date id 2i is the RETURN
that terminates A(m).
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Otherwise, let id2(i+1) be the earliest date d ≥ id2i+1 when the thread t starts
executing an instruction. If no such date exists (e.g., because the thread t is
never re-scheduled for execution), stop.

Repeat from step 2 with i← i+ 1.

6.2.2 Intra-procedural Dates for a Method Activation

Some of the interesting dates for A(m) may correspond to the execution of instruc-
tions from the callees of m, not from m; e.g., in Example 7, the interesting date 20
from IDA(a) corresponds to the execution of an instruction from b, not from a. The
intra-procedural dates are those interesting dates that correspond to the execution of
instructions from the execution of m that is the “root” of A(m).

The intra-procedural dates are important to our proof because the analysis of
the method m constructs points-to graphs for the program points inside m. These
points-to graphs model the concrete program states at the intra-procedural dates.

Example 8. Consider the activation A(a) from Example 7. The list of intra-procedural
dates for A(a) is IPA(a) = [10, 11, 11, 34, 34, 35]. 4

The following definition identifies the intra-procedural dates by using the height
of the stack of the thread t, the thread where the activation A(m) takes place:

Definition 7 (Intra-procedural dates). Consider a program trace, a method m,
and a method activation A(m) that takes place in thread t. The list IPA(m) of intra-
procedural dates for A(m)

IPA(m) = [ip0, . . . , ip2i, ip2i+1, . . .]

is the list obtained by preserving from IDA(m) only the dates when the height of t’s
stack is smaller or equal to the height of t’s stack at date id 0 (the beginning of A(m)).

For each intra-procedural date ip2i, either a CALL instruction from m starts at
ip2i and the corresponding RETURN terminates at ip2i+1 or the transition from ip2i

to ip2i+1 executes an instruction other than a CALL.3 Between ip2i+1 and ip2(i+1),
the program executes only instructions from other threads.

Definition 7 uses “smaller or equal” instead of “equal” to handle the case when
A(m) terminates. In this case, the last interesting date dfinal ∈ IDA(m) corresponds
to the end of the RETURN instruction that terminates A(m). At date dfinal , the
height of t’s stack is strictly smaller than at the beginning of A(m) (e.g., see date
35 in Example 7). We want to include dfinal in IPA(m): the points-to graph that the
analysis constructs for the program point before exitm models the program state at
date dfinal .

3Proof sketch: Obviously, id0 ∈ IPA(m). Let id2i ∈ IDA(m) that appears in IPA(m). If the
instruction executed at id2i, is not a CALL, then id2i+1 appears in IPA(m) too (because non-CALL
instructions do not increase the stack height). If the instruction executed at id2i is a CALL, then
the next intra-procedural date in IPA(m) is the date id2j+1 when the corresponding RETURN
terminates (in between, the stack is strictly taller than at date id0).
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6.2.3 Escaped Objects

Intuitively, an object is reachable if (1) it is pointed to by a local variables or a static
field, or (2) it is reachable along heap edges from another reachable objects. Formally,

Definition 8 (Reachable objects in a concrete state). Given a concrete state
Ξ ∈ State, RObjs(Ξ), the set of reachable objects in state Ξ, is the least fixed point4

of the following constraints:

Ξ = 〈A [t 7→ K1@(〈V [v 7→ o], lb〉 :K2)] , H, S, TY 〉
o ∈ RObjs(Ξ)

(6.1)

Ξ = 〈A, H, S [〈C, f〉 7→ o] , TY 〉
o ∈ RObjs(Ξ)

(6.2)

Ξ = 〈A,H,TY 〉 〈o1, f, o2〉 ∈ H o1 ∈ RObjs(Ξ)
o2 ∈ RObjs(Ξ)

(6.3)

Definition 9. Consider a trace T and an activation A(m) in thread t. Let Ξd be
the program state at date d. outsideA(m)(Ξd) is a state that is almost identical to Ξd,
but without the stack frames corresponding to methods from A(m). More precisely, in
outsideA(m)(Ξd), the stack of the thread t contains only the stack frames below5 the first
stack frame of A(m) and the stack frames above the first stack frame corresponding
to a method that executes an unanalyzable CALL, if any.

Example 9. Consider the code and the program execution from Example 7, with the
graphic representation from Figure 6-4. Let A(a) be the activation of the method a

that starts at date 10, and assume that the call to method b in line 4 is unanalyzable.
In the state Ξ21 at date 21, the stack of the thread t has the form

[ 〈V4, 12〉, 〈V3, 8〉, 〈V2, 4〉 , 〈V1, lb1〉 ]

The leftmost element is the stack top, and the rightmost element is the stack bottom.
The four stack frames correspond to the following methods (in left-to-right order):
c, b, a, and the caller of a. Before the start of A(a), the stack of thread t had only
one stack frame 〈V1, lb1〉. The framed stack frame is the only one corresponding to
methods from A(a). In the state outsideA(a)(Ξ21), the stack of the thread t is

[ 〈V4, 12〉, 〈V3, 8〉, 〈V1, lb1〉 ]

outsideA(a)(Ξ12) preserves the stack frame for the caller of a. As the call to method
b in line 4 is unanalyzable, outsideA(a)(Ξ12) also preserves the stack frames for the
methods b and c. 4

Intuitively, outsideA(m)(Ξd) contains the stack frames corresponding to the code
“outside” the analysis scope for method m. The state outsideA(m)(Ξd) is an artifact
for our proof; it is not the result of a valid execution.

4Over the usual ordering for set: set inclusion.
5“Below” and “above” are relative to our convention that a call stack grows up.
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Definition 10 (Escaped objects). Consider a trace T, an activation A(m) in
thread t, and a date d. The object o escapes from A(m) at date d iff o ∈
RObjs(outsideA(m)(Ξd)). The object o is captured in A(m) iff o does not escape
from A(m).

6.2.4 Additional Definitions

Consider an activation A(m) of a method m. Let t be the thread where A(m) takes
place. For each date d ∈ Date, let 〈Vd , lbd〉 be the top frame from the stack of the
thread t. I.e., Vd is the state of the local variables for the top method from thread t,
at date d. If d is an even-numbered interesting date d = id2i ∈ IDA(m), then P (lbid2i

)
is the instruction that is executed in the transition Ξid2i

⇒ Ξid2i+1.

Definition 11 (Objects allocated by A(m)). For each date d ∈ Date, Allocs
A(m)
d

denotes the set of all objects that A(m) allocates before the date d; each object is
paired up with the label of the NEW instruction that allocated it:

Allocs
A(m)
d = { 〈Vid2i+1(v), lbid2i

〉 | id2i∈IDA(m), id2i<d,

P (lbid2i
) = “v = new C” }

Note: Vid2i+1(v) is the value of the local variable v immediately after the NEW in-
struction, i.e., Vid2i+1(v) is the newly allocated object.

Allocs
A(m)
all denotes the set of all objects that A(m) allocates, paired with the labels

of their allocation sites:

Allocs
A(m)
all =

⋃

d∈Date

Allocs
A(m)
d

Definition 12 (Heap references created by A(m)). For each date d ∈ Date,

I
A(m)
d denotes the set of all heap references that A(m) creates before the date d:

I
A(m)
d = { 〈Vid2i

(v1), f, Vid2i
(v2)〉 | id2i∈IDA(m), id2i<d,

P (lbid2i
) = “v1.f = v2” }

Intuitively, this definition finds each STORE instruction “v1.f = v2” that A(m) exe-
cutes before date d, identifies the objects pointed to by v1 and v2, and adds the newly
created heap reference to I

A(m)
d .

Definition 13 (Locations mutated by A(m)). For each date d ∈ Date, W
A(m)
d

denotes the set of all memory locations mutated by A(m) before the date d. A memory
location is a pair of an object and a field: 〈o, f〉 is the memory location that corresponds
to the field f of the object o.

W
A(m)
d = { 〈Vid2i

(v1), f〉 | id2i∈IDA(m), id2i<d, P (lbid2i
) = “v1.f = v2” }
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6.3 Formal Properties of the Analysis Results

Section 4.2 informally presented the intended meaning of the points-to graphs that
the analysis computes. Now, we have all the tools for a formal presentation.

Consider a program execution trace and let A(m) be an activation of a method
m, taking place in thread t. Consider an arbitrary intra-procedural date d ∈ IPA(m).
Let lbd be the label defined as follows:

• If the height of the stack for the thread t is smaller at date d than at date
ip0 (i.e., d is the termination date of the RETURN instruction that terminates
A(m)), then lbd = exitm , the special label for the end of m.

• Otherwise, let lbd be the current label inside the thread t. Due to the definition
of the intra-procedural dates, lbd is a label inside the method m.

Let G = 〈L : [], I, O,E,R,W〉 be the analysis points-to graph that the analysis com-
putes for the program point before lbd , i.e., G = ◦A(lbd). With these notations, our
analysis guarantees that there exists a modeling relation between nodes and objects
ρ ⊆ CNode ×Object such that the following four properties hold:

Property 5. If lbd 6= exitm, then the abstract state of local variables L conservatively
models the state of the local variables of m. Let Vd be the state of the local variables
of method m, at date d. Then:

∀v ∈ Var . ∀o ∈ Object .
(o = Vd(v)) ∧ (o 6= onull) → (∃n ∈ CNode. n ρd o ∧ n ∈ L(v))

Note: if lbd = exitm, then d is the termination date for the final RETURN from
A(m). At that date, the stack frame for m (including the state of the local variables)
no longer exists.

Property 6. The set of inside edges I conservatively models all non-null heap refer-
ences created by A(m) between objects that are still reachable at date d:

∀o1, o2 ∈ RObjs(Ξd) \ {onull}. ∀f ∈ Field .

〈o1, f, o2〉 ∈ IA(m)
d → ∃n1, n2 ∈ CNode. (n1 ρ o1) ∧ (n2 ρd o2) ∧ 〈n1, f, n2〉 ∈ I

Property 7. Any inside node nI
lb ,0 models only objects allocated by A(m) by executing

the NEW instruction from label lb :

∀lb ∈ Label . ∀o ∈ Object . nI
lb ,0 ρd o → 〈o, lb〉 ∈ Allocs

A(m)
all

Property 8. Let o be an object allocated by A(m) by executing the NEW instruction
from label lb . If the inside node nI

lb ,0 is captured, then (1) o is captured in A(m), and
(2) nI

lb ,0 is the only node that models o:

∀o ∈ Object . ∀lb ∈ Label .

〈o, lb〉 ∈ Allocs
A(m)
all ∧ ¬e(G)(nI

lb ,0) →
¬RObjs(outsideA(m)(Ξd)) ∧ (∀n ∈ CNode. n ρd o → n = nI

lb ,0)
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Property 8 establishes the correctness of the stack allocation optimization (Sec-
tion 5.1). Let o be an object allocated by A(m) by executing the NEW instruction
from label lb . Let df be the termination date of the RETURN that terminates A(m)
and assume that nI

lb ,0 is captured in G = ◦A(exitm). As there are no stack frames
of A(m) at date df , outsideA(m)(Ξdf

) = Ξdf
. By Property 8, o is unreachable in Ξdf

.
Hence, the lifetime of o is included in the lifetime of the stack frame for method m.

We add an extra property that proves the correctness of the detection of pure
methods (Section 5.2.1).

Property 9. The set W of mutated abstract fields conservatively models all locations
that are (1) mutated by A(m) before date d, and (2) allocated outside A(m):

∀o ∈ Object . ∀f ∈ Field .

〈o, f〉 ∈ WA(m)
d ∧ o 6∈ Allocs

A(m)
all → ∃n ∈ CNode. (n ρd o) ∧ 〈n, f〉 ∈ W

Property 9 uses an upper approximation of the set of prestate objects: the set
of objects allocated outside A(m). If Property 9 is valid and the set W from the
points-to graph for the end of the method m is empty, then A(m) does not mutate
any prestate object.

6.4 Abstract Semantics

The abstract semantics works with a specific activation of a method m. Consider
a concrete execution trace Ξ0 ⇒ Ξ1 ⇒ . . . and an activation A(m) of m. The
abstract semantics of A(m) computes a points-to graph for each interesting date of
A(m). Each points-to graph models the execution of A(m) up to the corresponding
interesting date.

The abstract semantics uses almost the same transfer functions as the analysis.
However, unlike the analysis, the abstract semantics “steps into” the called meth-
ods: when it encounters an analyzable CALL, the abstract semantics processes all
instructions from the callee, one by one, instead of using a method summary. Ad-
ditionally, for each interesting date, the abstract semantics explicitly constructs a
modeling relation between nodes and objects.

The points-to graphs from the abstract semantics are a generalization of the anal-
ysis points-to graphs. The abstract semantics models the state of the local variables
from m’s transitive callees. Hence, the points-to graphs from the abstract semantics
may have abstract stacks with more than one element.

Note on Node Contexts: Our correctness proof relies on the fact that the pointer
analysis is more conservative than the abstract semantics: the pointer analysis con-
structs bigger points-to graphs than the abstract semantics. The node contexts are
essential for this proof strategy. Consider an analyzable CALL that invokes the
method callee. Without node contexts, when the abstract semantics steps inside
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callee, it may reuse nodes and edges created by previous passes through callee (callee
may be invoked by other CALLs from A(m)). As the pointer analysis analyzes callee
in isolation (and next reuses the result for each call to callee) it may construct smaller
points-to graphs (e.g., fewer edges) than the abstract semantics. In the presence of
node contexts, when the abstract semantics steps inside a callee, the nodes it cre-
ates (e.g., the inside nodes associated with the NEW instructions) are distinct from
existing nodes (e.g., the inside nodes associated with the same NEW instructions
from previous invocations of callee). Each RETURN instruction decreases the node
contexts, gradually “merging” nodes together. This temporary context sensitivity is
essential for our proofs. An early attempt to prove the analysis correctness failed
precisely due to the lack of context sensitivity.

This section has the following structure: First, Section 6.4.1 defines a conservative
approximation of the set of escaped objects. Next, Section 6.4.2 uses this auxiliary
definition and describes how the abstract semantics computes the points-to graphs
for the interesting dates of A(m).

6.4.1 Concrete Escape Predicates

The abstract semantics uses a conservative approximation of the set of escaped
objects. More specifically, there is one concrete escape predicate6 ed : Object →
{true, false} for each date d. As we prove below (Lemma 5), if an object o escapes
from A(m) at date d (according to Definition 10), then ed(o) is true. We use the
concrete escape predicates because their definition resembles the Definition 2 for the
(analysis) escape predicates on nodes: the concrete escape predicates identify the
objects that escape directly (e.g., because the program stores a reference to them in a
static field) and propagate the escape information along the heap references created
by A(m).

For each date d ∈ Date, let 〈Vd , lbd〉 be the top frame from the stack of the thread
t. I.e., Vd is the state of the local variables for the top method from thread t, at date
d. If d is an even-numbered interesting date d = id2i ∈ IDA(m), then P (lbid2i

) is the
instruction executed in the concrete semantics transition Ξid2i

⇒ Ξid2i+1.

Definition 14 (Concrete escape predicates). The family of concrete escape pred-
icates ed : Object → {true, false}, d ∈ Date, is the least fixed point of the following
constraints (the ordering relation v is given in the first constraint):

ed v ed+1, i.e., ∀o, ed(o)→ ed+1(o) (6.4)

∀lb . 〈o, lb〉 6∈ AllocsA(m)
all , i.e., o not allocated by A(m)

e0(o)
(6.5)

ed(o1) 〈o1, f, o2〉 ∈ I
A(m)
d

ed(o2)
(6.6)

6The adjective “concrete” distinguishes these predicates from the analysis escape predicates.
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P (lbid2i
) = “start v”

eid2i+1(Vid2i
(v))

(6.7)

P (lbid2i
) = “C.f = v”

eid2i+1(Vid2i(v))
(6.8)

P (lbid2i) = “vR = v0.s(v1, . . . , vk)” is unanalyzable
eid2i+1(Vid2i(vj)), ∀j ∈ {0, . . . , k} (6.9)

P (lbid2r) = “return v” is final RETURN of A(m)
(i.e., thread t has the same stack height at id2r and id0)

eid2r+1(Vid2r(v))
(6.10)

Constraint 6.4 makes the escape predicates cumulative: once an object escapes, it
escapes forever. Constraint 6.5 marks as escaped all objects created outside A(m).7

Constraint 6.6 propagates escapability across heap references. Although escapability
propagates along all heap references, it suffices to consider only the heap references
created by A(m): if a program part outside A(m) creates a reference, then it was
able to access both ends of the newly created reference and so, those objects already
escaped. The next constraints indicate how the instruction that A(m) executes from
id2i to id2i+1 affects the escape predicate after the instruction. Several instructions
escape objects outside A(m): THREAD STARTs, STATIC STOREs, unanalyzable
CALLs, and the final RETURN of A(m). We discuss the case of the final RETURN;
the other cases are similar. Suppose the final RETURN instruction from A(m) (if it
exists), executes from id2r to id2r+1 = id2r + 1 and has the form “return v.” After
its execution, o = Vid2r(v) is reachable from the caller; accordingly, Constraint 6.10
sets eid2r+1(o) to true.

The next lemma proves that the concrete escape predicates conservatively approx-
imate Definition 10 for the escaped objects:

Lemma 5. If the non-null object o escapes at date d ∈ Date, then ed(o) holds:

∀d ∈ Date,∀o ∈ RObjs(outsideA(m)(Ξd)) \ {onull}. ed(o)

Proof sketch. Induction on the execution trace and case analysis on the instruction
executed at each step. The proof is technical, but otherwise simple: it just follows
the intuition from the definition of the escape predicates. We present the full proof
in Appendix B.1.

6.4.2 Abstract Execution of A(m)

Initialization: The abstract semantics of A(m) starts with the same initial points-
to graph as the pointer analysis of method m:

Gid0 = Gm
init = 〈 (Lall−empty

[
pi 7→ {nP

i,0}
]
0≤i≤k−1

) : [], ∅, ∅, ∅, ∅ 〉

7To simplify the proofs, we consider that all objects created outside A(m) escape from the very
beginning of the program (i.e., we mark them as escaped right from e0).
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[[.]] : Label → PTGraph → PTGraph

P (lb) G 7→ [[lb ]](G)

vR = v0.s(v1, . . . , vj)

1. Unanalyzable CALL: already presented in Figure 4-3

2. Analyzable CALL

〈L :J, I, O, E, R, W〉 7→
〈Lcallee :L :J, I, O, E, R, W〉

where Lcallee = Lall−empty [pi 7→ L(vi)]0≤i≤j

return v

1. Final RETURN from the activation A(m):

〈L : [], I, O, E, R, W〉 7→ 〈L : [], I, O, E, L(v), W〉
2. RETURN inside the activation A(m)

〈L1 :L2 :J, I, O, E, R, W〉 7→
α|J|(gc(〈L2 [vR 7→ L1(v)] :J, I, O, E, R, W〉))

Figure 6-5: Missing cases from the definition of the abstract semantics transfer func-
tions. We use bold font for the new cases. Figure 4-3 on page 47 presents the other
cases.

The initial modeling relation is

ρid0 = {〈nP
i,0,Vid0(pi)〉}0≤i≤k−1

In ρid0 , each parameter node nP
i,0 models the object pointed to by the ith formal

parameter of the method m.

Transitions: Between id2i+1 and id2(i+1), the program executes only instructions
from outside A(m). The abstract semantics of A(m) does not model the actions of
the other parts of the program. Hence, the abstract semantics simply propagates the
points-to graph and the modeling relation from id2i+1 to id2(i+1): Gid2(i+1)

= Gid2i+1

and ρid2(i+1)
= ρid2i+1

.
A transition from id2i to id2i+1 executes an instruction from A(m). Let lbid2i

be
the label of this instruction. In this case,

Gid2i+1
= [[lbid2i

]](Gid2i
)

where [[lbid2i
]] is the abstract semantics transfer function attached to the label lbid2i

.
The modeling relation ρid2i+1

is defined by the case rules from Figure 6-6 (explained
later).

Figure 4-3 on page 47 already presented the transfer functions that the abstract
semantics share with the pointer analysis. Figure 6-5 presents the two remaining
abstract semantics transfer functions:
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Analyzable CALLs: Unlike the pointer analysis, the abstract semantics “steps”
into the callee and abstractly executes its instructions. To model the local
variables from the callee, the abstract semantics uses a new stack frame, Lcallee .
Hence, unlike the pointer analysis, the abstract semantics can create points-to
graphs with more than just one stack frame.

RETURN inside A(m): A RETURN “inside A(m)” is any RETURN instruction
executed by A(m), except for the final RETURN that ends A(m). The ab-
stract semantics distinguishes between the two cases using with the depth of
the abstract stack.

A final RETURN corresponds to an abstract stack with a single element. In
this case, the abstract semantics and the pointer analysis use the same transfer
function from Figure 4-3. We repeat it in Figure 6-5 for easy reference.

If the abstract stack has more than one element, the abstract semantics applies
the processing for a RETURN inside A(m):

1. Remove the abstract state L1 of the callee local variables.

2. Set the caller variable vR to point to the nodes that the callee returns.

3. Use gc to remove the nodes that are unreachable from local variables,
parameter/load/global nodes and globally escaped nodes (see Figure 4-
10 on page 57 for the exact definition of gc).

4. Use the node morphism α|J| to “truncate” all node contexts to |J|.8

Figure 6-6 presents the case rules for computing the new modeling relation ρid2i+1
.

The definition of ρid2i+1
reflects the node model that our analysis uses (see Section 4.1).

For example, the transfer function for a NEW instruction uses the inside node nI
lb ,c

to model the newly allocated object o.9 Accordingly, ρid2i+1
= ρid2i

∪ {〈nI
lb ,c , o〉}.

Consider a LOAD instruction “v2 = v1.f” that reads the heap reference 〈o1, f, o2〉.
The corresponding transfer function may use a load node nL

lb ,c . Accordingly, if the
object o1 escapes outside A(m), the abstract semantics records that nL

lb ,c models the
loaded object o2.

For an unanalyzable CALL instruction, the abstract semantics records that the
global node nGBL,c models the returned object. The case of a STATIC LOAD instruc-
tion is similar.

For a RETURN inside A(m), the abstract semantics “truncates” the contexts of
all nodes from the modeling relation to c − 1. The transfer function for a RETURN
inside A(m) (Figure 6-5) performs the same transformation for all nodes from the
points-to graph. For other instructions, the modeling relation remains unchanged.

8I.e., α|J| changes each node context bigger than |J| to |J|; other node contexts are unaffected.
9The top of Figure 6-6 explains the notations lb and c.
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Notation: The concrete state at date d ∈ {id2i, id2i + 1} has the form

Ξd = 〈Ad [t 7→ 〈Vd , lbd〉 :Kd ] , Hd , Sd , TY d〉

Also, let Gid2i
= 〈Lid2i

: Jid2i
, Iid2i

, Oid2i
, Eid2i

, Rid2i
〉. For brevity, we denote

lb = lbid2i
, and c = |Jid2i

|. Hence, Vd is the state of the local variables for the top
method from thread t, at date d ∈ {id2i, id2i +1}; P (lb) is the instruction executed
in the transition Ξid2i

⇒ Ξid2i+1. In all cases except that of an unanalyzable CALL,
id2i+1 = id2i + 1.

P (lb) ρid2i+1

NEW
v = new C

ρid2i
∪ {〈nI

lb ,c , o〉}
where o is the object created in the concrete execution
at date id2i: o = Vid2i+1

(v).

LOAD
v2 = v1.f

Let 〈o1, f, o2〉 be the heap reference read in the concrete
execution: o1 = Vid2i

(v1), o2 = Hid2i
(o1)(f). Then,

ρid2i+1
=

{
ρid2i
∪ {〈nL

lb ,c , o2〉} if ed(o1)

ρid2i
(unmodified) otherwise

unanalyzable CALL
vR = v0.s(v1, . . . , vj)

ρid2i
∪ {〈nGBL,c , o〉}

where o is the object returned from the unanalyzable
CALL in the concrete execution: o = Vid2i+1

(vR).

STATIC LOAD
v = C.f

ρip2i
∪ {〈nGBL,c , o〉}

where o is the object read in the concrete execution:
o = Sid2i

(C, f).

RETURN inside A(m)
return v

αc−1(ρid2i
) = { 〈αc−1(n), o〉 | 〈n, o〉 ∈ ρid2i

}

otherwise ρid2i
(unmodified)

Figure 6-6: Case rules for the construction of the modeling relation ρid2i+1
for the

interesting date id2i+1 of activation A(m).
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6.5 Abstract Semantics Invariants

This section states several properties of the abstract semantics. We prove these
properties in Appendix B.2 on page 160.

Consider an interesting date d ∈ IDA(m). Let Gd = 〈Ld : Jd , Id , Od , Ed , Rd ,Wd〉
and ρd be the points-to graph, respectively the modeling relation that the abstract
semantics constructs for date d. With these notations, the following invariants are
true:

Invariant 1. Consider an object o already allocated by A(m) by executing the NEW
instruction from label lb . Then, there exists an inside node nI

lb ,c such that either nI
lb ,c

models o, or nI
lb ,c is one of the globally escaped nodes:

∀o ∈ Object . ∀lb ∈ Label .

〈o, lb〉 ∈ Allocs
A(m)
d → ∃c ∈ N. (nI

lb ,c ρd o) ∨ (nI
lb ,c ∈ Ed)

Note: we could prove a stronger invariant, stating that each object allocated
by A(m) at allocation site lb is modeled by an inside node nI

lb ,c . The more complex
invariant above allows us to later introduce an analysis technique that trades precision
for speed, by replacing several nodes (including inside nodes) with a single nGBL,c node,
thus reducing the size of the manipulated points-to graphs.

Invariant 2. Any inside node nI
lb ,c models only the objects allocated by A(m) by

executing the instruction from label lb :

∀lb ∈ Label . ∀c ∈ N. nI
lb ,c ρd o → 〈o, lb〉 ∈ Allocs

A(m)
d

Invariant 3. Any captured object is modeled by at most one node:

∀o ∈ Object \ {onull}. ¬ed(o)→ | {n | n ρd o} | ≤ 1

Let’s examine the stack of the thread t, the thread where A(m) takes place. Let
hd be the height of this stack at date d. At date id0 (the beginning of A(m)), the
top stack frame corresponds to the method m. The other hid0 − 1 stack frames were
created before the start of A(m). At date d, the top hd − hid0 + 1 stack frames
correspond to methods from A(m).10

The next invariant states that the abstract stack from Gd models the state of the
local variables from the frames created by A(m):

Invariant 4. The abstract stack Ld :Jd conservatively models all stack frames created
by A(m):

1. |Ld :Jd| = max(1, hd − hid0 + 1), where hd is the height of the concrete stack at
date d. I.e., the abstract stack from Gd contains one frame for each frame of

10No date d ∈ IDA(m) is in the middle of the execution of a method invoked by an unanalyzable
CALL; hence, the top frames are created by A(m).
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A(m). We use the function max for technical reasons: if d is the termination
date for the RETURN that terminates A(m), A(m) has no stack frames (hd =
hid0 − 1), but the corresponding points-to graph has one element, Lall−empty (see
Figure 6-5).

2. Let Kd be the concrete stack of thread t at date d. Consider an arbitrary k such
that 0 ≤ k ≤ hd − hid0, let 〈Vd,k, lbd,k〉 = Kd [k] be the k-th frame of Kd, and let
Ld,k = (Ld :Jd)[k] be the k-th element of Ld :Jd (e.g., Ld,0 = Ld). Consider an
arbitrary variable v ∈ Var and let o = Vd,k(v). If o 6= onull, then ∃n ∈ Ld,k(v)
such that n ρd o.

Intuitively, if in the k-th concrete stack frame local variable v points to the object
o 6= onull, then in the k-th local variable state from the abstract stack, v points
to (at least) one node n that models o.

Invariant 5. The set Id of inside edges conservatively models all reachable heap edges
created by A(m) before the date d, with respect to the modeling relation ρd:

∀o1, o2 ∈ RObjs(Ξd) \ {onull}. ∀f ∈ Field .

〈o1, f, o2〉 ∈ IA(m)
d → ∃n1, n2. (n1 ρd o1) ∧ (n2 ρd o2) ∧ (〈n1, f, n2〉 ∈ Id)

Invariant 6. Only escaped nodes may model the escaped objects:

∀o ∈ Object . ∀n ∈ CNode. ed(o) ∧ (n ρd o) → e(Gd)(n)

Invariant 7. Each node that appears in the points-to graph Gd and/or the modeling
relation ρd has context at most |Jd |:

∀n ∈ Node, ∀c ∈ Context , ∀o ∈ Object .
〈n, c〉 ∈ nodes(Gd) ∨ 〈n, c〉 ρd o → c ≤ |Jd|

Invariant 8. The set Wd of mutated abstract fields conservatively models all locations
that are (1) mutated by A(m) before the date d, and (2) allocated outside A(m):

∀o ∈ Object . ∀f ∈ Field .

〈o, f〉 ∈ WA(m)
d ∧ o 6∈ Allocs

A(m)
all → ∃n ∈ CNode. (n ρd o) ∧ 〈n, f〉 ∈ Wd

6.6 Proof of the Analysis Properties

Section 6.3 formalized the intended properties of the points-to graphs that the analysis
constructs. This section provides the skeleton of the proof of these properties. To
preserve the readability of this chapter, we present the most technical parts of the
proof in Appendix B.3 and Appendix B.4.

Our proof has two parts: First, Theorem 7 proves that if the pointer analysis
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of a method m conservatively approximates11 the abstract semantics of any possi-
ble activation of method m, then the analysis properties from Section 6.3 are valid.
This proof uses the abstract semantics invariants from Section 6.5 (proved correct
in Appendix B.2). Next, Theorem 8 proves that the pointer analysis conservatively
approximates the abstract semantics.

Consider 〈◦A,A ◦ 〉 a possible set of analysis results (i.e., 〈◦A,A ◦ 〉 satisfy Con-
straints 4.1 on page 45). Consider d ∈ IPA(m) an arbitrary intra-procedural date for
the activation A(m). Let lbd be the label defined as in Section 6.3:

• If the height of the stack for the thread t is smaller at date d than at date
ip0 (i.e., d is the termination date of the RETURN instruction that terminates
A(m)), then lbd = exitm , the special label for the end of m.

• Otherwise, let lbd be the current label inside the thread t. Due to the definition
of the intra-procedural dates, lbd is a label inside the method m.

Let G = ◦A(lbd) be the analysis points-to graph that the pointer analysis con-
structs for the program point before lbd . Let Gd and ρd be the points-to graph,
respectively the modeling relation that the abstract semantics constructs for date d.

Lemma 6. ∀d ∈ IPA(m), Gd is an analysis points-to graph: Gd ∈ PTGrapha. Addi-
tionally, ρd refers only to nodes with context 0: ∀n, c, o. 〈n, c〉 ρd o → c = 0.

Proof. Let Ld :Jd be the abstract stack from the points-to graph Gd . At each intra-
procedural date d ∈ IPA(m), hd ≤ hid0 (see Definition 7). Therefore, by Invariant 4,
|Ld : Jd| = 1, which implies |Jd | = 0, i.e. the abstract stack from Gd has a single
element. By Invariant 7, all nodes that appear in Gd have context 0; hence, Gd is
an analysis points-to graph. Also, by Invariant 7, all nodes that appear in ρd have
context 0.

The above lemma allows comparisons between G and Gd , using the partial order
relation for analysis points-to graphs from Definition 4.12 The next lemma proves
that if the pointer analysis conservatively approximates the abstract semantics, i.e.,
G w Gd , then Properties 5-9 are valid:

Theorem 7. If G w Gd, then G satisfies the Properties 5-9 from Section 6.3, for the
modeling relation ρ = ρd.

Proof. Let G = 〈L : [], I, O,E,R,W〉 and Gd = 〈Ld : [], Id , Od , Ed , Rd ,Wd〉.

• Property 5 is a special case of Invariant 4 when A(m) has only one stack frame.

11This term becomes obvious later in this section. Intuitively, the pointer analysis computes bigger
points-to graphs.

12General points-to graphs cannot be compared, as they may have abstract stacks of different
heights.
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• Property 6 easily follows from Invariant 5 and from the observation that Id ⊆ I
(due to G w Gd).

• Property 7 is identical to Invariant 2.

• Property 8: consider an arbitrary object o allocated by A(m) by executing the

NEW instruction from label lb (i.e., 〈o, lb〉 ∈ Allocs
A(m)
all ), and assume that the

inside node nI
lb ,0 is captured in G (i.e., ¬e(G)(nI

lb ,0)). Property 8 requires that
(1) o is captured in A(m) (i.e., ¬RObjs(outsideA(m)(Ξd))), and (2) nI

lb ,0 is the
only node that models o in ρ = ρd .

By Invariant 1, ∃c such that nI
lb ,c ρ o or nI

lb ,c ∈ Ed . As Gd and ρd contain
only nodes with 0 context, c = 0. Furthermore, as nI

lb ,0 is captured in G,
nI

lb ,0 6∈ E ⊇ Ed . Hence, nI
lb ,0 models o. By Invariant 3, nI

lb ,0 is the only node
that models o in ρ.

Assume for the sake of contradiction that o escapes from A(m), i.e.,
RObjs(outsideA(m)(Ξd)). By Lemma 5, ed(o). By Invariant 6, nI

lb ,0 escapes
in Gd . As G w Gd , n

I
lb ,0 escapes in G too. Contradiction! Hence, o is captured

inside A(m).

• Property 9 is identical to Invariant 8.

Theorem 8. The pointer analysis conservatively approximates the abstract seman-
tics: with the notations from this section, ∀d ∈ IPA(m), ◦A(lbd) w Gd.

Proof. We perform a proof by induction on the call depth of the activation A(m).
The call depth of an activation is the maximum number of nested analyzable CALLs
in that activation: e.g., an activation that does not execute any analyzable CALL has
call depth 0, an activation that execute an analyzable CALL, and, inside the callee,
another analyzable CALL, has call depth at least 2.

Base Case: Assume that the call depth of A(m) is 0, i.e., A(m) does not execute
any analyzable CALL. We prove by induction on the list of intra-procedural dates
IPA(m) = [ip0, . . . ip2i, ip2i+1, . . . ] that ∀j, ◦A(lbipj

) w Gipj
.

• Initial case j = 0: The label lbip0
is the first label from method m. As entrym

is a control-flow predecessor of the first instruction from m, by Constraints 4.1,
◦A(lbip0

) w A◦(entrym) w Gm
init. As Gip0

= Gm
init (see Section 6.4.2), we obtain

◦A(lbip0
) w Gip0

.

• Induction step j → j+1: We assume ◦A(lbipj
) w Gipj

, and prove ◦A(lbipj+1
) w

Gipj+1
. The case of an odd j, i.e., j = 2i + 1, is trivial: the program exe-

cutes only instructions from other threads between ip2i+1 and ip2(i+1). Hence,
lbip2(i+1)

= lbip2i+1
, and Gip2(i+1)

= Gip2i+1
(see Section 6.4.2).
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Consider an even j = 2i. Between ip2i and ip2i+1, A(m) executes an instruction
that is not an analyzable CALL (the call depth of A(m) is 0). As lbip2i

is a
control-flow predecessor of lbip2i+1

, by Constraints 4.1,

◦A(lbip2i+1
) w A◦(lbip2i

) w [[lbip2i
]]a(◦A(lbip2i

))

By the induction hypothesis, ◦A(lbip2i
) w Gip2i

. Lemma 14 in Appendix B.3
proves that [[lbip2i

]]a is monotonic. Hence,

[[lbip2i
]]a(◦A(lbip2i

)) w [[lbip2i
]]a(Gip2i

)

As the instruction from lbip2i
is not an analyzable CALL,

[[lbip2i
]]a(Gip2i

) = [[lbip2i
]](Gip2i

)

As [[lbip2i
]](Gip2i

) = Gip2i+1
, we obtain the desired relation ◦A(lbip2i+1

) w Gip2i+1
.

Induction Step: Assume that the lemma is valid for any activation with a call
depth strictly smaller than the call depth of A(m). As in the base case, we perform
a proof by induction on the list of intra-procedural dates. The only difference is in
the induction step, for the case when j = 2i and the instruction from label lbip2i

is
an analyzable CALL. We focus on this case. Recall that the induction step assumes
◦A(lbip2i

) w Gip2i
and proves ◦A(lbip2i+1

) w Gip2i+1
. First, as before, we prove that

◦A(lbip2i+1
) w [[lbip2i

]]a(◦A(lbip2i
)) (6.11)

Let callee be the method invoked by the analyzable CALL at date ip2i. By the
definition of the analysis transfer function for an analyzable CALL (Equation 4.2),

[[lbip2i
]]a(◦A(lbip2i

)) w interproc(◦A(lbip2i
), ◦A(exitcallee), P (lbip2i

)) (6.12)

The CALL to callee starts an activation A(callee) for the method callee. This
activation has its own intra-procedural dates. The last intra-procedural date for
A(callee) is the date when the matching RETURN terminates, i.e., ip2i+1. Let Gcallee

ip2i+1

be the points-to graph that the abstract semantics of A(callee) constructs for ip2i+1.
The call depth of A(callee) is strictly smaller than the call depth of A(m). Hence,
by the induction hypothesis, ◦A(exitcallee) w Gcallee

ip2i+1
. Lemma 16 in Appendix B.3

proves that interproc is monotonic in its first two arguments. Using equations 6.11
and 6.12 above, we obtain

◦A(lbip2i+1
) w interproc(Gip2i

, Gcallee
ip2i+1

, P (lbip2i
))

To complete the proof of Theorem 8, it is sufficient to prove that

interproc(Gip2i
, Gcallee

ip2i+1
, P (lbip2i

)) w Gip2i+1
(6.13)

Intuitively, Equation 6.13 states that the inter-procedural analysis is more conserva-
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tive than the abstract semantics. The proof of Equation 6.13 is extremely technical.
We present the proof in Appendix B.4.

The combination of Theorem 7 and Theorem 8 proves the analysis properties.
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Chapter 7

Analysis Optimizations

This chapter presents several optimizations that increase the analysis speed and/or
precision. Section 7.1 presents an optimization that sacrifices precision in order to
reduce the time spent while analyzing groups of mutually recursive methods. Sec-
tion 7.2 describes the use of type information to avoid unfeasible edges and node
mappings. Section 7.3 describes several optimizations that reduce the size of the
method summaries that the inter-procedural analysis uses.

7.1 Knowing When to Stop Insisting

A general program analysis may converge too slowly to a result for a specific program
part. In such cases, downgrading to a less precise (but faster) analysis for that
program part allows the analysis to process the rest of the program in reasonable
time.

Our analysis may spend significant time computing inter-procedural fixed-points
for groups of mutually recursive methods. The analysis of a caller requires the points-
to graphs for the end of the callees invoked through analyzable CALLs. Hence, the
analysis requires a fixed-point computation for the strongly-connected components of
the static call graph (see Step 3 of the algorithm from Section 4.5.2). Unfortunately,
very large strongly-connected components are common in the static call graphs of
real Java programs.1

To cope with such situations, an analysis implementation can impose a bound
on the effort invested in the fixed-point computation for each strongly-connected
component scc of the call graph. If the fixed-point for scc exceeds this bound, the
implementation can perform the following steps:

1. Abort the fixed-point computation for scc .

2. Consider each intra-scc CALL unanalyzable. An intra-scc CALL is a CALL
in the body of a method from scc , that may invoke a method from scc . This

1Sometimes, this situation is due to the imprecision of the call graph construction algorithm.
Other times, there is real recursion in the analyzed program (e.g., consider a recursive-descent
parser).
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step eliminates the dependencies between the analyses of different methods from
scc .2

3. Analyze each method from scc individually.

This optimization is sound because our analysis already handles unanalyzable
CALLs correctly. This optimization may lose precision, but (1) it allows the analy-
sis to obtain some results even for the methods from very large strongly-connected
components, and (2) it allows the analysis to examine the rest of the program.

There are different possible bounds on the inter-procedural fixed-point effort (Step
3 of the algorithm from Section 4.5.2): bounds on the number of iterations until reach-
ing a fixed-point, time bounds, bounds of the size of the involved method summaries,
etc. Our implementation (Chapter 8) uses a bound on the number of iterations.

An implementation can apply this optimization idea even for non-recursive meth-
ods: if a CALL instruction invokes a callee whose summary is too big, then the
implementation can consider that CALL unanalyzable.

7.2 Using Type Information

As Java is a type-safe language, the analysis can use type information to improve
its speed and precision, e.g., by trimming inside edges that cannot model any heap
reference. This optimization is possible because each node contains information about
the possible types (Java classes) of the objects it models:

1. The inside node nI
lb ,c for the NEW instruction “v = new C” from label lb

represents objects of class C.

2. The parameter node nP
i,c represents objects whose class is a subclass of the

declared type of the corresponding formal parameter of the currently analyzed
method.

3. The load node nL
lb ,c attached to the LOAD instruction “v2 = v1.f” from label lb

represents objects whose class is a subclass of the declared type of the field f.

4. The global node nGBL,c represents objects of any class.

The analysis can use the type information as follows:

• The analysis ignores type-incorrect edges. An edge 〈n1, f, n2〉 is type-incorrect
if (1) the field f does not appear in any of the possible classes for the node n1

or (2) the declared type of the field f is not a supertype of any of the possible
types for the node n2.

2It is possible to eliminate only enough intra-scc dependencies to “break” the strongly-connected
component. For simplicity, as it is unclear which dependencies are more important for the analysis
speed and precision, we eliminate all intra-scc dependencies.
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• The analysis ignores type-incompatible node mappings. A mapping 〈n1, n2〉 is
type-incompatible if there is no common possible type for the nodes n1 and n2.

During the construction of the initial node map µ0 in function interproc (Fig-
ure 4-6), this optimization may lead to situations where the parameter node
that models the receiver of the callee (i.e., the this object) is not mapped to
any node from the caller. This fact indicates that there is no receiver object in
the concrete execution, i.e., the CALL instruction is unreachable in the program
execution. Hence, the analysis can ignore it.

The use of type information increases the precision of the analysis. It involves
some time overhead (e.g., to check the type-correctness of edges). In our experi-
ments, the speedup due to the reduction in the size of the points-to graphs and node
maps was generally bigger than the overhead of using type information, leading to an
overall speedup (see Section 8.3). Currently, we do not have a formal proof that this
optimization preserves the analysis correctness.

7.3 Simplifying the Method Summaries

This section presents optimizations that simplify the method summaries. These op-
timizations reduce the execution time for the inter-procedural analysis and the size
of the points-to graphs for the program points after the CALLs.

For each method callee, the analysis computes a method summary starting from
the points-to graph Gcallee for the end of callee. More precisely, as presented in
Figure 4-6 on page 53, the function interproc uses the summary

〈Tcallee , Rcallee〉 = summary(τ(gc(ρ(Gcallee)))) (7.1)

Points-to graph simplifications result in method summary simplifications. We for-
mulate each optimization from this section as a points-to graph transformation ξ :
PTGraph → PTGraph.

The analysis already uses one such optimization: the function gc ◦ ρ “garbage
collects” the captured nodes from Gcallee . Intuitively, these nodes represent only
captured objects that are unreachable from the caller. The correctness proof from
Chapter 6 takes this optimization into account.

Example 10. Figure 7-1.a presents the points-to graph G for the end of the method
Main.sumX from Chapter 2. Figure 7-1.b presents the points-to graph G′ = gc(ρ(G)).
G′ no longer contains the captured node nI

7 nor the edges with nI
7 as an endpoint.

Also, G′ does not contain the information about the local variables (these variables
are irrelevant for the inter-procedural analysis). 4

The rest of this section presents two additional optimizations. The first opti-
mization (function url from Section 7.3.1) unifies redundant load nodes. The second
optimization (function uge from Section 7.3.2) unifies globally escaped nodes. After
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a. End-of-method points-to graph G. b. Simplified points-to graph gc(ρ(G)).

Figure 7-1: Example of the captured node removal optimization on the points-to
graph for the end of the method Main.sumX from the example from Chapter 2.

adding these optimizations, Equation 7.1 becomes:

〈Tcallee , Rcallee〉 = summary(τ(uge(url(gc(ρ(Gcallee))))))

Our correctness proof ignores these two optimizations. If desired, the analysis clients
can disable these two optimizations. Section 8.3 presents the analysis slowdown if
any of these two optimizations is disabled.

7.3.1 Unifying Redundant Load Nodes - Function url

Our analysis introduces one distinct load node for each LOAD instruction that reads a
field of an escaped node (see Figure 4-5). This strategy may lead to a “proliferation”
of load nodes and outside edges for methods that repeatedly read the same field
of the same node. For such methods, the analysis generates several outside edges
that start in the same node, have the same field label, but end in distinct load nodes.
These multiple outside edges increase the inter-procedural analysis time. This section
describes an optimization that unifies these outside edges by merging the load nodes
they end in.

Example 11. Consider the method ListItr.next() from our example in Chap-
ter 2 (see Figure 2-1 on page 22). For brevity, Chapter 2 uses an implementation of
ListItr.next() that minimizes the number of generated outside edges.

Figure 7-2.a presents a more natural implementation of the class ListItr. Notice
that the first two lines of the method next read the field cell of the this object. The
Java compiler cannot store the result of the first read in a local variable and reuse it
in the second line. This “optimization” may change the semantics of the program in
the presence of multiple threads of execution. Figure 7-2.b presents the desugaring
of the method next’s body in our program representation.

Figure 7-3.a presents the points-to graph for the end of next(). Notice the two
outside edges that start in nP

0 : 〈nP
0 , cell, n

L
3 〉 and 〈nP

0 , cell, n
L
7 〉; they correspond

to the LOAD instructions from lines 3 and 7. These outside edges generate two
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class ListItr implements Iterator {

ListItr(Cell head) {

this.cell = head;

}

Cell cell;

public boolean hasNext() {

return cell != null;

}

public Object next() {

Object result = cell.data;

cell = cell.next;

return result;

}

}

1 public Object next() {

2 /* Object result = cell.data; */

3 Cell c1 = this.cell;

4 Object result = c1.data;

5

6 /* cell = cell.next; */

7 Cell c2 = this.cell;

8 Cell c3 = c2.next;

9 this.cell = c3;

10

11 return result;

12 }

a. Java implementation. b. Bytecode-like desugaring of the Java
source code of ListItr.next() in our
program representation.

Figure 7-2: ”Natural” implementation of the class ListItr from Figure 2-1 on
page 22.
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Figure 7-3: Load node merging simplification for the points-to graph for the end of
the method ListItr.next(). We use the instruction labels from Figure 7-2.b.

atomic inter-procedural transformers: load(nP
0 , cell, n

L
3 ) and load(nP

0 , cell, n
L
7 ). It

is easy to see that these two transformers produce the same node mappings for nL
3

and nL
7 . Additionally, our analysis does not keep track of the ordering between the

outside edges: when using the summary for the method ListItr.next(), the inter-
procedural analysis is not aware of the fact that the LOAD from line 3 is always
executed before the LOAD from line 7. Therefore, the distinction between nL

3 and nL
7

is “blurred” during the inter-procedural analysis. Hence, intuitively, the analysis does
not lose precision by merging nL

7 into nL
3 . Figure 7-3.b presents the simplified points-to

graph. “Merging” refers to the operation of substituting nL
7 with nL

3 in every element
of the points-to graph: the outside edge 〈nL

7 , next, n
L
8 〉 becomes 〈nL

3 , next, n
L
8 〉, the

local variable c2 points to nL
3 instead of nL

7 , etc. 4
In general, this optimization unifies the load nodes that are the targets of outside

edges with a common source node and a common field label. Consider a node n and

109



a field f and let 〈n, f, nL
lb1
〉, . . . 〈n, f, nL

lbl
〉 be the f-labeled outside edges that start in

n. This optimization unifies the load nodes nL
lb1

, . . . nL
lbk

by replacing each nL
lbi

with
some representative nL

lbk
. The current analysis implementation chooses lbk to be the

minimal label among lb1, . . . lbl. This optimization is performed repeatedly: each
unification of load nodes may enable other unifications. The function url returns the
final result of this iterative simplification.

7.3.2 Unifying Globally Escaped Nodes - Function uge

There are two kinds of escaped nodes in a points-to graph. Some nodes escape only
because they are reachable from the caller (i.e., from parameters and/or returned
nodes). These nodes may become captured in the caller. Other nodes escape globally:
they are reachable from unanalyzed methods, static fields and/or started threads. The
analysis cannot “recapture” these nodes. Intuitively, the only important information
about these nodes is the fact that they escape, and the analysis is unlikely to gain
precision by distinguishing between them.

This section presents an optimization that reduces the size of the end-of-method
points-to graphs by unifying each globally escaped node with nGBL,0 (a node that
already models globally escaped objects). This optimization is important because the
transfer functions for several instructions (STATIC LOADs, unanalyzable CALLs,
etc.) cause nodes to escape globally. The optimization described in Section 7.1
causes more nodes to escape globally. The optimization from this section prevents the
“cluttering” of the points-to graphs with useless information about globally escaped
nodes.

Technically, consider a points-to graph G = 〈J, I, O,E,R,W〉. E is the set of
directly globally escaped nodes: e.g., nodes that are passed as arguments to unan-
alyzable CALLs, stored in static fields, etc. We define the set gen(G) of globally
escaped nodes as

gen(G) = { n ∈ nodes(G) \ CPNode | reachable(E ∪ {nGBL,0}, I ∪O)(n) }

I.e., the set gen(G) contains any node that is transitively and reflexively reachable
from directly escaped nodes and/or from nGBL,0, along inside and outside edges. For
technical reasons, gen(G) does not contain any parameter nodes (unifying these nodes
with nGBL,0 would require additional changes in the inter-procedural analysis).

Let ρG be the function defined as ρG(n) = nGBL,0 if n ∈ gen(G), and ρG(n) = n
otherwise. We extend ρG to process any node-based structure, by replacing each node
n with ρG(n); e.g., if I is a set of inside edges, then

ρG(I) = { 〈ρG(n1), f, ρG(n2)〉 | 〈n1, f, n2〉 ∈ I }

The optimization uge is defined as follows:

uge(G) = 〈 ρG(J), ρG(I), ρG(O), ρG(E) ∪ (gen(G) ∩ CINode), ρG(R), ρG(W) 〉
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Notice the underlined part of the definition above: the set of directly globally es-
caped nodes from uge(G) contains all inside nodes from gen(G) (in addition to the
nodes from ρG(E)). Intuitively, the analysis “remembers” that the inside nodes from
gen(G) escape globally. This feature ensures that the analysis continues to satisfy
Property 4 on page 44. Part 1 of Property 4 states that if an object allocated by the
analysis scope at allocation site lb escapes, then the corresponding inside node nI

lb ,0

escapes. Consider a method m that invokes a method callee. Assume that callee allo-
cates an object at allocation site lb and stores it into a static field. The corresponding
inside node nI

lb ,0 escapes globally. If uge “forgets” that nI
lb ,0 escapes globally, then

the node nI
lb ,0 could incorrectly appear as captured in the points-to graph for the end

of m. In this case, the stack allocation optimization could incorrectly decide to inline
callee and stack-allocate the object allocated at the allocation site lb .

As a minor technical point, after this optimization, some outside edges may end
in the node nGBL,0, which contradicts our earlier definition that each outside edge ends
in a load node (Figure 4-2). We solve this problem by assuming that nGBL,0 is a special
load node.
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Chapter 8

Experimental Validation

To evaluate our ideas, we implemented our analysis and the two analysis applications
that we described in this thesis: the stack allocation optimization and the purity
analysis. We used our implementation to analyze several benchmarks of significant
size and complexity, including the entire SPECjvm98 industry-standard benchmark
suite [76].

The rest of this chapter has the following structure: Section 8.1 describes our im-
plementation. Section 8.2 describes our stack allocation experiments. Section 8.3 uses
the stack allocation experiments to evaluate the impact of the analysis optimizations
from Chapter 7. Section 8.4 describes our purity analysis experiments.

8.1 Analysis Implementation

Our analysis implementation uses the MIT Flex compiler infrastructure [2] and the
jpaul library of program analysis utilities [31]. Our implementation, the Flex com-
piler infrastructure, and the jpaul library are all implemented in the Java 5 program-
ming language (i.e., Java with generic types).

System Architecture: Our analysis implementation uses the Flex front-end to
parse Java class files and to construct a Static Single Assignment (SSA) [26] program
representation similar to the one we used in the presentation of the analysis (see
Section 3.2). Also, Flex constructs a static call graph for the analyzed program; we
present the call graph construction algorithm in Section 8.1.2. Our analysis proceeds
as explained in Section 4.5: the analysis examines the SSA intermediate representa-
tion and the call graph, generates the relevant dataflow constraints, and next uses
the generic constraint solver from the jpaul library.

Theoretically, we could have used a more established constraint solver like
BANE [34], at the price of performing a massive rewriting of the analysis constraints
in the BANE format. We preferred jpaul because of its flexibility: jpaul allows
the definition of new kinds of constraints by simply subclassing a specific Java class.
Additionally, solving a constraint system with jpaul requires a simple Java method
invocation, with no need for expensive file-based communication with an external
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solver.
To increase the speed of our prototype, we implemented all the optimizations

from Chapter 7. We also implemented the two analysis applications described in
this thesis: the stack allocation optimization and the purity analysis. Command
line options allow the user to select the desired analysis client. In the case of the
stack allocation optimization, our implementation uses the Flex back-end to generate
native executable code.1 The resulting executables use a runtime library that contains
the BDW garbage collector [9] and the implementations of the native methods.

Our analysis implementation relies extensively on the jpaul library of program
analysis utilities, an open-source Java library that contains our generic implementa-
tions of several important algorithms and data structures for program analysis. Our
decision to develop jpaul as a stand-alone library was motivated by our observation
that program analysis researchers often re-implement (sometimes in an inefficient
way) a relatively small set of algorithms: graph algorithms, constraint solvers, algo-
rithms for finite state automata, etc. Having these algorithms in a separate library
used by different analyses allows (1) better testing, (2) better separation between the
analysis specification and the constraint solver, and (3) efficient implementations of
important algorithms. The jpaul library is available online from the SourceForge
repository of open-source software [31]. Although jpaul is a very niche library, there
were more than 150 downloads of jpaul in the first five months of 2006.

Implementation Size: The implementation of the pointer and purity analysis con-
sists of 10K lines of Java code,2 and the implementation of the stack allocation op-
timization (including the code for performing method inlining) consists of another
1.5K lines. The jpaul library itself consists of another 13K lines of Java code. We
also performed countless bug fixes and additions to various parts of Flex. Our im-
plementation is publicly available online [79].

Section 8.1.1 explains our efficient analysis implementation. Section 8.1.2 explains
our handling of the complex features of the Java bytecode language: exceptions,
native methods, dynamic class loading, etc. Section 8.1.3 discusses the limitations of
the current prototype.

8.1.1 Efficient Analysis Implementation

Our implementation uses the algorithm from Section 4.5.2 as a top-level driver for
the inter-procedural analysis. For each method, our implementation uses the efficient
constraint solver from the jpaul library to solve the dataflow constraints. We describe

1For security reasons, the Java bytecode instruction set does not allow stack allocation. Therefore,
the only way to test the impact of the stack allocation optimization is to generate native code.

2The vast majority of this code belongs to the pointer analysis. The purity analysis is imple-
mented inside the pointer analysis; it is hard to count the lines of code that are specific only to the
purity analysis.
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first the constraint solver from the jpaul library, focusing on the optimizations that
have a direct impact on the analysis execution speed. Next, we explain how the
analysis generates constraints in a form that takes advantage of the optimizations
from the constraint solver. Finally, we briefly discuss the data structures used by our
implementation.

Description of the Constraint Solver from the jpaul Library

The constraint solver from the jpaul library is an improvement of the constraint
solver from Section 4.5.1. The jpaul solver supports constraints of the general form
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variables, and f is a function that can be expressed in Java.3 The jpaul solver
supports constraints with multiple out-variables, for those situations when it is faster
and/or more natural to compute several results simultaneously.4 Different flow vari-
ables may take values from different lattices, provided that all these lattices have finite
depth.5 Any constraint system has at least one solution: e.g., consider the solution
where the value of each flow variable is the top value from the corresponding lattice.

The solver uses an advanced worklist algorithm to compute a solution ψ that
assigns to each variable v a value ψ(v) such that all constraints are satisfied. If all
constraints are monotonic (i.e., the right-hand side functions are monotonic), then
the solver computes the smallest solution. If at least one constraint is non-monotonic,
then a smallest solution may not even exist; in this case, the solver computes one of
the possible solutions.

The jpaul solver performs two classes of important optimizations. First, the
solver simplifies the constraint system by unifying certain flow variables. Second,
the solver uses a sophisticated iteration technique over the potentially unsatisfied
constraints. We describe these optimizations below.

3In jpaul, each constraint is an instance object of a subclass of the special class
jpaul.Constraints.Constraint. jpaul provides several basic kinds of constraints; e.g., bigger-
than constraints of the form v1 w v2. The user may add new kinds of constraints by subclassing
Constraint. Each constraint declares its in-variables and out-variables. jpaul ensures that each
constraint may read only its declared in-variables, and similarly, that a constraint may update only
its declared out-variables. The only allowed update is by joining a value to the current value for a
flow variable. This restriction ensures that the values of the flow variables never decrease and the
constraint solver (see Section 4.5.1) terminates for finite lattices.

4One can always express a constraint with several out-variables as a set of constraints, each with
a single out-variable. However, this may require duplication of the right-hand side function.

5In jpaul, each flow variable is an instance object of a subclass of the special class
jpaul.Constraints.Var. The operators of the related lattice (e.g., t) are implemented as vir-
tual methods of the Var class. Hence, the jpaul user can declare new variables that take values in
new lattices.
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Unification of Flow Variables: The unification of flow variables reduces the
memory consumption of the solver and the number of iterations until reaching a
fixed-point: intuitively, there are fewer values that “grow.” In addition, this tech-
nique reduces the number of constraints: after unification, certain constraints may
become identical; e.g., the constraints v1 w v3 and v2 w v3 become identical after
the unification of v1 and v2. Similarly, after unification, certain constraints may be-
come tautologically true and the solver can ignore them; e.g., consider the constraint
v1 w v2 after the unification of v1 and v2.

The unification of any two flow variables preserves the correctness of the resulting
solution: it is easy to prove that any solution for the constraint system after the
unification satisfies the original constraints too.6 However, unifying arbitrary flow
variables may reduce the precision of the resulting solution. A solution ψ′ for the
constraint system is more precise than another solution ψ iff for any flow variable v,
ψ′(v) v ψ(v).7 To avoid losing precision, the solver unifies variables only in special
cases:

1. The solver unifies mutually-bigger flow variables. E.g., in the case of the con-
straints v1 w v2, v2 w v3, v3 w v1, the solver unifies the flow variables v1, v2,
and v3. Technically, the solver identifies the constraints of the form v1 w v2 and
unifies the strongly-connected components of the corresponding “bigger” rela-
tion. Mutually-bigger variables have equal values in any solution. Therefore,
this optimization does not affect the precision of the solution. In the research
literature, this optimization is usually called “cycle elimination” [35].

2. The solver detects flow variables v1 such that the only constraint with v1 as an
out-variable has the form v1 w v2. For each such v1, the solver unifies v1 and
v2.

If all constraints with v1 as an in-variable are monotonic in v1, then the unifi-
cation of v1 and v2 does not lose any precision. For any solution ψ, there exists
a more precise (i.e., smaller) solution ψ′ v ψ such that ψ′(v1) = ψ′(v2): just
pick ψ′ to be identical to ψ, except that ψ′(v1) = ψ(v2) v ψ(v1). Obviously,
ψ′ satisfies all constraints that do not use v1. Also, ψ′ satisfies (with equal-
ity) the unique constraint v1 w v2 that uses v1 as an out-variable. Consider
a constraint that uses v1 as an in-variable: 〈vo

1, . . . , v
o
r〉 w f(. . . , v1, . . . ). Be-

cause ψ′(v1) v ψ(v1), and f is monotonic in v1, the right-hand side evaluates
to a smaller value in ψ′ than in ψ, and the constraint remains satisfied in ψ′.
Therefore, ψ′ is a solution to the constraint system.

In the case of non-monotonic constraints, the unification of v1 and v2 may
lose precision, while preserving correctness. Anyway, in that case, there is no
guarantee that a smallest solution exists. In practice, we did not encounter any
noticeable loss of precision due to this optimization.

6Intuitively, the reason is that jpaul does not allow disequality constraints of the form v1 6= v2.
7This definition corresponds to the common convention in dataflow analysis (including in our

analysis) that “smaller” means “more precise”.
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The solver performs this optimization repeatedly, until no longer possible. Each
unification may enable new unifications. E.g., consider the constraints v1 w v2,
v2 w v3, v1 w v3. Initially, the solver unifies v2 and v3, and obtains the
constraint v1 w v3: the constraint v2 w v3 became the tautology v3 w v3, that
the solver ignores. Next, the solver unifies v1 and v3, and obtains an empty
constraint system.

Improved Iteration Technique: Similar to the constraint solver from Section 4.5.1,
the jpaul solver uses a worklist to iterate over the potentially unsatisfied constraints.

The jpaul solver uses an advanced iteration technique called “Iterating Through
Strong Components” [66, Chapter 6]. The solver iterates over strongly-connected
components of mutually dependent constraints: a constraint C1 depends on the con-
straint C2 if one of C1’s in-variables is an out-variable for C2. Technically, the solver
computes the strongly-connected components (SCCs) of mutually dependent con-
straints.8 The solver traverses the SCCs in topological order, starting with the SCCs
of constraints that do not depend on constraints from other SCCs. For each SCC,
the solver iterates over the constraints from that SCC until they are all satisfied,
and next moves to the topologically-next SCCs. Notice that the processing of con-
straints from future SCCs does not invalidate the constraints from already-processed
SCCs. Intuitively, this iteration technique splits the top-level fixed-point computa-
tion into several smaller fixed-point computations, one for each SCC, and performs
these computations in a “smart” order that avoids unnecessary re-computations.

The jpaul solver implements other iteration order optimizations that do not have
a noticeable impact for our analysis, but may be useful in a different context. We
briefly mention one such optimization, that, to the best of our knowledge, is not
described in other publications: the constraint generator (e.g., the pointer analysis)
can assign to each constraint an estimation of its relative cost. E.g., constraints for
analyzable CALLs are more expensive than simple inequality constraints of the form
v1 w v2. Inside each SCC of mutually dependent constraints, the jpaul solver iterates
first over the cheap constraints. Only after all cheap constraints are satisfied does the
analysis examine more expensive constraints.9

Generating Efficient Constraints

Our implementation generates constraints that are equivalent to the analysis con-
straints from Section 4.5.1. The generated constraints try to maximize the optimiza-
tion opportunities inside the jpaul solver. In particular, our implementation tries to
maximize the number of simple inequality constraints of the form v1 w v2.

The constraints from Section 4.5.1 manipulate data at the granularity of points-to
graphs. E.g., the constraints for the transfer functions have the form va

lb w [[lb ]]a(vb
lb ),

8The jpaul library contains a powerful graph package that allows the definition of directed
graphs, constructs strongly-connected components, performs topological sorting of acyclic graphs,
etc.

9Satisfying an expensive constraint may “break” some of the cheap constraints from the same
SCC, requiring the solver to examine them again.
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where the values of the flow variables va
lb and vb

lb are points-to graphs. Most transfer
functions change only a small part of the points-to graph. E.g., the transfer function
for a STATIC STORE may add some nodes to the set of globally escaped nodes,
but does not change the set of inside edges. As we explained earlier in this section,
the jpaul constraint solver saves memory and time by unifying identical entities. To
enable this optimization, our implementation generates constraints that manipulate
data at lower, sub-points-to-graph granularity. Our implementation uses flow vari-
ables for each component of a points-to graph. E.g., in our STATIC STORE example,
there is one variable for each set of inside edges, and one variable for each set of glob-
ally escaped nodes. The solver is now free to unify the variables for the sets of inside
edges before and after the STATIC STORE, while keeping the variables for the sets
of globally escaped nodes distinct.

Our implementation uses the optimizations described in Section 4.6.4: for each
method, there is one method-wide set of outside edges and one method-wide set of
returned nodes. As our implementation uses the SSA form, it represents the state
of the local variables flow-insensitively. Still, there is one set of inside edges and one
set of globally escaped nodes for each program point. To summarize, the dataflow
constraints generated for the body of one method use the following flow variables:

• For each program point, one flow variable for the set of inside edges at that
point and one flow variable for the set of globally escaped nodes at that point.
More precisely, for each program label lb , the analysis uses the flow variable vb

I,lb

for the set of edges before the label lb and the flow variable vb
E,lb for the set of

globally escaped nodes before the label lb . The analysis uses the corresponding
flow variables va

I,lb and va
E,lb for the program point after the label lb .

• For each local variable v, one flow variable vv for the set of nodes v points to.

• One flow variable vO for the method-wide set of outside edges.

• One flow variable vR for the method-wide set of returned nodes.

• In the case of purity analysis, one flow variable vW for the method-wide set of
mutated prestate abstract fields.

Notice that the values of all variables are sets (of edges or nodes). Therefore, the
ordering relation is set inclusion, i.e., in the generated constraints w is equivalent to
⊇ . Our implementation generates as many simple inclusion constraints v1 ⊇ v2 as
possible.

Example 12. Assume that the instruction from label lb is a STATIC STORE “C.f =
v.” The analysis generates the following three constraints: va

I,lb ⊇ vb
I,lb , va

E,lb ⊇ vb
E,lb ,

and va
E,lb ⊇ vv .

If va
I,lb ⊇ vb

I,lb is the only constraint10 with va
I,lb as an out-variable, the solver is

10It indeed is: the information after a label depends only on the information before the label and
on the transfer function for that label.
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free to unify va
I,lb and vb

I,lb . This optimization would have been impossible if we kept
our constraints at the granularity of points-to graphs.

The last two constraints (va
E,lb ⊇ vb

E,lb and va
E,lb ⊇ vv) are equivalent to va

E,lb ⊇
vb

E,lb ∪vv, a constraint that is closer to the spirit of the transfer function for a STATIC
LOAD (see Figure 4-3). However, using the two simpler constraints maximizes the
number of inclusion constraints. Additionally, the resulting constraints are faster to
execute. E.g., if there is a change in the value of vv , the solver needs to re-evaluate only
the constraint va

E,lb ⊇ vv , in order to propagate elements from vv to va
E,lb . Evaluating

the more complex constraint va
E,lb ⊇ vb

E,lb ∪ vv requires propagating elements from

vb
E,lb too; if the value of vb

E,lb did not change, this propagation is unnecessary. 4

Data Structures

The jpaul solver allows the constraint generator (in our case, the pointer analysis)
to specify the data structures for representing the values of the flow variables. The
choice of the data structures significantly impacts the running time of our analysis.

After lowering the data granularity for the constraints, the values of the flow
variables are either sets of edges or sets of nodes. A set of edges S ⊆ CNode ×
Field × CNode is equivalent to the function FS : CNode → Field → P(CNode) =
λn1. λf. {n2 | 〈n1, f, n2〉 ∈ S}. Therefore, our implementation represents sets of
edges as maps from starting nodes to maps from fields to sets of ending nodes.11

This representation allows the implementation to quickly find the ending points of all
edges that start in a node n and are labeled with a field f. The analysis uses such an
operation in, e.g., the transfer functions for LOAD instructions (see definition of the
function process load in Figure 4-5 on page 49).

We experimented with several implementations of sets and maps, including the
standard hash-based implementations from the Java standard library and the tree-
based and copy-on-write implementations from the jpaul library. By default, our
implementation uses the hash-based data structures, due to their superior speed.

Discussion: We do not claim that hash-based data structures are best for pointer
analysis or for program analysis in general. An in-depth comparison of different data
structures is beyond the scope of this thesis. Other researchers [59, 62] report that,
for their analyses, generic hash-based implementations were slower than other data
structures (e.g., functional data structures, Ordered Binary Decision Diagrams [12],
etc.).

8.1.2 Handling of Complex Java Features

This section explains how our analysis implementation handles the complex features
of the Java bytecode language.

11The corresponding Java 5 type signature is Map<CNode,Map<Field,Set<CNode>>>.
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Exceptions: The Flex intermediate representation models the creation and the
propagation of exceptions explicitly. Each instruction that might generate an excep-
tion is preceded by a test. If an exceptional situation is detected (e.g., a null pointer
dereferencing), the Flex intermediate representation follows the Java convention of
allocating and initializing an exception object, e.g., a NullPointerException, then
propagating the exception to the appropriate catch block. This block is determined
by a succession of “instanceof” tests. If no applicable catch block exists,12 the
exception is propagated into the caller of the current method by a THROW instruc-
tion “throw v.” Unlike a throw instruction from Java, a THROW instruction from
the Flex intermediate representation always terminates the execution of the current
method.13 A CALL instruction has the form “〈vN , vE〉 = v0.s(v1, . . . , vj);” it has two
successors: if the method returns normally, the control goes to the normal successor
and vN points to the returned object; if the method terminates due to an uncaught
exception, the control goes to the exceptional successor and vE points to the exception
object.

Our analysis requires minimal changes for handling exceptions: in addition to the
set of returned nodes, the analysis maintains a set of nodes that may be “thrown”
out of the method.14 We update the transfer function for an analyzable CALL to
set the corresponding local variable vE to point to the set of nodes thrown from the
callee, projected through the inter-procedural map. The explicit treatment of excep-
tions introduces a large number of allocation sites in our program: any instruction
that may throw an exception is an allocation site for an exception object. To avoid
an explosive increase in the size of the analysis points-to graphs, we represent all
exceptions allocated at these sites by the same node.

Call Graph Construction: The Flex compiler infrastructure requires a call graph
not only for the pointer analysis, but also for detecting all methods whose code should
be compiled in the resulting native executable. Computing a static call graph in the
presence of dynamic dispatch (i.e., virtual calls) and dynamic class loading is non-
trivial.

Flex uses the Rapid Type Analysis (RTA) [5] call graph construction algorithm,
adapted to Java by the Flex developers (originally, RTA was designed for C++). To
determine the targets of a virtual call “v0.s(v1, . . . , vj),” RTA considers all instantiated
subclasses of the declared type of variable v0. The set of instantiated classes and the
set of executed methods are mutually dependent: executed methods may instantiate
new classes and new classes may affect the set of methods that virtual calls invoke.

12This is the common case: most Java methods do not declare any catch block.
13There are no finally blocks in the Java bytecode. Java compilers translate “finally” blocks

using (1) duplication or (2) calls to subroutines internal to the method (using the special bytecode
instruction jsr, “jump to subroutine”). Flex inlines all jsr subroutine calls, duplicating the code of
the subroutines. The number of duplicates is exponential in the number of nested finally blocks.
In practice, finally blocks are rarely nested, and this duplication does not increase the code size
significantly.

14Accordingly, for each method, the analysis introduces a flow variable vT for the set of thrown
nodes.
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RTA uses a worklist algorithm that starts from the main method of the program
and discovers all potentially invoked methods and all potentially instantiated classes.
RTA examines the instructions from the body of each newly discovered method.
For each virtual call, RTA computes the set of potential callees with respect to the
currently known instantiated classes, potentially discovering new invoked methods.
The examination of a “new C” instruction may reveal a new instantiated class C.
In this case, RTA re-examines all virtual calls that perform dynamic dispatch on a
variable whose declared type is a superclass of C.

The RTA algorithm produces a correct call graph only if it is able to discover all
classes that the program may instantiate. This requirement is hard to satisfy if the
analyzed program uses reflection to instantiate classes. E.g., the analyzed program
may read a string representing the name of a class, use dynamic class loading to
obtain a runtime representation of that class, and next use the Class.newInstance

method to allocate objects of that class. The particular class instantiated through
reflection is not obvious from the source code. Java programs may also use reflection to
invoke Java methods that may instantiate Java classes (directly or through transitive
callees). Additionally, the current RTA implementation from Flex cannot examine
the non-Java source code of the native methods. However, the native methods may
instantiate Java classes and invoke Java methods. To handle such situations, Flex
requires the user to manually provide a conservative approximation of:

1. The set of classes that may be instantiated: (1) through reflection, or (2) by
the native methods.

2. The set of Java methods that may be invoked: (1) through reflection, or (2)
from the native methods.

In Flex terminology, the above classes and methods constitute the root set. Given
the root set for the analyzed program, RTA can compute a conservative static call
graph, even in the presence of reflection, native methods, and dynamic class loading.
Currently, Flex does not provide any tool for helping the user to compute the root
set. The development of such a tool (based on either static or dynamic analysis) is
an interesting direction for future work.

Native Methods: Given a static call graph, our analysis has no difficulty handling
native methods correctly: the analysis can simply consider all calls to native methods
as unanalyzable. This is correct, but overly conservative. To increase the analy-
sis precision, we manually provide the summaries (i.e., the end-of-method points-to
graphs) for several commonly-used native methods: e.g., the methods hashCode and
equals from java.lang.Object, the methods open, available, read, readBytes,
skip, and close from java.io.FileInputStream, etc. In general, these points-to
graphs are empty, stating that the corresponding native methods do not change the
aliasing for their parameters.
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Dynamic Class Loading and Reflection: The dynamic class loading and the
reflection mechanism are implemented as calls to native methods. Our analysis con-
siders these methods unanalyzable; e.g., in the analysis, a call to Class.newInstance

returns a nGBL node. However, if the application uses dynamic loading / reflection, the
user must supply a conservative root set, such that Flex can construct a conservative
static call graph.

8.1.3 Limitations of the Prototype Implementation

The current implementation analyzes only whole programs; a whole program includes
the application-specific code and all the invoked libraries. Unfortunately, the current
implementation cannot analyze an isolated library. The idea of whole program com-
pilation is deeply enshrined into many important components of the Flex compiler
infrastructure, such as the call graph construction algorithm. Theoretically, it is pos-
sible to build a tool for analyzing isolated libraries: the tool could model virtual
calls to common methods using common assumptions (e.g., a method that overrides
java.lang.Object.equals does not mutate and does not create new aliasing to its
arguments). The tool can classify the other virtual calls as unanalyzable. Non-virtual
calls do not pose any problem because the analysis can identify the callee even in the
absence of a complete program. This approach is not correct in general: e.g., a li-
brary client can define a class whose equals method mutates its arguments. However,
this approach could provide useful information for applications that respect common
programming rules for Java. Unfortunately, we did not have the time to develop
such a tool, partially because we had to invest most of our implementation time into
debugging the current Flex infrastructure. Developing a tool for analyzing separate
libraries is an interesting direction for future work.

A second important limitation is that Flex supports only the (now
outdated) GNU Classpath 0.08 implementation of the Java standard li-
brary: i.e., by default, Flex cannot analyze and compile applications that
use more recent library classes. To analyze more recent benchmarks,
we extended the GNU Classpath 0.08 library with several simple JDK
1.5 classes: java.lang.StringBuilder, java.lang.Iterable, java.lang.Enum,
java.util.Queue, java.util.AbstractQueue, java.util.PriorityQueue. We
also added new methods to several existing classes: java.lang.String,
java.lang.Integer, and java.lang.Collections.

8.2 Stack Allocation Experiments

We used our prototype to analyze a significant set of benchmarks and to perform
the stack allocation optimization on them. Figure 8-1 describes our benchmarks.
We analyzed all programs from the SPECjvm98 [76] industry-standard benchmark
suite. We also analyzed all programs from the Java Olden [15] benchmark suite, a
set of pointer-intensive programs originally written for C and later ported to Java.
Finally, we analyzed two programs popular with compiler researchers: JLex (a lexer
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Program Description

SPECjvm98 benchmark set [76]

check Simple program; tests JVM features

compress File compression tool using the LZW compression algorithm

jess Expert system shell

db Database application

javac JDK 1.0.2 Java compiler

mpegaudio Audio file decompression tool

mtrt Multi-threaded raytracer

jack Java parser generator

Java Olden benchmark set [15, 14, 16]

BH Barnes-Hut n-body solver

BiSort Bitonic Sort

Em3d Simulation of electromagnetic wave propagation through 3D objects

Health Simulation of a health-care system

MST Bentley’s algorithm for minimum spanning tree in a graph

Perimeter Region perimeter computation in a quad-tree-represented image

Power Optimizer of economic efficiency for power consumers

TSP Randomized algorithm for the traveling salesman problem

TreeAdd Recursive depth-first traversal of a tree to sum the node values

Voronoi Computation of a Voronoi diagram for a random set of points

Miscellaneous

JLex Java lexer generator version 1.2.6 [32]

JavaCUP Java parser generator version 0.10i [33]

Figure 8-1: Analyzed programs.

generator) and JavaCUP (a parser generator).

Figure 8-2 presents the size of the analyzed programs and the execution time of
the analysis on each of them. For each program, our prototype analyzed all methods
that are reachable from the main method, according to the static call graph (see
Section 8.1.2). Our prototype analyzed methods both from the user code and from
the library code; our prototype supports the GNU Classpath 0.08 [1] implementation
of the Java standard library. The analyzed programs range in size from the small
Bisort (4972 bytecode instructions, 298 methods, 89 classes) to the much larger
javac, the Sun JDK 1.0.2 Java compiler (54236 bytecode instructions, 1960 methods,
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Program #Classes #Methods
#Bytecode
instructions

Analysis
time (s)

check 134 560 10854 9.5
compress 157 644 13691 10.0
jess 312 1373 33057 23.7
db 160 771 16623 12.5
javac 332 1960 54236 56.4
mpegaudio 189 849 23940 17.7
mtrt 182 870 20299 14.9
jack 203 937 28841 32.8

BH 133 548 10011 9.5
BiSort 89 298 4972 4.3
Em3d 128 514 8957 8.2
Health 105 346 9253 6.2
MST 92 315 5059 4.5
Perimeter 96 320 8163 4.4
Power 127 513 9645 7.8
TreeAdd 88 288 7499 4.2
TSP 90 303 8162 4.4
Voronoi 131 561 10003 16.9

JLex 166 717 22946 14.2
JavaCUP 237 1323 36825 27.1

Figure 8-2: Analyzed program size and analysis time. The size measurements concern
only the part of the program that is transitively reachable from the main method.

332 classes).15

We conducted our experiments on a 2.8 GHz Pentium 4 computer (no hyper-
threading), with 512Kb cache and 1Gb RAM, running Debian Linux. We run our
analysis using the Sun JDK 1.5.0, mixed mode.16 Our prototype requires between
4.3 and 56.4 seconds to analyze each application. The analysis time from Figure 8-2
refers strictly to the time spent inside the pointer analysis: it does not include the
execution time for the Flex front-end and the Flex back-end.

Figure 8-3 presents the execution time for the Flex front-end, the Flex back-
end, and the entire compilation process. The front-end parses the analyzed program,
constructs a preliminary program representation, builds the Static Single Assignment

15Other publications may report different sizes for the analyzed programs, due to the use of
different call graph construction algorithms and/or different implementations of the Java standard
library.

16Notice the difference between the Java library that the Flex infrastructure analyzes and com-
piles (GNU Classpath 0.08) and the Java library that the analysis implementation uses for its own
execution (Sun JDK 1.5.0).
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Time for different compiler stages (s) Total

Program Pointer Flex Front-end Flex C compilation

analysis Total RTA SSA Back-end time (s)

check 9.5 25.0 2.9 3.5 47.1 158.6

compress 10.0 24.7 2.9 4.9 69.3 194.6

jess 23.7 46.6 5.2 12.1 158.1 409.6

db 12.5 28.0 3.0 5.9 75.2 215.2

javac 56.4 192.3 43.2 18.8 304.2 897.6

mpegaudio 17.7 33.4 3.1 10.0 130.0 324.7

mtrt 14.9 33.2 3.1 9.3 116.9 285.7

jack 32.8 45.9 3.3 19.2 427.7 635.6

BH 9.5 22.6 2.6 3.6 33.6 164.6

BiSort 4.3 21.4 2.6 3.2 31.1 126.3

Em3d 8.2 21.8 2.6 3.3 30.2 140.6

Health 6.2 21.9 2.6 3.3 31.2 141.9

MST 4.5 21.8 2.6 3.3 29.6 139.8

Perimeter 4.4 21.9 2.6 3.3 40.2 146.6

Power 7.8 21.9 2.6 3.5 32.0 149.8

TreeAdd 4.2 21.4 2.6 3.2 29.1 146.2

TSP 4.4 21.7 2.6 3.3 37.7 157.6

Voronoi 16.9 23.4 2.8 3.6 71.2 176.1

JLex 14.2 30.6 3.1 7.9 102.1 244.3

JavaCUP 27.1 49.6 4.7 15.9 425.9 690.1

Figure 8-3: Execution time for different compiler stages. In this figure, RTA denotes
the compiler stage that constructs the call graph using the Rapid Type Analysis [5].
SSA denotes the compiler stage that converts the intermediate program representation
to the Static Single Assignment form by inserting a minimal number of φ nodes,
according to an algorithm based on dominance frontiers [26]. The C back-end compiles
the Flex intermediate representation into C code, that is later compiled using gcc.
The total compilation time (last column) is the time spent from the start of the Flex

compiler until the production of the native executable (including the time required
by gcc.)
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(SSA) [26] program representation, and constructs a call graph using the Rapid Type
Analysis [5]. Our implementation uses a back-end that compiles the SSA program
representation into C files. Our implementation compiles these C files to native code,
using gcc (the GNU C compiler) version 3.3.5. When interpreting the numbers from
Figure 8-3, one should consider the fact that many compiler stages from Flex (e.g.,
the back-end) are far less optimized than the pointer analysis.

Our prototype performed the stack allocation optimization for each analyzed ap-
plication. To avoid increasing the stack too much, our prototype did not apply the
stack allocation optimization to allocation sites inside loops (even if the correspond-
ing inside nodes are captured). C. Scott Ananian modified the BDW garbage collec-
tor [9]17 to trace through the stack allocated objects, and to not deallocate them when
they become unreachable. As we explained in Section 5.1, method inlining improves
the stack allocation opportunities. We experimented with several maximal inlining
depths, ranging from 0 (no method inlining) to 4. In each case, our implementation
inlined only the call chains that create new stack allocation opportunities. Addition-
ally, our implementation did not inline CALLs that are inside a loop, or have more
than one callee. Unrestricted inlining increases the size of some methods beyond the
capabilities of the Flex back-end. To avoid this problem, we do not perform inlin-
ings that cause the size of the caller to exceed 2500 instructions (in our intermediate
representation).18

Our prototype instrumented the optimized executables to count, at runtime, (1)
the number of stack allocated objects, and (2) the total number of allocated ob-
jects (including the stack allocated ones). The instrumentation also measured the
cumulated size of the allocated objects.

For each application, we executed the optimized executable and manually checked
that it produces the same result as the non-optimized version.

Figure 8-4 presents our dynamic results for the stack allocation optimization. We
present the percentage of stack allocated objects / memory for each maximal inlining
depth. For twelve programs out of twenty, our analysis stack allocates more than
10% of all objects (with a maximum of 95% for mtrt). For six programs, our analysis
stack allocates more than half of all objects.

To determine which objects are stack allocated, we instrumented the compiled
executables to count how many objects from each class are allocated / stack allocated.
We briefly discuss our findings:

• db: The database simulation db represents a database as a Vector of entries,
each entry containing a Vector of items. Virtually every database operation cre-
ates at least one auxiliary Enumeration object to iterate over a Vector. These
Enumerations account for 91% of all objects and our analysis stack allocates
all of them.

17The garbage collector that the generated executables use.
18Due to the lack of a clear criterion, the bound 2500 was chosen rather arbitrarily. We could

have used a larger bound. However, a larger bound would have increased the compilation time.
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Allocated objects Allocated memory
Program Total % Stack allocated Total % Stack allocated

(×103) for inlining depth (Mb) for inlining depth

0 1 2 3 4 0 1 2 3 4

check 2 18 18 21 21 21 0.1 17 17 21 21 21

compress 3 12 16 25 25 25 113.7 0 0 13 13 13

jess 7951 0 0 0 0 0 261.1 0 0 0 0 0

db 3211 0 91 91 91 91 74.7 2 61 61 61 61

javac 5835 8 11 11 11 11 166.6 5 7 7 7 7

mpegaudio 5 0 0 1 1 1 3.3 0 0 0 0 0

mtrt 6391 87 92 95 95 95 132.3 84 89 94 94 94

jack 7440 10 30 31 31 31 189.9 8 28 30 30 30

BH 15480 47 93 93 93 93 355.2 24 93 93 93 93

BiSort 132 0 0 0 0 0 2.5 0 0 0 0 0

Em3d 41 0 0 0 0 0 16.1 0 0 0 0 0

Health 1198 14 57 57 57 57 21.1 22 59 59 59 59

MST 8394 0 0 0 0 0 132.1 0 0 0 0 0

Perimeter 454 0 0 0 0 0 13.9 0 0 0 0 0

Power 784 97 97 97 97 97 21.0 97 97 97 97 97

TreeAdd 2098 0 0 0 0 0 40.0 0 0 0 0 0

TSP 197 66 66 66 66 66 5.9 53 53 53 53 53

Voronoi 1433 0 1 1 1 1 34.0 0 1 1 1 1

JLex 16 9 17 22 28 28 0.8 17 21 26 35 33

JavaCUP 960 15 19 34 34 34 26.6 11 14 37 37 37

Figure 8-4: Results for the stack allocation optimization. For each analyzed applica-
tion, we present the total number of allocated objects and the percentage of objects
that are stack allocated for different inlining depths. We also present statistics about
the total size of the allocated objects. In each case, we use bold font to indicate the
smallest inlining depth that achieves the best result. E.g., for mtrt, our analysis stack
allocates 95% of the objects, inlining call chains of length at most 2; increasing the
inlining depth to 3 or 4 does not improve the percentage of stack allocated objects.
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Execution time
% Speedup for the stack allocation
optimization (with inlining depth 3)

Program for the
unoptimized
version (s)

Total
Inlining
alone

Delta

check 0.0 – – –

compress 6.5 9 3 6

jess 17.4 1 0 1

db 31.7 4 -1 5

javac 15.3 10 3 7

mpegaudio 4.4 0 0 0

mtrt 6.0 28 1 27

jack 9.9 5 -1 6

BH 10.2 30 1 29

BiSort 0.7 – – –

Em3d 1.8 0 1 -1

Health 2.5 30 4 26

MST 8.2 4 -1 5

Perimeter 0.4 – – –

Power 13.9 2 0 2

TreeAdd 0.8 1 1 0

TSP 6.8 2 -1 3

Voronoi 1.7 0 -1 1

JLex 0.2 – – –

JavaCUP 1.2 12 1 11

Figure 8-5: Execution time speedup due to the stack allocation optimization. For
each program, we compute the speedup using the formula 100 × (tu − to)/tu, where
tu is the execution time for the unoptimized version and to is the execution time
for the optimized version. E.g., the optimized version of mtrt runs 28% faster than
the unoptimized version. A negative speedup corresponds to a slowdown. For each
program, we present the total speedup T , the speedup I due to the method inlining
alone, and the difference T − I. We do not report speedups for the programs whose
execution time is less than a second. We run each SPECjvm98 program with its
default (i.e., size 100) workload. We run each Java Olden program with its default
workload. Finally, we run JLex on the example sample.lex input file (from the
official JLex distribution [32]), and we run JavaCUP on the specification of a parser
for Java 1.4 (the file Parser.cup from the Flex compiler infrastructure [2]).
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• jack: Most stack allocated objects are Enumerators.

• mtrt: Most stack allocated objects are vectors of three elements that store
intermediate results of 3D graphic computations.

• BH: Almost all stack allocated objects are objects that represent 3D points.

• Health: Most stack allocated objects are list iterators.

• TSP: Almost all stack allocated objects in TSP (66% of all objects!) are instances
of the class java.util.Random. At a closer examination, we discovered a design
bug in TSP, most likely introduced while this application was ported from C to
Java: every time a random number is required, the program allocates a new
random number generator, instead of reusing a program-wide generator. This
error results in needless object allocation and lack of real randomness.

• For the rest of the programs, our analysis stack allocates a mix of Strings,
StringBuffers, Enumerators, etc.

For most of the programs, the percentage of stack allocated objects does not
increase if we augment the inlining depth beyond 1. The exceptions are check,
compress, mtrt, JLex, and JavaCUP. In particular, JLex achieves the maximum
percentage of stack allocated objects (28%) only for the inlining depth 3.

The careful reader may notice an anomaly for JLex: increasing the inlining depth
from 3 to 4 causes the percentage of stack-allocated memory to decrease from 35%
to 33%! The explanation is our policy of not performing inlinings into callers that
have already reached the limit of 2500 instructions, possibly due to previous inlinings.
Some of the inlining chains of depth 4 prevent the inlining of some of the call chains
of depth at most 3 (our current implementation has no estimate of which inlining
chain is more profitable at run-time).

Figure 8-5 presents the execution speedup due to the stack allocation optimization,
for the inlining depth 3. One part of the speedup is due to the reduction in the
garbage collection time: the space occupied by stack allocated objects is reclaimed
without garbage collection overhead. The rest of the speedup is due to the method
inlining itself: inlining may improve code locality and enable more optimizations in
later stages of the compiler. Figure 8-5 presents the total speedup, the speedup due
to the method inlining alone, and the difference of the two. To measure the speedup
due to the method inlining alone, we used our implementation to perform the same
inlining as for the stack allocation, but without actually modifying any allocation
site.

For five benchmarks — javac, mtrt, BH, Health, and JavaCUP — the total
speedup is at least 10%. In spite of the huge percentage of stack allocated objects,
91%, db has a speedup of only 4%; a possible explanation is that the garbage collec-
tion overhead is only a small fraction of db’s execution time. The speedup due to the
method inlining alone is only a small part of the total speedup.
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8.3 Impact of the Analysis Optimizations

Our analysis prototype implements all optimizations from Chapter 7. These op-
timizations increase the analysis speed, e.g., by using type information to eliminate
unfeasible inside/outside edges (see Section 7.2). To evaluate the impact of each opti-
mization, we measured the slowdown caused by eliminating each specific optimization
(while keeping the others). As there are interactions between different optimizations,
our methodology is imperfect. Unfortunately, due to the exponential number of com-
binations of optimizations, we cannot evaluate all combinations.

Figure 8-6 presents the impact of each individual analysis optimization, as mea-
sured when performing the analysis of all methods from the twenty benchmarks from
Figure 8-1.19 By far, the most effective optimization is the iteration limit for the com-
putation of inter-procedural fixed-points (Section 7.1). For each strongly-connected
component (SCC) of mutually-recursive methods, our prototype performs at most
k × m iterations, where m is the number of methods from the SCC, and k is an
empirically-chosen factor that exponentially decreases from 8 (for small SCCs with
m ≤ 5) to 0, i.e., no iteration, for large SCCs with m > 30. This optimization
is essential when processing large benchmarks: e.g., without this optimization, the
analysis of javac, that normally takes less than a minute, does not terminate even
after 24 hours.

The other optimizations have a smaller, but still important impact: e.g., the analy-
sis of javac is almost 2 times slower without the use of type information (Section 7.2),
and 2.69 times slower without the merging of globally escaped nodes (Section 7.3.2).

We also measured the number of stack allocated objects in the absence of each
optimization. These numbers are practically unchanged from the case when all opti-
mizations are activated.20 In particular, computing the inter-procedural fixed-points
with no iteration limit does seem to impact the number of stack allocated objects. A
natural question is whether we could obtain the same ratio of stack allocated objects
by not computing any inter-procedural fixed-point, i.e., by considering all CALLs
between mutually-recursive methods as unanalyzable. The experimental results from
Figure 8-7 show that not computing any inter-procedural fixed-point speeds up the
analysis, but reduces the number of stack allocated objects. Hence, it is useful to try
to solve the inter-procedural fixed-points, as long as this operation does not prevent
the analysis from terminating on large programs.

8.4 Purity Analysis Experiments

We evaluated our purity analysis using two sets of experiments. First, we performed
a set of qualitative experiments: we used our prototype to infer the purity of several
complex consistency predicates for data structures. Second, we performed a set of
quantitative experiments: we used our prototype to detect pure methods and read-

19The same kind of analysis we perform in Section 8.2.
20We do not present these numbers because the very few differences are less than 1%.

130



Acronyms for the analysis optimizations:

il - iteration limit for inter-procedural fixed points (Section 7.1)
ti - use of type information to avoid unfeasible edges and node

mappings (Section 7.2)
rc - remove captured nodes at the end of a method (see transfer

function for RETURN in Figure 4-3)
url - unify redundant load nodes (Section 7.3.1)
uge - unify globally escaped nodes (Section 7.3.2)

Program Slowdown in the absence of one optimization

il ti rc ml mge

check 27 0.20 0.16 0.01 0.07

compress 21 0.25 0.12 0 0.09

jess 73 0.30 0.21 0.01 0.20

db 18 0.27 0.21 0.04 0.10

javac n/t 0.94 0.18 0.58 1.69

mpegaudio 29 0.13 0.09 0 0.04

mtrt 15 0.18 0.16 0.3 0.13

jack 8 0.29 0.16 0.04 0.66

BH 30 0.28 0.11 0.02 0.02

BiSort 10 -0.03 0.16 0.01 -0.01

Em3d 29 0.27 0.14 0.02 0.03

Health 7 0.14 0.14 0.01 0

MST 9 -0.04 0.16 0 0

Perimeter 9 -0.05 0.16 0 0

Power 29 0.20 0.09 0.01 0.07

TreeAdd 9 -0.07 0.16 -0.01 -0.01

TSP 11 -0.04 0.18 1.73 0.01

Voronoi 25 0.17 0.12 0.04 0.02

JLex 14 0.43 0.08 0.03 0.02

JavaCUP 146 0.54 0.10 0.09 0.08

Figure 8-6: Impact of the analysis optimizations. For each optimization, we compute
the analysis slowdown in the absence of that optimization. We use the formula
(tw − to)/to, where to is the execution time of the analysis with all optimizations
turned on and tw is the execution time of the analysis with all optimizations except
a specific one. For each optimization, we use bold font to indicate the maximum
slowdown. E.g., without ti, the analysis runs with up to 94% slower, i.e., almost 2
times slower. We use “n/t” to indicate that the analysis of javac does not terminate
even after 24 hours. A negative slowdown indicates a speedup.
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% Stack allocated objects

Program Speedup
(%)

Normal
version

No inter-proc.
fixed-points

Delta

check 31 21 5 16

compress 26 25 20 5

jess 20 0 0 0

db 24 91 91 0

javac 25 11 9 2

mpegaudio 18 1 0 1

mtrt 21 95 82 13

jack 30 31 23 8

BH 37 93 93 0

BiSort 32 0 0 0

Em3d 31 0 0 0

Health 43 57 57 0

MST 33 0 0 0

Perimeter 31 0 0 0

Power 28 97 97 0

TreeAdd 33 0 0 0

TSP 31 66 66 0

Voronoi 65 1 1 0

JLex 21 28 25 3

JavaCUP 10 34 24 10

Figure 8-7: Impact of not computing inter-procedural fixed-points, by considering
all CALLs between mutually-recursive methods unanalyzable. Second column shows
the speedup over the normal version of the analysis, the version that “abandons”
the fixed-point computation for a group of mutually-recursive methods only after a
certain number of iterations. The last column shows the percentage of objects that
are no longer stack allocated if the analysis does not compute inter-procedural fixed-
points. E.g., without computing inter-procedural fixed-points, the analysis runs 21%
faster on mtrt, but stack allocates only 82% of the objects, instead of 95%. We run
each program with the same workload as for the data from Figure 8-5 on page 128.
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Name Description

Data structures from the Java Collections Framework:

LinkedList Implementation of a doubly-linked list.

TreeMap
Implementation of a map with ordered keys, using a
red-black tree.

HashSet Implementation of a set using a hash table.

Miscellaneous:

BinarySearchTree
Implementation of a set of comparable elements, us-
ing a binary search tree.

DisjSet
Array-based implementation of the union-find data
structure, using path compression to improve effi-
ciency of find operations.

HeapArray
Array-based implementation of a heap (a.k.a. prior-
ity queue).

BinomialHeap Advanced implementation of a heap [24, Chapter 19].
FibonacciHeap Advanced implementation of a heap [24, Chapter 20].

Figure 8-8: Korat benchmarks.

only parameters in the twenty benchmarks used in the stack allocation experiments
(see Figure 8-1). The two parts of this section explain our two sets of purity analysis
experiments.

8.4.1 Checking Purity of Data Structure Consistency Pred-
icates

We ran our analysis on several benchmarks borrowed from the Korat project [10, 64].
Korat is a tool that generates non-isomorphic test cases up to a finite bound. Korat’s
input consists of (1) a type declaration of a data structure, (2) a finitization (e.g., at
most 10 objects of type A and 5 objects of type B), and (3) repOk, a pure boolean
predicate written in Java that checks the consistency of the internal representation
of the data structure. Given these inputs, Korat generates all non-isomorphic data
structures that satisfy the repOk predicate. Korat does so efficiently, by monitoring
the execution of the repOk predicate and back-tracking only over those parts of the
data structure that repOk actually reads.

Korat relies on the purity of the repOk predicates but cannot statically check
this property. Writing repOk-like predicates is considered good software engineering
practice [61]: during the development of the data structure, programmers can write
assertions that use repOk to check the data structure consistency. Programmers do
not want assertions to change the semantics of the program, other than aborting
the program when it violates an assertion. The use of repOk in assertions provides
additional motivation for checking the purity of repOk methods.
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Figure 8-8 presents the Korat benchmarks that we analyze. These benchmarks
consist of implementations of data structures, ranging from simple ones like linked lists
to very advanced ones like Fibonacci heaps. The first three data structures are taken
from the standard Java library. The only change the Korat developers performed was
to add the corresponding repOk methods; we did not perform any additional change to
any of the Korat benchmarks. The repOk methods for these benchmarks use complex
auxiliary data structures: sets, linked lists, wrapper objects, etc. Checking the purity
of these methods is beyond the reach of simple purity checkers that prohibit pure
methods to call impure methods, or to do any heap mutation.

The obvious difficulty with analyzing the Korat benchmarks is that our prototype
is a whole-program analyzer that operates under a closed world assumption. We
addressed this problem as follows:

• For each Korat benchmark, we provided a small “driver” program that instan-
tiates the corresponding data structure and invokes repOk on it.

• The data structure implementation invokes overriders of the follow-
ing methods: java.lang.Object.equals, java.lang.Object.hashCode,
java.util.Comparable.compareTo, and java.lang.Object.toString. We
call these methods, and all methods that override them, special methods.

It is impossible to analyze the data structures for all (infinitely many) possible
special methods. Instead, we specified to the analysis the intended behavior of
the special methods: we specified to the analysis that all special methods are
pure. This assumption corresponds to the common intuition about the special
methods: e.g., programmers do not expect equals to change the objects it
compares.

With this assumption, calls to special methods do not change the externally
visible heap aliasing: creating a new reference from an existing object would
violate the purity requirement.21 Special methods can create new references
from captured objects, but these references are not visible from outside the
special methods. Therefore, the analysis can treat calls to the special methods
as simple instructions that produce some values, i.e., the analysis can ignore
the calls to the special methods. Additional processing is required to model the
result of the toString special methods: we instructed the implementation to
treat each call to toString as an allocation site for the returned String object
and for the underlying array of characters.

We used our prototype to analyze the repOk methods for all the Korat bench-
marks. The analysis was able to verify that all repOk methods mutate only new

21Normally, a method can also create externally visible aliasing if it (1) allocates a new object,
(2) sets one of its fields to point to an existing object, and (3) returns the new object. However,
the equals, hashCode, and compareTo methods return primitive values (integers and booleans);
technically, a toString method does return an object, but Java strings are immutable objects,
equivalent to simple primitive values.
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Program
Purity
analysis

Analyzed
methods

Object parameters

time
(s)

Total % pure Total % read-only
% trivially
read-only

check 7.6 560 50 726 68 14
compress 8.3 640 51 875 66 16
jess 19.8 1373 50 2038 60 9
db 10.4 771 47 1042 61 15
javac 44.7 1960 37 3685 48 7
mpegaudio 16.0 849 45 1254 58 11
mtrt 14.0 870 48 1241 60 12
jack 26.3 937 39 1236 54 13

BH 7.2 548 51 738 65 12
BiSort 3.8 298 54 403 68 10
Em3d 6.6 514 51 679 65 13
Health 4.7 346 52 468 65 9
MST 3.9 315 54 430 69 10
Perimeter 3.9 320 57 454 71 9
Power 7.0 513 50 686 64 12
TreeAdd 3.7 288 55 394 69 10
TSP 4.0 303 53 412 67 9
Voronoi 7.3 561 53 754 66 12

JLex 15.4 717 43 945 60 12
JavaCUP 25.7 1323 40 1842 62 14

Figure 8-9: Purity analysis results for the programs from Figure 8-1.

objects, and are therefore pure. On a Pentium 4 @ 2.8Ghz with 1Gb RAM, our
analysis took between 2 and 10 seconds for each benchmark.

Of course, our results are valid only if our assumptions about the purity of the
special methods are true. Our tool tries to verify these assumptions for all the special
methods that the analysis encountered. Unfortunately, some of these methods use
caches for performance reasons, and are not pure. For example, several classes (e.g.,
java.lang.String) cache their hashcode. Other classes cache more complex data,
e.g., java.util.AbstractMap caches its set of keys and entries (these caches are
nullified each time a map update is performed). We manually examined the impure
special methods and checked that the mutation they perform corresponds to caching.

8.4.2 Quantitative Experiments for the Purity Analysis

To evaluate the speed of our purity analysis, we executed our prototype on the twenty
benchmarks from Figure 8-1. In each case, we analyzed all methods that are transi-
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tively reachable from the main method. As in the case of the Korat benchmarks, our
prototype assumes that all special methods are pure.

Figure 8-9 presents our experimental measurements. The time required to run
the purity analysis is slightly smaller than the time required to run the plain pointer
analysis that does not collect any mutation information (see Figure 8-2). The expla-
nation is that the assumptions about the special methods allow the purity analysis
to skip the (rather expensive) inter-procedural analysis for CALLs to such methods.

Our analysis identifies a significant percentage of the analyzed methods as pure:
from a minimum of 37% for javac to a maximum of 57% for Perimeter.

The last three columns from Figure 8-9 present the total number of object param-
eters,22 the percentage of object parameters that our analysis identifies as read-only,
and finally, the percentage of object parameters with immutable types like String,
Integer, etc. The object parameters with immutable types are trivially read-only.
Therefore, the power of the analysis is reflected by the discovery of read-only pa-
rameters that do not have immutable types. As the data from Figure 8-9 indicates,
our analysis identifies between 48% and 71% of the object parameters as read-only.
Moreover, the percentage of read-only parameters is far bigger than the percentage
of trivially read-only parameters with immutable types.

22I.e., we do not count the parameters with primitive types like int, float, etc.

136



Chapter 9

Related Work

Pointer analysis is a very active research area: in 2001, Hind [42] surveyed more
than seventy-five research papers on pointer analysis. There are several overlapping
categories of pointer analyses: A points-to analysis identifies the memory locations
pointed to by a specific pointer variable / field. An alias analysis identifies pairs of
pointer expressions that are aliased, i.e., point to the same memory location. An
escape analysis detects the memory locations that escape a given scope (a method,
a thread, etc). A shape analysis detects the shape of the program data-structures.1

Because shape analyses [38, 72] have very different objectives than our analysis, we
do not discuss them in this chapter. Our analysis is a combined points-to and escape
analysis. The following features make our pointer analysis different from most other
pointer analyses:

Rigorous Theoretical Foundation: Our analysis comes with a detailed presenta-
tion and correctness proof. Our analysis is one of the very few pointer analyses
with a correctness proof. While some pointer analyses [3, 77] are simple enough
that their correctness is intuitive, the correctness of other analyses (especially
compositional ones) is far from trivial. We are aware of only one other compo-
sitional pointer analysis with a rigorous correctness proof: the escape analysis
of Blanchet [8].

Solid Evaluation: We implemented our analysis and used it to perform practical
applications, such as the stack allocation optimization (Section 5.1) and the
purity analysis (Section 5.2). As Hind points out [42], direct measurements of
the analysis results (e.g., the size of the points-to sets) can be irrelevant for the
analysis effectiveness for practical uses.

We performed experiments on a large set of benchmarks, including the entire
SPECjvm98 [76] benchmark suite.

We performed experiments that can reveal errors in the analysis design and im-
plementation: we used the stack allocation optimization to produce optimized

1E.g., a shape analysis detects information of the form “variable v points to an acyclic linked
list.”
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executables that, as we manually checked, produce the same result as the un-
optimized ones. In contrast, some other analyses [60, 71] are evaluated by iden-
tifying allocation sites that allocate method-local objects, and next counting
the objects allocated at these sites during the program execution. We call this
second methodology simulated stack allocation. Simulated stack allocation does
not reveal errors in the analysis design and implementation. In our case, pass-
ing from simulated to real stack allocation required non-trivial implementation
effort and revealed bugs in the analysis implementation.

Our analysis is one of the very few pointer analyses with a publicly available
implementation [79]. Our implementation has been used with positive results
by other researchers [27].

Technical Differences: Our analysis is able to obtain correct and useful information
by analyzing only parts of a whole program.2 Our analysis analyzes methods
without knowing their calling context; our analysis can also analyze methods
that invoke unanalyzable methods (e.g., native methods). Many other pointer
analyses [3, 77, 60, 71, 84, 57] are whole-program analyses. To be correct,
these analyses need to simulate the behavior of all native methods. Also, the
execution time of a whole-program analysis depends on the size of the entire
program. In contrast, our analysis can reduce the size of the analysis scope in
order to trade precision for speed and terminate in reasonable time.

Additionally, our analysis is compositional: it computes method summaries that
are instantiated for each relevant call site. This features achieves some context
sensitivity without re-analyzing a method for each calling context.

The rest of this chapter expands the comparison between our analysis and other
pointer analyses. We describe the applications of each discussed analysis that an-
alyzes Java programs. Due to the lack of publicly-available implementations and
the diversity of evaluation conditions — different benchmarks, different versions of
the Java standard library,3 different compiler infrastructures, etc. — it is impossible
to perform a meaningful numeric comparison between the results for each analysis
application.4 Therefore, we compare only the magnitude of the numeric results.

Section 9.1 describes techniques for modeling the heap. Section 9.2 presents gen-
eral information about context-sensitivity. We use this information while discussing
related analyses in the next two sections. Section 9.3 describes two popular pointer

2The current implementation examines the whole program in order to construct a static call graph
using the Rapid Type Analysis algorithm [5]. However, the pointer analysis (much more expensive
than the call graph construction algorithm) does not need to examine the entire program.

3An analyzed program consists of the user code and the transitively invoked library methods.
4Due to the different evaluation conditions, even the number of allocated objects can vary by more

than one order of magnitude. E.g., the analysis of Blanchet [8] stack allocates 19% of the 169× 103

objects allocated by javac. The analysis of Rountev et al. [71] identifies as stack allocatable 21.2%
of the 3738× 103 objects allocated by javac (without actually stack allocating them). Finally, our
analysis stack allocates 11% of the 5835× 103 objects allocated by javac.
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analyses by Andersen [3] and Steensgaard [77], and several of their variations. Sec-
tion 9.4 comments on other compositional analyses. Section 9.5 discusses other purity
and side-effect analyses.

9.1 Techniques for Modeling the Heap

Many analyses, including ours, model the heap as a graph of bounded size [18, 86,
21, 85, 60, 71, 84, 57]. Usually, these analyses express escapability in terms of graph
reachability.

As the number of objects created by the program execution might be unbounded, it
is necessary to summarize many objects into a single node. The k-limiting model [46]
uses distinct nodes for the objects that are reachable from program variables along
paths of length at most k, and one summary node for all other objects. To prevent
an exponential blowup of the number of nodes, k is usually chosen to be very small.

Like many other analyses [21, 85, 60, 71, 84, 57], our analysis uses the alternative
object allocation site model [18]: all objects allocated by a program statement are
modeled by the same node. This model assumes that objects allocated by the same
program statement are likely to be manipulated in a similar way. Being directly
related to the structure of the program, the results of an analysis that uses this
model are conceptually easy to understand and use. For compositionality reasons, we
extended the object allocation site model with parameter and load nodes.

Other analyses [52, 20] use pairs of aliased heap paths instead of points-to graphs.
Although alias pairs can be more expensive to represent than graphs, the compact
representation of the alias pairs of Hind et al. [43] retains the same memory consump-
tion as the points-to graphs. Deutsch [28] goes beyond k-limiting by representing the
heap paths as regular expressions. Deutsch’s model improves the accuracy of the
analysis of recursive data structures that are accessed in a regular way. Unfortu-
nately, the prototype implementation of the analysis of Deutsch has been used only
to compute alias pairs for C programs of less than 50 lines [28, Section 5].

Several fast escape analyses avoid constructing points-to graphs by using very con-
servative approximations of escapability. One such approximation is the use of in-
teger levels to represent the escaped objects that are transitively reachable from a
variable [39, 29, 7]. Intuitively, the escaped objects are first approximated by their
types, and next the types are approximated by integer levels in a properly chosen type
hierarchy. For example, Blanchet [7, 8] presents a flow-insensitive escape analysis for
Java programs. The level of a type/class C is chosen to be at least as big as (1) the
level of each subclass of C and (2) the level of the type of each field of C. For each
variable v, the analysis computes an integer that is at least as big as the level of any
escaped object that v transitively points to. Consider an allocation site “v = new

C”. If the integer the analysis computes for v is strictly smaller than the level of C,
then the objects created at this site are captured and can be stack allocated. As it
uses integer levels (instead of graphs), Blanchet’s analysis is conceptually less precise
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but much faster than ours. Blanchet’s analysis has a rigorous correctness proof and
achieves stack allocation results comparable to ours. Blanchet’s analysis is effective
for stack allocation, but it is unclear whether it can be used for other applications.
In contrast, our analysis can also detect pure methods.

Gay and Steensgaard [36] present a whole-program escape analysis for stack al-
locating captured objects in Java programs. Their analysis considers that an object
escapes as soon as it is stored in an object field. As most stack allocatable objects
in Java programs are manipulated only through local variables (e.g., iterators and
string buffers), their analysis [36] obtains good stack allocation results for practical
benchmarks. Our analysis can be simplified to use similar ideas and treat heap ref-
erences very conservatively. In the simplified analysis, any field store would globally
escape nodes, and each field load would return nGBL,0.

5 Gheorghioiu, Sălcianu and Ri-
nard [37] present such an analysis. They use their analysis to detect allocation sites
with the property that at most one object allocated there is live at any point during
the program execution. Such allocation sites can be transformed to reuse statically
preallocated memory space.

9.2 Techniques for Context Sensitivity

A context-insensitive analysis does not distinguish between different invocations of the
same method. A context-sensitive analysis computes specialized results for different
contexts. A context is a static abstraction of a set of dynamic invocations of a method.
In our analysis, a context is an abstraction of the objects transitively pointed to by
the method parameters. In other analyses [58, 84, 87], a context is a static call site
from which a method is called. An obvious extension is to use contexts consisting
of longer call-chains : e.g., the last k call sites on the execution path that invokes a
method, where k is a small constant.

Usually, context-insensitive analyses [3, 77] model each call instruction using a
control flow edge from the call instruction to the beginning of the callee and another
control flow edge from the end of the callee back into the caller. Such context-
insensitive analyses lose precision by propagating information along unfeasible paths.
An unfeasible path is a control flow path that cannot be executed at runtime. E.g., a
path that starts from a caller, enters a callee, and next returns into a different caller
is unfeasible.

Some analyses [65, 58, 84, 87] achieve context-sensitivity by “stamping” each
analysis fact with a context. The analysis of a callee does not “mix” analysis facts
with different contexts, and the analysis propagates into the caller only the analysis
facts stamped with the appropriate context.

Our analysis, like several others [86, 7, 19, 21, 85], achieves context-sensitivity
using a compositional technique: for each method, our analysis computes a method

5This is equivalent to considering each field load/store as a call to an equivalent, but unanalyzable
method. Hence, the correctness proof automatically extends to the simplified analysis.
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summary that it later instantiates for each relevant context.6

9.3 Andersen- and Steensgaard-style Analyses

Andersen [3] and Steensgaard [77] propose two context-insensitive and flow-insensitive
analyses for C programs. The two analyses differ in the treatment of assignment in-
structions. For each assignment v1 = v2, Andersen’s analysis constrains the set of
objects pointed to by v2 to be a subset of the set of objects pointed to by v1. Steens-
gaard’s analysis constrains the two sets to be equal. Both analyses are whole-program
analyses. Conceptually, they regard the entire program as a big procedure. Each call
“vR = m(v1, v2, . . . vk)” is treated as a series of assignments from the arguments to
the formal parameters plus an assignment from the returned value to the variable vR.
These analyses generate set inclusion constraints and solve them using set-constraint
solvers like BANE [34] and Banshee [47]. The complexity of Andersen’s analysis is
cubic in the size of the analyzed program. The complexity of Steensgaard’s analy-
sis is almost linear in the size of the analyzed program.7 Heintze and Tardieu [41]
describe an ultra-fast implementation of Andersen’s analysis that is able to process
a million lines of C code in one second. They use their implementation to detect
data-dependencies.

Rountev et al. [71] and Liang et al. [60] are among the first to adapt the analyses of
Andersen and Steensgaard to Java, by adding support for dynamic method dispatch
and increasing the field-sensitivity.8 These analyses are generally faster than ours, but
not always: e.g., Rountev’s analysis analyzes jack in 5871 seconds on a 60Mhz Sun
Ultra 60 with 512Mb of RAM. The analysis of Liang et al. [60] increases its speed using
user-supplied models for the methods of the collection data structures. Both analyses
are used for simulated stack allocation. In general, the stack allocation results are
comparable to those of our analysis. However, our analysis achieves significantly
better results in some cases: e.g., for db, our analysis stack allocates 91% of all
objects, while Rountev’s analysis identifies only 0.01% objects as method-local.

Hirzel et al. [45] implement Andersen’s analysis inside a Java Virtual Machine
(JVM). Running inside a JVM, their analysis can handle dynamic class loading by
incrementally re-analyzing the program each time a new class is loaded. Hirzel et
al. [45] do not report experimental results about any analysis application.

Milanova et al. [65] notice that context-insensitivity compromises the precision
of pointer analysis for Java programs. To address this problem, Milanova et al.
extend Rountev’s analysis [71] with object-sensitivity, a form of context-sensitivity.

6Sharir and Pnueli [73] call this technique functional.
7Steensgaard’s analysis is almost linear because it uses a union-find data structure [24, Chapter

21]. Hence, its complexity also depends on the (practically constant) inverse of the extremely fast-
growing Ackermann function.

8Andersen and Steensgaard-style analyses for C programs are either field-based or field-
independent. A field-based analysis ignores the source o1 of a heap reference 〈o1, f, o2〉. A field-
independent analysis ignores the field f. A field-sensitive analysis models all three elements of the
heap reference: o1, f, and o2.
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Milanova’s analysis re-analyzes each method separately for each possible abstraction
of the receiver object.9 Milanova et al. present several analysis uses: detection of
locations potentially modified by each statement, call graph construction, and virtual
call resolution.10 Milanova’s analysis is faster, but of the same order of magnitude as
ours.

Recently, three independent research groups — Lhoták and Hendren [58, 57],
Whaley and Lam [84], and Zhu and Calman [87] — present Andersen-style analyses
that use Ordered Binary Decision Diagrams (BDDs) [12] to represent large points-to
sets efficiently. The high speed and the low memory consumption of BDDs allow
these analyses to increase their context sensitivity by using very long call chains.
Regarding the analysis applications, Lhoták and Hendren [58, 57] perform call graph
construction, virtual call resolution, and cast safety analysis (an analysis that detects
type casts that may fail at runtime). Whaley and Lam [84] present experimental
results for the static number of synchronization operations that are unnecessary be-
cause they synchronize only on thread-local objects. Whaley and Lam also present
results for an analysis application that refines the declared types of local variables.11

Zhu and Calman [87] present only internal analysis measurements: analysis execution
time, size of points-to sets, etc. These three analyses are very fast. However, more
work is required in order to evaluate their practical applications. In particular, we
would like to see an analysis application (like stack allocation) that could fail in case
of errors in the analysis design and implementation.

All Andersen and Steensgaard-style analyses presented so far are whole-program
analyses. In contrast, our analysis can obtain useful results by analyzing only parts
of a program. Several researchers propose versions of Andersen’s analysis that are
not whole-program. Rountev [69] applies Andersen’s analysis to software fragments
(arbitrary collections of C procedures) by using worst-case assumptions about the
unknown callers and callees (e.g., each callee creates a heap reference between each
two objects it may access). Unfortunately, Rountev [69] does not present results
about any analysis application.

Heintze and Tardieu [40] present a demand-driven version of Andersen’s analysis
for C programs. Sridharan et al. [75] present a similar demand-driven analysis for
Java programs. Sridharan’s analysis answers queries about the objects pointed to
by a variable. For each query, the analysis evaluates only the analysis constraints
that are relevant for that particular query. The analysis aborts each query after a
certain time threshold. To gain context sensitivity, the analysis inlines all setter12

and getter13 methods. The analysis seems promising for environments with extreme
resource constraints (e.g., Java Virtual Machines). So far, Sridharan’s analysis has

9The receiver object is the object pointed to by the implicit this argument of the method.
10Virtual call resolution detects virtual calls with at most one possible callee. The compiler can

replace each such virtual call with a non-virtual call, reducing the dynamic dispatch overhead.
11E.g., if a local variable v has type java.lang.Object, and the analysis discovers that v may

point only to objects of class C1 and C2, that are both subclasses of the class C, then the analysis
refines the type of v from java.lang.Object to C.

12A setter is a small method that sets a field of its receiver object to a certain value.
13A getter is a small method that returns the value of a field of its receiver object.

142



been applied for virtual call resolution and for alias pair detection.

9.4 Compositional Analyses

As we discussed in Section 9.2, several analyses, including ours, achieve context sen-
sitivity by computing method summaries and instantiating them for each relevant
context. This section discusses several such analyses.

The pointer analysis of Wilson and Lam [86] analyzes C programs in a top-down
fashion: their analysis starts from the main procedure and re-analyzes each procedure
for each new calling context. For each method, the analysis caches the results for
already examined contexts. At the end of the analysis, the cache for a method
constitutes a method summary that covers only the contexts that appear in the
program execution.14

Alternatively, our analysis analyzes the program in a bottom-up fashion, from the
leaves of the call graph toward the main procedure. For each method, the analysis
computes a summary that is later instantiated for the different call sites that might
call that method. The analysis of Blanchet [7] (already discussed in Section 9.1) uses
a similar bottom-up approach.

Chatterjee et al. [19] present a pointer analysis for C++ programs that combines
the top-down and the bottom-up approaches: in an initial bottom-up pass, their anal-
ysis infers the calling context conditions that are relevant for the points-to relation,
and computes one method summary for each instantiation of the relevant conditions.
Next, in a top-down pass, the analysis propagates information from the callers to
the callees. In contrast, our analysis extracts a single summary for each method.
The disadvantage of our approach is that it may produce less precise results than an
approach that maintains multiple method summaries. The advantage is that it leads
to a simpler algorithm and smaller analysis results.

Compositional analyses are very complex and their correctness is non-trivial. Un-
fortunately, we are unaware of correctness proofs for the analysis of Wilson and
Lam [86] and the analysis of Chatterjee et al. [19].

The analysis of Choi et al. [21] and the analysis of Whaley and Rinard [85] are
similar to our analysis. These analyses analyze the program in a bottom-up fashion
and use the object allocation site model extended for compositionality reasons. Both
analyses [21, 85] perform synchronization removal and stack allocation, obtaining
results comparable to ours. Our work improves on these two analyses in several ways:

1. Our analysis comes with a rigorous correctness proof. Choi et al. [22] present a
correctness proof for their analysis. Their proof relies on an informal semantics
of Java (instead of a precise semantics, as the one from Section 6.1) and we are
skeptical about its correctness.

14Wilson and Lam call these method summaries partial transfer functions.
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2. The presentation of our analysis is more detailed, making the analysis easier
to understand, implement, and reproduce. Our analysis also has a publicly-
available implementation [79].

3. The analysis of Choi et al. [22] does not distinguish between inside and outside
edges: all edges potentially model reads from the calling context. This fact may
conceptually lead to a lack of precision.

4. Although our analysis was initially based on the Whaley and Rinard analy-
sis [85] (referred to below as the WR analysis), the correctness proof required
important modifications in the design of the inter-procedural analysis.

For example, the inter-procedural stage of the WR analysis has two distinct
parts: (1) the construction of a node map by matching outside edges from
the callee against inside edges from the points-to graph right before the call,
followed by (2) the projection of the callee edges into the points-to graphs after
the call.

During the correctness proof from our SM thesis [78], we discovered the need to
match outside edges from the callee against inside edges from both the caller and
the callee. This change is necessary for correctly handling all possible parameter
aliasing situations.

The inter-procedural analysis from this dissertation achieves correctness by con-
ceptually merging the steps (1) and (2) from WR. Each inter-procedural trans-
former can both extend the map and project edges into the caller. Future
applications of inter-procedural transformers can use these newly added edges.

We found it difficult to understand all of the details of the analysis of Choi et
al. [22]. However, we note that their analysis, like the WR analysis, also has
distinct phases for the node map construction and the projection of the callee
edges into the points-to graphs after the call. Thus, it suffers from the same
problem as the WR analysis.

Vivien and Rinard [83] modified an early implementation of our analysis to obtain
an incremental analysis. The analysis starts by analyzing only a small part of the
program “around” the “interesting” instructions. The set of interesting instructions
depends on the specific optimization. For stack allocation, these are the instructions
that allocate most of the objects, as indicated by profile data. The analysis uses a
performance/cost strategy to extend the scope of the analysis to capture more nodes,
until either the analysis budget was exhausted or the fate of all the interesting nodes
has been decided.

9.5 Purity and Side-Effect Analyses

The Java Modeling Language (JML) [54, 55, 13] is a behavioral specification language
for Java that allows users to write annotations like, for example, method precondi-
tions, method postconditions and class invariants. In addition, JML allows users to
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specify pure methods. JML uses the same method purity definition as our analysis
(see Definition 5 on page 73). JML annotations can invoke Java methods, provided
those methods are pure. Currently, JML tools either do not check the purity annota-
tions, or check them using very conservative analyses: e.g., a method is pure iff (1) it
does not do any I/O, (2) it does not write any heap field, and (3) it does not invoke
any impure method [53]. Our purity analysis does not require purity annotations and
is more precise, due to the underlying pointer analysis: our purity analysis identifies
(and ignores) mutations that occur only on new objects.

Other researchers — e.g., Choi et al. [20], Milanova et al. [65], and Rountev [70] —
have already considered the use of pointer analysis for inferring side-effects. Unlike
these previous analyses, our analysis uses a separate abstraction (the inside nodes) for
the objects allocated by the current invocation of the analyzed method. Therefore, our
analysis focuses on prestate mutation and supports pure methods that mutate newly
allocated objects. Previous analyses can at most allow pure methods to mutate newly
allocated objects that are also captured. Rountev [70] presents evidence that almost
all pure methods can be detected using a simple Andersen-style pointer analysis.
However, Rountev’s method purity definition is more rigid than ours; e.g., Rountev’s
definition does not allow pure methods to construct and return new objects. We are
not aware of any publicly-available implementation of these previous analyses.

A different research direction consists of requiring the programmer to write anno-
tations about the side-effects, as part of an extended type system. We briefly mention
a few such approaches: Javari (short for “Java with Reference Immutability”) [6, 82]
is an extension to Java that allows the programmer to specify readonly parameters
and fields. The Javari type system ensures that the program does not perform mu-
tation on objects it accesses only through readonly references. The program may
still mutate objects pointed to by a readonly reference, if those objects are accessible
through non-readonly references. Data groups [56], region types [80, 25] and/or own-
ership types [23, 11] can be used to specify effects at a larger-than-object granularity:
groups of objects, regions, ownership boundaries, etc. There are multiple advantages
of these annotation-based approaches: (1) annotations are well suited for modular
checking, (2) annotations are useful for program documentation, and (3) checking
user-provided annotations is generally faster than an analysis like ours, that analyzes
programs without any annotations. The disadvantage is that these approaches re-
quire additional programmer effort for writing the annotations (although tools for
inferring some of the annotations are possible and exist, in the case of Javari [81]).
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Chapter 10

Conclusion

This chapter summarizes the dissertation, enumerates possible directions for future
work, and presents a few thoughts on the future of pointer analysis.

10.1 Summary

This dissertation presented a pointer analysis for Java programs, together with two
practical analysis applications: a program optimization (stack-allocation of local ob-
jects) and a program understanding application (detection of pure methods).

The work described in this dissertation is different from most published pointer
analysis research due to its depth. This dissertation described the design of our
analysis, formalized the meaning of the analysis results, explained practical analysis
applications, and provided a rigorous correctness proof. Moreover, this dissertation
described our analysis implementation and reported experimental results for a large
set of benchmarks including all programs from the SPECjvm98 benchmark suite [76].
Our analysis implementation [79] is publicly-available and has already been used by
other researchers [27].

For each program point, our pointer analysis is able to construct a points-to graph
that describes how local variables and object fields point to objects. Each points-to
graph also contains escape information that identifies the objects that are reachable
from outside the analysis scope. Our pointer analysis has two interesting features:

• Our analysis extracts correct information by analyzing only parts of a whole
program. First, our analysis analyzes a method without knowing its callers.
Second, our analysis correctly handles calls to unanalyzable methods (e.g., na-
tive methods). Hence, our analysis can trade precision for speed without sacri-
ficing correctness: if the analysis of a call to a specific callee requires too much
time, the analysis can treat that call as unanalyzable.

• Our analysis is compositional. Our analysis analyzes each method without
knowing its calling context. The analysis uses the points-to graph for the end
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of the method to construct a method summary. The inter-procedural analy-
sis instantiates this method summary for the calling context at each relevant
method invocation. Hence, the analysis achieves some context sensitivity with-
out re-analyzing a method for each new calling context.

This dissertation described the use of the analysis results to perform a program op-
timization that stack-allocates local objects. This optimization reduces the garbage-
collection overhead. For the SPECjvm98 benchmarks suite, our analysis implementa-
tion stack-allocates up to 95% of the dynamically allocated objects (32% on average).

This dissertation also explained how to extend the analysis to detect pure methods.
Our analysis supports a flexible definition of method purity: a method is pure if it does
not mutate any object that exists in the program state before the start of the method.
Therefore, our analysis allows pure methods to allocate and mutate temporary objects
(e.g., iterators) and/or construct complex object structures and return them as a
result. However, our analysis does not allow pure methods to use caches; identifying
and reasoning about caching mechanisms is an interesting (and difficult!) direction
for future work. In practice, our implementation detects the purity of several complex
methods that are beyond the reach of previously implemented purity analyses.

10.2 Future Work

This dissertation already mentioned several possible directions for future work. We
briefly enumerate these directions here:

• Adding support for strong updates of node fields (Section 4.6.2).

• Increasing the analysis precision for static fields (Section 4.6.3).

• Experimenting with a fully flow-insensitive version of the analysis (Section 4.6.4).

Experimenting with analysis ideas requires an impressive infrastructure: interme-
diate representation builders, code generators, constraint solvers, etc. Unfortunately,
good analysis infrastructure is hard to find. To address this problem, we released
jpaul [31], an open-source library of data-structures and algorithms that are useful
for program analysis. We plan to continue developing jpaul, especially the constraint
solver.

Currently, the method summaries do not contain any information about the or-
dering between the atomic inter-procedural transformers. Therefore, the application
of a method summary requires a fixed-point even if the code of the corresponding
method does not contain any loop. An interesting direction for future work is to
extend the points-to graphs with ordering information. This extension may increase
the analysis precision.

10.3 Thoughts on the Future of Pointer Analysis

Designing and implementing our pointer analysis required a substantial effort. The
effort to prove the correctness of our pointer analysis was enormous, in large part
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because of the complexity of the inter-procedural part of the analysis. Due to these
difficulties and due to the correctness concerns associated with successfully developing
complex analyses, we believe that the field will be dominated by a few analyses
that have rigorous, well-established foundations. Once these analyses become widely
implemented and available, we believe that the research focus will shift toward two
classes of pointer analyses:

• Provably-sound analyses that require user-provided specification at some ab-
straction boundary (methods, modules, etc). Conceptually, the specification
should allow precise, fast, and modular analyses. Hob [50, 49] and Jahob [48]
are two recent analysis systems that build on these ideas. Developing a usable
specification language that handles the commonly used features of Java is still
an open problem.

• Unsound analyses that handle common situations and produce practically useful
results for bug-finding, profiling, and program understanding tools.

We hope that future pointer analyses will use some of the ideas from this dissertation.
We identify two such ideas: First, the use of placeholders to abstract over the unknown
calling context. Second, the combination of points-to and escape information that
allows our analysis to analyze parts of a whole program.
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Appendix A

Optimized Algorithm for the
Inter-procedural Analysis

This chapter presents an optimized algorithm for the critical part of the inter-
procedural analysis, the computation of 〈Ia, Oa, Ea, µa〉 = Tcallee(I, O,E, µ0), where
Tcallee = mct(G2) = star(

⊔AT (G2)) and G2 = τ(gc(ρ(Gcallee))) (see Section 4.4).
The optimized algorithm has asymptotic time complexity O(N5), where N is the
size of the analysis scope: still big, but a clear improvement over the O(N9) naive
algorithm from Section 4.4.

Idea: The optimized algorithm keeps track of the changes (e.g., new node mappings)
in order to re-execute only those atomic transformers from AT (G2) that may produce
new information. For example, the optimized algorithm does not re-execute an atomic
transformer gesc(n) unless there are new mappings for the node n.

Figures A-1 and A-2 present the pseudocode for the optimized algorithm. The
algorithm computes its result in the tuple of variables 〈Ia, Oa, Ea, µa〉: the algorithm
initializes this tuple to 〈I, O,E, µ0〉 and increases1 its value during successive itera-
tions. Our algorithm uses a worklist Wchange; this worklist contains notifications of
the changes that are relevant for the atomic transformers. Wchange contains three
kinds of notifications:

• 〈newesc, n〉: the predicate e2(Ea, Ia)(n) became true (due to new elements in
Ea and/or Ia).

• 〈newiedge, n1, f, n2〉: Ia contains the new inside edge 〈n1, f, n2〉.
• 〈newmap, n1, n2〉: µa contains the new node mapping 〈n1, n2〉.

The inter-procedural analysis manipulates only the nodes from G2 =
τ(gc(ρ(Gcallee))) (where Gcallee is the points-to graph from the end of the callee) and

1We use the common element-wise ordering between tuples and the subset ordering between sets:
〈I1, O1, E1, µ1〉 v 〈I2, O2, E2, µ2〉 iff I1 ⊆ I2, O1 ⊆ O2, E1 ⊆ E2, and µ1 ⊆ µ2.
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In the algorithm below, let N be the set of nodes that appear in
G2 = τ(gc(ρ(Gcallee))) or in G (the points-to graph before the CALL).

1 GLOBAL DATA
2 Ia, Oa, Ea, µa - results (under construction)
3 Esc - set of nodes n such that e2(Ea, Ia)(n) is true
4 Wchange - worklist of change notifications

5 INITIALIZATION
6 Ia ← I; Oa ← O; Ea ← E; µa ← µ;
7 Wchange ← empty ;
8 Esc ← ∅;
9 ∀n ∈ N ∩ (CPNode ∪ CLNode ∪ G ∪ Ea):
10 findNewEscNodes(n);
11 ∀n1 ∈ N , ∀n2 ∈ µa(n1):
12 add 〈newmap, n1, n2〉 to Wchange;
13 ∀n ∈ Esc:
14 add 〈newesc, n〉 to Wchange;

15 ITERATIONS
16 while Wchange is not empty
17 extract change notification cn from Wchange;
18 case analysis on cn:

19 Case 1: cn = 〈newesc, n〉
20 ∀n1 ∈ µ−1

a (n), ∀f, n2 such that load(n1, f, n2) ∈ AT (G2):
21 Oa ← Oa ∪ {〈n, f, n2〉}
22 if 〈n2, n2〉 6∈ µa then
23 µa ← µa ∪ {〈n2, n2〉};
24 add 〈newmap, n2, n2〉 to Wchange;

25 Case 2: cn = 〈newiedge, n1, f, n2〉
26 ∀n3 ∈ µ−1

a (n1), ∀n4 such that load(n3, f, n4) ∈ AT (G2):
27 if 〈n4, n2〉 6∈ µa then
28 µa ← µa ∪ {〈n4, n2〉};
29 add 〈newmap, n4, n2〉 to Wchange;

Figure A-1: Optimized algorithm for computing 〈Ia, Oa, Ea, µa〉 = Tcallee(I, O,E, µ0),
where Tcallee = mct(G2) and G2 = τ(gc(ρ(Gcallee))) - Part 1 of 2. This algorithm is
the critical step from the inter-procedural analysis (see Section 4.4).
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30 Case 3: cn = 〈newmap, n1, n2〉
31 ∀f, n3 such that load(n1, f, n3) ∈ AT (G2),
32 ∀n4 such that 〈n2, f, n4〉 ∈ Ia:
33 if 〈n3, n4〉 6∈ µa then
34 µa ← µa ∪ {〈n3, n4〉};
35 add 〈newmap, n3, n4〉 to Wchange;
36 if n2 ∈ Esc then
37 Oa ← Oa ∪ {〈n2, f, n3〉}
38 if 〈n3, n3〉 6∈ µa then
39 µa ← µa ∪ {〈n3, n3〉};
40 add 〈newmap, n3, n3〉 to Wchange;

41 if gesc(n1) ∈ AT (G2) then
42 Ea ← Ea ∪ {n2}
43 if n2 6∈ Esc then
44 findNewEscNodes(n2);

45 ∀f, n3 such that store(n1, f, n3) ∈ AT (G2), ∀n4 ∈ µa(n3):
46 if 〈n2, f, n4〉 6∈ Ia then
47 Ia ← Ia ∪ {〈n2, f, n4〉};
48 add 〈newiedge, n2, f, n4〉 to Wchange;
49 if n2 ∈ Esc ∧ n4 6∈ Esc then
50 findNewEscNodes(n4);

51 ∀f, n3 such that store(n3, f, n1) ∈ AT (G2), ∀n4 ∈ µa(n3):
52 if 〈n4, f, n2〉 6∈ Ia then
53 Ia ← Ia ∪ {〈n4, f, n2〉};
54 add 〈newiedge, n4, f, n2〉 to Wchange;
55 if n4 ∈ Esc ∧ n2 6∈ Esc then
56 findNewEscNodes(n2);

57 procedure findNewEscNodes(ns)
58 Wesc ← empty ;
59 Esc ← Esc ∪ {ns};
60 add ns to Wesc;
61 add 〈newesc, ns〉 to Wchange;
62 while Wesc is not empty
63 extract node n from Wesc;
64 ∀f, n2 such that 〈n, f, n2〉 ∈ Ia:
65 if n2 6∈ P then
66 Esc ← Esc ∪ {n2};
67 add n2 to Wesc;
68 add 〈newesc, n2〉 to Wchange;

Figure A-2: Optimized algorithm for computing 〈Ia, Oa, Ea, µa〉 = Tcallee(I, O,E, µ0),
where Tcallee = mct(G2) and G2 = τ(gc(ρ(Gcallee))) - Part 2 of 2.
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the nodes from G (the points-to graph before the CALL); the inter-procedural anal-
ysis does not create new nodes. Therefore, the algorithm considers only the nodes
from the set N = nodes(G2) ∪ nodes(G). The set N has O(N) elements.

The algorithm initializes Wchange to contain one 〈newmap, n1, n2〉 notification for
each mapping 〈n1, n2〉 from µ0, and one 〈newesc, n〉 notification for each node n such
that e2(E, I)(n) is true.

In each iteration, the algorithm extracts a change notification cn from Wchange

and re-executes the atomic transformers that may increase one or more elements of
the tuple 〈Ia, Oa, Ea, µa〉.

E.g., assume cn = 〈newmap, n1, n2〉 (see Case 3 of the main loop, in Figure A-2).
If the atomic transformer gesc(n1) exists, the algorithm executes it and adds the
node n2 to Ea (see lines 41-44 in the algorithm). The algorithm does not waste time
executing transformers of the form gesc(n′), where n′ 6= n1.

As a result of the new mapping for n1, the algorithm needs to re-execute the
atomic transformers of the form store(n1, f, n3). Normally, such a transformer adds
to Ia the edges µa(n1)×{f}×µa(n3). The algorithm considers only the new mapping
for n1, i.e., the algorithm adds only the edges {n2} × {f} × µa(n3) (intuitively, the
other mappings for n1 have already been processed, or are pending in the worklist
and will be processed later). For each new inside edge 〈n2, f, n4〉, the algorithm adds
a notification 〈newiedge, n2, f, n4〉 to the worklist Wchange. Any transformer of the
form store(n3, f, n1) requires a similar processing.

A notification of the form 〈newiedge, n1, f, n2〉 triggers the re-execution of all
transformers load(n3, f, n4) with 〈n3, n1〉 ∈ µa (equivalently, n3 ∈ µ−1

a (n1)); such a
load transformer creates a map from n4 to n2 (see lines 25-29). If this mapping is
new for µa, the algorithm adds a notification 〈newmap, n4, n2〉 to the worklist Wchange.

To avoid recomputing the predicate e2(Ea, Ia) every time a load transformer uses it,
the algorithm incrementally computes the set Esc of nodes n such that e2(Ea, Ia)(n)
is true:

1. If a gesc transformer adds a node n 6∈ Esc to Ea, n becomes escaped. Accord-
ingly, the algorithm uses the procedure findNewEscNodes(n) to add to Esc any
previously unescaped node that is transitively reachable from n.

2. When a store transformer adds an edge 〈n1, f, n2〉 to Ia, if n1 ∈ Esc and
n2 6∈ Esc, then n2 becomes escaped. As in the previous case, the algorithm uses
the procedure findNewEscNodes(n2) to add to Esc any previously unescaped
node that is transitively reachable from n.

In both cases, every time the algorithm adds a new node n to the set Esc, the
algorithm adds the notification 〈newesc, n〉 to Wchange. Notifications of the form
〈newesc, n〉 are important, because they cause each load transformer load(n1, f, n2)
such that n ∈ µa(n1) to generate the potentially new mapping from n2 to n2.
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Notes: each test store(n1, f, n2) ∈ AT (G2) is equivalent to the test 〈n1, f, n2〉 ∈ I2,
where I2 is the set of inside edges from the points-to graph G2. Similar considerations
apply to the tests load(n1, f, n2) ∈ AT (G2), and gesc(n) ∈ AT (G2). Therefore, an
implementation does not need to explicitly construct the set AT (G2).

Asymptotic Complexity

We assume that all sets require O(1) time for element addition and membership
testing. We assume that a worklist requires O(1) time for element addition and
extraction.

The algorithm represents the node map µa (in fact a relation) as a map from keys
to sets of values; it also represents the reverse relation µ−1

a in a similar way. Therefore,
the algorithm can add a mapping and check the existence of a mapping in O(1) time.
The algorithm can also iterate over the elements from µa(n) and µ−1

a (n) in O(1) time
for each element.

The algorithm represents the sets of inside/outside edges as maps from start nodes
to maps from fields to sets of target nodes.2 Therefore, the algorithm can add an edge
and check for edge membership in O(1) time. The algorithm can also iterate over
all edges that start in a node n1 (e.g., in line 45) in O(1) time for each such edge.
Similarly, the algorithm can iterate over all f-labeled edges that start in a node n2

(e.g., in line 32) in O(1) time for each such edge. Additionally, the algorithm indexes
the callee inside edges by their target node. Therefore, the algorithm iterates over
the edges that end in a node n1 (e.g., in line 51) in O(1) time for each such edge.
This indexing (if it does not exist already) requires O(N3) time at the beginning of
the algorithm, without affecting the overall O(N5) complexity.

The procedure findNewEscNodes explores the edges exiting a node n only when n
is extracted from the worklist Wesc, and each node is added to Wesc at most once, im-
mediately after it is added to Esc. Hence, all invocations of findNewEscNodes explore
the edges from Ia at most once. Therefore, the cumulated time for all invocations of
findNewEscNodes is O(N3).

The initialization step requires O(N3) time, due to the assignments from line 6:
the size of Ia and Oa is O(N3).

The algorithm adds each notification 〈newesc, n〉 to Wchange at most once, when
the algorithm adds the new node n to Esc (see pseudocode of findNewEscNodes).
Hence, Case 1 (lines 19-24) occurs O(N) times; each time there are O(N3) choices
for n1, f, and n2 and the processing for each choice requires O(1) time. Therefore, all
executions of Case 1 require O(N4) time.

The algorithm adds each notification 〈newiedge, n1, f, n2〉 to Wchange at most once,
when the algorithm adds the new edge 〈n1, f, n2〉 to Ia (see lines 48 and 54). Hence,
Case 2 (lines 25-29) occurs O(N3) times; each time, there are O(N2) choices for n3

and n4 and the processing for each choice requiresO(1) time. Therefore, all executions
of Case 2 require O(N5) time.

2An equivalent Generic Java / C++ signature is Map<CNode,Map<Field,Set<CNode>>>.
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The algorithm adds each notification 〈newmap, n1, n2〉 to Wchange at most once,
when the algorithm adds the new mapping 〈n1, n2〉 to µa. Hence, Case 3 occurs
O(N2) times. For the code from lines 31-40, there are O(N3) choices for f, n3, n4,
andO(1) processing time for each choice; we can apply similar reasoning for the blocks
of code from lines 45-50 and 51-56. The code from lines 41-44 requires O(1) time.
Therefore, all executions of Case 3 require O(N2 × (N3 + 1 +N3 +N3)) = O(N5)
time.

The complexity of the entire algorithm is O(N3 +N3 +N4 +N5 +N5) = O(N5).

Correctness

Let Xi = 〈I i
a, O

i
a, E

i
a, µ

i
a〉 be the value of 〈Ia, Oa, Ea, µa〉 at the beginning of the

ith iteration of the algorithm. As we proved in the complexity analysis above, the
algorithm adds O(N3) notifications to the worklist Wchange. Hence, the algorithm
terminates after k = O(N3) iterations, with the resultXk = 〈Ik

a , O
k
a, E

k
a , µ

k
a〉. We need

to show that this result equals Tcallee(I, O,E, µ0), where Tcallee = star(
⊔AT (G2)).

We prove the desired equality by proving two inequalities. For brevity, we write
A = AT (G2) and F =

⊔A. With these notations Tcallee = star(F ).

Lemma 9. Xk = 〈Ik
a , O

k
a, E

k
a , µ

k
a〉 w Tcallee(I, O,E, µ0)

Proof. As we proved in Section 4.4, each atomic transformer is extensive and mono-
tonic. Therefore, F is extensive and monotonic too. By Part 2 of Lemma 17 on
page 169, Tcallee(I, O,E, µ0) is the smallest fixed point of F that is bigger than
〈I, O,E, µ0〉. As we prove below, Xk is a fixed-point for each atomic transformer
T ∈ A. This implies that Xk is a fixed point for F too. As Xk is also bigger than
X0 = 〈I, O,E, µ0〉,3 we obtain the desired result of the lemma.

To prove that Xk is a fixed point for each atomic transformer T, we do a case
analysis on T:

T = gesc(n): gesc(n) adds to Ek
a all nodes from µk

a(n). We prove that all these
nodes are already in Ek

a , and hence Xk is a fixed point of gesc(n). Let n′ be
a node from Ek

a . For each mapping 〈n1, n2〉, our algorithm added (once) the
notification 〈newmap, n1, n2〉 to the worklist Wchange.

4 As Wchange is empty at the
end of the algorithm, the algorithm processed the notification 〈newmap, n, n′〉 in
some iteration i < k. Hence, the code for Case 1 already added n′ to Ei+1

a ⊆ Ek
a .

T = store(n1, f, n2): this transformer adds the inside edges 〈n3, f, n4〉 for each n3 ∈
µk

a(n1) and each n4 ∈ µk
a(n2). For each such edge, let i < k be the iteration that

processed the last of the notifications 〈newmap, n1, n3〉 and 〈newmap, n2, n4〉.5
This iteration already added 〈n3, f, n4〉 to I i+1

a ⊆ Ik
a (in line 47 if 〈newmap, n1, n3〉

is processed last, in line 53 otherwise).

3Our algorithm is cumulative (it never removes elements); hence, X0 v X1 v . . . v Xk.
4In the initialization step, if 〈n1, n3〉 ∈ µ0, or in the iteration that added 〈n1, n3〉 to µa.
5“Last” according to the chronologic order of the processing time.
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T = load(n1, f, n2): For any nodes n3 and n4 such that n3 ∈ µk
a(n1) and 〈n3, f, n4〉 ∈

Ik
a , this transformer adds the mapping 〈n2, n4〉 to µk

a. We prove that 〈n2, n4〉
already exists into µk

a.

Assume that 〈n3, f, n4〉 6∈ I0
a . Hence, the algorithm added this edge to Ia at line

47 or 53. In each case, the algorithm added the notification 〈newiedge, n3, f, n4〉
toWchange. As n3 ∈ µk

a(n1), the algorithm added the notification 〈newmap, n1, n3〉
to Wchange. Let i < k be the iteration that processed the last of these two
notifications. This iteration added 〈n2, n4〉 to µi+1

a either in line 28 (if newiedge
is processed last) or in line 34 (if newmap is processed last). Hence, 〈n2, n4〉 ∈
µi+1

a ⊆ µk
a.

The case 〈n3, f, n4〉 ∈ I0
a is even easier: we simply pick i < k to be the iteration

that processes the element 〈newmap, n1, n3〉. Line 34 ensures that 〈n2, n4〉 ∈
µi+1

a ⊆ µk
a.

If there exists a node n3 ∈ µk
a(n1) such that e2(E

k
a , I

k
a )(n3), the load trans-

former adds the mapping 〈n2, n2〉 and the outside edge 〈n3, f, n2〉. We prove
that µk

a and Ok
a already contain these elements. For the mapping 〈n1, n3〉, the

algorithm added the notification 〈newmap, n1, n3〉 to Wchange. Similarly, when
e2(E

k
a , I

k
a )(n3) became true, the algorithm added 〈newesc, n3〉 to Wchange. Let

i < k be the iteration that processed the last of these two notifications. The
code from lines 19-24 (if newesc is processed last) or the code from lines 36-40
(if newmap is processed last) already added the mapping 〈n2, n2〉 to µi+1

a ⊆ µk
a

and the outside edge 〈n3, f, n2〉 to Oi+1
a ⊆ Ok

a.

In all cases, T is a fixed-point for Xk; this completes the proof of our lemma.

Lemma 10. Xk = 〈Ik
a , O

k
a, E

k
a , µ

k
a〉 v Tcallee(I, O,E, µ0)

Proof. Let X = Tcallee(I, O,E, µ0). As we mentioned in the proof of Lemma 9, X
is the smallest fixed point of F that is bigger than 〈I, O,E, µ0〉: F (X) = X and
X w 〈I, O,E, µ0〉.

We prove by induction on i that ∀i ≥ 0. Xi v X. The relation is true for the base
case i = 0, because X0 = 〈I, O,E, µ0〉 v Tcallee(I, O,E, µ0) = X (Tcallee is extensive,
because each atomic transformer is extensive). For the induction step, we assume
Xi v X and prove that Xi+1 v X. As we prove below, there exists a finite l such
that Xi+1 v F l(Xi), where F l denotes the composition of F with itself l times. As
F is monotonic, Xi v X (by the induction hypothesis), and X is a fixed point for F ,
we complete the proof by induction as follows: Xi+1 v F l(Xi) v F l(X) = X.

We still need to prove that ∀i, ∃l such that Xi+1 v F l(Xi). Assume that in
iteration i, the algorithm processes a 〈newesc, n〉 notification (i.e., Case 1). This
notification indicates that e2(Ea, Ia)(n) became true. The key observation is that
lines 21-24 execute “parts” of the transformer load(n1, f, n2): those lines add only
the outside edge 〈n, f, n2〉 and the mapping 〈n2, n2〉.

If 〈I1, O1, E1, µ1〉 are the values of the variables 〈Ia, Oa, Ea, µa〉 right before line 21,
and 〈I2, O2, E2, µ2〉 are the corresponding values right after line 24, then
〈I2, O2, E2, µ2〉 v load(n1, f, n2)(I1, O1, E1, µ1). Also, load(n1, f, n2) v F (because
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F =
⊔A and load(n1, f, n2) ∈ A). Hence, 〈I2, O2, E2, µ2〉 v F (I1, O1, E1, µ1). As we

mentioned in the proof of Lemma 9, F is monotonic. Therefore, if l is the number of
executions of the lines 21-24 in the current iteration, then Xi+1 v F l(Xi).

The other cases are similar: the algorithm applies a composition of monotonic
parts of a finite number of atomic transformers. For brevity, we omit the details.
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Appendix B

Technical Parts of the Correctness
Proof from Chapter 6

B.1 Proof of Lemma 5 on page 95

Lemma 5 states that the concrete escape predicates defined in Section 6.4.1 conserva-
tively approximate the set of escaped objects. More specifically, if a non-null object
o escapes at date d ∈ Date, then ed(o) holds:

∀d ∈ Date,∀o ∈ RObjs(outsideA(m)(Ξd)) \ {onull}. ed(o)

We prove Lemma 5 by induction on the program execution trace. The base case
is trivial: no object is reachable in the initial concrete state Ξ0. For the induction
step, we assume that the underlined property above is true at each date d2 ≤ d and
prove it at date d + 1. We do a case analysis on the type of the instruction executed
in the transition Ξd ⇒ Ξd+1.

For each object o that already escapes at date d, by the induction hypothesis,
ed(o) holds, and, by Constraint 6.4, ed+1(o) holds too. Hence, it is sufficient to
examine only the instructions that can cause objects to escape from A(m).

Each instruction executed outside A(m) accesses only objects that already escape
from A(m). The only exception is a NEW instruction executed outside A(m) (e.g., in
a different thread, or in a method invoked using an unanalyzable CALL). Such a NEW
instruction creates a new object o that is reachable from outside A(m). Constraint 6.5
ensures that ed+1(o) is true.

Consider an instruction executed by A(m). There are two classes of instructions
that can escape objects. STORE instructions can create new heap paths. Other
instructions (STATIC STORE, unanalyzable CALL, and final RETURN) can store
object references into static fields or into local variables from stack frames outside
A(m).

Consider a STORE instruction “v1.f = v2”, and assume that at date d, v1 points
to the object o1 and v2 points to the object o2. Consider a previously captured object
o that escapes at date d + 1. We need to prove that ed+1(o) holds. It is sufficient to
consider the case ¬ed(o) (otherwise, by Constraint 6.4, ed+1(o)). As o escapes at date
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d + 1, there exists a path of heap references that reaches o from an object o3 pointed
to by a static field or by a local variable outside A(m). As o does not escape at date
d, this path includes the new heap reference 〈o1, f, o2〉. As 〈o1, f, o2〉 is the only new
heap reference, the path from o3 to o1 and the path from o2 to o both exist at date d.
Hence, o1 escapes at date d, and, by the induction hypothesis, ed(o1). Let 〈o4, f, o〉
be the last heap reference on the path from o2 to o. This heap reference was created
by A(m): otherwise, when the corresponding STORE instruction was executed at
some date d3 < d, o was pointed to by a local variable outside A(m), and by the

induction hypothesis, ed3(o), which contradicts ¬ed(o). Therefore 〈o4, f, o〉 ∈ IA(m)
d ,

and ¬ed(o4). By repeating this reasoning, we prove that the path from o2 to o exists

in I
A(m)
d ⊆ I

A(m)
d+1 . As 〈o1, f, o2〉 ∈ I

A(m)
d+1 too, there exists a path of heap references

from I
A(m)
d+1 that reaches o from o1. As ed(o1), by Constraint 6.4, ed+1(o1), and, by

Constraint 6.6, ed+1(o).
Consider a STATIC STORE instruction “C.f = v”, and assume that v points to

an object o1 at date d. Let o be an object that is captured inside A(m) at date d and
escapes at date d + 1. We need to prove that ed+1(o) holds. Consider the interesting
case ¬ed(o). Notice that all heap references that exist at date d+1 exist at date d too.
Hence, as o is captured at date d and escapes at date d+1, there exists a path of heap
references from o1 to o. As in the case of a STORE instruction, we prove the existence
of a path from o1 to o, along heap references from I

A(m)
d ⊆ I

A(m)
d+1 . By Constraint 6.8,

ed+1(o1), and, by Constraint 6.6, ed+1(o). The cases of an unanalyzable CALL or a
final RETURN from A(m) are similar.

B.2 Proof of the Abstract Semantics Invariants

from Section 6.5

For each interesting date d ∈ IDA(m), ∃j such that d = id j. We prove Invariants 1-8
together, by induction on j. For each date d ∈ IDA(m), let 〈Vd , lbd〉 be the top stack
frame from thread t. I.e., Vd is the state of the local variables from the top method
from thread t,1 and lbd is the current label in that method. Additionally, Hd denotes
the concrete heap at date d. As in Section 6.5, Gd = 〈Ld :Jd , Id , Od , Ed , Rd ,Wd〉.

Initial State

In the initial state, d = id0. All invariants are true:

Invariant 1: A(m) has not created any objects yet.

Invariant 2: The initial modeling relation ρid0 involves only parameter nodes.

Invariant 3: The only modeled objects are the arguments, that were created before
A(m); hence, they escape due to Constraint 6.5 on page 94.

1“Top” is relative to our convention that the execution stack grows from callers to callees.
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Invariant 4: The concrete stack has a single relevant frame, 〈Vid0 , lbid0〉, and the
only potentially non-null variables are the parameters. In ρid0 , each parameter
node nP

l,0 models the object Vid0(pl) pointed to by the corresponding parameter
pl, ∀l ∈ {0, 1, . . . k − 1}.

Invariant 5: A(m) has not created any heap references yet.

Invariant 6: The only nodes that model an object in ρid0 are the parameter nodes,
and they all escape by Definition 2 on page 41.

Invariant 7: The only nodes that appear in Gid0 and ρid0 are parameter nodes with
context 0 ≤ |Jid0|.

Invariant 8: A(m) has not mutated any location yet.

Induction Step

We assume the invariants hold for d = id j, and prove them correct for d = id j+1 too.
The case j = 2i+ 1 is very easy: nothing relevant changes between id j = id2i+1 and
id j+1 = id2(i+1): the points-to graphs, the modeling relations, and even the concrete
escape predicates are identical.2 Therefore the invariants remain valid for id j+1.

The rest of this proof focuses on the more interesting case j = 2i, when Gid2i+1
=

[[lbid2i+1
]](Gid2i

) (see Figure 4-3 and Figure 6-5 for the definition of [[.]]) and ρid2i+1
is

defined by the rules from Figure 6-6.

For each invariant, we perform case analysis on the type of the instruction P (lbid2i
).

For an unanalyzable CALL, this is the first instruction from the chain of transitions
Ξid2i

⇒∗ Ξid2i+1
. In all other cases, P (lbid2i

) is the instruction from the transition
Ξid2i

⇒ Ξid2i+1
. By a simple inspection of Figure 6-6, notice that, except for the case

of a RETURN inside A(m), ρid2i
⊆ ρid2i+1

. Therefore, it suffices to consider only
the elements that change in the concrete/abstract semantics. For brevity, we denote
lb = lbid2i

and c = |Jid2i
|.

Invariant 1: It suffices to examine the instructions that allocate new objects (adding

new objects to the set Allocs
A(m)
d ), change the modeling relation ρd , or change the

set of globally escaped nodes Ed . A NEW from label lb creates a new object o, but
it also adds a modeling relation between nI

lb ,c and o. A RETURN inside A(m) may
change the modeling relation and the points-to graph by adjusting the contexts of
some nodes; still, inside nodes are transformed into inside nodes, which preserves the
invariant. Other instructions are irrelevant, as they may at most add new pairs to
the modeling relation or add new globally escaped nodes.

2To see why eid2(i+1) = eid2i+1 , notice that the only applicable constraint from Definition 14 is
6.4: eid2i+1 v eid2(i+1) . As Definition 14 uses a least fixed point, this constraint implies equality.
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Invariant 2: It suffices to examine the cases of NEW and RETURN inside A(m):
the other instructions do not change the set of objects that the inside nodes model.
A NEW only adds a modeling relation between the inside node nI

lb ,c and the object
allocated at lb . A RETURN inside A(m) may only change the contexts of the nodes
from the modeling relation. In both cases, the invariant remains valid.

Invariant 3: It suffices to examine the instructions that change the modeling rela-
tion. Some other instructions may escape previously-captured objects, which does not
affect Invariant 3. No instruction can cause an escaped object to become captured:
due to Constraint 6.4 on page 94, once an object escapes, it escapes forever.

NEW creates a new object o and models it with the inside node nI
lb ,c . As o is

fresh, no other nodes model o, and Invariant 3 is satisfied. A RETURN inside A(m)
affects the contexts of the nodes from the modeling relation, but, for any object o,
the cardinality of the set {n | n ρd o} does not increase.3 The remaining instructions
preserve Invariant 3 because they extend the modeling relation only by putting a node
to model an escaped object: LOAD uses a load node to model the object it reads,
but only if that object escapes (see Figure 6-6 on page 98). Similarly, STATIC LOAD
puts nGBL,c to model the object o that it reads from a static field; by Lemma 5, eid2i

(o),
and so, by Constraint 6.4, eid2i+1

(o). Finally, an unanalyzable CALL puts nGBL,c to
model the returned object o: as o was reachable from outside A(m) right before being
returned, it escapes by Lemma 5, i.e., eid2i

(o); by Constraint 6.4, eid2i+1
(o).

Invariant 4: STORE, STATIC STORE, IF, and THREAD START do not change
the state of local variables nor the modeling relation. NULLIFY may set a local
variable to point to onull, but this is irrelevant, because Invariant 4 refers only to
non-null variables. In all these simple cases, Invariant 4 remains true.

For a STATIC LOAD instruction “v = C.f”, the concrete semantics sets the local
variable v (from the topmost stack frame) to point to the loaded object o, while the
abstract semantics sets the local variable v (also from the topmost stack frame) to
point to nGBL,c . As nGBL,c ρid2i+1

o (see Figure 6-6), Invariant 4 remains true. The case
of an unanalyzable CALL is similar.

For a NEW instruction “v = new C”, the concrete semantics sets v to point to the
new object o. Accordingly, the abstract semantics sets v to point to the corresponding
inside node nI

lb ,c . As nI
lb ,c ρid2i+1

o (see Figure 6-6), Invariant 4 remains true.

For a COPY instruction, the concrete and the abstract semantics operate simi-
larly: the concrete semantics sets v2 to point to the object that v1 points to, while
the abstract semantics sets v2 to point to all nodes pointed to by v1. Therefore,
the validity of Invariant 4 propagates from date id2i to date id2i+1. The case of an
analyzable CALL is similar: a CALL copies the actual arguments into the formal
parameters. A RETURN inside A(m) operates in three steps (see Figure 6-5). Each
of them preserves Invariant 4. The first step is similar to a COPY instruction: it

3In fact, the cardinality of this set may decrease because nodes with previously different contexts
may become identical.
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copies the returned object into a variable of the caller. Next, unreachable nodes are
garbage collected. As the nodes pointed to by local variables are trivially reachable,
they are unaffected by this step. Finally, a RETURN inside A(m) may change the
contexts of the nodes; as this changes are done consistently in the points-to graph
and the modeling relation, Invariant 4 remains true.

Before advancing to the next case, consider the following auxiliary lemma:

Lemma 11. Let 〈o1, f, o2〉 ∈ Hid2i
be a heap reference at date id2i. If ¬eid2i

(o1) or

¬eid2i
(o2), then 〈o1, f, o2〉 ∈ IA(m)

id2i
.

Proof. Assume ¬eid2i
(o1) (the case ¬eid2i

(o2) is similar). For the sake of contradiction,

assume that the heap reference 〈o1, f, o2〉 6∈ IA(m)
id2i

. Therefore, 〈o1, f, o2〉 was created by
a STORE instruction outside A(m), at some date d2 < id2i. Since o1 was reachable
from outside A(m) at date d2, by Lemma 5, ed2(o1) is true, which implies eid2i

(o1)
(concrete escape predicates are cumulative, by Constraint 6.4 from Definition 14).
Contradiction!

The case of a LOAD instruction “v2 = v1.f” is more interesting. Assume that in
the concrete semantics v1 points to o1 and that the heap contains the heap reference
〈o1, f, o2〉; hence, after this instruction, in the concrete semantics, v2 points to o2. By
Invariant 4 at date id2i, ∃n1 ∈ Lid2i

(v1) such that n1 ρid2i
o1. There are two cases:

1. If eid2i
(o1), by Invariant 6 at date id2i, e(Gid2i

)(n1) is true. As Rid2i
= ∅ (the set

of returned nodes is empty, except after the final RETURN, see Lemma 28 on
page 177), e2(Eid2i

, Iid2i
)(n1). Hence, the abstract semantics will set v2 to point

to the load node nL
lb ,c (maybe among other nodes; see Figure 4-5 on page 49):

nL
lb ,c ∈ Lid2i+1

(v2). As nL
lb ,c ρid2i+1

o (see Figure 6-6 on page 98), Invariant 4 is
preserved.

2. If ¬eid2i
(o1), by Invariant 3, n1 is the only node that models o1. By Lemma 11,

〈o1, f, o2〉 ∈ I
A(m)
id2i

. Therefore, by Invariant 5 at moment id2i, there exists n2

such that n2 ρid2i
o2 and 〈n1, f, n2〉 ∈ Iid2i

. Hence, the abstract semantics will
ensure n2 ∈ Lid2i+1

(v2). As n2 ρid2i
o2 and ρid2i

⊆ ρid2i+1
, Invariant 4 is preserved.

Notice the importance of the fact that each captured object (e.g., o1) is modeled
by exactly one node: otherwise, 〈o1, f, o2〉 may have been modeled by an inside
edge that does not start in n1 and we would have been unable to prove that
n2 ∈ Lid2i+1

(v2).

Invariant 5: A NEW instruction may create several heap references in order to
initialize the fields of the newly created object to null. However, this fact is irrelevant
for Invariant 5, that deals only with non-null references. A STORE instruction “v1.f =
v2” creates a heap reference 〈o1, f, o2〉 ∈ IA(m)

id2i+1
, where o1 is the object pointed to by v1

and o2 is the object pointed to by v2: o1 = Vid2i
(v1) and o2 = Vid2i

(v2). By Invariant 4,
there exists n1 ∈ Lid2i

(v1) and n2 ∈ Lid2i
(v2) such that n1 ρid2i

o1 and n2 ρid2i
o2. As

the abstract semantics for STORE ensures 〈n1, f, n2〉 ∈ Iid2i+1
, Invariant 5 holds at

moment id2i+1.
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The case of a RETURN inside A(m) is more complex. Still, the α transformation
from the abstract semantics (see Figure 6-5) does not affect Invariant 5, because it
is applied uniformly to the nodes from the inside edges and to the nodes from the
modeling relation. Therefore, it suffices to do the proof for this case in the absence
of α. With this assumption, if

Ξid2i
= 〈Aid2i

[t 7→ 〈Vid2i,1, lb1〉 :〈Vid2i,2, lb2〉 :Kid2i
] ,Hid2i

, Sid2i
,TY id2i

〉
Gid2i

= 〈Lid2i,1 :Lid2i,2 :Jid2i
, Iid2i

, Oid2i
, Eid2i

, Rid2i
, Wid2i

〉

then

Ξid2i+1
= 〈Aid2i

[t 7→ 〈Vid2i,2 [vR 7→ Vid2i,1(v)], next(lb2)〉 :Kid2i
] ,

Hid2i
, Sid2i

,TY id2i
〉

Ga = 〈Lid2i,2 [vR 7→ Lid2i,1(v)] :Jid2i
, Iid2i

, Oid2i
, Eid2i

, Rid2i
, Wid2i

〉
Gid2i+1

= gc(Ga)

ρid2i+1
= ρid2i

The only potential problem is that the garbage collection may eliminate an inside edge
that models a heap reference between two reachable objects. We prove that nodes
that model reachable objects are not garbage collected. Therefore, all important
inside edges “survive” the garbage collection and a RETURN inside A(m) preserves
Invariant 5. We first prove the following auxiliary lemma:

Lemma 12. Consider a path of heap references from Hid2i
: 〈o0, f0, o1〉, 〈o1, f1, o2〉,

. . . 〈ol−1, fl−1, ol〉 ∈ Hid2i
. Assume that (1) nl ρid2i

ol, and (2) nl is captured in
Gid2i

: ¬e(Gid2i
)(nl). Then, there exists a path of inside edges from Iid2i

, 〈n0, f0, n1〉,
〈n1, f1, n2〉, . . . 〈nl−1, fl−1, nl〉 ∈ Iid2i

, such that ¬e(Gid2i
)(n0) and n0 ρid2i

o0.

Proof. As nl is captured, by Invariant 6 at date id2i, object ol is captured, i.e.
¬eid2i

(ol). Therefore, (1) by Invariant 3 at date id2i, nl is the only node that mod-

els ol, and (2) by Lemma 11, 〈ol−1, fl−1, ol〉 ∈ IA(m)
id2i

. Hence, by Invariant 5 at date
id2i, there exists nl−1 such that 〈nl−1, fl−1, nl〉 ∈ Iid2i

, nl−1 ρid2i
ol−1, and nl−1 is cap-

tured in Gid2i
(otherwise, nl would escape). To prove the lemma, it suffices to use

mathematical induction to repeat this reasoning l − 1 times.

Consider an arbitrary node n and an arbitrary object o such that o is reachable in
Ξid2i+1

and n models o in ρid2i+1
= ρid2i

(i.e., n ρid2i
o). We prove that n is reachable

in Ga. Assume for the sake of contradiction that n is unreachable. Therefore, n is
captured in Ga. As Ga and Gid2i

are identical except for the state of local variables,
n is captured in Gid2i

too. As o is reachable in Ξid2i+1
, there exists a path in Hid2i+1

=
Hid2i

, that reaches o from an object o0 that is pointed to (in Ξid2i+1
) by a local variable

or by a static field. By Lemma 12 above, there exists a path in Iid2i
that reaches n

from a node n0 such that n0 is captured in Gid2i
(and hence in Ga too) and n0 ρid2i

o0.
By Invariant 6 at date id2i, ¬eid2i

(o0) and, by Invariant 3 at date id2i, n0 is the only
node that models o in ρid2i

.
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¬eid2i
(o0) implies ¬eid2i+1

(o0) (a RETURN inside A(m) does not escape objects).
Hence, by Lemma 5, o0 cannot be pointed to in Ξid2i+1

by a static field or by a local
variable from a stack frame outside A(m). It remains that o0 is pointed to by a
local variable v from one of A(m)’s stack frames in Ξid2i+1

. By Invariant 4 at date
id2i+1 (already proved above), in Gid2i+1

, v points to n0, the only node that models
o. Hence, v points to n0 in Ga too.4 Hence, in Ga, n is reachable along a path of
inside edges that starts in n0, a node pointed to by a local variable. Therefore, n is
not garbage-collected. This completes the proof of Invariant 5.

Invariant 6: Recall that the escape predicate e(G)(n) (Definition 2 on page 41)
checks whether in the points-to graph G = 〈L:J, I, O,E,R,W〉, the node n is reach-
able along an escaping path: a path of inside edges, that starts in one of the escapability
sources (the nodes from CPNode∪CLNode∪G∪E∪R). Similarly, the concrete escape
predicate ed(o) (Definition 14 on page 94) checks whether the object o is reachable

along edges from I
A(m)
d (heap references created by A(m)), from one of the objects

directly escaped by one of the constraints 6.5, 6.7, 6.8, 6.9, and 6.10.
As usual, we perform a case analysis on the instruction executed at date id2i.

The following fact allows us to study only the changes to the modeling relation, the
concrete escape predicates, and the points-to graphs:

Fact 13. If the instruction executed at date id 2i is not a RETURN inside A(m),
Gid2i+1

contains all escapability sources and inside edges from Gid2i
. Therefore, a node

that escapes in Gid2i
continues to escape in Gid2i+1

: ∀n. e(Gid2i
)(n)→ e(Gid2i+1

)(n)

COPY, NULLIFY, IF, and analyzable CALL instructions do not escape objects
and do not add new heap references. Therefore, eid2i+1

(o) iff eid2i
(o). In the abstract

semantics, they preserve all escapability sources and inside edges. As a result, all
nodes that escaped at date id2i still escape at date id2i+1. As these instructions do
not modify the modeling relation, they preserve Invariant 6.

For a RETURN inside A(m), eid2i
= eid2i+1

too. For such a statement, the abstract
semantics proceeds in three steps (see Figure 6-5 on page 96). Each step preserves
Invariant 6: (1) The caller’s variable vR

5 is set to point to the nodes returned from the
caller; this step is similar to a COPY instruction. (2) Unreachable nodes are garbage
collected; still, none of the nodes appearing on an escaping path is unreachable (all
unreachable nodes are captured; see definition of gc in Figure 4-10). (3) The same
αc−1 transformation is applied to all nodes from the points-to graph and the modeling
relation. Step (3) preserves the invariant: pick o and n such that eid2i

(o) and n models
o after the αc−1 transformation. Therefore, n = αc−1(n2), and n2 models o in ρid2i

.
By Invariant 6 at date id2i, n2 escapes in Gid2i

. Finally, an escaping path in a points-
to graph is projected by αc−1 into an escaping path into the projected graph; hence,
n escapes in Gid2i+1

.
A NEW instruction updates the modeling relation to model the newly created

object o. As o does not escape anywhere yet, Invariant 6 remains true. A LOAD or

4Gid2i+1 is constructed by eliminating some nodes from Ga.
5This variable is specified by the matching CALL: “vR = v0.s(v1, . . . , vj)”
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a STATIC LOAD instruction may introduce a load node nL
lb ,c to model the loaded

object. As e(Gid2i+1
)(nL

lb ,c) (as any other load node, see Def. 2 on page 41), this
instruction preserves Invariant 6.

The final RETURN from A(m), THREAD START, STATIC STORE, and unan-
alyzable CALL instructions escape objects, due to one of the constraints 6.10, 6.7,
6.8, and 6.9 from Definition 14. This escape information propagates along the heap
references by Constraint 6.6. We treat only the case of an unanalyzable CALL; the
other cases are similar.

We pick arbitrary o and n such that eid2i+1
(o) and n ρid2i+1

o and prove that
e(Gid2i+1

)(n) holds. The modeling relation ρid2i+1
is identical to ρid2i

, except that
nGBL,c models the object returned from the unanalyzable CALL. If n = nGBL,c , then
n escapes trivially in Gid2i+1

. Otherwise, n models o even at date id2i. If eid2i
(o),

Invariant 6 at date id2i and Fact 13 imply e(Gid2i+1
)(n). If ¬eid2i

(o), o escapes at
date id2i+1 only because it is reachable from an object that directly escapes into the

unanalyzable CALL by Constraint 6.9 on page 95, by a path of edges from I
A(m)
id2i+1

=

I
A(m)
id2i

.
Hence, there is a (possibly empty) path, 〈o0, f0, o1〉, 〈o1, f1, o2〉, . . . 〈op−1, f0, op〉 ∈

I
A(m)
id2i

, that reaches o from an object o0 = Vid2i
(v), where v is an argument of the

unanalyzable CALL. As ¬eid2i
(o) and escapability propagates along the edges from

I
A(m)
id2i

, ∀j, ¬eid2i
(oj). By Invariant 3 at date id2i, each object oj is modeled by at most

one node. Hence, by Invariant 5 at date id2i, there exists a corresponding path along
the inside edges from Gid2i

: 〈n0, f0, n1〉, 〈n1, f1, n2〉, . . . 〈np−1, f1, np〉 ∈ Iid2i
⊆ Iid2i+1

,
where np = n.

By Invariant 4 at date id2i, in Gid2i
, v points to n0, the unique node that models

o0, i.e., n0 ∈ Lid2i
(v), which implies n0 ∈ Eid2i+1

(by the definition of the abstract
transfer function for an unanalyzable CALL, from Figure 4-3 on page 47). Hence,
n is reachable from a node from Eid2i+1

, along a path of inside edges from Iid2i+1
.

Therefore, e(Gid2i+1
)(n) holds in this case too.

The only remaining case is that of a STORE instruction “v1.f = v2.” This instruc-
tion does not create new objects and does not change the modeling relation. However,
it creates a new heap reference, which can generate new paths in I

A(m)
id2i+1

, causing more
objects to escape.

As before, we pick arbitrary o and n such that eid2i+1
(o) and n ρid2i+1

o, and
prove that e(Gid2i+1

)(n) holds. As STORE does not change the modeling relation,
n ρid2i

o too. If eid2i
(o), Invariant 6 at date id2i and Fact 13 imply e(Gid2i+1

)(n). If
¬eid2i

(o), then o escapes at date id2i+1 only because the heap reference introduced
by the STORE instruction made o reachable from an object that already escaped at
date id2i.

Consider one of the shortest paths in I
A(m)
id2i+1

that reaches o from an object o0 such
that eid2i

(o0). Let the objects from this path be o0, o1, . . . , op = o. Due to the way
we selected this path, o0 is the only object from this path that escapes at date id2i.
By applying the same technique as in the case of an unanalyzable CALL above, we
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construct a corresponding path in Iid2i+1
from the unique node which models o1, say

n1, to the unique node which models o, the node n.
As o1 does not escape at date id2i, the heap reference between o0 and o1 is not

present in the set I
A(m)
id2i

. But it appears in the set I
A(m)
id2i+1

, which means that the
STORE instruction created it, i.e., Vid2i

(v1) = o0, and Vid2i
(v2) = o1. By Invariant 4

at date id2i, Lid2i
(v1) contains one of the nodes that models o0, call it n0, and Lid2i

(v2)
contains the unique node n1 that models o1. Hence, at date id2i+1, there exists a path
of inside edges from n0 to n. Invariant 6 at date id2i and Fact 13 imply e(Gid2i+1

)(n0);
hence, e(Gid2i+1

)(n) in this case too.

In all cases Invariant 6 is valid at date id2i+1.

Invariant 7: NEW and LOAD instructions may introduce new nodes, but the
context of this nodes is |Jid2i

| = |Jid2i+1
|, preserving the invariant. A RETURN

inside A(m) decreases the height of the stack: |Jid2i+1
| = |Jid2i

| − 1. However, the
node morphism α|Jid2i

|−1 “truncates” all node contexts to |Jid2i
| − 1, preserving the

invariant. The other instruction are irrelevant, as they can at most increase the stack
height.

Invariant 8: Consider the case of a STORE instruction “v1.f = v2” and assume
that in the concrete state, v1 points to the object o 6∈ Allocs

A(m)
all (the case when

o is allocated by A(m) is irrelevant for Invariant 8). By Invariant 4, there exists a
node n ∈ Lid2i

(v) such that n ρid2i
o. Notice that n cannot be an inside node: by

Invariant 2 at date id2i, in ρid2i
, an inside node models only object allocated by A(m).

Hence, by the updated definition of the transfer function for a STORE instruction
(see Section 5.2), 〈n, f〉 ∈ Wid2i+1

. Hence, in this case, Invariant 8 is valid at date
id2i+1.

In the case of a RETURN inside A(m), notice first that the garbage collection
function gc is irrelevant because it removes only inside nodes (other nodes are trivially
reachable according to the definition from Figure 4-10), and Wid2i

does not use any
inside node. Also notice that the abstract semantics applies the morphism αc−1

(where c = |Jid2i
|) uniformly to the nodes from the modeling relation ρid2i

and the
nodes from Wid2i

. Hence, Invariant 8 is valid at date id2i+1 in this case too.
The cases of the other instructions are trivial, as they do not update the set of

mutated locations and the set of mutated abstract fields.

This completes the inductive proof of Invariants 1-8.

B.3 Monotonicity Lemmas

This section proves the monotonicity of the analysis transfer functions (Lemma 14)
and the monotonicity of the function interproc (Lemma 16). We used these results
in the proof of Theorem 8 on page 102.
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Lemma 14. If the instruction from label lb is not an analyzable CALL, then the
analysis transfer function [[lb ]]a is monotonic.

Proof. Case analysis on the instruction from label lb , followed by an inspection of the
definitions from Figure 4-3. The case of a LOAD instruction is the only non-trivial
case.

The analysis transfer function for a LOAD instruction uses the auxiliary function
process load (Figure 4-5) that, itself, uses the predicate e2. As e2 is defined as a
reachability predicate (Definition 3), e2 is monotonic too (i.e., there are more escaped
nodes in a bigger analysis points-to graph). Hence, [[lb ]] is monotonic in the case of a
LOAD instruction too.

Before proving the monotonicity of interproc, we prove an auxiliary result, the
monotonicity of gc ◦ ρ:
Lemma 15. Consider G1, G2 ∈ PTGrapha, such that G1 v G2. Then, gc(ρ(G1)),
gc(ρ(G2)) ∈ PTGrapha and gc(ρ(G1)) v gc(ρ(G2)).

Proof. The function gc ◦ ρ does not add new nodes, and does not change the stack
height. Therefore, gc(ρ(G1)) and gc(ρ(G2)) have only 0-context nodes and their
abstract stacks have a single element. Hence, gc(ρ(G1)), gc(ρ(G2)) ∈ PTGrapha and
we can compare them.

Intuitively, for each analysis points-to graph G ∈ PTGrapha, gc(ρ(G)) consists of
those parts of G that escape (see Figure 4-10 on page 57). As G1 v G2, any path
that exists in G1 exists in G2 too. Hence, any node that escapes in G1 escapes in G2

too. This observation proves that gc(ρ(G1)) v gc(ρ(G2)).

Lemma 16. The function interproc (Figure 4-6 on page 53) is monotonic in its first
two arguments.

Proof. Let lb be the label of an analyzable CALL instruction.
First, we consider G1, G2, Gcallee ∈ PTGrapha such that G1 v G2, and prove that

interproc(G1, Gcallee , P (lb)) v interproc(G2, Gcallee , P (lb))

By an examination of the interproc definition from Figure 4-6, we notice that it is
sufficient to prove that Tcallee = mct(τ(gc(ρ(Gcallee)))) is monotonic. By Lemma 3 on
page 59, each atomic inter-procedural transformer T ∈ AT (τ(gc(ρ(Gcallee)))) is mono-
tonic. Hence F =

⊔AT (τ(gc(ρ(Gcallee)))) is monotonic too, and so is each F i, i ≥ 0.
Therefore, Tcallee =

⊔
i≥0 F

i is monotonic.
Second, we consider G,Gcallee,1, Gcallee,2 ∈ PTGrapha such that Gcallee,1 v Gcallee,2,

and prove that

interproc(G, Gcallee,1, P (lb)) v interproc(G, Gcallee,2, P (lb))

It is sufficient to prove that Tcallee,1 v Tcallee,2, where Tcallee,k =
mct(τ(gc(ρ(Gcallee,k)))), ∀k ∈ {1, 2}. ∀k ∈ {1, 2}, Tcallee,k = star(Fk) =

⊔
i≥0 F

i
k,

where Fk =
⊔AT (τ(gc(ρ(Gcallee,k)))). By Lemma 15, gc(ρ(Gcallee,1)) v
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gc(ρ(Gcallee,2)). Hence, AT (τ(gc(ρ(Gcallee,1)))) ⊆ AT (τ(gc(ρ(Gcallee,2)))), which
implies F1 v F2. Therefore, ∀i ≥ 0, F i

1 v F i
2, and, ultimately, Tcallee,1 v Tcallee,2.

B.4 Proof of Equation 6.13 on page 103

We first prove several auxiliary results in Section B.4.1. We use these results exten-
sively during the proof of Equation 6.13 in Section B.4.2.

B.4.1 Auxiliary Results

Lemma 17. Consider a semi-join lattice L of finite depth (i.e., L does not have any
infinite strictly increasing chains), and F : L→ L an extensive function over L. Let
star(F ) =

⊔
i≥0 F

i. Then,

1. star(F ) is well-defined, i.e., ∀x ∈ L, star(F )(x) =
⊔

i≥0 F
i(x) exists. More-

over, ∀x ∈ L, ∃kx ∈ N such that star(F )(x) = F k(x).

2. ∀x ∈ L, star(F )(x) is a fixed-point of F . Moreover, if F is monotonic,
star(F )(x) is the smallest fixed point of F that is bigger than x.

3. star(F ) t star(F ) = star(F );

4. star(F ) ◦ star(F ) = star(F );

5. star(star(F )) = star(F ).

Proof. 1: As F is extensive, ∀x ∈ L, x v F (x) v F 2(x) v . . . v F i(x) v . . . . As L
has finite depth, this chain stabilizes after a finite number of steps, i.e., ∃kx such that
F j(x) = F kx(x),∀j ≥ kx (kx, the number of steps until stabilization, depends on x).
Therefore, star(F )(x) =

⊔
i≥0 F

i(x) = F kx(x) and star(F ) is defined for any x ∈ L.

2: Consider an arbitrary x ∈ L; as we have just proved, ∃kx ∈ N such that
star(F )(x) = F kx(x) and F j(x) = F kx(x),∀j ≥ kx. Hence, F (star(F )(x)) =
F kx+1(x) = F kx(x) = star(F )(x), i.e., star(F )(x) is a fixed-point of F .

Assume F is monotonic. Obviously, star(F )(x) =
⊔

i≥0 F
i(x) w F 0(x) = x. Let

y w x be another fixed-point of F . As F is monotonic, y = F (y) w F (x). We
can prove by induction on i that y w F i(x); hence, y w ⊔

i≥0 F
i(x) = star(F )(x).

Therefore, star(F )(x) is the smallest fixed-point of F that is bigger than x.

3: star(F )tstar(F ) = (
⊔

i≥0 F
i)t(

⊔
i≥0 F

i) =
⊔

i≥0(F
itF i) =

⊔
i≥0 F

i = star(F ).

4: Consider an arbitrary x ∈ L. As we have just proved, star(F )(x) is a fixed-point
of F . Hence, (star(F ) ◦ star(F ))(x) =

⊔
i≥0 F

i(star(F )(x)) =
⊔

i≥0 star(F )(x) =
star(F )(x). As we picked x arbitrarily, star(F ) ◦ star(F ) = star(F )

5: star(star(F )) = id t ⊔
i≥1 (star(F ))i = id t star(F ) = star(F ), since, by

Part 4 above, (star(F ))i = star(F ), ∀i ≥ 1.
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Lemma 18. For each G ∈ PTGraph, each T ∈ Trans(G) is extensive and monotonic.

Proof. Structural induction on T. Lemma 3 on page 59 already proved that each
atomic transformer is extensive and monotonic. For the compound transformers,
the only non-trivial complex case is for T = star(T1) =

⊔
i≥0 T

i
1. By the induction

hypothesis, T1 is extensive and monotonic. Therefore, we can prove that ∀i ≥ 0, T i
1

is extensive and monotonic. Hence, T is extensive and monotonic itself.

Lemma 19. For each G ∈ PTGraph, mct(G) is the biggest transformer from
Trans(G): ∀T ∈ Trans(G), T v mct(G).

Proof. Structural induction on T, using the definition mct(G) = star(F ), where
F =

⊔AT (G) (extensive according to Lemma 18). The case T = id is trivial, as
mct(G) is extensive (Lemma 18). The case of atomic transformers T ∈ AT (G) is also
simple: T v ⊔AT (G) = F v ⊔

i≥0 F
i = mct(G). For the compound transformers,

we use Lemma 17. E.g., if T = T1 t T2, then by the structural induction hypothesis
and Part 3 of Lemma 17, T = T1tT2 v star(F )tstar(F ) = star(F ) = mct(G).

Lemma 20. Consider µ0 ∈ Map, I0 ∈ IEdges, O0 ∈ OEdges, E0 ∈ P(CNode),
G = 〈J, I, O,E,R,W〉 ∈ PTGraph, and T ∈ Trans(G). Let

〈I ′, O′, E ′, µ′〉 = T(I0, O0, E0, µ0)

Then, each new edge from I ′ is the µ′-projection of some edge from I:

∀〈n1, f, n2〉 ∈ I ′ \ I0. ∃〈n3, f, n4〉 ∈ I. n1 ∈ µ′(n3) ∧ n2 ∈ µ′(n4)

Proof. Structural induction on T:

T = id or T = load(n1, f, n2): Trivial, as I ′ \ I0 = ∅.
T = store(n1, f, n2),where 〈n1, f, n2〉 ∈ I: Notice that µ′ = µ0 and that I ′ \ I0 ⊆

µ0(n1)× {f} × µ0(n2).

T = T1 t T2 : Let 〈I ′i, O′i, E ′
i, µ

′
i〉 = Ti(I0, O0, E0, µ0), where i ∈ {1, 2}. Obviously,

I ′ \ I0 = (I ′1 \ I0) ∪ (I ′2 \ I0). Consider 〈n1, f, n2〉 ∈ I ′1 \ I0. By the induction
hypothesis for T1, there exists 〈n3, f, n4〉 ∈ I such that n1 ∈ µ′1(n3) ⊆ µ′(n2),
and n2 ∈ µ1(n4) ⊆ µ(n4). The case 〈n1, f, n2〉 ∈ I ′2 \ I0 is similar.

T = T1 ◦ T2 : Let 〈Im, Om, Em, µm〉 = T2(I0, O0, E0, µ0). As all transformers are ex-
tensive (Lemma 18), µ0 ⊆ µm ⊆ µ′ and I0 ⊆ Im ⊆ I ′. Hence, I ′ \ I0 =
(I ′ \ Im) ∪ (Im \ I0). Consider 〈n1, f, n2〉 ∈ Im \ I0. By the induction hypoth-
esis for T2, there exists 〈n3, f, n4〉 ∈ I such that n1 ∈ µm(n3) ⊆ µ′(n3), and
n2 ∈ µm(n4) ⊆ µ′(n4). The case 〈n1, f, n2〉 ∈ I ′ \ Im is a direct application of
the induction hypothesis for T1.

T = star(T1): Let 〈Ii, Oi, Ei, µi〉 = T i
1(I0, O0, E0, µ0), ∀i ≥ 0. By the definition of

star(T1), 〈I ′, O′, E ′, µ′〉 =
⊔

i≥0〈Ii, Oi, Ei, µi〉. Consider 〈n1, f, n2〉 ∈ I ′ \ I0. As
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〈n1, f, n2〉 ∈ I ′ =
⋃

i≥0 Ii, ∃k ≥ 0 such that 〈n1, f, n2〉 ∈ Ik \ I0. As T k
1 =

T1 ◦ T1 ◦ . . . ◦ T1 (k times), we can use the same technique as in the case of
T = T1 ◦ T2 above.

Definition 15 (NICE property). Given G = 〈J, I, O,E,R,W〉 ∈ PTGraph, I0 ∈
IEdges, E0 ∈ P(CNode), and µ0 ∈ Map, property NICE(G, I0, E0, µ0) holds iff

1. Only parameter and load nodes may have non-reflexive mappings in µ0:
∀n1, n2. n2 ∈ µ0(n1) ∧ n1 6= n2 → n1 ∈ CPNode ∪ CLNode

2. The only nodes from G that may appear as targets of non-reflexive mappings in
µ0 are those nodes that escape according to 〈E, I〉:
∀n1, n2. n2 ∈ nodes(G) ∧ n2 ∈ µ0(n1) ∧ n1 6= n2 → e2(E, I)(n2)

3. Any edge from I0 that uses at least one node from G is the µ0-projection of an
edge from I:
∀〈n1, f, n2〉 ∈ I0. {n1, n2} ∩ nodes(G) 6= ∅ →

∃n3, n4. 〈n3, f, n4〉 ∈ I ∧ n1 ∈ µ0(n3) ∧ n2 ∈ µ0(n4)

4. Any node from E0 that appears in G is the µ0-projection of a node from E:
∀n ∈ E0 ∩ nodes(G). ∃n2 ∈ E. n ∈ µ0(n2)

Lemma 21. Consider G = 〈J, I, O,E,R,W〉 ∈ PTGraph, I0 ∈ IEdges, E0 ∈
P(CNode), µ0 ∈ Map, such that NICE(G, I0, E0, µ0) holds. Let n1 be a node from G
such that ¬e2(E, I)(n1). If n1 is reachable from a node n2 along edges from I0, then
n2 is a node from G, ¬e2(E, I)(n2), and n1 is reachable from n2 along edges from I:

∀n1, n2. n1 ∈ nodes(G) ∧ ¬e2(E, I)(n1) ∧ reachable({n2}, I0)(n1) →
n2 ∈ nodes(G) ∧ ¬e2(E, I)(n2) ∧ reachable({n2}, I)(n1)

Proof. Induction on the distance between n2 and n1. We prove that ∀k ≥ 0, ∀n1, n2, if
n1 ∈ nodes(G), ¬e2(E, I)(n1), and n1 is reachable from n2 along a path of k edges from
I0, then n1 is reachable from n2 along a path of k edges from I and n2 ∈ nodes(G).

The base case k = 0, i.e., n2 = n1, is trivial. For the induction step, assume n1

is reachable from n2, along a path of k + 1 edges from I0. Therefore, there exists
a node n and a field f such that 〈n, f, n1〉 ∈ I0 and n is reachable from n2, using k
edges from I0. As n1 ∈ nodes(G) and NICE(G, I0, E0, µ0) holds, there exists n3, n4

such that 〈n3, f, n4〉 ∈ I, n ∈ µ0(n3), n1 ∈ µ0(n4). As ¬e2(E, I)(n1), by Condition 2 of
Definition 15, n4 = n1. Hence, ¬e2(E, I)(n4), which implies ¬e2(E, I)(n3). Therefore,
n3 is not a load or a parameter node. By Condition 1 of Definition 15, n3 = n.

Hence, n ∈ nodes(G), ¬e(G)(n), and n is reachable from n2, using k edges
from I0. By the induction hypothesis, n2 ∈ nodes(G), ¬e2(E, I)(n2), and there
exists a path of k edges from I from n2 to n. We continue this path with the edge
〈n3, f, n4〉 = 〈n, f, n1〉, and prove that n1 is reachable from n2, along a path of k + 1
edges from I.
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Lemma 22. Consider G = 〈J, I, O,E,R,W〉 ∈ PTGraph, I0 ∈ IEdges, E0 ∈
P(CNode), µ0 ∈ Map, such that NICE(G, I0, E0, µ0) holds. Consider a node n ∈
nodes(G) such that e2(E0, I0)(n). Then e2(E, I)(n) holds.

Proof. Assume for the sake of contradiction that ¬e2(E, I)(n). As e2(E0, I0)(n),
there exists a path in I0 that reaches n from a node n2 ∈ CPNode ∪ CLNode ∪
G ∪ E0. By Lemma 21, n is also reachable from n2 along edges from I, n2 ∈
nodes(G), and ¬e2(E, I)(n2). As ¬e2(E, I)(n2), the only possibility is n2 ∈ E0.
As NICE(G, I0, E0, µ0) holds, by Condition 4 of Definition 15, ∃n3 ∈ E such that
n2 ∈ µ0(n3). If n2 = n3, then e2(E, I)(n2). Otherwise, as NICE(G, I0, E0, µ0) holds,
by Condition 2 of Definition 15, e2(E, I)(n2) again. In both cases, e2(E, I)(n2). Con-
tradiction!

Definition 16. A points-to graph G = 〈J, I, O,E,R,W〉 has well-formed outside
edges iff any outside edge from O starts in a node that escapes according to 〈E, I〉,
i.e.,

∀n1, f, n2. 〈n1, f, n2〉 ∈ O → e2(E, I)(n1)

Lemma 23 (Preservation of the NICE property). Consider G ∈ PTGraph,
µ1 ∈ Map, I1 ∈ IEdges, O1 ∈ OEdges, E1 ∈ P(CNode), and T ∈ Trans(G), such that
G has well-formed outside edges and NICE(G, I1, E1, µ1) holds. If 〈I2, O2, E2, µ2〉 =
T(I1, O1, E1, µ1), then NICE(G, I2, E2, µ2) holds.

Proof. Structural induction on T.

T = id: Trivial.

T = T1 ◦ T2: We apply the induction hypothesis twice, for T2 and T1.

T = T1 t T2: We apply the induction hypothesis for T1 and T2 and notice that
NICE(G, I ′2,1, E

′
2,1, µ2,1) and NICE(G, I ′2,2, E

′
2,2, µ2,2) imply

NICE(G, I ′2,1 t I ′2,2, E
′
2,1 t E ′

2,2, µ2,1 t µ2,2).

T = star(T1): We first use the same technique as for the case ◦ above to prove that
∀i ≥ 0, T i

1 satisfies the lemma, and next use the same technique as for the t
case.

T = store(n1, f, n2): This transformer introduces new inside edges that are µ1-
projections of the edge 〈n1, f, n2〉 ∈ I; also, µ1 ⊆ µ2.

T = gesc(n): This transformer extends E1 with the µ1-projections of the node n ∈ E;
also, µ1 ⊆ µ2.

T = load(n, f, nL): This transformer may create new non-reflexive mappings if
∃〈n1, f, n2〉 ∈ I1, such that n1 ∈ µ1(n). In this case, µ2 contains (in addi-
tion to all non-reflexive mappings from µ1), a mapping from the load node nL

to the node n2. We assume n2 ∈ nodes(G) and n2 6= nL, and prove e2(E, I)(n2).
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Suppose for the sake of contradiction that ¬e2(E, I)(n2). As n2 is a node from
G and NICE(G, I1, E1, µ1) holds, by Condition 3 from Definition 15, there exists
an inside edge 〈n3, f, n4〉 ∈ I, such that n1 ∈ µ1(n3) and n2 ∈ µ1(n4).

As NICE(G, I1, E1, µ1) holds, n2 ∈ µ1(n4), n2 ∈ nodes(G), and ¬e2(E, I)(n2),
by Condition 2 from Definition 15, n2 = n4. Hence, ¬e2(E, I)(n4) and
¬e2(E, I)(n3) (otherwise, escapability of n3 would propagate to n4). Therefore,
n3 is not a load or a parameter node. By Condition 1 of NICE(G, I1, E1, µ1),
n1 = n3.

To sum up, n3 ∈ µ1(n), n3 ∈ nodes(G), and ¬e2(E, I)(n3). By Condition 2 of
NICE(G, I1, E1, µ1), n = n3. As T = load(n, f, nL) ∈ Trans(G), 〈n, f, nL〉 ∈ O.
Hence, n3 = n is the source of an outside edge in the well-formed points-to graph
G and so, by Definition 16, e2(E, I)(n3). Contradiction! Hence, e(G)(n2).

Lemma 24. Consider a node morphism β : CNode → CNode such that

1. ∀n ∈ CPNode ∪ CLNode ∪ G. β(n) ∈ CPNode ∪ CLNode ∪ G;
2. ∀n ∈ CLNode. β(n) ∈ CLNode.

When applied to a mathematical entity that uses nodes (e.g., a points-to graph, an
inter-procedural transformer, etc.), β propagates inside it and changes each node n
to β(n). E.g.,

β(I) = {〈β(n1), f, β(n2)〉 | 〈n1, f, n2〉 ∈ I}
β(T1 ◦ T2) = β(T1) ◦ β(T2)
β(store(n1, f, n2)) = store(β(n1), f, β(n2))

Assume G ∈ PTGraph and T ∈ Trans(G). Then

a. β(T) ∈ Trans(β(G))

b. (β(T)) (β(I, O,E, µ)) w β(T(I, O,E, µ))

Proof sketch. Structural induction on T. Condition 1 ensures that “escapability
projects through β”: i.e., ∀E2, I2, n, if e2(E2, I2)(n), then e2(β(E2), β(I2))(n) too.
(see Definition 3 on page 42). Condition 2 is a technicality: it ensures that the
β-projection of an outside edge is still a valid outside edge (an outside edge must
terminate in a load node).

The function application (β(T))(β(I, O,E, µ)) operates similarly with T(I, O,E, µ)
except that everything is projected through β. E.g., if T(I, O,E, µ) adds an inside
edge 〈n1, f, n2〉, then (β(T))(β(I, O,E, µ)) adds the edge 〈β(n1), f, β(n2)〉.

The use of inequality in statement 2 (instead of equality) is due to the fact that
β is not necessarily injective: it may “merge” nodes and thus link together previ-
ously unconnected paths. Therefore, reachability on the right-hand side may strictly
supersede reachability on the left-hand side. As load transformers use reachability
internally, they may generate bigger results.
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This lemma would have been harder to prove, or even incorrect, for transform-
ers that use inequality tests: in general, non-injective projections do not preserve
inequalities.

Lemma 25. If G ∈ PTGraph, T ∈ Trans(G), and k ∈ N, then

1. αk(T) ∈ Trans(αk(G))

2. (αk(T)) (αk(I, O,E, µ)) w αk(T(I, O,E, µ))

Proof. Simple corollary of Lemma 24: the node morphism αk (Figure 4-11 on page 58)
satisfies the two conditions of Lemma 24 because it changes only the context of a node,
not its kind (e.g., α transforms a load node into a load node).

During the presentation of the analysis, we introduced the delS operator that takes
a node-based structure (e.g., a points-to graph) and returns a similar structure, but
without any of the nodes from the set S (Figure 4-10).

Figure B-1 extends the delS operator to handle inter-procedural transformers.
delS(T) is the inter-procedural transformer that is similar to T, except that inside T,
each atomic transformer that uses a node from S is replaced with id, the identity
transformer.

Lemma 26. Consider G = 〈J, I, O,E,R,W〉 ∈ PTGraph, µ1 ∈ Map, I1 ∈ IEdges,
O1 ∈ OEdges, E1 ∈ P(CNode), T ∈ Trans(G), such that G has well-formed outside
edges and NICE(G, I1, E1, µ1) holds. Let S be a subset of the captured nodes from G,
S ⊆ {n ∈ nodes(G) | ¬e(G)(n)}. Then,

(delS(T))(delS(I1, O1, E1, µ1)) = delS(T(I1, O1, E1, µ1))

Proof. Structural induction on T:

T = id: Trivial

T = T1 ◦ T2: We apply the induction hypothesis twice, for T2 and T1.

T = T1 t T2: We apply the induction hypothesis twice, for T1 and T2, and notice that
delS distributes over t: e.g., delS(Ia)tdelS(Ib) = delS(Ia t Ib),∀Ia, Ib ∈ IEdges .

T = star(T1): As the lemma holds for T1, we can use the same technique as for the
case ◦ above to prove by induction on i that ∀i ≥ 0, T i satisfies the lemma too.
Next, we can use the same technique as for the case t above to prove that T
satisfies the lemma.

T = store(n1, f, n2): It is sufficient to compare the sets of inside edges on both sides
of the equality we want to prove (the other elements are trivially equal). The
set of inside edges on the right-hand side is

delS(I1 ∪ µ1(n1)× {f} × µ1(n2)) =
delS(I1) ∪ delS(µ1(n1))× {f} × delS(µ1(n2))
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delS(T1 ◦ T2) = delS(T1) ◦ delS(T2)

delS(T1 t T2) = delS(T1) t delS(T2)

delS(star(T)) = star(delS(T))

delS(id) = id

delS(store(n1, f, n2)) =

{
store(n1, f, n2) if {n1, n2} ∩ S = ∅
id otherwise

delS(load(n, f, nL)) =

{
load(n, f, nL) if {n, nL} ∩ S = ∅
id otherwise

delS(gesc(n)) =

{
gesc(n) if n 6∈ S
id otherwise

Figure B-1: Definition of the function delS for predicate transformers. Given a set
of nodes S and an inter-procedural transformer T, delS(T) is the inter-procedural
transformer similar to T, except that inside T, each atomic transformer that uses a
node from S is replaced with id, the identity transformer. Figure 4-10 on page 57
defines the function delS for other node-based structures.

If n1 ∈ S, then delS(store(n1, f, n2)) = id, and the left-hand side set of inside
edges is simply delS(I1). Also, n1 ∈ S implies that n1 is captured in G; by
Condition 1 of the NICE(G, I1, E1, µ1) property, n1 does not map to any other
node, so delS(µ1(n1)) = ∅, implying equality of the two sets of inside edges. A
similar reasoning is possible if n2 ∈ S.

Finally, if {n1, n2} 6∈ S, then the set of inside edges on the left-hand side is

delS(I1) ∪ (delS(µ1))(n1)× {f} × (delS(µ1))(n2)

Consider n′1 such that 〈n1, n
′
1〉 ∈ µ1. If n′1 = n1, then n′1 6∈ S. If n′1 6= n1, then

n′1 is the target of a non-reflexive mapping. By Condition 2 of the property
NICE(G, I1, E1, µ1), n

′
1 escapes. In both cases, n′1 6∈ S. Hence, delS(µ1(n1)) =

(delS(µ1))(n1) = µ1(n1). A similar relation holds for n2, implying the equality
of the two sets of inside edges.

T = gesc(n): As T ∈ Trans(G), n ∈ E. Hence, n 6∈ S and delS(gesc(n)) = gesc(n).
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We need to prove that

gesc(n)(delS(I1), delS(O1), delS(E1), delS(µ1)) =
delS( gesc(n)(I1, O1, E1, µ1) )

It is sufficient to prove the equality of the sets of globally escaped nodes on the
two sides of the equality, i.e., delS(E1)∪(delS(µ1))(n) = delS(E1)∪delS(µ1(n)).
As in the case of store, as n 6∈ S, we can prove that delS(µ1(n)) =
(delS(µ1))(n) = µ(n), which ends the proof of this case.

T = load(n, f, nL): As T ∈ Trans(G), n is the source of a well-formed outside edge
from the graph G; hence, e2(E, I)(n); the load node nL escapes trivially; hence,
n 6∈ S and nL 6∈ S (S contains only captured nodes) and delS(load(n, f, nL)) =
load(n, f, nL). We need to prove that

load(n, f, nL)(delS(I1), delS(O1), delS(E1), delS(µ1)) =
delS(load(n, f, nL)(I1, O1, E1, µ1))

load may extend only the map and the set of outside edges. We examine the
map first. On the right-hand side above, load adds a mapping from nL to nL if
∃n1 ∈ µ1(n) such that e2(E1, I1)(n1). As nL 6∈ S, this mapping is not affected
by the application of delS on the right-hand side.

Observation: Each node nx that escapes according to 〈E1, I1〉 does not appear
in S: assume for the sake of contradiction that nx ∈ S ⊆ nodes(G). Then, by
Lemma 22, e2(E, I)(nx), which contradicts nx ∈ S (S contains only captured
nodes).

Therefore, n1 6∈ S, and hence, the mapping from n to n1 exists in delS(µ1).
As e2(E1, I1)(n1), there exists a path in I1 that reaches n1 from a node in
CPNode ∪CLNode ∪G ∪E1. As each node from this path escapes according to
〈E1, I1〉, by the observation above, none of them is in S. Therefore, this path
is not affected by the removal of the nodes from S. Hence, the mapping from
nL to nL is introduced on the left-hand side too.

The load transformer on the right-hand side may also add new mappings from
nL to n2, for any edge 〈n1, f, n2〉 ∈ I1 such that n1 ∈ µ(n). Notice that n1 6∈ S:
otherwise, n1 would be a captured node from G and by NICE(G, I1, E1, µ1) and
Condition 2 of Def. 15, n = n1 ∈ S; contradiction! Also, n2 6∈ S: assume for
the sake of contradiction that n2 ∈ S. As any load node escapes, n2 6= nL. As
load preserves the NICE property (Lemma 23) and n2 becomes the target of
a non-reflexive mapping, e2(E, I)(n2), which contradicts n2 ∈ S. In conclusion,
none of the nodes used by the load transformer (n, nL, n1, n2) appear in S.
Therefore, the mapping from nL to n2 appears on both sides of the desired
equality.

The proof for the outside edges is similar: it relies on the fact that none of the
involved nodes is deleted by delS. For brevity, we omit the details.
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Lemma 27. If G ∈ PTGraph, T ∈ Trans(G), and S is a set of nodes, then
delS(T) ∈ Trans(delS(G)).

Proof. Trivial by structural induction on T. delS(G) removes any edge that has an
endpoint in S; accordingly, delS(T) converts into id any atomic transformer that
involves a node from S, etc.

Lemma 28. Consider an activation A(m) of a method m, and an arbitrary interesting
date d ∈ IDA(m). Let Gd = 〈Jd , Id , Od , Rd ,Wd〉 be the points-to graph that the abstract
semantics of A(m) constructs for d. If d is not the termination date for the final
RETURN from A(m), then, Rd = ∅.
Proof. Induction on the interesting dates, followed by case analysis on the instruction
executed in each step. The initial points-to graph Gid0 = Gm

init has an empty set of
returned nodes. The abstract semantics transfer functions propagate this empty set.
The only exception is the transfer function for the final RETURN from A(m).

Lemma 29. Let G = 〈L : J, I, O,E,R,W〉 ∈ PTGraph. If n ∈ garbage(G), then
¬e2(E, I)(n).

Proof. Direct application of the definitions of garbage (Figure 4-10 on page 57) and
e2 (Definition 3 on page 42).

Lemma 30. Consider an activation A(m) of a method m, and an arbitrary inter-
esting date d ∈ IDA(m). The points-to graph Gd that the abstract semantics of A(m)
constructs for d has well-formed outside edges.

Proof. Induction on the interesting dates, followed by case analysis on the instruction
executed in each step. The only non-trivial cases are those for LOAD and RETURN
inside A(m). The transfer function for a LOAD instruction adds only outside edges
that start in escaped nodes. Consider a RETURN inside A(m). Consider an outside
edge 〈n1, f, n2〉 in the points-to graph before the RETURN. By the induction hypoth-
esis, n1 is reachable along an escaping path: a path of inside edges that starts in a
parameter node, a load node, or in a globally escaped node (by Lemma 28, there are
no returned nodes). The garbage collection from the transfer function for the RE-
TURN instruction removes only captured nodes (Lemma 29). Hence, this operation
does not affect the escaping path for n1. The node morphism α from the transfer
function for a RETURN inside A(m) projects the escaping path into another escap-
ing path. In the resulting points-to graph, each outside edge starts in an escaped
node.

Lemma 31. ∀k ∈ N, τ ◦ αk = αk+1 ◦ τ .
Proof. τ and α. are overloaded symbols that work on a variety of node-based struc-
tures. Still, it suffices to prove the desired equality for the functions τ and α. operating
on nodes. Consider a node (with context) 〈n, c〉 ∈ CNode. If c ≤ k, then

τ(αk(〈n, c〉)) = τ(〈n, c〉) = 〈n, c + 1〉
αk+1(τ(〈n, c〉)) = αk+1(〈n, c + 1〉) = 〈n, c + 1〉
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If c > k, then

τ(αk(〈n, c〉)) = τ(〈n, k〉) = 〈n, k + 1〉
αk+1(τ(〈n, c〉)) = αk+1(〈n, c + 1〉) = 〈n, k + 1〉

In both cases, (τ ◦ αk) (〈n, c〉) = (αk+1 ◦ τ) (〈n, c〉)

B.4.2 Proof of Equation 6.13 on page 103

Background: Recall from Section 6.6 that Equation 6.13 is formulated in the con-
text of an activation A(m) of a method m. ip2i ∈ IPA(m) is an even-numbered
intra-procedural date of A(m). At date ip2i, the activation A(m) starts executing a
CALL instruction P (lbip2i

) = “vR = v0.s(v1, . . . , vm)” that invokes the method callee.

This CALL starts an activation of callee, A(callee). The last intra-procedural date
of A(callee) is ip2i+1, the date when the matching RETURN terminates. Gcallee

ip2i+1
is the

points-to graph that the abstract semantics of A(callee) constructs for ip2i+1. Gip2i

and Gip2i+1
are the points-to graphs that the abstract semantics of A(m) computes

for the date ip2i, respectively for the date ip2i+1. Equation 6.13 has the form

interproc(Gip2i
, Gcallee

ip2i+1
, P (lbip2i

)) w Gip2i+1

Proof Idea: The abstract semantics of A(m) constructs Gip2i+1
using a small-step

strategy: it starts with Gip2i
and next applies the transfer functions for the CALL

instruction and for all the instructions from A(callee). Instead, interproc uses one big
step: the inter-procedural transformer Tcallee = mct(τ(gc(ρ(Gcallee

ip2i+1
)))). Intuitively,

Equation 6.13 states that Tcallee conservatively approximates the small-step processing
of the abstract semantics of A(m) for the instructions from A(callee).

During our proof, we incrementally construct an inter-procedural transformer for
each date inside A(callee). We prove by induction that each such transformer conser-
vatively approximates the abstract semantics of A(m) up to the corresponding date.
We also prove that the inter-procedural transformer for the end of A(callee) is smaller
than Tcallee . Each inter-procedural transformer is a small change over the previous
inter-procedural transformer. This fact keeps each induction step reasonably simple.

Notation: Let lb0, lb1, . . . lbl be the labels of the statements that A(m) executes
from the CALL to callee until the matching RETURN (in order); lb0 is the label of
the CALL and lbl is the label of the matching RETURN. Instructions from labels lb1,
lb2, . . . lbl belong to both A(m) and A(callee).

We use the superscript 0 for the points-to graphs constructed by the abstract
semantics of A(m) by processing the instructions from labels lb0, lb1, . . . lbl. Let
G0

0 = Gip2i
and G0

k+1 = [[lbk]](G
0
k), ∀k ∈ {0, 1, . . . , l}.

We use the superscript 1 for the points-to graphs constructed by the abstract
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Notation: µ(L) = λv. µ(L(v)) = λv.
⋃

n∈L(v) µ(n)

µ([L1, L2, . . . Lq]) = [µ(L1), µ(L2), . . . µ(Lq)]

Let µ0 = {〈n, n〉 | n ∈ CINode ∪ G} ∪
(⋃m

j=0{nP
i,1} × L(vj)

)
, and

〈I2
k , O

2
k, E

2
k , µk〉 = Tk (I0

0 , O
0
0, E

0
0 , µ0) in the following invariants:

〈I2
k , O

2
k, E

2
k〉 w 〈I0

k , O
0
k, E

0
k〉 (B.1)

|J0
k | = |J1

k |+ 1 (B.2)

µi(τ(L
1
k :J1

k )) @ [L0
0] w L0

k :J0
k (B.3)

W 0
0 ∪

⋃

〈n,f〉∈τ(W 1
k )

(µk(n) \ CINode)× {f} ⊇ W 0
k (B.4)

Tk ∈ Trans(τ(G1
k)) (B.5)

Figure B-2: Invariants for the proof of Equation 6.13.

semantics of A(callee):

G1
1 = Gcallee

init = 〈(Lall−empty

[
pj 7→ {nP

j,0}
]
0≤j≤m

) : [], ∅, ∅, ∅, ∅, ∅〉
G1

k+1 = [[lbk]](G
1
k), ∀k ∈ {1, 2, . . . , l}

With these notations, Gcallee
ip2i+1

= G1
l+1 and Equation 6.13 is equivalent to

interproc(G0
0, G

1
l+1, “vR = v0.s(v1, . . . , vm)”) w G0

l+1

Unless otherwise specified, for each points-to graph Gx
k, we use the same super-

script x and subscript k to denote its sub-components:

Gx
k = 〈Lx

k :Jx
k , I

x
k , O

x
k , E

x
k , R

x
k, W

x
k 〉

This notation identifies the top abstract local variable state Lx
i , the rest of the stack

Jx
i , the set of inside edges Ix

i , etc.

For each k ∈ {1, 2, . . . l}, our proof constructs an inter-procedural transformer Tk

that conservatively approximates the abstract semantics of A(m) up to that point.
More specifically, if µ0 is the initial inter-procedural node map from interproc, and
〈I2

k , O
2
k, E

2
k , µk〉 = Tk (I0

0 , O
0
0, E

0
0 , µ0), then the Invariants B.1-B.5 from Figure B-

2 hold.

Invariant B.1 states that the transformer Tk conservatively approximates the ab-
stract semantics of A(m), with respect to the inside edges, outside edges and the set
of globally escaped nodes.

Invariant B.3 states that the µk-projection of the abstract stack from τ(G1
k) con-

servatively approximates the abstract stack L0
k :J0

k created by the abstract semantics
of A(m). The append (“@”) operation on the left-hand side of Invariant B.3 is due to
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Instruction P (lbk) Tk+1

STORE
v1.f = v2

(⊔ {
store(τ(n1), f, τ(n2)) | n1 ∈ L1

k(v1), n2 ∈ L1
k(v2)

})
◦ Tk

STATIC STORE
C.f = v

(⊔ {
gesc(τ(n)) | n ∈ L1

k(v)
})
◦ Tk

Unanalyzable CALL
vR = v0.s(v1, ...vq)


⊔



gesc(τ(n)) | n ∈

q⋃

j=0

L1
k(vj)






 ◦ Tk

THREAD START
start v

(⊔ {
gesc(τ(n)) | n ∈ L1

k(v)
})
◦ Tk

LOAD
v2 = v1.f

let B = { n ∈ L1
k(v1) | e2(E1

k , I1
k)(n) } in

if B = ∅ then Tk

else
(⊔{

load(τ(n), f, τ(nL
lbk,|J1

k |)) | n ∈ B
})
◦ Tk

RETURN inside
A(callee)

return v

Assume G1
k = 〈L1

k,1 :L1
k,2 :J1

k , I1
k , O1

k, E1
k , ∅〉, and

let G = 〈L1
k,2

[
vR 7→ L1

k,1(v)
]
:J1

k , I1
k , O1

k, E1
k , ∅〉,

where vR is the variable that stores the result of the
matching CALL.

Then, Tk+1 = α|J1
k |+1(delτ(garbage(G))(Tk))

other cases Tk (unchanged)

Figure B-3: Definition of the inter-procedural transformers Tk, k ∈ {1, 2, . . . , l}.
T1 = id. The other transformers are defined inductively using the rules from this
figure.

the fact that L0
k :J0

k contains the additional element L0
0 that models the state of the

local variables from the method m. Invariant B.2 ensures that Invariant B.3 compares
abstract stacks of equal heights (using element-wise comparison).

Invariant B.4 states that the µk-projection of the set of mutated abstract fields
from the callee approximates the set of mutated abstract fields constructed by the
abstract semantics of A(m).

Figure B-3 presents the definition of the transformers Tk, k ∈ {1, 2, . . . l}. Initially,
T1 = id. The other transformers Tk are defined inductively, based on the instruction
from label lbk. On a first reading, one can skip the precise definitions from Figure B-3.
We discuss these definitions during the proof below.
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The rest of this section has the following structure: First, we prove the Invari-
ants B.1-B.5. Next, we prove Equation 6.13 using the invariants and several additional
facts.

Proof of Invariants B.1-B.5

We do a proof by induction on k ∈ {1, 2, . . . , l}. Invariant B.2 is trivial to prove:
J0

k has an extra element, L0
0, that models the state of the local variables from the

method m. We focus on the other invariants.

Base Case: i = 1, T1 = id. Invariant B.5 is trivially true: id ∈ Trans(τ(G1
1)).

Invariant B.1 is trivially true (with equality), and µ1 = µ0. To prove Invariant B.3,
notice that

τ(L1
1) = Lall−empty

[
pj 7→ {τ(nP

j,0)}
]
0≤j≤m

= Lall−empty

[
pj 7→ {nP

j,1}
]
0≤j≤m

L0
1 = Lall−empty [pj 7→ L0

0(vj)]0≤j≤m (def. of [[.]] for a CALL in Figure 6-5)

and that µ0 maps each parameter node nP
j,1 to L0

0(vj). Invariant B.4 is trivially true:
W 0

1 = W 0
0 .

Induction Step: We assume that Invariants B.1-B.5 hold at moment k and prove
them at moment k + 1. An important tool in our proof is that the property
NICE(τ(G1

k), I
0
0 , E

0
0 , µ0) (see Definition 15 on page 171) holds at each step k, 1 ≤

k ≤ l:

• Only parameter nodes have non-reflexive mappings in µ0.

• By Lemma 6 on page 101, G0
0 = Gip2i

is an analysis points-to graph. Hence, all
nodes from G0

0 have context 0. Hence, all targets of non-reflexive mappings in
µ0 are nodes with context 0, that do not appear in τ(G1

k) (τ(G1
k) contains only

nodes with context at least 1).

• I0
0 and E0

0 do not contain any nodes from τ(G1
k) (distinct node contexts). This

fact is the main reason we use node contexts in our formalism.

Therefore, our proof can use Lemmas 23, 21, 22, and 26. In particular, by Lemma 23
(preservation of the NICE property),

Fact 32. NICE(τ(G1
k), I

2
k , O

2
k, µk) holds.

Fact 32 implies several other useful results:

Fact 33. Only parameter and load nodes can be sources of non-reflexive mappings in
µk: ∀n1, n2. n2 ∈ µk(n1) ∧ n1 6= n2 → n1 ∈ CPNode ∪ CLNode.

Fact 34. The map µk maps each captured node from τ(G1
k) only to itself:

∀n1, n2. (n1 ∈ nodes(τ(G1
k))) ∧ ¬e2(τ(E

1
k), τ(I

1
k))(n1) ∧ (n2 ∈ µk(n1)) → n1 = n2.
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Fact 35. If n is a captured node from τ(G1
k), then the only node that µk maps to n is

n itself: ∀n1, n2. (n1 ∈ nodes(τ(G1
k))) ∧ ¬e2(τ(E

1
k), τ(I

1
k))(n1) ∧ (n1 ∈ µk(n2)) →

n1 = n2.

Fact 33 is just Condition 1 of the property NICE(τ(G1
k), I

2
k , O

2
k, µk). Fact 34 is an

immediate implication of Fact 33: parameter and load nodes always escape. Fact 35
is just Condition 2 of the property NICE(τ(G1

k), I
2
k , O

2
k, µk).

We do a case analysis on the instruction from label lbk. We start with a few cases
when the abstract semantics of A(m) and the abstract semantics of A(callee) proceed
similarly. In each case, we focus on the elements that change: local variables that
point to new nodes, new node mappings, etc.

Consider the case when the instruction from label lbk is a COPY instruction
“v1 = v2”. In this case, Tk+1 = Tk; hence, µk+1 = µk. As the abstract semantics
of COPY does not change the inside/outside edges nor the set of globally escaped
nodes, the validity of Invariant B.1 propagates from moment k to moment k+ 1. For
Invariant B.3, notice that

L1
k+1 = L1

k [v2 7→ L1
k(v1)] which implies τ(L1

k+1) = τ(L1
k) [v2 7→ τ(L1

k(v1))] ; and

L0
k+1 = L0

k [v2 7→ L0
k(v1)]

By the induction hypothesis, µk(τ(L
1
k(v1))) ⊇ L0

k(v1); hence, µk+1(τ(L
1
k+1(v2))) =

µk(τ(L
1
k+1(v2))) ⊇ L0

k+1(v2). As the state of the other local variables / stack frames
does not change, Invariant B.3 is true at moment k + 1.

For a NEW instruction “v = new C”, Tk+1 = Tk, µk+1 = µk, and the Invariant B.1
is trivially true (for lack of change from moment k). For Invariant B.3, notice that

τ(L1
k+1) = τ(L1

k)
[
v 7→ {τ(nI

lbk,|J1
k |
)}

]
= τ(L1

k)
[
v 7→ {nI

lbk,|J1
k |+1
}
]

L0
k+1 = L0

k

[
v 7→ {nI

lbk,|J0
0 |}

]

By Invariant B.2, |J1
k |+ 1 = |J0

k | and the two inside nodes are identical. As the map
µk+1 is reflexive for inside nodes,6 Invariant B.3 holds at moment k + 1 too (apart
from v, the other local variables do not change).

The cases of IF and NULLIFY are similar. The case of an analyzable CALL is also
similar to the case of COPY: a CALL copies the values of the actual arguments into
the formal parameters. The case of a STATIC LOAD is similar to the case of NEW:
the semantics of A(m) and A(callee) set a local variable to point to a node from G,
and µk is reflexive for that node. For brevity, we skip the details of these cases.

6Map µ0 is reflexive for nodes from CINode∪G, and Tk+1 is extensive, by Lemma 18, so µk+1 ⊇ µk

is also reflexive.
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In the case of a STORE statement “v1.f = v2”, by a simple examination of the
definition of Tk+1 (Figure B-3), we notice that µk+1 = µk: the store transformers
add new inside edges, but do not change the map. As STORE does not change
the state of the local variables, the validity of Invariant B.3 trivially propagates at
moment k + 1. For Invariant B.1, only the set of inside edges changes:

I0
k+1 = I0

k ∪ L0
k(v1)× {f} × L0

k(v2) By def. of [[.]]; Fig. 6-5
⊆ I2

k ∪ L0
k(v1)× {f} × L0

k(v2) By Inv. B.1 at moment k
⊆ I2

k ∪ µk(τ(L
1
k(v1)))× {f} × µk(τ(L

1
k(v2))) By Inv. B.3 at moment k

⊆ I2
k+1

To explain the last inclusion, notice that Tk+1 = F ◦Tk, where F is a function such that
∀n1 ∈ L1

k(v1), n2 ∈ L1
k(v2), F w store(τ(n1), f, τ(n2)). Each store(τ(n1), f, τ(n2))

generates the additional inside edges µk(τ(n1))× {f} × µk(τ(n2)).
For Invariant B.4, notice that

W 0
k+1 = W 0

k ∪ (L0
k(v1) \ CINode)× {f}, and

τ(W 1
k+1) = τ(W 1

k ) ∪ (τ(L1
k(v1)) \ CINode)× {f}

Let n ∈ L0
k(v1) \ CINode. By Invariant B.3 at moment k, there exists a node

n2 such that n2 ∈ τ(L1
k(v1)) and n ∈ µk(n2). As n 6∈ CINode, n2 6∈ CINode either

(otherwise, by Fact 33, n = n2 ∈ CINode). Hence, 〈n2, f〉 ∈ τ(W 1
k+1), 〈n, f〉 ∈

(µk+1(n2) \ CINode)× {f}, and, ultimately, Invariant B.3 is valid at moment k + 1.
For Invariant B.5, notice that the new atomic transformers inside Tk+1 correspond

to the new inside edges from τ(G1
k+1); hence, Tk+1 ∈ τ(G1

k+1).

For a STATIC STORE “C.f = v”, µk+1 = µk: the gesc transformers do not
change the map. Invariant B.3 is trivially true, for lack of change in the state of local
variables. For Invariant B.1, only the set of globally escaped nodes changes. Using
the definition of [[.]] and Invariants B.1 and B.3 at moment k:

E0
k+1 = E0

k ∪ L0
k(v) ⊆ E2

k ∪ L0
k(v) ⊆ E2

k ∪ µk(τ(L
1
k(v))) ⊆ E2

k+1

To explain the last inclusion, notice that Tk+1 = F ◦ Tk, where F is a function such
that ∀n ∈ L1

k(v), F w gesc(τ(n)). Each gesc(τ(n)) generates the additional globally
escaped nodes µk(τ(n)). For Invariant B.5, notice that the new atomic transform-
ers inside Tk+1 correspond to the new globally escaped nodes from τ(G1

k+1); hence,
Tk+1 ∈ τ(G1

k+1).

The cases of an unanalyzable CALL or a THREAD START are similar to the case
of STATIC STORE.

The remaining two cases (LOAD instructions and RETURNs inside A(callee)) are
more complex.
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τ (n2)

G0
k f

f

n1 n

τ (n3)

τ (G1

k)

v1

v1

µk µk+1

τ (n3) f

n1 n

τ (n2)

τ (G1

k)

G0

k

τ (n4)

f
v1

v1

µk

µkµk

a. Case 1.1. b. Case 1.2. n2 = n3 in the subcase
1.2.1; n2 6= n3 in the subcase 1.2.2.

Figure B-4: Graphic representations for the case of a LOAD instruction. Solid cir-
cles represent general nodes, dashed circles represent load nodes, solid straight arcs
represent inside edges, dashed straight arcs represent outside edges, and curved arcs
represent node mappings.

LOAD: Consider a LOAD instruction “v2 = v1.f”. This instruction affects the map
µk+1 (by adding potentially new mappings), the set of nodes pointed to by v2, and
the set of outside nodes.

We first prove that L0
k+1(v2) ⊆ µk+1(τ(L

1
k+1(v2))). We consider an arbitrary n ∈

L0
k+1(v2) and prove that n ∈ µk+1(τ(L

1
k+1(v2))). From the definition of [[.]] for a LOAD

statement (Figures 4-3 and 4-5), we identify two cases: (1) n is a node pointed to by
an f-labeled inside edge that starts in a node pointed to by v1, and (2) n is the load
node attached to this statement (if any).

Case 1: ∃n1 ∈ L0
k(v1) such that 〈n1, f, n〉 ∈ I0

k . By Invariant B.3 at moment k,
∃n2 ∈ L1

k(v1) such that n1 ∈ µk(τ(n2)).

Case 1.1: 〈n1, f, n〉 ∈ I0
0 . Figure B-4.a contains a graphic representation of this case.

As n1 appears in G0
0, its context is zero. As the context of τ(n2) is at least one,

n1 6= τ(n2). As n1 ∈ µk(τ(n2)), by Fact 33, n2 must be a load or a parameter
node and thus, e2(E

1
k , I

1
k)(n2) trivially holds. Hence,

1. The abstract semantics of A(callee) makes v2 point to the load node
n3 = nL

lbk,|J1
k |
: n3 ∈ L1

k+1(v2).

2. By the definition of Tk+1 (Figure B-3), Tk+1 w load(τ(n2), f, τ(n3)) ◦ Tk.
As n1 ∈ µk(τ(n2)) and 〈n1, f, n〉 ∈ I0

k , the load transformer (Figure 4-7 on
page 55) adds a mapping from τ(n3) to n: n ∈ µk+1(τ(n3)).

Hence, n ∈ µk+1(τ(n3)) ⊆ µk+1(τ(L
1
k+1(v2)))
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Case 1.2: 〈n1, f, n〉 ∈ I0
k \I0

0 ⊆ I2
k \I0

0 . Figure B-4.b contains a graphic representation
of this case. By Lemma 20, ∃n3, n4 such that 〈n3, f, n4〉 ∈ I1

k , n1 ∈ µk(τ(n3)),
n ∈ µk(τ(n4)). There are two subcases:

Case 1.2.1: n2 = n3. As n2 ∈ L1
k(v1) and 〈n2, f, n4〉 ∈ I1

k , n4 ∈ L1
k+1(v2).

Hence, n ∈ µk(τ(n4)) ⊆ µk+1(τ(n4)) ⊆ µk+1(τ(L
1
k+1(v2))).

Case 1.2.2: n2 6= n3. It suffices to prove that e2(E
1
k , I

1
k)(n2); next, we can

reason exactly as for Case 1.1 above: the abstract semantics of A(callee)
introduces a load node that µk+1 maps to n.

Assume for the sake of contradiction that ¬e2(E
1
k , I

1
k)(n2), i.e.,

¬e2(τ(E
1
k), τ(I

1
k))(τ(n2)) (the graphs G1

k and τ(G1
k) are isomorphic, as τ is

injective). As n1 ∈ µk(τ(n2)), by Fact 34, n1 = τ(n2), and so, n1 is a node
that appears in τ(G1

k) and ¬e2(τ(E
1
k), τ(I

1
k))(n1). As n1 ∈ µk(τ(n3)), by

Fact 35, n1 = τ(n3); hence, τ(n2) = τ(n3) = n1; as τ is injective, n2 = n3;
contradiction!

Case 2: n is the load node introduced by the abstract semantics of A(m) to cope
with the read from an escaped node. More specifically, n = nL

lbk,|J0
k |
∈ L0

k+1(v2), and

∃n1 ∈ L0
k(v1) such that e2(E

0
k , I

0
k)(n1). We prove below that the abstract semantics

of A(callee) adds the load node τ(nL
lbk,|J1

k |
) to τ(L1

k(v2)) and that µk+1 contains a

mapping between the two load nodes.
By Invariant B.3 at moment k, ∃n2 ∈ L1

k(v1) such that n1 ∈ µk(τ(n2)).
Assume ¬e2(E

1
k , I

1
k)(n2). Hence, ¬e2(τ(E

1
k), τ(I

1
k))(τ(n2)), and by Fact. 34, n1 =

τ(n2). As e2(E
0
k , I

0
k)(n1), by Lemma 22, e2(τ(E

1
k), τ(I

1
k))(τ(n2)); contradiction! Hence,

e2(E
1
k , I

1
k)(n2), implying

Tk+1 w load(τ(n2), f, τ(n
L
lbk,|J1

k |)) ◦ Tk, and

nL
lbk,|J1

k | ∈ L1
k+1(v2)

First, notice that τ(nL
lbk,|J1

k |
) = nL

lbk,|J1
k |+1

= nlbk,|J0
k | = n. Next, as e2(E

0
k , I

0
k)(n1)

and 〈E2
k , I

2
k〉 w 〈E0

k , I
0
k〉 (by Invariant B.1 at moment k), e2(E

0
k , I

0
k)(n1) too. Fi-

nally, as n1 ∈ µk(τ(n2)), by the definition of the load transformer (Figure 4-7),
n ∈ µk+1(n) ⊆ µk+1(τ(L

1
k+1(v2))).

In all cases, n ∈ µk+1(τ(L
1
k+1(v2))), ending the proof for Invariant B.3 in the case

of a LOAD statement.
The abstract semantics of A(m) adds an outside edge from each n1 ∈ L0

k(v1) with
the property e2(E

0
k , I

0
k)(n1). However, as we proved in Case 2 above, for each such

n1, there exists a node n2 ∈ L1
k(v1) such that n1 ∈ µk(τ(n2)), and e2(E

1
k , I

1
k)(n2).

Hence, Tk+1 contains a load transformer that introduces the outside edge from n1.
Therefore, O2

k+1 w O0
k+1, which proves Invariant B.1 at moment k + 1.

For Invariant B.5, notice that the new atomic transformers inside Tk+1 correspond
to the new outside edges from τ(G1

k+1); hence, Tk+1 ∈ τ(G1
k+1). This completes the

proof for the case of a LOAD instruction.
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RETURN inside A(callee): Consider the case of a RETURN inside A(callee),
“return v”. Assume that

G0
k = 〈L0

i,1 :L0
i,2 :J0

k , I
0
k , O

0
k, E

0
k , ∅, W 0

k 〉
G1

k = 〈L1
i,1 :L1

i,2 :J1
k , I

1
k , O

1
k, E

1
k , ∅, W 1

k 〉

and let

G0
b = 〈J0

b , I
0
k , O

0
k, E

0
k , ∅, W 0

k 〉 where J0
b = L0

i,2

[
vR 7→ L0

i,1(v)
]
:J0

k

G1
b = 〈J1

b , I
1
k , O

1
k, E

1
k , ∅, W 1

k 〉 where J1
b = L1

i,2

[
vR 7→ L1

i,1(v)
]
:J1

k

vR is the variable that stores the result of the corresponding CALL. As in the case of
COPY, we can use Invariant B.3 at moment k to prove that

µk(τ(J
1
b )) @ L0

0 w J0
b (B.6)

We write h = |J1
k |, D0 = garbage(G0

b), and D1 = garbage(τ(G1
b)) = τ(garbage(G1

b))
(the last equality is due to the fact that G1

b and τ(G1
b) are isomorphic, because τ is

injective). With these notations:

G0
k+1 = α|J0

k |(gc(G0
b)) = αh+1(delD0(G

0
b))

Tk+1 = αh+1(delD1(Tk))

We first prove that

∀n ∈ D1. (n 6∈ nodes(G0
b)) ∨ (n ∈ D0) (B.7)

Intuitively, Proposition B.7 states that any node that is garbage collected in τ(G1
b)

either does not appear in G0
b or is garbage collected in G0

b too. Therefore, for all
practical purposes, the set of nodes that are garbage collected in τ(G1

b) is a subset
of the set of nodes that are garbage collected in G0

b . As all garbage collected nodes
are captured (Lemma 29), they are mapped only to themselves and no other node is
mapped to them (Facts 34 and 35). We use these intuitive observations to prove that
the garbage collected nodes “do not count”.

Proof of Proposition B.7. Pick n ∈ D1 such that n ∈ nodes(G0
b), and assume for the

sake of contradiction that n 6∈ D0. Hence, there exists a path of inside edges from I0
k

that reaches n from a node n2 ∈ A∪E0
k∪nodes(J0

b ), where A = CLNode∪CPNode∪G,
and nodes(J0

b ) is the set of nodes pointed to by local variables in J0
b .

As n ∈ D1 = garbage(τ(G1
b)), by Lemma 29, ¬e2(τ(E

1
k), τ(I

1
k))(n). Also, as

garbage(τ(G1
b)) ⊆ nodes(τ(G1

b)), n ∈ nodes(τ(G1
b)).

If n2 ∈ A ∪ E0
k , as E0

k ⊆ E2
k (by Invariant B.1 at moment k), e2(E

2
k , I

2
k)(n). As

NICE(τ(G1
k), I

2
k , E

2
k , µk) holds (Fact 32), by Lemma 22, e2(τ(E

1
k), τ(I

1
k))(n); contra-

diction! Hence, it remains that n2 ∈ nodes(J0
b ).

At this point, we know that n ∈ nodes(τ(G1
k)), ¬e2(τ(E

1
k), τ(I

1
k))(n), n is reach-

able from n2 using edges from I0
k ⊆ I2

k , and NICE(τ(G1
k), I

2
k , E

2
k , µk) holds. By
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Lemma 21, there exists a path of inside edges from τ(I1
k) from n2 to n, n2 ∈

nodes(τ(G1
k)), and ¬e2(τ(E

1
k), τ(I

1
k))(n2).

By Fact 35, the only node that maps to n2 in µk is n2 itself. We combine this
fact with Equation B.6 and show that n2 ∈ nodes(τ(J1

b )).7 Therefore, there exists
a path in τ(I1

k) that reaches n from nodes(τ(J1
b )). Contradiction with n ∈ D1 =

garbage(τ(G1
b)). Hence, n ∈ D0.

To prove Invariant B.1 at moment k + 1, we write

〈I2
k+1, O

2
k+1, E

2
k+1, µk+1〉 = Tk+1(I

0
0 , O

0
0, E

0
0 , µ0) = (αh+1(delD1(Tk))) (I0

0 , O
0
0, E

0
0 , µ0)

As I0
0 , O0

0, and E0
0 contain only nodes with context 0, µ0 contains only nodes with

context 0 or 1, and h ≥ 0, 〈I0
0 , O

0
0, E

0
0 , µ0〉 = αh+1(I

0
0 , O

0
0, E

0
0 , µ0). By Lemma 25,

〈I2
k+1, O

2
k+1, E

2
k+1, µk+1〉 = (αh+1(delD1(Tk))) (αh+1(I

0
0 , O

0
0, E

0
0 , µ0))

w αh+1( (delD1(Tk))(I
0
0 , O

0
0, E

0
0 , µ0) )

Nodes from I0
0 , O0

0, and E0
0 are disjoint from nodes from D1 (different contexts: 0 vs.

1). Similarly, µ0 does not contain any node from D1: the only nodes with context
1 in µ0 are parameter nodes and no parameter node can be in D1.

8 Therefore,
〈I0

0 , O
0
0, E

0
0 , µ0〉 = delD1(I

0
0 , O

0
0, E

0
0 , µ0). By Lemma 26,

〈I2
k+1, O

2
k+1, E

2
k+1, µk+1〉 w αh+1( (delD1(Tk)) (delD1(I

0
0 , O

0
0, E

0
0 , µ0)) )

w αh+1( delD1( Tk(I
0
0 , O

0
0, E

0
0 , µ0)) )

w αh+1( delD1(I
2
k , O

2
k, E

2
k , µk) ) (B.8)

Hence, I2
k+1 ⊇ αh+1(delD1(I

2
k)). As G0

k+1 = αh+1(delD0(G
0
k)), I

0
k+1 = αh+1(delD0(I

0
k)).

By Invariant B.1 at moment k, I2
k ⊇ I0

k . By Proposition B.7, delD1(I
2
k) ⊇ delD0(I

0
k)

(removal of fewer nodes from a larger structure9). As αh+1 is monotonic,

I2
k+1 ⊇ αh+1(delD1(I

2
k)) ⊇ αh+1(delD0(I

0
k)) = I0

k+1

The proofs that O2
k+1 ⊇ O0

k+1 and E2
k+1 ⊇ E0

k+1 are similar. Therefore, Invariant B.1
is valid at moment k + 1.

Invariant B.3 at moment k + 1 has the expression

µk+1(τ(L
1
k+1 :J1

k+1)) @ [L0
0] w L0

k+1 :J0
k+1

7n2 6∈ nodes(L0
0), because n2 has context at least 1 (as any node from τ(G1

k)) and nodes from
nodes(L0

0) have context 0.
8Parameter nodes trivially escape, and all garbage collected nodes are captured by Lemma 29.
9More rigorously, consider 〈n1, f, n2〉 ∈ delD0(I

0
k). Equivalently, 〈n1, f, n2〉 ∈ I0

k , n1 6∈ D0, and
n2 6∈ D0. Hence, n1 ∈ nodes(I0

k) ⊆ nodes(G0
b), and n1 6∈ D0. By Proposition B.7, n1 6∈ D1.

Similarly, n2 6∈ D1. As I0
k ⊆ I2

k , 〈n1, f, n2〉 ∈ delD1(I
2
k).
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Consider the following chain of equalities:

τ(G1
k+1) = τ(α|J1

k |(gc(G1
b))) Def. of [[.]] (Figure 6-5)

= τ(αh(gc(G1
b))) = αh+1(τ(gc(G1

b))) Lemma 31

= αh+1(τ(del garbage(G1
b)(G

1
b))) Def. of gc (Figure 4-10)

= αh+1(del τ(garbage(G1
b))(τ(G

1
b))) G1

b and τ(G1
b) are isomorphic

= αh+1(delD1(τ(G
1
b))) D1 = τ(garbage(G1

b))

Hence, τ(L1
k+1 :J1

k+1) = αh+1(delD1(τ(J
1
b ))). By Equation B.8, µk+1 w αh+1(delD1(µk)).

Hence,

µk+1(τ(L
1
k+1 :J1

k+1)) w (αh+1(delD1(µk))) (αh+1(delD1(τ(J
b
1))))

w αh+1( (delD1(µk)) (delD1(τ(J
b
1))) ) (B.9)

For the last inequality, it is sufficient to prove that ∀u ∈ N. ∀µ ∈ Map. ∀n ∈ CNode.
αu(µ)(αu(n)) ⊇ αu(µ(n)). Pick n1 ∈ αu(µ(n)). Hence, ∃n2 such that 〈n, n2〉 ∈ µ and
n1 = αu(n2). Hence, αu(µ) 3 〈αu(n), αu(n2)〉 = 〈αu(n), n1〉, and n1 ∈ αu(µ)(αu(n)).

Next, we prove that

(delD1(µk)) (delD1(τ(J
b
1))) w delD1(µk(τ(J

b
1))) (B.10)

Consider a node n pointed to by a local variable v from the l-th frame of
delD1(µk(τ(J

b
1))). Hence, ∃n2 that is pointed to by v in the l-th stack frame of

τ(J b
1), n ∈ µk(n2), and n 6∈ D1. If n2 ∈ D1, then ¬e2(τ(E

1
k), τ(I

1
k))(n2) (Lemma 29),

and by Fact 34, n2 = n 6∈ D1, contradiction! So, n2 6∈ D1, v points to n2 in the l-th
stack frame of delD1(τ(J

b
1)), and n ∈ (delD1(µk)) (n2). Therefore, v points to n in

the l-th frame of the left-hand side of Equation B.10.

We develop Equation B.9 as follows:

µk+1(τ(L
1
k+1 :J1

k+1)) @ [L0
0] w αh+1(delD1(µk(τ(J

b
1)))) @ [L0

0]

w αh+1(delD1( µk(τ(J
1
b )) @ [L0

0] ))

w αh+1(delD1(J
0
b ))

w αh+1(delD0(J
0
b )) = L0

k+1 :J0
k+1

The inequalities above are due to the following facts (in order): (1) αh+1 and delD1

have no effect on L0
0, as the context of all nodes from L0

0 is zero; (2) Equation B.6 on
page 186; (3) Proposition B.7 on page 186 (removal of fewer nodes).

To prove Invariant B.4, notice that for any points-to graph G, garbage(G) con-
tains only inside nodes (the other nodes are trivially reachable; see definition of
garbage in Figure 4-10). As the sets of mutated abstract fields do not use any inside
nodes, W 0

k+1 = αh+1(delD0(W
0
k )) = αh+1(W

0
k ), and τ(W 1

k+1) = αh+1(delD1(τ(W
1
k ))) =

188



αh+1(τ(W
1
k )). By the induction hypothesis,

W 0
0 ∪

⋃

〈n,f〉∈τ(W 1
k )

(µk(n) \ CINode)× {f} ⊇ W 0
k (B.11)

We need to prove that

W 0
0 ∪

⋃

〈n,f〉∈τ(W 1
k+1)

(µk+1(n) \ CINode)× {f} ⊇ W 0
k+1 (B.12)

We consider an arbitrary 〈n, f〉 ∈ W 0
k+1 and prove that 〈n, f〉 is an element of the set

from the left-hand side of Equation B.12. As 〈n, f〉 ∈ W 0
k+1 = αh+1(W

0
k ), there exists

n2 such that n = αh+1(n2) and 〈n2, f〉 ∈ W 0
k . By Equation B.11, there are two cases:

1. If 〈n2, f〉 ∈ W 0
0 , then n2 has context 0. Hence, n = n2, and 〈n, f〉 ∈ W 0

0 .

2. Otherwise, there exists a node n3 such that 〈n3, f〉 ∈ τ(W 1
k ) and n2 ∈

µk(n3) \ CINode. As n2 6∈ CINode, n3 6∈ CINode either (otherwise, by
Fact 33, n2 = n3 ∈ CINode). Hence, n2 and n3 do not appear in D1,
〈n3, n2〉 ∈ delD1(µk), and 〈αh+1(n3), αh+1(n2)〉 ∈ αh+1(delD1(µk)) ⊆ µk+1 (the
last inclusion is due to Equation B.8). Moreover, 〈n3, f〉 ∈ τ(W 1

k ) implies
〈αh+1(n3), f〉 ∈ αh+1(τ(W

1
k )) = τ(W 1

k+1). Putting these facts together, we prove
that 〈αh+1(n2), f〉 = 〈n, f〉 is an element of the set from the left-hand side of
Equation B.12.

Finally, we need to prove Invariant B.5, i.e., Tk+1 ∈ Trans(τ(G1
k+1)). By the corre-

sponding rule from Figure B-3, Tk+1 = α|J1
k |+1(del τ(garbage(G1

b))(Tk)). By Invariant B.5

at moment k, Tk ∈ Trans(τ(G1
k)). Notice that Trans(τ(G1

k)) = Trans(τ(G1
b)) (same

sets of inside edges, outside edges, and globally escaped nodes). By Lemma 27 and
Lemma 25 Part 1, Tk+1 ∈ Trans(αh+1(del τ(garbage(G1

b))(τ(G
1
b)))). As we have already

proved that τ(G1
k+1) = αh+1(del τ(garbage(G1

b))(τ(G
1
b))), we obtain Tk+1 ∈ Trans(τ(G1

k+1)).

Final Step

To prove Equation 6.13, we need to prove that

interproc(G0
0, G

1
l+1, “vR = v0.s(v1, . . . , vm)”) w G0

l+1 (B.13)

We use the notation

G0
l = 〈L0

l :L0
0 : [], I0

l , O
0
l , E

0
l , ∅, W 0

l 〉
G1

l = 〈L1
l : [], I1

l , O
1
l , E

1
l , ∅, W 1

l 〉
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By the definition of [[.]] (Figure 6-5),

G0
l+1 = α0(gc(G0

b)), where G0
b = 〈L0

0 [vR 7→ L0
l (v)] : [], I

0
l , O

0
l , E

0
l , ∅, W 0

l 〉
G1

l+1 = 〈L1
l : [], I1

l , O
1
l , E

1
l , L

1
l (v), W

1
l 〉

ρ(G1
l+1) = 〈Lall−empty : [], I1

l , O
1
l , E

1
l , L

1
l (v), W

1
l 〉

[ Recall from Section 4.4.3 that for each points-to graph G, ρ(G) is a points-to graph
similar to G, except that each local variable points to an empty set of nodes. ]
Let D0 = garbage(G0

b). Hence, gc(G0
b) = delD0(G

0
b). By the definition of interproc

(Figure 4-6 on page 53),

interproc(G0
0, G

1
l+1, “vR = v0.s(v1, . . . , vj)”) =

α0( 〈 L0
0 [vR 7→ µa(τ(L

1
l (v)))] : [], Ia, Oa, Ea, ∅, Wa 〉 )

where 〈Ia, Oa, Ea, µa〉 = Tcallee(I
0
0 , O

0
0, E

0
0 , µ0), Tcallee = mct(τ(gc(ρ(G1

l+1)))), and

Wa = W 0
0 ∪

⋃

〈n,f〉∈τ(W 1
l )

(µa(n) \ CINode)× {f}

[ Note: we used the fact that the function gc does not remove any returned nodes (see
Figure 4-10). Hence, gc(ρ(G1

l+1)) and ρ(G1
l+1) have the same set of returned nodes,

L1
l (v). Similarly, as gc removes only captured inside nodes, gc(ρ(G1

l+1)) has the same
set of mutated abstract fields as ρ(G1

l+1), W
1
l . ]

With these notations, Equation B.13 is equivalent to the following statements:

α0(L
0
0

[
vR 7→ µa(τ(L

1
l (v)))

]
) w α0(delD0(L

0
0

[
vR 7→ L0

l (v)
]
)) (B.14)

α0(Ia, Oa, Ea,Wa) w α0(delD0(I
0
l , O

0
l , E

0
l ,W

0
l ))

As any node from L0
0 [vR 7→ L0

l (v)] is trivially reachable in G0
b , delD0 does not have

any effect in Equation B.14 above. As α0 is monotonic, it is sufficient to prove that

µa(τ(L
1
l (v))) ⊇ L0

l (v) (B.15)

〈Ia, Oa, Ea,Wa〉 w delD0(I
0
l , O

0
l , E

0
l ,W

0
l ) (B.16)

Let D1 = garbage(τ(ρ(G1
l+1))). Consider Tl+1 = delD1(Tl). By Invariant B.5 at

moment l, Tl ∈ Trans(τ(G1
l )). As G1

l and ρ(G1
l+1) have the same inside edges, outside

edges, and directly globally escaped nodes, Trans(τ(G1
l )) = Trans(τ(ρ(G1

l+1))). By
Lemma 27, Tl+1 ∈ Trans(del garbage(τ(ρ(G1

l+1)))
(τ(ρ(G1

l+1)))) = Trans(gc(τ(ρ(G1
l+1)))) =

Trans(τ(gc(ρ(G1
l+1)))) (the last equality is due to the fact that for each points-to graph

G, G and τ(G) are isomorphic). By Lemma 19, Tcallee = mct(τ(gc(ρ(G1
l+1)))) w Tl+1,

which implies

〈Ia, Oa, Ea, µa〉 w Tl+1(I
0
0 , O

0
0, E

0
0 , µ0) = (delD1(Tl)) (I0

0 , O
0
0, E

0
0 , µ0)
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D1 has no common nodes with I0
0 , O0

0, E
0
0 , and µ0.

10 Hence, 〈I0
0 , O

0
0, E

0
0 , µ0〉 =

delD1(I
0
0 , O

0
0, E

0
0 , µ0). By Lemma 26,

〈Ia, Oa, Ea, µa〉 w (delD1(Tl)) (delD1(I
0
0 , O

0
0, E

0
0 , µ0))

w delD1( Tl(I
0
0 , O

0
0, E

0
0 , µ0) ) = delD1(I

2
l , O

2
l , E

2
l , µl) (B.17)

Hence, µa ⊇ delD1(µl). To prove Equation B.15, we first write

µa(τ(L
1
l (v))) ⊇ (delD1(µl)) (τ(L1

l (v)))

Notice the following two facts:

1. The nodes from τ(L1
l (v)) are trivially reachable in τ(ρ(G1

l+1)) (they are the
returned nodes). Hence, they do not appear in D1.

2. By Lemma 29, ∀n ∈ D1, ¬e2(τ(E
1
l ), τ(I

1
l ))(n). Hence, by Fact 35, µl does not

map any node from outside D1 (e.g., from τ(L1
l (v))) to a node from D1.

Therefore, the mappings involving nodes from D1 are irrelevant in this context, i.e.,
(delD1(µl)) (τ(L1

l (v))) = µl(τ(L
1
l (v))). By Invariant B.3 at moment l, µl(τ(L

1
l (v))) ⊇

L0
l (v), which completes the proof of Equation B.15.
To prove Equation B.16, notice that by Equation B.17, Ia ⊇ delD1(I

2
l ). By In-

variant B.1 at moment l, I2
l ⊇ I0

l . As in the case of a RETURN inside A(m), we
can prove that ∀n ∈ D1.(n 6∈ nodes(G0

b)) ∨ (n ∈ D0).
11 Therefore, Ia ⊇ delD1(I

2
l ) ⊇

delD0(I
0
l ) (removal of fewer nodes from a larger structure). Ultimately, we prove that

Ia ⊇ delD0(I
0
l ). We can prove similar relations for Oa and Ea.

To prove that Wa ⊇ delD0(W
0
l ), notice that D0 contains only inside nodes (other

nodes are trivially reachable in G0
b). Hence, delD0(W

0
l ) = W 0

l . Next, as µa ⊇
delD1(µl),

Wa ⊇ W 0
0 ∪

⋃

〈n,f〉∈τ(W 1
l )

( (delD1(µl)) (n) \ CINode )× {f}

D1 contains only inside nodes that do not appear in τ(W 1
l ) (the analysis does not

record the mutations on inside nodes). Additionally, as we already pointed out, µl

10Nodes from D1 have context at least 1. The only nodes with context 1 in µ0 are parameter
nodes, that trivially escape and hence, by Lemma 29, cannot appear in D1.

11The proof is similar to the proof of Proposition B.7: Pick n ∈ D1 such that n ∈ nodes(G0
b)

and assume for the sake of contradiction that n 6∈ D0. Using the same techniques as in the proof
of Proposition B.7, we find a node n2 such that: (1) a local variable points to n2 in G0

b , (2) there
exists a path of inside edges from τ(I1

l ) from n2 to n, (3) n2 ∈ nodes(τ(G1
l )), and (4) the only node

that µl maps to n2 is n2 itself.
By fact (2), the context of n2 is at least 1, which, by fact (1), implies that in G0

b , vR points to
n2 (the other local variables point to the same 0-context nodes as in L0

0). Hence, n2 ∈ L0
l (v). As

µl(τ(L1
l (v))) ⊇ L0

l (v) (Invariant B.3 at moment l), by fact (4), n2 ∈ τ(L1
l (v)). We use fact (2) to

obtain a contradiction with n ∈ D1 = garbage(τ(G1
b)).
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does not map any node from outside D1 to a node from D1. Hence, delD1 is irrelevant
in the relation above, i.e.,

Wa ⊇ W 0
0 ∪

⋃

〈n,f〉∈τ(W 1
l )

( µl(n) \ CINode )× {f}

Using Invariant B.4 at moment l, we prove that Wa ⊇ W 0
l = delD0(W

0
l ).

This completes our proof of Equation 6.13.
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