
Quiz 2
Synthesis, Analysis, and Verification 2010

Friday, April 30, 2010

Last Name :

First Name :

Exercise Points Achieved Points

1 15

2 15

3 40

4 40

Total 110

This quiz has many tasks. We therefore do not insist on writing your solution in too much detail,
but please explain the key idea and give as much details as possible in the given time.

Problem 1: Fixpoints (15 points)

Let S be a set, Init,Good ⊆ S, and r ⊆ S × S. Define the space of invariants by

Invs = {I ⊆ S | Init ⊆ I ∧ sp(I, r) ⊆ I ∧ I ⊆ Good}

Suppose Invs 6= ∅.
Define h(X) = (Init ∪X) ∩Good.
Define function f by

f(X) = h(X ∪ sp(X, r))

g(X) = h(X ∩ wp(X, r))

a) Is each element of Invs a fixpoint of f? Prove or give a counterexample.

b) Is each element of Invs a fixpoint of g? Prove or give a counterexample.

c)* If X is a fixpoint of both f and g, does it follow that it belongs to Invs? Prove or give a
counterexample.

1

Problem 2: Predicate Abstraction (15 points)

Consider the set of predicates

P = {false, 0 ≤ x, 0 ≤ y, x ≤ y}

Let A = 2P . The meaning of a set of predicates a ∈ A, denoted γ(a) is, as usual, the set of
states that satisfies the conjunction of all predicates in a.
The precise semantics of a command cmd is the relation associated with cmd. For example, the
precise semantics of the command

x = y; y = x + 1

in a program with two variables is the relation

{((x, y), (x′, y′)) | x′ = y ∧ y′ = y + 1}

For a given command cmd whose precise semantics is given by a relation r, let sp#(a, cmd) denote
the least element a′ ∈ A such that sp(γ(a), r) ⊆ γ(a′).
As usual in programming languages, let x++ denote a command that increments an integer
variable x by 1 (assume that integer variables are unbounded).
Let a0 = {0 ≤ x, 0 ≤ y, x ≤ y}.
Compute the following values:

a) sp#(a0, x++)

b) sp#(sp#(a0, x++), y++)

c) sp#(a0, (x++; y++))

2

Problem 3: Variable Range Analysis (40 points)

Consider the program in Figure 1.

x = 0;

y = 1;

while /* point H */

(0 < x && x < 1000) {

havoc(b);

if (b > 0) {

x := x + 1;

y := 2 * x + 1

} else {

y := y - 1;

x := x - 1

}

}

/* point F */

Figure 1: Program with unbounded integer variables x,y,b, ranging over Z.

a) Consider first a simple variable range analysis, which maintains an interval for each integer
variable. Intervals can have as lower bound an integer or−∞ and as the upper bound either
an integer or +∞. This analysis computes, for each statement, the smallest intervals that
describe the values of variables after the statement. Your task is to indicate the intervals
for each variable (x, y, b) that this analysis computes, both at the loop header H and the
final program point F.

b) Suppose that we increase the loop bound in the program N times (from 1000 to 1000N).
Give an asymptotic function of N that indicates how the time to complete the analysis
increases. (You can pick any iteration strategy for updating the values at different program
points.)

c) In the rest of this problem, assume the loop bound is again 1000. Consider the analysis
that uses widening with the set of jump points J = {−∞,−1, 0, 1, 1000,+∞}, by applying
at each step the widening function w (which maps the interval into a smallest enclosing
interval whose bounds are in J). Assuming that the analysis has reached the fixpoint,
indicate the intervals for x, y, b at the loop header H and the final program point F.

d) Indicate the values of variables at H and F when we apply narrowing iteration until the
fixpoint (that is, we apply the computation as in a), without widening, but starting from
the result computed in part c)).

3

Problem 4: Analysis of Relations between Variables (40 points)

In this problem we explore how to automatically derive sp#() when our analysis domain is given
by a system of integer linear inequalities.
Consider a program with two integer variables, x, y. Let P be the set of states satisfying

x− 2y ≤ a1 ∧ x− y ≤ a2

where a1 and a2 are some parameters.
Consider a relation r mapping states (x, y) into states (x′, y′) given by

x′ = 3y + 1 ∧ y′ = x+ y

a) Write down a quantified formula Q(x′, y′) such that

sp(P, r) = {(x′, y′) | Q(x′, y′)}

for every a1, a2.

b)* Write down a quantifier-free formula Q0(x
′, y′) equivalent to Q(x′, y′). You can use any

mathematically correct reasoning steps to derive formula Q0(x
′, y′); there is no need to

restrict yourself to a specific algorithm.

c)* Suppose that we wish to find the strongest approximation of Q0(x
′, y′) that has the same

syntactic form as P . That is, we search for formula Q1(x
′, y′, b1, b2) of the form

x′ − 2y′ ≤ b1 ∧ x′ − y′ ≤ b2 (∗)

for some b1, b2. We wish to find the values b1 and b2 as a function of a1, a2 such that
Q0(x

′, y′) implies Q1(x
′, y′, b1, b2) and such that for any other values b′1, b

′
2 for which

Q0(x
′, y′) implies Q1(x

′, y′, b′1, b
′
2), we have that the formula Q1(x

′, y′, b′1, b
′
2) is implied

by Q1(x
′, y′, b1, b2).

Describe as efficient as possible procedure to generate expressions for functions that map
a1, a2 into b1, b2.

Explain how to generalize your procedure to arbitrary preconditions, and arbitrary rela-
tions r expressed in integer linear arithmetic.

4

