
Quiz
Synthesis, Analysis, and Verification 2011

Tuesday, March 29, 2010

Last Name :

First Name :

Exercise Points Achieved Points

Total 0

Problem 1: Relations (10 points)

In this quiz we use the following notation:

• S is a set of all states

• sp : 2S × 2S×S → 2S is defined by

sp(P, r) = {s′ | ∃s.s ∈ P ∧ (s, s′) ∈ r}

• wp : 2S×S × 2S → 2S is defined by

wp(r,Q) = {s | ∀s′.(s, s′) ∈ r → s′ ∈ Q}

• Diagonal relation ∆A for A ⊆ S and r ⊆ S × S is defined by

∆A = {(s, s) | s ∈ A}

Task: prove the following equations:

a)
sp(P, r) = sp(S,∆P ◦ r)

b)
wp(r, S) = {x|sp({x}, r) ⊆ S}

1

Problem 2: Transitive Closure by Fast Exponentiation (20 points)

Let A be a finite set containing exactly N elements (|A| = N). Let r ⊆ A×A. Define a sequence
of relations r1, r2, . . . using the following rules:

• r1 = r ∪∆A

• rk+1 = rk ◦ rk, for k ≥ 1

Task a): Prove that there exists d > 0 such that rk = r∗ for all k ≥ d. In other words, the
sequence stabilizes with the transitive closure.
Task b): Find an estimate for d, i.e. a function f(N) that grows more slowly than a linear
function, such that rk = r∗ for k ≥ f(N). The slower growing function, the better.

2

Problem 3: Formulas for Programs (35 points)

Consider the following code fragment:

q = 0;

i = 0;

while (i < M) {

q = q + 3*i*(i+1) + 1;

i = i + 1;

}

Assume that program state contains exactly the two variables, q, i, ranging over unbounded
integers (Z). M is a parameter that has some fixed but unknown positive integer value.

1. Guess a formula F (x, y, x′, y′) describing (precisely) the execution of the entire program,
between initial and final state of the program. To get the idea of what this program does,
we suggest that you run it for a few iterations. Note that this program is deterministic,
and your formula should uniquely specify the resulting values of integer variables after the
loop execution finishes, as a function of parameter M .

2. Convert the program into guarded commands.

3. Compute the formula corresponding to this block iterated p times, that is,

(

assume(i<M);

q = q + 3*i*(i+1) + 1;

i = i + 1;

)

i.e. bp where b is the relation for the body of the loop. You need to explain your steps,
but there is no need to be very formal. To obtain a nicer solution, you may wish to use
facts such as

p∑
k=0

k =
p(p + 1)

2

p∑
k=0

k2 =
p

3
(p + 1)(p +

1

2
)

4. Use the formula from the previous part to compute the strongest postcondition formula of
the program with respect to the precondition “true”.

3

Problem 4: Hoare Triples and Loop Invariants (35 points)

Consider a programming language that supports integer variables, as well as variables that
denote sets of integers and binary relations on integers (all integers are unbounded).
The command lookup(k, r) looks up a value v such that (k, v) ∈ r. If such value exists, it returns
one such value as a singleton set {v}. If no such value exists, it returns the emptyset {}. (Note
that, for each k, there can in general be zero, one, or more values v such that (k, v) ∈ r.)

Task a) Write a Hoare triple describing lookup(k, r1) in the form

{precondition} v1 = lookup(k, r1) {postcondition}

where the precondition is as permissive (weak) as possible (so that it does not restrict the
application of the lookup operation unnecessarily). Given as week precondition as you can find,
specify the most precise postcondition that follows from the above description of how lookup
should work.

Task b) Consider the following program, where the variables r1,r are relations, v1,W are sets of
integers, and k is an integer.

// Precondition: ∀i.∀v.(i, v) ∈ r → 0 ≤ i
r1 = r;
k = 0;
W = {};
while // invariant Inv

(r1 != {})
{
v1 = lookup(k,r1);
if (v1 = {}) {
k = k + 1
} else {
W = W ∪ v1;
r1 = r1 \ ({k} × v1)
}
}
// Postcondition: W = range(r)

We use the notation
range(r) = {v | ∃i.(i, v) ∈ r}

Find an appropriate loop invariant, Inv, and use it to prove that, whenever we run the above
program in a state that satisfies the Precondition, its final state satisfies the Postcondition. You
need to explain why (1) the invariant holds initially in all states that satisfy the precondition,
why (2) it is inductive (preserved on each execution of the loop body starting from any state
satisfying only the invariant), and why (3) it can be used to prove the Postcondition. State each
of these conditions as a Hoare triple, and prove it. Your proof of individual Hoare triples need
not be very detailed.
Feel free to use any notation of sets, relations, and quantifiers in your invariants and Hoare
triples. It is crucial that your invariant is correct (conditions (1),(2),(3) hold). Hint: using r \ r1
as part of your loop invariant may be helpful.

4

