
Software Analysis and Verification 2007

Miniproject

Yuanjian Wang Zufferey Simon Blanchoud

June 30, 2007

Abstract

In this report, we will introduce the results of our project on the vari-
able range analysis. We will first explain the necessity people have to
analyze the range of variable and some works that have been done before.
Then we will repeat some theories that we have used as support for our
project. Later we explain how we implemented our variable range analy-
sis program and some results we have got along with some limits we have
met. We will talk about the improvement in the future in the last section.

1 Introduction

Almost all the papers that talk about the system dependence will mention the
failure of the Ariane 5 launcher in 1996 because of an overflow bug. Every
programmer always keep in mind not to perform a division by zero but we can
never be sure it will not happen. In the most cited example for bank account,
people have to check that the operations will not violate the invariants. To
avoid infinite loop in program, we have to guarantee that the stop condition
will be reached. Program compilers always have to check the correctness of the
index value or of the right pointers.

All the examples above show us that if we could check the range of variables
before the execution, time, money and even lives could be spared as we could
find the problem earlier

There exist several variable range analysis works that have been done before :

• The most well-known is the fixpoint approximation method by Cousot and
Cousot [1] that evaluates the variable interval by increasing and descending
approximation methods

• Karr´s domain that discovers affine equalities between variables.

• Cousot and Halbwachs polyhedron domain for affine inequalities

• Grangers congruence domain,

• And many more

In practice, for some programming languages, we can find some part of variable
range analysis functions that are implemented directly in the compiler. For
example, Java has “Range Check Elimination” optimization since, at least, Java

1



1.3.1 in order to be able to check the array bounds. In C++, the implicit check
(by declaration) and the explicit check (by writing explicit code to verify) is
strongly recommended in the practice for the index of array. Overflow problem
in both cases is not easy to trace. We can check the external inputs by using
limited bounds but we have great difficulties to find out the overflow of the
internal input.

In our project, we followed the fixpoints approximation methods and im-
plemented the methods to calculate the range of multiple variables in sequent,
conditional and loop situation. We used the increasing approximation process
(widening) and descending approximation process (narrowing) methods to an-
alyze the range of multiple variables.

2 Variable Range Analysis

2.1 Principle Method

We strictly followed the theory written in Cousot and Cousots paper [1]. We will
introduce this paper and show the principle that we have used to guarantee the
correctness of our project. In Cousot and Cousots paper [1], they introduced the
lattice of abstract interpretations. Firstly, we need to show what the abstract
interpretations and the corresponding lattice are. We take the formal definition
of the paper [1]: An abstract interpretation I of a program P is a tuple :

I =< A− Cont, ◦,≤,>,⊥ >

A− Cont : Set of abstract contexts (Context: the set of values that a variable
can take)

◦, ≤ : a complete ◦-semi lattice with ordering ≤, for example x ≤ y ⇔ x◦y = y

> : the top of A-Cont

⊥ : the bottom of A-Cont.

The set of context vectors is defined by: ˜A− Cont, and the function Int

defines the interpretation of basic instructions: Int : Arcs0 × ˜A− Cont →
A− Cont. Here Arcs is the set of edges of program that connect two nodes of
program. Each node of program represents either entry, one exit, one assign-
ment, one test or one conjunction.

The local interpretation of elementary program constructs which is defined
by Int is used to associate a system of equations with the program. It is defined
in the paper as Ĩnt : ˜A− Cont → ˜A− Cont. It is order-preserving and it has
fixpoints.

We will not repeat the theory here but cite the examples that they have
shown in Cousot and Cousots paper [1] as they are useful to understand the
abstraction process.

Let P be a program with a single variable. The value of the variable is an
integer. The set of values at some program points(i.e. its context), is denoted
as S. S may be abstracted by an abstracting process α that returns a more
abstracted closed interval: α(S) = [min(S),max(S)]. When S is infinite, the
bounds will be −∞ or ∞.Conversely, the concretization process γ is defined as:

2



γ([a, b]) = {x|a ≤ x ≤ b}, will return a more concrete interval. The abstract
process is shown in Fig.1 from (a) to (d) and the concretization process is the
reverted process, that is from (d) to (a), on the same figure:

Figure 1: The abstraction and the concretization processes

Secondly, we will show the two fixpoint approximation methods they men-
tioned in the paper [1]: one is the finite iterative and increasing approximation
of the least fixpoint starting from a lower bound and the other is a decreasing
approximation sequence. To show how the two methods work, we will use the
same example that was given in paper [1]. It calculates the range of variable
x, the transformed program graph is shown in Fig.2. The analyzed code is the
following :

x:=1;
while(x<=100)
{
x:=x+1;

}

Figure 2: The graph corresponding to the example program

3



The resulting system of equations is the following :

C0 = [, ] (1)
C1 = [1, 1] (2)

C2 = C1 ∪ C4 (3)
C3 = C2 ∩ [−∞, 100] (4)

C4 = C3 + [1, 1] (5)
C5 = C2 ∩ [101,+∞] (6)

In the increasing approximation process, they have used the widening method
∇ :

• [, ] is the null element of ∇

• [i, j]∇[k, l] = [if k < i then −∞ else i fi, if l > j then +∞ else j fi]

The increasing approximation sequence needs to be placed on one of the loop
arcs. In the paper´s example, they modified the system of equations as follow :

C0 = [, ] (7)
C1 = [1, 1] (8)

C2 = C2∇(C1 ∪ C4) (9)
C3 = C2 ∩ [−∞, 100] (10)

C4 = C3 + [1, 1] (11)
C5 = C2 ∩ [101,+∞] (12)

The process starts from the lower bound of x, i.e. its bottom [, ], and uses
the widening methods in order to find the fixpoint. The full convergence process
can be found in the paper [1].

In the descending approximation process, the narrowing method 4 is de-
fined:

• [, ] is the null element of 4

• [i, j]4[k, l] = [if i = −∞ then k else min(i, k) fi,
if j = +∞ then l else max(j, l) fi]

In order to precise the result, they replace the ∇ operator by the 4 one and
start converging from the fixpoint found by the previous method.

2.2 Implementation

The main idea of this project was to create something that could be used for
real analysis. That is why we decided to try to implement this functionality in
the Jahob1. As this program is implemented in O´Caml, we decided to use the
same language for our implementation. Moreover, functional languages have
great advantages for this kind of work. Unfortunately we did not achieved to
interface our work with Jahob, nevertheless this could be done quite easily.

We decided to develop our program in an incremental way in order to ease
its debugging and to ensure its correctness. The more important steps were :

1http://lara.epfl.ch/dokuwiki/doku.php?id=jahob system

4



1. Develop a grammar that suits our needs

2. Produce the correct system of equations

3. Use the ∇ and 4 operators in order to find the fixpoints

4. Generalize for any number of variables

For the steps 2 and 3, we based ourselves on the paper´s example we showed
in the previous section. All this work is based on a previous O´Caml code we
wrote for the Homework 4 of this course.

The general organization of our program can be seen on Fig.3.

Figure 3: The general organization of our program

2.2.1 The Grammar

This is where we were able to reuse some code from our previous Homework :
the structure of a grammar defining some programming language. We used a
very simple grammar that allows :

• The +, -, * and / operators

• <, > and = tests for conditions

• A while loop and an if-then-else statement

• The use of arrays

• The call of procedures

• The creation of new objects

5



In order to be as general as possible, we used float variables for all of them.
The restriction to int is obvious.

In order to be able to handle this code, we defined the grammar correspond-
ing to the system of equations we will create. Designing correctly the basic
entity of the system of equation was crucial as all our analysis works with this
structure. A line of a system of equations is defined as the following tuple :

(c1, r1, v1, i1, eq1)

c1 A binary flag that help us reminding if this line has already converged

r1 The last computed range for this line, we compare it with the new one to
know if we have converged

v1 The main variable of this line i.e. the variable for which we are computing
the range

i1 The index of this line, each variable have independent indexes

eq1 The range equation of this line

On its side, a range can be :

• A real range, defined by Is(t1, b1, b2, t2) where b1, b2 are the values
of the bounds and t1, t2 are boolean flags used to indicate if the bounds
are included in the range or not

• A reference to another line, we can only reference to a line that has the
same main variable as ours

• A reference to the range of another variable, occasionally we can indicate
a particular line where to take the value from. This is useful when we
have conditional branching in the code

For the equations, we needed to have the following operations available :

• ∩ and ∪ between ranges

• The +, -, * and / operators, in order to be able to reflect the actions of
the code

• The ∇ and the 4 operators

• < and > because some times the main variable depends on the value of
other variables we still do not know. So we keep the constraint like this
until we know their value

2.2.2 The System of Equations

The creation of the system is defined recursively by the function create system
that returns a system of equations :

create system (c : code)(s : system)(l : (string*int) list) : system

c The code we want to translate

6



s The system resulting from the translation of the preceding code

l The list of indexes where to point to. This list gives for each variable the
value of the index where we should take its value. When the index is −1
this means that we should take the value of the closest line

The s variable is initialized by the function create init which adds a line with
index 0 for all the variables in the program. By adding these lines, we ensure
to have at least one line where to reference to. The l is initialized such that
it contains all the variables of the code with −1 for all of them. A system is
simply a list of lines.

The basic idea of this function is simple, we create a new line that has
not converged (c = 0), with an empty range, the variable we have just read,
a new index (we wrote a function that looks in s to find this value ) and its
corresponding equation.

For most of the statements of our programming language, this translation
is quite straight-forward so we will not discuss them. We will instead focus on
the more interesting one :

• new objects, arrays and procedure calls are ignored directly at this step.
Adding these functionalities in our project would simply mean finding a
way to translate these instructions into the structure we have just dis-
cussed

• if-then-else

1. Transform the condition into a suitable formula

2. Compute its negation

3. Get the next index value

4. Translate the formula into a range equation

5. Add this line to s

6. Translate the code of the first part

7. Get the next index value

8. Add the negation equation to our new s

9. Translate the code of the second part

10. Unify both paths in one equation and add it to s

• while the idea is the same as for if-then-else. For more precise infor-
mation, read directly our implementation code.

As we can see, the two main issues in creating the system are :

1. Transforming the formula so that we can use it

2. Creating the links correctly

The second part was quite easy to do as soon as we had implemented all the
helping functions we needed (like functions for parsing lists, retreiving indexes,
equations and so on, we have more than 30 of them so we will not present them
here). The first point was a bit more complex, even if for only one variable
it is fairly easy. Our idea was simply to isolate the main variable on one side

7



of the comparison operator so that we can simply remove it and translate the
other side into an equation. In fact that is what we did and it works fine. The
only problem we found, and that we did not succeed to solve, is how to handle
> and < when we have to perform a multiplication or a division. The problem
comes from the fact that when we multiply/divide one of these operators with a
negative number we must invert them, but as we are using range, it is possible
that we have both negative and positive numbers. For now on we have decided
not to modify them.

2.2.3 The Convergence

This part is maybe one of the easiest one in our program, once again as soon as
we have implemented the helping functions (around 25). We had to rewrite all
the operations over both the ranges and the bound as both are not only float
values.

The general algorithm of this part, performed by the function comput range,
is the following :

1. Evaluate each line of the system

2. If all the lines have converged, goto 3. otherwise goto 1.

3. Replace ∇ by 4

4. Evaluate each line of the system

5. If all the lines have converged, end otherwise goto 4.

A line has converged if and only if the value of its equation is the same as the
range of the line, this means that we have computed two times the same results
in two different iterations of the fixpoint mathod, and if all its predecessors have
also converged. Both conditions are logical as one means that we are stable and
the other one that our basis is stable.

At each run we reevaluate all the lines as some may have entered a state of
pseudo-stability in which they are stable, according to the previous definition,
but they may come back to an unstable state because of the change of another
variable.

In case of loops in the program, we will also have a loop in the references
between the different lines. This can create a deadlock in the stability check
which can lead the program into an infinite loop. In order to avoid this, the
stability of a reference which is located after us in program execution order is
not taken into account.

2.2.4 Multi-Variables

At first sight, modifying our program so that it could handle more than one
variable looked trivial. After spending various hours on the problem, we realized
that it was not.

Our main inspiration for this part comes from [3]. What we did, as they
suggested, was to create one equation for each variable that takes part in the
condition. This means that we isolate each variable of the condition on one side
one at the time. In order not to cycle forever and produce more than once each

8



equation, we have decided to pass trough a transition state. IN this state, we
isolate all the variables of the equation on the left side of the comparison. After
that it is quite easy to take out alternatively all the variables, this process is
performed by the produce all function.

One problem that arise here is how to handle conjuntions and disjunctions
of formulas. With only one variable we can include it in the equation as we
know that both main variables are the same, but know we have no idea. Of
course we can think of performing tests on the main values in order to know
if we can keep it, but then you can think of a more complicated condition for
which you test would probably not work. As we are using intervals, we cannot
keep easily the relation between the variables and here is where we lose a lot of
information for the final result.

We decided, in order to be as simple as possible, to split the formulas when-
ever they avec either an And or an Or. As we lost some information, we must
stay more general than the real formula in order to be sure to include at least
its case. That is why we regroup them afterwards using Or only, as it is weaker
than the And. We say that we regroup them because, as we want only one line
per variable and because the splitting process may have produced more than
one formula with the same main variable, we regroup the equations that have
an identical one.

Another problem that may arise if we implement only this part comes from
wrong references. In case you have variables inside a block that is not part of
the condition, and that is often the case in real code, then our index searching
procedure will get out from the block and search into the wrong piece of code,
think of the second block of a if-then-else statement. In order to avoid that,
we use the l variable to specify the right line to which these “free” variables
must refer to. Using this technique, we are sure that they will always point to
the good value without adding extra equations.

Using all these modifications, our program can successfully analyze the range
of various variables in the same program.

2.3 Discussion

The most surprising result of this project was its size. At first sight this project
looked a lot easier than it is. We were expecting to be able to implement
more functionalities to this project but the time we spent on the basic problems
prevented us from doing so. The biggest deception due to this is that we were
not able to interface it with Jahob. Because of that, our project will probably
stay purely theoretical.

Using linear ranges for the variables was chosen as it is the simplest method
to compute this kind of information. Nevertheless, we can easily see that with
this simple technique we are loosing a lot of information. This results is, in most
complex cases, a very vague approximation of the final values. This is clearly
the main limitation of this work as we want to be as precise as possible in order
to avoid as many false positive as possible. Improving this well cannot be done
by improving any part of our program and this implies that we would need to
modify our approach. Other techniques, such as the octagon abstract domain
[5], or the polyhedral domain, would allow us to do that but this implies a lot
heavier methodology.

9



Separating the clauses of the formulas makes us loose a lot of information
too (sometimes from a perfect answer to an infinity-bounded approximation).
Improving this part would also allow us to improve our precision in a lot easier
way than changing our abstract domain.

Having only one loop and one conditional branching statement is not a lim-
itation as all the other kind of conditional structures can easily be translated
into these two ones.

Except these limitations, our implementation is well scalable. It is not lim-
ited neither by the size of the code nor by the number of variables and even not
by the number of formulas. There is no explosion in the number of equations,
it is equal to the number of assigned variables in the code plus the number
of variables used in the formulas. Knowing the results people often gets when
analyzing software, this is a very good results.

3 Conclusion

In this project, we used the Cousot and Cousot[1] increasing and descending
approximation methods in order to realize the analysis of multiple variables
range. Actually, in this paper we did not get the precise explanation of how to
analyze more than one variable at the same time.

Our project could be improved mainly in one aspect : its precision. Using
this range technique on a real-scale program would probably lead to too approx-
imated results. Using another abstraction domain is probably the solution. In
[3] another approach is explained in order to improve our results without modi-
fying our abstract domain : discovering the dependencies between the variables
in order to deduce from it an approximation order. We did not explore this
possibility but this could be an easier solution than the octagon one

Our project may also be extended in several directions :

• Implementing the missing parts about the procedure call, the arrays, the
objects and even function calls would certainly be very useful in order to
be able to analyze real code

• By adding the context of a program, the analysis of global variables and
local variables would become possible

• Analyzing not only the numerical variables but other types of variables
could be interesting even if they may need it less

• Interfacing it with Jahob would allow us to analyze real code without
having to implement a file parser ourselves in addition to the benefits
both applications would obtain

This project was very interesting as we had to build it totally from zero,
using only the literature we found. Even if we may be a bit disappointed by
the final results it is clearly a good basis from which we could start in order to
create a more usable tool.

Our big hope about our program is that all these improvements and exten-
sions will once be implemented and that one day we people could use it to avoid
some nasty bugs.

10



References

[1] Patrick Cousot and Radhia Cousot: Abstract Interpretation: A Unified
Lattice Model For Static Analysis of Programs by Construction or Approx-
imation of Fixpoints, ACM Press, New York, 1977

[2] Patrick Cousot and Radhia Cousot: Static Verification of Dynamic Type
Properties of Variables, Research Report, University of Grenoble, 1975

[3] Johnnie Birch, Robert van Engelen and Kyle Gallivan: Value Range Anal-
ysis of Conditionally Updated Variables and Pointers, CPC, 2004

[4] Yury Markovskiy : Range Analysis with Abstract Interpretation, Semester
Project, CS 263, 2002

[5] Antoin Miné : The octagon abstract domain, Kluwer Academic Publishers,
Hingham, USA, 2006

11


