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Meinen Eltern



AbstratProgram veri�ation takes the most rigorous approah to ensure software reliability. Inprogram veri�ation one establishes a mathematial orretness proof whih guaranteesthat the software behaves aording to its spei�ation. Program analysis tools an assistthe developer in the veri�ation proess. Ideally a program analysis should be appliableto a wide range of veri�ation problems without imposing a high burden on its users, i.e.,without requiring deep mathematial knowledge and experiene in formal veri�ation.A big step forward towards this ideal has been ahieved by ombining abstrat inter-pretation with automated reasoning. An abstrat interpretation automatially transforms aonrete program into an abstrat program. The abstrat program enables the program anal-ysis to statially ollet information over all possible exeutions of the onrete program.The olleted information is used to automatially verify the orretness of the onreteprogram. Abstrat interpretation shifts the burden of formally reasoning about programsfrom the developer to the designer of the program analysis tool, who has to �nd the rightabstration. Automated reasoning pushes the degree of automation even further. The use oftheorem provers and deision proedures enables the automati onstrution of the abstra-tion for a spei� program and a spei� orretness property and to automatially re�nethis abstration if neessary. We refer to this approah of ombining abstrat interpretationwith automated reasoning as symboli program analysisA problem that has reently seen muh attention in program analysis and veri�ation isthe question of how to e�etively deal with linked heap-alloated data strutures. Programanalyses that target properties of these data strutures are ommonly referred to as shapeanalyses. A symboli shape analysis promises to handle a spetrum of di�erent linkedheap-alloated data strutures, and a spetrum of properties to verify, without requiringthe user to manually adjust the analysis to the spei� problem instane. It was open whata symboli shape analysis would look like, and whether it ould ful�ll its promise. In thisthesis, we develop suh a shape analysis.
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Chapter 1IntrodutionSoftware is often the most unreliable part of today's omputer systems. Yet, omputersontinue to pervade all aspets of modern tehnology. Therefore, �nding e�etive methodsthat inrease software reliability remains an important objetive in programming languageresearh.Formal program veri�ation takes the most rigorous approah to ensure software reliabil-ity. The goal of program veri�ation is to formally prove that a program behaves aordingto its spei�ation. Traditionally these orretness proofs have been established manuallyby the programmer in a formal alulus suh as Hoare logi [46,56℄. The main obstales to awide-spread use of this tehnique in pratial software development are two-fold. First, onlyfew programmers possess the knowledge and experiene to formally reason about programsand seond, the inreasing omplexity of software makes it hard to manually prove evensimple orretness properties for entire software systems.Sine many years researh in program veri�ation has therefore been driven by thedesire to develop program analysis tools that assist the programmer in the task of provingprogram orretness, i.e., to develop software that automatially veri�es software. Sinemost problems related to program veri�ation are undeidable, suh tools an in generalonly provide approximative solutions. A formal framework for the design of approximativeprogram analyses is formulated in abstrat interpretation [37,38℄. An abstrat interpretationtransforms the onrete program into an abstrat program for whih the veri�ation problemis deidable. The abstration guarantees that the onrete program is orret if the abstratprogram is orret. The analysis is approximative, beause the onrete program mightbe orret even though the abstrat program is inorret, i.e., the analysis an produeounterexamples that do not exist in the onrete program. We all suh ounterexamplesspurious. Abstrat interpretation shifts the burden of formally reasoning about programsfrom the programmer to the designer of the program analysis tool, i.e., the designer hasto �nd the right abstration for a spei� veri�ation problem. While there will always beprograms and properties that are too di�ult to verify automatially and require manualproofs, abstrat interpretation has been a great suess. Today, abstrat interpretationis the foundation of many tools that are used to automatially verify properties suh asabsene of runtime errors for industrial-sale programs [20, 113℄.Reently, researhers started to investigate whether it is possible to push the degreeof automation even further. Over the last years, we have seen signi�ant advanes in13



14 CHAPTER 1. INTRODUCTIONtheorem proving tehnology [12,41,108,109℄ and powerful deision proedures have beomeavailable [62℄. The progress in automated reasoning makes it possible to automate theproess of reasoning about programs. The goal of this researh diretion is to redue programveri�ation entirely to automated reasoning in expressive logis, i.e., one uses software toautomatially onstrut software that automatially veri�es software.We refer to program analyses that ombine abstrat interpretation and automated rea-soning tehnology as symboli. Symboli program analyses are interesting for several rea-sons. First, the use of automated reasoning proedures allows one not only to automatethe transformation of the onrete program into an abstrat program and the subsequentanalysis of the abstrat program, but also to automate the onstrution of the abstrationitself. Abstration re�nement tehniques [35, 52℄ apply automated reasoning proedures todeide whether a ounterexample that is produed by the analysis is spurious. The detetedspurious ounterexamples are then used to automatially re�ne the abstration. Seond, thedeployment of logis separates the problem of reasoning about the semantis of the programfrom the atual analysis of the program, i.e., one separates the problem of generating fatsthat imply program orretness from the problem of proving these fats. This separationof onerns allows one to formulate the analysis as an algorithmi problem that is indepen-dent of the programs and properties to verify. The analysis is then speialized for a spei�veri�ation task by hoosing a logi and reasoning proedure that �ts the given task. Afurther onsequene of this separation of onerns is that establishing the orretness ofa symboli program analysis is easier than for a non-symboli analysis; the most tediousparts in the orretness proof, i.e., those parts that are onerned with the semantis ofthe program, follow from the orretness of the underlying reasoning proedures. Finally,logis provide a natural language for speifying the behavior of ode fragments. Therefore,symboli program analysis an be easily ombined with tehniques that enable modularveri�ation [11, 44, 65℄.While there will always remain veri�ation tasks that require the ingenuity of a pro-gram analysis designer who tailors an abstration spei�ally for a given problem, symboliprogram analysis an help to redue his burden. The idea of symboli program analysishas brought forth a new generation of program veri�ation tools [9, 30, 54℄ that o�er anunmathed degree of automation. These tools are already used by industry, e.g., as part ofMirosoft's Windows devie driver development kid [88℄.A problem that has reently seen muh attention in program analysis and veri�ationis the question of how to e�etively deal with linked heap-alloated data strutures. Theability of linked data strutures to dynamially grow and hange their shape during pro-gram exeution makes them a powerful programming onept in imperative programminglanguages. It is therefore not surprising that linked data strutures are at the heart of manye�ient algorithms and software design patterns. However, the �exibility and diversity oflinked data strutures also make it di�ult to reason about programs that manipulate them.The importane and di�ulty of data struture veri�ation explains the inreased interestin �nding solutions to this problem.Program analyses that target properties of linked data strutures are ommonly referredto as shape analyses [61℄. A symboli shape analysis promises to handle a spetrum of dif-ferent linked heap-alloated data strutures, and a spetrum of properties to verify, withoutrequiring the user to manually adjust the analysis to the spei� problem instane. It was



1.1. SYMBOLIC SHAPE ANALYSIS 15open what a symboli shape analysis would look like, and whether it ould ful�ll its promise.In the present dissertation, we are onerned with these questions.1.1 Symboli Shape AnalysisThe goal of a shape analysis is to verify omplex onsisteny properties of linked datastrutures. By onsisteny properties we mean invariants on the shape of a data struturethat are required to hold at spei� points during program exeution, e.g., at entry andexit points of library funtions that implement the data struture. As an example, onsiderthe Java program fragment shown in Figure 1.1. This program fragment shows parts of adata struture implementing ontainers that store an unbounded set of elements. The datastruture supports various operations suh as adding and removing elements from the set aswell as more omplex operations suh as �ltering the stored elements aording to a givenprediate. The atual set is implemented using a doubly-linked list. One of the onsistenyproperties of this data struture therefore states that the list pointed to by �eld root formsa doubly-linked list. One uses shape analysis to verify that these invariants are preservedby all data struture operations.The veri�ation of onsisteny properties is important in itself beause the orret ex-eution of the program often requires data struture onsisteny, e.g., if the doubly-linkedlist property is violated at entry to method �lter then the method will behave unexpetedlyor even rash. In addition, suh onsisteny properties are important for verifying otherprogram properties. For instane, a termination proof for the while loop in method �lterrelies on the assumption that the list pointed to by �eld root is ayli. One an use shapeanalysis to verify suh assumptions.In this thesis we investigate a new symboli shape analysis. This shape analysis usesautomated reasoning proedures to abstrat a heap-manipulating program by a programthat manipulates logial formulae. Our approah generalizes prediate abstration [49℄, anexisting symboli program analysis tehnique, by inorporating the key ideas of three-valuedshape analysis [103℄, an existing non-symboli shape analysis. The fruitful ombination ofthese tehniques results in a shape analysis that exhibits a unique ombination of qualities.First, our analysis is not a priori restrited to spei� data strutures and properties toverify, yet, it o�ers a high degree of automation. In partiular, we used our analysis toverify omplex user-spei�ed onsisteny properties of data struture implementations. Forinstane, we were able to verify preservation of data struture invariants for operationson threaded binary trees [107℄ (inluding sortedness and the in-order traversal invariant)without manually adjusting the analysis to this spei� problem and without providing userassistane beyond stating the properties to verify. We are not aware of any other shapeanalysis that an verify suh properties with a omparable degree of automation.Seond, our shape analysis naturally �ts into the Jahob approah of modular datastruture veri�ation [65,121℄. This approah exploits user-provided proedure ontrats toseparate the veri�ation of libraries (that implement data strutures) from the veri�ationof lients (that use these data strutures). The library interfaes use abstrat sets andrelations to haraterize the behavior of a data struture but hide the omplexity of theunderlying data struture implementation. For instane, the interfae of lass DLLSet inFigure 1.1 delares an abstrat set ontent that denotes the set of objets stored in a given



16 CHAPTER 1. INTRODUCTIONpubli interfae Prediate {//: publi spevar pred :: objset ;publi boolean ontains(Objet o);//: ensures " result = (o ∈ pred)"}publi lass DLLSet {lass Node {Node next;Node prev;Objet data;}private Node root;/∗: publi spevar ontent :: objset ;private vardefs "ontent == {x. <root reahes a node y via next suh that y.data=x>}";invariant "<the list starting from root is ayli>";invariant "<the list starting from root is doubly−linked>"; ∗/publi void add(Objet o)/∗: requires "o /∈ ontent"modi�es ontentensures "ontent = old ontent ∪ {o}" ∗/{ Node n = new Node();n.next = root;n.data = o;root .prev = n;root = n;}...publi void �lter (Prediate p)/∗: requires "p 6= null"modi�es ontentensures "ontent = old ontent ∩ (pred p)" ∗/{ Node e = root;while (e != null) {Node  = e;e = e.next;if (!p. ontains(.data)) {if (.prev == null) {e.prev = null ;root = e;} else {.prev .next = e;e.prev = ;}}}}} Figure 1.1: A set ontainer implemented by a doubly-linked list



1.2. TECHNICAL CONTRIBUTIONS 17instane of the lass. The set ontent is used in the pre and postonditions of publi methodsof lass DLLSet to desribe the methods' e�ets that are observable by the lient. We usedour shape analysis to verify suh proedure ontrats. While the analysis of the librariesrequires the high preision of a shape analysis, the analysis of the lients alls for moresalable (but perhaps less preise) tehniques. We believe that suh a modular veri�ationapproah may be the key to make preise shape analysis appliable to large programs.1.2 Tehnial ContributionsOur new symboli shape analysis builds upon a series of tehnial ontributions. Theseontributions are summarized as follows:
• We propose Domain Prediate Abstration, a new parameterized abstrat domain forsymboli shape analysis that an express detailed properties of di�erent regions in theprogram's unbounded memory.
• We provide means to automate the transformation of a heap-manipulating programinto an abstrat program using automated reasoning proedures.
• We propose Nested Lazy Abstration Re�nement, an abstration re�nement tehniquefor domain prediate abstration. This tehnique eliminates the need for the user tomanually adjust the abstration for the analysis of a spei� program or property.
• We present Field Constraint Analysis, a new tehnique for reasoning about data stru-tures that enables the appliation of deidable logis to data strutures whih wereoriginally beyond the sope of these logis.We now disuss these ontributions in detail.Domain Prediate Abstration. We show that the key idea of three-valued shapeanalysis [103℄, the partitioning of the heap aording to prediates on heap objets, an beast in the framework of prediate abstration [49℄. The symbiosis of these ideas results ina new analysis whih we all domain prediate abstration. Domain prediate abstrationenables the inferene of invariants in the form of disjuntions of universally quanti�ed fatsover the program's unbounded memory. The building bloks of these quanti�ed fats areprediates on heap objets. Our onstrution of the abstrat post operator is analogous tothe orresponding onstrution for lassial prediate abstration, exept that prediatesover objets take the plae of state prediates, and Boolean heaps (sets of bit-vetors)take the plae of Boolean states (bit-vetors). A program is abstrated to a program overBoolean heaps. For eah ommand of the program, the orresponding abstrat ommand ise�etively onstruted by use of automated reasoning. domain prediate abstration thusprovides a parametri framework for symboli shape analysis.Lazy Nested Abstration Re�nement. We develop a lazy nested abstration re�ne-ment tehnique for symboli shape analysis. Our tehnique uses spurious ounterexamplesto re�ne both the abstrat domain and the abstrat post operator of our symboli shape



18 CHAPTER 1. INTRODUCTIONanalysis (for eah of the abstrat domains). The two abstration re�nement phases arenested within a lazy abstration re�nement loop. The seond re�nement phase is ruial forthe pratial suess of the shape analysis. In many benhmarks, the veri�ation does notsueed without. The pratial results are in line with the theoretial �ndings about the so-alled progress property. Progress means that every spurious ounterexample enounteredduring the analysis is eventually eliminated by a re�nement step. We show that with theseond re�nement phase our lazy nested abstration re�nement loop has the progress prop-erty and it does not without. We further provide experimental evidene that the inreaseddegree of automation obtained by abstration re�nement also results in targeted preision.This targeted preision is re�eted by lower spae onsumption; the nested re�nement loopseems to ahieve the loal �ne-tuning of the abstration at the required preision.Field Constraint Analysis. One of the ompelling harateristis of our symboli shapeanalysis is that at its ore one an plug in existing deision proedures and theorem proversas blak boxes. However, in pratie the apabilities of existing deision proedures oftendo not quite �t the requirements of the analysis. Therefore, it an be neessary to introduean additional layer between the analysis and the atual deision proedure. We present onesuh tehnique in this thesis.We introdue �eld onstraint analysis, a new tehnique for reasoning about data stru-tures. A �eld onstraint for a referene �eld in a data struture is a formula speifying a setof objets to whih the �eld an point. Field onstraints enable the appliation of deidablelogis to data strutures whih were originally beyond the sope of these logis, by dividingthe �elds of a data struture into bakbone �elds and derived �elds that ross-ut the bak-bone in arbitrary ways. Reasoning about the data struture is redued to reasoning aboutits bakbone by exploiting onstraints given on the derived �elds. Previously, suh derived�elds ould only be handled when they were uniquely determined by these �eld onstraints.This signi�antly limited the range of supported data strutures.Our �eld onstraint analysis permits nondeterministi �eld onstraints on ross-utting�elds, whih allows reasoning about data strutures suh as skip lists. Nondeterministi�eld onstraints also enable the veri�ation of invariants between data strutures, yieldingan expressive generalization of stati type delarations.The generality of our �eld onstraints requires new tehniques, whih are orthogonalto the traditional use of struture simulation [57, 59℄. We present one suh tehnique andprove its soundness, as well as, ompleteness in interesting, but important ases. Using ourtehnique we were able to verify data strutures that were previously beyond the reah ofsimilar tehniques.1.3 Proof of ConeptAll the tehniques presented in this thesis have been implemented and evaluated in a toolalled Bohne. Bohne is implemented on top of the Jahob system for verifying data stru-ture onsisteny [66℄. Bohne analyzes Java programs annotated with speial omments thatspeify proedure ontrats and representation invariants of data strutures suh as the pro-gram shown in Figure 1.1. Our tool veri�es that all methods omply to their proedureontrats and that all representation invariants are preserved by data struture operations.



1.4. OUTLINE 19We used Bohne to verify omplex user-spei�ed onsisteny properties for a range of datastrutures implementations and data struture lients without manually spei�ed loop in-variants or manually provided abstrations. This proves that symboli shape analysis isable to full�l its promise, namely to verify a diverse set of data strutures and propertieswith a high degree of automation.1.4 OutlineIn Chapter 2 we give the preliminaries of our thesis. We brie�y introdue higher-orderlogi, our notion of programs, and reall the foundations of abstrat interpretation. Chap-ter 3 presents domain prediate abstration. A less general version of this result has beenpresented at SAS'05 [98℄ and in [110℄. In the fourth hapter we introdue our tehniqueof abstration re�nement for domain prediate abstration. Chapter 5 desribes our �eldonstraint analysis for automated reasoning about data strutures. This material has beenpresented at VMCAI'06 [111℄. Finally, Chapter 6 desribes some implementation details ofthe Bohne tool and provides an overview of our ase studies. Some of the tehniques de-sribed in this hapter have been previously presented at VMCAI'07 [26℄ and HAV'07 [112℄.





Chapter 2Preliminaries2.1 Higher-Order LogiWe follow the approah taken in [65℄ and formalize programs, their semantis, and propertiesin terms of higher-order logi (HOL). The advantage of suh an approah is that we anexpress both programs and their abstrations in a unique formalism. Futhermore, HOLdoes not impose any arti�ial restritions on the properties that we are able to express.The ore of HOL is the simply typed lambda-alulus. We brie�y sketh the foundationsof this alulus for later referene. A more omprehensive disussion of typed lambda-alulian be found, e.g., in [10, 55℄.Types. Let B be a �nite set of type onstants. The set of Σ-types TypesB over B isde�ned as follows:
t ∈ TypesB ::= b where b ∈ B (type onstant)

| t1 ⇒ t2 (total funtions)Following ommon onvention, we onsider funtion types to be right assoiative, i.e.
t1 ⇒ t2 ⇒ t3 ≡ t1 ⇒ (t2 ⇒ t3) .Terms. We assume a ountable in�nite set V of variables with typial elements v,w ∈ V .A signature Σ is a tuple (B,C, ty) where B is a �nite set of type onstants, C a set ofonstant symbols disjoint from B, and ty a funtion C � TypesB mapping eah onstantsymbol to a Σ-type over B. The set of Σ-terms TermsΣ over a signature Σ = (B,C, ty) isde�ned as follows:

F ∈ TermsΣ ::= v (variable)
| c where c ∈ C (onstant)
| λv :: t . F where t ∈ TypesB (lambda abstration)
| F1 F2 (funtion appliation)For nested lambda abstrations of the form (λv1 :: t1. . . . λvn :: tn. F ) we use the abbrevia-tion λ(v1 :: t1) . . . (vn :: tn). F . Given a lambda abstration of this form, we all F the sope21
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ty(c) = t

Γ ⊢ c :: t

Γ(v) = t

Γ ⊢ v :: t

Γ[v 7→ t1] ⊢ F :: t2

Γ ⊢ λv :: t1. F :: t1 ⇒ t2

Γ ⊢ F1 :: t1 ⇒ t2 Γ ⊢ F2 :: t1
Γ ⊢ F1 F2 :: t2Figure 2.1: Typing relation.of λ(v1 :: t) . . . (vn :: tn). An ourrene of a variable v is bound if it is inside the sopeof some λ(v1 :: t) . . . (vn :: tn) and v ∈ {v1, . . . , vn}. Other ourrenes are alled free. Wedenote by FV(F ) the set of all free variables of F . A term F is losed if FV(F ) = ∅. Wewrite F (v1, . . . , vn) to indiate that FV(F ) ⊆ {v1, . . . , vn}.A substitution σ is a partial mapping from variables to terms. We write Fσ to denotethe term that results from simultaneously substituting every free ourrene of variables

v ∈ dom(σ) in F1 by σ(v).Typing relation. A typing ontext Γ is an assignment from variables to Σ-types. Let Fbe a Σ-term and t a Σ-type. The typing relation Γ ⊢ F :: t is de�ned in Figure 2.1. Wesay term F has type t under typing ontext Γ if Γ ⊢ F :: t . We all F well-typed under Γif there exists a type t suh that Γ ⊢ F :: t . We will often omit type annotations in lambdaabstrations if these types an be inferred from the typing ontext.Strutures. A struture A for signature Σ = (B,C, ty) is a funtion with dom(A) = B∪Cand the following properties: A maps eah type onstant b ∈ B to some nonempty set. Weall A(b) the domain of type onstant b. We extend A to a funtion on Σ-types as follows:
[[b]]A = A(b)

[[t1⇒t2]]A = [[t1]]A � [[t2]]AFinally, A maps eah onstant symbol c ∈ C to a value in [[ty(c)]]A.Let Γ be a typing ontext and let β be an assignment from variables v ∈ V to values in
[[Γ(v)]]A. Further, let F be a Σ-term that is well-typed under Γ. The interpretation of Fin a struture A under variable assignment β, written [[F ]]A,β , is de�ned reursively on thestruture of terms as follows:

[[c]]A,β = A(c)

[[v]]A,β = β(v)

[[λv :: t . F ]]A,β =
{

o1 7→ o2 | o1 ∈ [[t ]]A and o2 = [[F ]]A,β[v 7→o1]

}

[[F1 F2]]A,β = ([[F1]]A,β)([[F2]]A,β) .Formulae. In the rest of this thesis we will only onsider signatures that ontain at leastthe type onstant bool for Booleans. We expet that strutures interpret bool as the set
B = {0, 1}. A well-typed term of type bool is alled a formula. We further assume that all
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c ty(c) A(c)

true bool 1
¬ bool ⇒ bool λo. 1 − o
∧ bool ⇒ bool ⇒ bool λo1 o2. min {o1, o2}
∀t (t ⇒ bool) ⇒ bool λp. min { p(o) | o ∈ [[t ]]A }
=t t ⇒ t ⇒ bool λo1 o2. if o1 = o2 then 1 else 0
itet bool ⇒ t ⇒ t ⇒ t λo1 o2 o3. if o1 = 1 then o2 else o3Table 2.1: Standard onstant symbols in a signature Σ = (B,C, ty) and their interpretationin Σ-strutures A.Notation Term Typing onstraints

false ¬true

F1 ∧ F2 ∧F1 F2

F1 ∨ F2 ¬(¬F1 ∧ ¬F2)
F1 → F2 ¬F1 ∨ F2

∀v :: t . F ∀(λv :: t . F )
∃v :: t . F ¬(∀v :: t .¬F )
F1 = F2 = F1 F2

if F1 then F2 else F3 ite F1 F2 F3

{ v :: t . F } λv :: t . F
{F} λv :: t . v = F
∅ λv :: t . false
F1 ∈ S1 S1 F1 Γ ⊢ S1 :: t ⇒ bool

S1 ∩ S2 λv :: t . v ∈ S1 ∧ v ∈ S2 Γ ⊢ S1,2 :: t ⇒ bool

S2 ∪ S2 λv :: t . v ∈ S1 ∨ v ∈ S2 Γ ⊢ S1,2 :: t ⇒ bool

S1 − S2 λv :: t . if v ∈ S2 then false else v ∈ S1 Γ ⊢ S1,2 :: t ⇒ boolTable 2.2: Syntati sugar for terms onstruted from standard onstant symbols.signatures provide at least the set of standard onstant symbols listed in Table 2.1 and thatstrutures respet the provided interpretations. For instane, the symbol ¬ denotes Booleannegation and =t denotes the equality prediate for type t . We will omit type subsriptsfrom onstant symbols whenever the type is uniquely determined by the subterms and thetyping ontext.For notational onveniene we will use syntati sugar for some formulae onstrutedfrom onstant symbols in Figure 2.1. A list of short-hand de�nitions is shown in Table 2.2.Given a formula F and a struture A, we say that F is satis�able in A under variableassignment β, written A, β |= F , if [[F ]]A,β = 1. Let D be a mapping from type onstantsin B to nonemepty sets. We write [[F ]]D,β to denote the set of all Σ-strutures that areompatible with D and in whih F is satis�able under variable assignment β, i.e.:
[[F ]]D,β

def
= {A | A|B = D ∧ A, β |= F } .We say that F is valid in A, written A |= F , if F is satis�able in A under all variable



24 CHAPTER 2. PRELIMINARIESassignments. If formula F is valid in struture A then we all A a model of F . We denoteby [[F ]] the set of all models of F . Formula F is alled valid, written |= F , if it is valid inall Σ-strutures. Finally, we say that formula F entails formula G, written F |= G, if theformula F → G is valid.2.2 ProgramsWe now formalize programs. A program P = (Σ,D,X,L, ℓ0, ℓE,T ) onsists of:
• Σ: a signature Σ = (B,C, ty).
• D: a domain mapping that maps eah type onstant b ∈ B to a nonempty set.
• X: a �nite set of program variables suh that X ⊆ C.1
• L: a �nite set of ontrol loations of the program.
• ℓ0: an initial ontrol loation.
• ℓE: an error ontrol loation with ℓE 6= ℓ0.
• T : a �nite set of program transitions. Eah transition τ = (ℓ, c, ℓ′) onsists of anentry and exit loation ℓ and ℓ′, and a ommand c. Commands are de�ned by thefollowing grammar, where x is a program variable of type t , E a losed Σ-term oftype t and F a losed Σ-formula:

c ∈ Com ::= x:= E (assignment to x)
| havoc(x) (nondeterministi assignment to x)
| assume(F ) (assume statement)
| c; c (sequential omposition)States. A program state s is a tuple (ℓ,A) where ℓ is a program loation and A a Σ-struture suh that A(b) = D(b) for all type onstants b ∈ B. We use s(pc) to denoteprogram loation ℓ of state s and s(x) to denote A(x) for a program variable x. We all astate s with s(pc) = ℓE an error state. For a program variable x ∈ X we denote by s[x 7→ o]the state that is obtained by updating the interpretation of x in s to o. The set of all statesis given by States . We will often identify a state with the ontained struture, e.g., weextend the satisfation relation |= from Σ-strutures to states as expeted: let (ℓ,A) be astate, β a variable assignment and F a formula then we de�ne
(ℓ,A), β |= F

def
⇐⇒ A, β |= F .We proeed similarly for validity and entailment.1Program variables are logial onstants and not to be onfused with logial variables.



2.2. PROGRAMS 25Transition Relations. Eah ommand c represents a relation [[c]] that ontains pairs oflogial strutures (A,A′) suh that A and A′ satisfy onditions given below for eah kindof ommands.
• If c updates a program variable x:= E, we have A′ = A[[[E]]s],
• if c is a havo ommand havoc(x), we have A′ = A[x 7→ o] where o is some value in

[[ty(x)]]s,
• if c is an assume ommand assume(F ), we require that A |= F and A′ = A

• and if c is a sequential omposition c1; c2, there exists a struture A0 suh that
(A,A0) ∈ [[c1]] and (A0,A

′) ∈ [[c2]].Finally, the transition relation [[τ ]] of a transition τ = (ℓ, c, ℓ′) is the relation on statesde�ned as follows:
[[τ ]]

def
=
{

((ℓ,A), (ℓ′,A′)) | (A,A′) ∈ [[c]]
}

.Computations. A program omputation is a (possibly in�nite) sequene δ = s0
c0→ s1

c1→
. . . of states and ommands suh that s0(pc) = ℓ0 and for eah pair of onseutive states
si and si+1 we have (si, si+1) ∈ [[(ℓ, ci, ℓ

′)]] where (ℓ, ci, ℓ
′) is a transition in T . If δ is �nitethen for its �nal state, say s, and for eah transitions τ ∈ T there is no state s′ suh that

(s, s′) ∈ [[τ ]]. We all any pre�x of a omputation a trae and we all ommand π thatorresponds to the sequential omposition of the ommands in a trae a path. An errortrae is a trae that reahes an error state and an error path is a path assoiated with anerror trae. A program is alled safe if it does not exhibit any error traes.Prediate Transformers. Given a binary relation R on states and a set of states S, wede�ne strongest postondition post and weakest liberal preondition wlp as usual:
post,wlp ∈ 2(States×States) → 2States → 2States

post(R)(S)
def
=
{

s′ | ∃s. (s, s′) ∈ R ∧ s ∈ S
}

wlp(R)(S)
def
=
{

s | ∀s′. (s, s′) ∈ R ⇒ s′ ∈ S
}

.A losed formula F is a symboli representation of a set of states, namely, the set ofits models [[F ]]. It is therefore onvenient to overload the prediate transformers post and
wlp to symboli prediate transformers that manuipulate formulae aording to the seamtisof ommands. Figure 2.2 provides the orresponding de�nitions. Note that the de�nitionsin Figure 2.2 are not restrited to losed formulae. The orretness of these de�nitions isstated by the following proposition.Proposition 1 Let c be a ommand, F a formula, and β an assignment to the free variablesof F then:

post([[c]])([[F ]]D,β) = [[post(c)(F )]]D,β and
wlp([[c]])([[F ]]D,β) = [[wlp(c)(F )]]D,β .
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post(x:= E)(F )

def
= ∃v. F [x:= v] ∧ x = E[x:= v] with v 6∈ FV(F )

post(havoc(x))(F )
def
= ∃v. F [x:= v] with v 6∈ FV(F )

post(assume(G))(F )
def
= G ∧ F

post(c1; c2)(F )
def
= post(c2)(post(c1)(F ))

wlp(x:= E)(F )
def
= F [x:= E]

wlp(havoc(x))(F )
def
= ∀v. F [x:= v] with v 6∈ FV(F )

wlp(assume(G))(F )
def
= G → F

wlp(c1; c2)(F )
def
= wlp(c1)(wlp(c2)(F )) .Figure 2.2: Symboli prediate transformers.Proof. The prove goes by indution on the struture of ommands. We only show the asefor weakest liberal preonditions and assignment ommands. The other ases are similar.Let c be the ommand (x:= E) then we have:

wlp([[x:= E]])([[F ]]D,β) =
{

s | ∀s′. (s, s′) ∈ [[x:= E]] ⇒ s′ ∈ [[F ]]D,β

}

=
{

s | ∀s′. (s′ = s[x 7→ [[E]]s]) ⇒ s′ ∈ [[F ]]D,β

}

= { s | s[x 7→ [[E]]s] ∈ [[F ]]D,β }

= { s | s[x 7→ [[E]]s], β |= F }

= { s | s, β |= F [x:= E] }

= [[F [x:= E]]]D,β .2.2.1 Heap-Manipulating ProgramsPrograms de�ned in Setion 2.2 provide an assembly language that allow us to model abroad range of systems. Heap-manipulating programs are the lassial appliation domainof shape analysis. We will often use them as running examples throughout this thesis.In the following, we sketh how heap-manipulating programs an be modelled in terms ofprograms de�ned in Setion 2.2.Developing a memory model for a spei� programming language whih is both aurateand suitable for program analysis is a di�ult researh task in itself. For exposition purposeswe onsider a rather primitive imperative programming language with garbage olletedheaps. A more sophistiated memory model for Java-like programs is desribed, e.g., in[65,78℄. A memory model for C programs that is suitable for veri�ation an be found, e.g.,in [33℄. A heap manipulating program is a program (Σh,Dh,X,L, ℓ0, ℓE ,T ) with signature
Σh = (Bh, Ch, tyh) and the following properties. There is a type onstant obj ∈ Bh thatmodels the set of available heap objets. The domain Dh(obj) of type obj is a nonemptyset of unspei�ed size. The set of program variables X onsists of referene variables Var



2.2. PROGRAMS 27and referene �elds Fld. A referene variable denotes a heap objet, i.e., for all x ∈ Var wehave tyh(x) = obj. Referene �elds model �elds in data strutures and denote funtions onheap objets, i.e., for all f ∈ Fld we have tyh(f) = (obj ⇒ obj).Commands. The basi ommands one would expet a heap-manipulating program to beomposed of are:
• writing the ontent of a referene variable to a referene variable: x:= y,
• writing the ontent of a referene �eld at some index to a referene variable: x:= y.f ,
• writing to a �eld at some partiular index: x.f := y,
• and alloation of a new heap objet: new(x).Read and write ommands diretly translate into assignments of program variables wherea �eld aess of the form x.f simply orrespond to a funtion appliation f x. The onlyinteresting ase is a �eld write of the form (x.f := y). We model �eld writes by assignmentsto funtion-valued program variables:

f := (λv :: obj. if v = x then y else f v) .We will use the short notation f := f [x:= y] for suh updates.For modelling alloation of fresh heap objets we need to trak the set of alloatedobjets. For this purpose we assume a speial program variable alloc of type obj ⇒ bool.The idea is that in a given state s the prediate s(alloc) desribes the subset of all heapobjets in Dh(obj) that are urrently alloated. Alloation of a fresh heap objet new(x) isthen modelled by the following sequene of ommands:
havoc(x);

assume(x 6∈ alloc);

alloc:= alloc ∪ {x} .Null Dereferenes. A �eld in a heap-manipulating program is not always de�ned, e.g.,beause a spei� objet is not alloated. Thus referene �elds more losely resemble partialfuntions on heap objets. Dereferening a �eld on an objet for whih the �eld is unde�nedmay ause the program to rash. In order to detet suh runtime errors we add a speialonstant symbol null of type obj that models the unde�ned value. Thus, we an think of nullas a speial program variable that an never hange its value. In order to ensure absene ofruntime errors, every transition (ℓ, c, ℓ′) where c ontains a �eld aess f.x is guarded by atransition to the error loation of the form (ℓ, assume(f(x)=null), ℓE). Thus, any potentialdereferene of null will be re�eted by an error trae.Bakground Formula. Any additional spei�s of the memory model that restrit theset of possible program states an be enoded into a bakground formula BG. We re-quire that all outgoing transitions from the initial loation ℓ0 to a loation ℓ′ are of the



28 CHAPTER 2. PRELIMINARIESform (ℓ0, assume(BG), ℓ′). A reasonable hoie for a bakground formula that enodes thememory model of a garbage-olleted language is, e.g., as follows:
BG

def
= null ∈ alloc

∧
∧

f∈Fld f null = null

∧ ∀v :: obj, w :: obj. v /∈ alloc →
∧

f∈Fld f w 6= v .The �rst onjunt of the bakground formula guarantees that null is an alloated objet.This ensures that after alloating a fresh objet with ommand new(x) program variable
x will always point to an objet di�erent from null. The seond onjunt guarantees that
null always points bak to itself. The last onjunt ensures that non-alloated objets areisolated in the heap.Reahability Properties. Reahability properties play an important role in the analysisof heap programs. By reahability properties we mean properties suh as:�Referene variable x is reahable from referene variable y byfollowing �eld f in the heap.�Suh properties an be used for desribing the shape of data strutures. For instane, thefat that a list pointed to by a referene variable x is ayli an be expressed by sayingthat x reahes null. Reahability properties are also important for expressing invariantssuh as disjointness of heap regions and for de�ning useful abstrations of reursive datastrutures. In order to formalize reahability properties, we assume that our signature forheap programs provides a re�exive transitive losure operator rtrancl_pt of type:

rtrancl_pt :: (obj ⇒ obj ⇒ bool) ⇒ obj ⇒ obj ⇒ bool .The semantis of the re�exive transitive losure operator is given by the following equiva-lene:
rtrancl_pt p e t ≡ ∀S. e ∈ S ∧ (∀v w. v ∈ S ∧ p v w → w ∈ S) → t ∈ S .For instane, ayliity of a list over �eld next that is pointed to by referene variable x isexpressed by the following formula:

rtrancl_pt (λv w. next v = w)x null .For our onveniene we will use syntati sugar for the re�exive transitive losure of referene�elds and write �next∗ x null� as a shorthand for the above formula.2.3 Abstrat InterpretationMost problems related to program veri�ation are undeidable for any interesting lass ofprograms. A possible solution is to analyze approximations of programs for whih the



2.3. ABSTRACT INTERPRETATION 29veri�ation problem beomes deidable. Instead of proving that the onrete programbehaves aording to its spei�ation one proves that an abstrat program behaves aordingto an abstrat spei�ation. These approximations should be sound, i.e., orretness of theabstrat program implies orretness of the onrete program.The framework of abstrat interpretation developed by Patrik and Radhia Cousot [37,38℄ formalizes sound approximations of programs. In abstrat interpretation the semantisof programs and their approximation is de�ned in terms of lattie-theoreti domains. Theonrete semantis is given by the least �xed point of a funtional on a omplete lattie.For instane, for proving that a program is safe, we need to prove that the set of programstates reahable by any trae of the program is disjoint from the error states. The set ofreahable states of a program is given by the least �xed point of the operator post on thepower-set lattie of program states. The abstrat semantis is the least �xed point of anabstration of the onrete funtional on an abstrat lattie. The abstrat �xed point is anapproximation of the onrete �xed point. For program safety this means that the abstrat�xed point denotes a superset of the reahable program states.We will formulate our symboli shape analysis in terms of abstrat interpretation. Forlater referene, we now give an overview of the key notions used in the abstrat interpretationframework.2.3.1 Partially Ordered Sets and LattiesDe�nition 2 (Partially Ordered Set) A set S with a binary relation ⊑ is alled a par-tially ordered set if and only if the following three onditions hold:1. ≤ is re�exive: ∀x ∈ S. x ⊑ x,2. ≤ is transitive: ∀x, y, z ∈ S. x ⊑ y and y ⊑ z implies x ⊑ z,3. ≤ is antisymmetri: ∀x, y ∈ S. x ⊑ y and y ⊑ x implies x = y.A partially ordered set is denoted by S(⊑).An element x ∈ S is a lower bound of X ⊆ S if and only if ∀x′ ∈ X. x ≤ x′. A lowerbound x of X ⊆ S is alled greatest lower bound if and only if for all lower bounds x′ ∈ Sof X we have x′ ≤ x. Conversely, x ∈ S is an upper bound of X ⊆ S if and only if
∀x′ ∈ X. x′ ≤ x. An upper bound x of X ⊆ S is alled least upper bound if and only if forall upper bounds x′ ∈ S of X we have x ≤ x′.De�nition 3 (Complete Partially Ordered Set) Let set S(≤) be a partially orderedset. A hain (xi)i∈N is a monotone sequene of elements in S: x0 ≤ x1 ≤ x2 . . . .A partially ordered set S(≤) is alled omplete partially ordered set (CPO) if and onlyif S has a least element ⊥ and all hains C ⊆ S have a least upper bound ∨C.Let S(≤) be a CPO. A funtion f ∈ S → S is alled ontinuous if and only if f ismonotone and f distributes over least upper bounds of hains. Formally, for all hains
(xi)i∈N in S, f(

∨

(xi)i∈N) =
∨

(f(xi))i∈N.Theorem 4 (Kleene's Fixed Point Theorem) Let S(≤) be a CPO and f ∈ S → S aontinuous funtion. Then f has a least �xed point:
lfp(f) =

∨

(f i(⊥))i∈N .



30 CHAPTER 2. PRELIMINARIESAording to Tarski [106℄ it is su�ient to onsider monotone funtions rather thanontinuous funtions to guarantee the existene of the least �xed point. However, in thisthesis we will only onsider ontinuous �xed point funtionals.De�nition 5 (Lattie) A partially ordered set L(≤) is alled a lattie if and only if forall x, y ∈ L there exists a least upper bound x ∨ y and a greeast lower bound x ∧ y of x and
y in L. A lattie is denoted by L(⊑,∨,∧). We all ∨ the join and ∧ the meet operation ofthe lattie.De�nition 6 (Complete Lattie) A lattie L(≤,∨,∧) is alled omplete if for all X ⊆
L there exists a least upper bound ∨X and a greatest lower bound ∧X of X in L. Inpartiular, L has a greatest element ⊤ =

∨

L and a least element ⊥ =
∧

L. A ompletelattie is denoted by L(≤,∨,∧,⊥,⊤).Note that every omplete lattie is also a CPO.De�nition 7 (Completely Distributive Lattie) A omplete lattie L(≤,∨,∧,⊥,⊤) isalled ompletely distributive lattie if and only if arbitrary joins in L distribute over arbi-trary meets. Formally, for any doubly-index family {xi,j ∈ L | i ∈ I, j ∈ Ji } we have:
∧

i∈I

∨

j∈Ji

xi,j =
∨

f∈F

∧

i∈I

xi,f(i)where F is the set of all funtions hoosing for an index i ∈ I an index f(i) ∈ Ji.Proposition 8 Let S be a set. Then 2S(⊆,∪,∩, ∅, S) is a ompletely distributive lattie.Proposition 9 Let S be a set and L(≤,∨,∧,⊥,⊤) be a ompletely distributive lattie.Then funtions S → L form again a ompletely distributive lattie, where the ordering ≤̇on S → L is de�ned point-wise as follows:
f≤̇f ′ ⇐⇒ ∀x ∈ S. f(x) ≤ f ′(x) .Example 10 The set of reahable states Reach of a program P = (Σ,D,X,L, ℓ0, ℓE,T )is the least �xed point of operator post under initial states. Formally, we de�ne the setof initial states Init , and the transition relation [[P ]] ∈ States × States assoiated with aprogram P as follows:
Init

def
= { s ∈ States | s(pc) = ℓ0 }

[[P ]]
def
=
⋃

τ∈T

[[τ ]]We then de�ne a �xed point funtional f :
f

def
= λS. Init ∪ post([[P ]])(S) .The operator post(R) is ontinuous for any relation R, hene, so is f . Thus, the least �xedpoint of f exists aording to Theorem 4:

Reach
def
= lfp(f) .

�



2.3. ABSTRACT INTERPRETATION 312.3.2 Galois ConnetionsThe onnetion between onrete and abstrat lattie is formalized in terms of Galois on-netions.De�nition 11 (Galois Connetion) Let L1(≤) and L2(⊑) be partially ordered sets. Thepair (α, γ) is alled a Galois onnetion, or a pair of adjoint funtions if and only if α ∈
L1 → L2, γ ∈ L2 → L1 and:

∀x ∈ L1, y ∈ L2. α(x) ⊑ y ⇐⇒ x ≤ γ(y) .We all α the lower adjoint and γ the upper adjoint of the Galois onnetion.The following Proposition summarizes some alternative haraterizations of Galois on-netions.Proposition 12 Let L1(≤,∨,∧,⊥1,⊤1) and L2(⊑,⊔,⊓,⊥1,⊤2) be two omplete latties.For funtions α ∈ L1 → L2 and γ ∈ L2 → L1 the following statements are equivalent:1. (α, γ) is a Galois onnetion,2. the following three onditions hold:
• α and γ are monotone,
• α ◦ γ is redutive: ∀y ∈ L2. α(γ(y)) ⊑ y,
• γ ◦ α is extensive: ∀x ∈ L1. x ≤ γ(α(x)).3. the following two onditions hold:
• γ is a omplete meet-morphism, i.e.

∀Y ⊆ L2. γ(
d

Y ) =
∧

{ γ(y) | y ∈ Y } and γ(⊤2) = ⊤1

• α = λx ∈ L1.
d

{ y ∈ L2 | x ≤ γ(y) },4. the following two onditions hold:
• α is a omplete join-morphism, i.e.

∀X ⊆ L1. α(
∨

X) =
⊔

{α(x) | x ∈ X } and α(⊥1) = ⊥2

• γ = λy ∈ L2.
∨

{x ∈ L1 | α(x) ⊑ y },The equivalene of statements 1. and 2. is stated in [38, Theorem 5.3.0.4℄. The fat thatStatement 2. implies statements 3. and 4. is stated in [38, Corollary 5.3.0.5℄.Proposition 13 Let L1(≤1), L2(≤2), and L3(≤3) be partially ordered sets. Furthermore,let (α, γ) be a Galois onnetion between L1(≤1) and L2(≤2), and let (α′, γ′) be a Galoisonnetion between L2(≤2) and L3(≤3). Then (α′ ◦α, γ ◦γ′) is a Galois onnetion between
L1(≤1) and L3(≤3).Strongest post and weakest liberal preondition are a anonial example of Galois on-netions.



32 CHAPTER 2. PRELIMINARIESProposition 14 Let P be a program and R a binary relation on states of P . Then
(post(R),wlp(R)) is a Galois onnetion on sets of states of program P :

∀S, S′ ∈ 2States . post(R)(S) ⊆ S′ ⇐⇒ S ⊆ wlp(R)(S′) .For proof see, e.g., [104℄.Let (α, γ) be a Galois onnetion between a onrete and an abstrat lattie and letthe onrete semantis of a program be de�ned by the least �xed point of a funtional fon the onrete lattie. Then the abstrat semantis is de�ned by the least �xed point ofthe abstration of f whih is given by the funtional α ◦ f ◦ γ on the abstrat lattie. Theabstrat semantis is guaranteed to be an approximation of the onrete semantis.Proposition 15 Let L1(≤,∨,∧,⊥1,⊤1) and L2(⊑,⊔,⊓,⊥2,⊤2) be two omplete latties.Let f ∈ L1 → L1 be a ontinous funtion, and let (α, γ) be a Galois onnetion between L1and L2 then:
lfp(f) ≤ γ(lfp(α ◦ f ◦ γ)) .



Chapter 3Domain Prediate AbstrationThe transition graph of a program is formed by its states and the transitions between them.The idea of prediate abstration [49℄ (used in tools suh as SLAM [7℄ and BLAST [54℄)is to abstrat a state by its evaluation under a number of given state prediates; eah edgebetween two onrete states in the transition graph gives rise to an edge between the twoorresponding abstrat states. One thus abstrats the transition graph to a graph overabstrat states.For a program manipulating the heap, eah state is represented by a heap graph. A heapgraph is formed by the alloated objets in the heap and pointer links between them. Theidea of three-valued shape analysis [103℄ is to apply to the heap graph the same abstrationthat we have applied to the transition graph. One abstrats an objet in the heap by itsevaluation under a number of prediates on heap objets; edges between onrete objetsin the heap graph give rise to edges between the orresponding abstrat objets. One thusabstrats a heap graph to a graph over abstrat objets.The analogy between prediate abstration and the abstration proposed in three-valuedshape analysis is remarkable. It does not seem helpful, however, when it omes to the majorhallenge: how an one ompute the abstration of the transition graph when states aregraphs and the abstration is de�ned on nodes of the graph? This hapter answers are�nement of this question, namely whether the abstration an be de�ned and omputedin the formal setup and with the basi mahinery of prediate abstration.In ompliane with Chapter 2, program states are represented as logial struturesrather than graphs. Thus, nodes in a graph orrespond to objets in a domain of a logialstruture. As in prediate abstration, the analysis is an abstrat interpretation [38℄ de�nedin terms of an abstrat domain of formulae. These formulae are onstruted from a �niteset of prediates. However, in ontrast to prediate abstration, the building bloks offormulae are not state prediates, but domain prediates, meaning that they range not justover states of a program, but also over objets in the domains of these states. The formulaede�ning the abstrat domain are given by universally quanti�ed fats over objets in thedomains of states. The building bloks of these fats are domain prediates. Thus, we donot just propose a generalization of prediate abstration suitable for shape analysis, butmore generally an analysis that enables the inferene of universally quanti�ed invariants.33



34 CHAPTER 3. DOMAIN PREDICATE ABSTRACTIONContributions. The key tehnial ontributions that are desribed in this hapter aresummarized as follows:
• We introdue a new abstrat domain for an analysis that infers universally quanti�edfats about objets in the domains of program states.
• We generalize prediate transformers to domain prediate transformers that apturethe e�et of onrete transitions on objets in the domains of states. As for predi-ate transformers, domain prediate transformers an be omputed symbolially viasyntati transformation of formulae.
• We show that one an implement the abstration by a simple soure-to-soure trans-formation of a program to an abstrat �nite-state program whih we all a Booleanheap program. This transformation is analogous to the orresponding transforma-tion in prediate abstration, exept that domain prediates take the plae of stateprediates and Boolean heaps (sets of bitvetors) take the plae of Boolean states(bitvetors).
• We formally identify the post operator of a Boolean heap program as an abstrationof the best abstrat post operator on our abstrat domain. For eah ommand of theprogram, the orresponding abstrat ommand is onstruted by the appliation ofa weakest liberal preondition operator on domain prediates and an entailment test(implemented by a syntati manipulation of formulae, respetively, by a all to adeision proedure or theorem prover).3.1 Boolean Heap ProgramsBefore we formally introdue domain prediate abstration, it is instrutive to highlight themain di�erenes and similarities to prediate abstration [49℄.Prediate Abstration. Following the framework of abstrat interpretation [38℄, a statianalysis is de�ned by lattie-theoreti domains and by �xed point iteration over these do-mains. For prediate abstration the analysis omputes an invariant (i.e., a superset ofthe reahable program states); the �xed point operator is an abstration of the operator

post; the onrete domain onsists of sets of states. The abstrat domain onsists of setsof abstrat states. The abstrat domain is a �nite sub-lattie of the onrete domain: eahabstrat state denotes an equivalene lass of states, an element of the abstrat domaindenotes a union of suh equivalene lasses. The equivalene lasses are indued by evalu-ating states under a �nite set of abstration prediates (losed formulae). Eah equivalenelass is represented by a bitvetor over abstration prediates, eah element of the abstratdomain by a set of suh bitvetors.The abstration of the post operator orresponds to a �nite-state Boolean program,one Boolean program variable per abstration prediate. Thus, a state of the Booleanprogram orresponds to an abstrat state. Eah transition of the onrete program givesrise to transition in the abstrat program that orresponds to a simultaneous update of theBoolean variables.



3.1. BOOLEAN HEAP PROGRAMS 35General shemeConrete ommand:
c

ExampleConrete ommand:var x :: int

x:= x + 1State prediates:
P = {p1, . . . , pn}

State prediates:
p1 ≡ x = 0, p2 ≡ x > 0Abstrat Boolean program:var p1, . . . , pn :: boolfor eah pi ∈ P doif wlp#(c)(pi) then pi:= trueelse if wlp#(c)(¬pi) then pi:= falseelse pi:= ∗

Abstrat Boolean program:var p1, p2 :: boolif false then p1:= trueelse if p1 ∨ p2 then p1:= falseelse p1:= ∗if p1 ∨ p2 then p2:= trueelse if ¬p1 ∧ ¬p2 then p2:= falseelse p2:= ∗Figure 3.1: Constrution of a Boolean program from a onrete ommand via prediateabstration. All prediates are updated simultaneously. The value '*' stands for nondeter-ministi hoie.Figure 3.1 shows the transformation of a onrete ommand to the orresponding pred-iate updates in the abstrat Boolean program. The atual abstration step lies in theomputation of wlp#(c)(p) � the best Boolean under-approximation (in terms of abstra-tion prediates) of the weakest liberal preondition of prediate p and ommand c. Forexample false is the best under-approximation of wlp(x:= x + 1)(x = 0) with respet toprediates p1 and p2. The abstrat weakest liberal preonditions are omputed automati-ally by heking validity of entailments using a deision proedure or automated theoremprover.The resulting Boolean program is analyzed using �nite-state model heking. If the errorloation is not reahable in the abstrat program, then the onrete program is guaranteedto be safe.Domain Prediate Abstration. Our analysis proeeds analogously to prediate ab-stration: (1) we hoose a set of abstration prediates for the abstration (de�ning theabstrat domain); (2) we onstrut an abstrat �nite-state program (the abstrat post op-erator); and (3) we apply �nite-state model heking to the abstrat program (the �xedpoint omputation). In the following, we explain in detail how the abstrat domain and theonstrution of the abstrat program look like.In domain prediate abstration, we de�ne equivalene lasses of objets in the domainsof program states by evaluating them under a �nite set of domain prediates. A domainprediate ranges over both program states and objets in the domains of these states.Domain prediates are represented symbolially by domain formulae. A domain formula isobtained from a formula by �rst-order lambda abstration. As an example of suh a domain



36 CHAPTER 3. DOMAIN PREDICATE ABSTRACTIONformula, onsider the term
λv :: obj.next v = z .This term evaluates to true for a given objet in a given state, if the next �eld of this objetpoints to program variable z. We all the equivalene lasses indued by domain prediatesabstrat objets. Abstrat objets are represented by bitvetors over domain prediates. Anabstrat state is given by a set of abstrat objets, i.e., a set of bitvetors. A onrete state

s belongs to the equivalene lass represented by an abstrat state, if every onrete objetin the domain of s belongs to the equivalene lass represented by one abstrat objet inthe abstrat state. The abstrat domain of the analysis is given by sets of abstrat states,i.e., sets of sets of bitvetors.Intuitively, one an think of domain prediate abstration as prediate abstration beingexponentiated. This also means that domain prediate abstration is exponentially moresuint than standard prediate abstration assuming the same number of abstration pred-iates in both approahes. This additional preision enables domain prediate abstrationto express detailed properties about di�erent regions in the domains of program states byusing only a small number of prediates and makes domain prediate abstration appliablefor shape analysis. However, being exponentially more expressive also implies high ostsfor omputing the abstrat post operator. For an abstrat domain given by abstrat statesover abstrat objets it is exponentially more expensive to ompute the best abstrat postoperator than it is for standard prediate abstration. In order to avoid this exponentialblowup, one would like to approximate the best abstrat post operator by deomposing itinto loal updates. Loal means that one updates eah abstrat objet in isolation. Theproblem is: how an one aount for the update of the global state by loal updates onabstrat objets?We abstrat a onrete program by a Boolean heap program. The abstration is illus-trated in Figure 3.2. The onstrution of a Boolean heap program naturally extends theone used in prediate abstration. The di�erene is that a state of the abstrat programis not given by a single bitvetor, but by a set of bitvetors. Transitions in Boolean heapprograms hange the abstrat state via loal updates on abstrat objets (~p.pi:= true) ratherthan global updates on the whole abstrat state (pi:= true). Consequently, we replae theabstration of the weakest liberal preondition operator on state prediates wlp# by theabstration of a weakest liberal preondition operator on domain prediates ˙wlp
#. Thisonstrution avoids the exponential blowup that ours in the onstrution of the best ab-strat post operator on abstrat states. However, the analysis still provides an exponentiallymore suint abstrat domain than standard prediate abstration.In the rest of the hapter we give a formal aount of Boolean heap programs. Inpartiular, we make preise what it means to ompute the operator ˙wlp

#. Furthermore, weidentify the post operator of a Boolean heap program as an abstration of the best abstratpost operator on our abstrat domain. Thus, we preisely identify the points in the analysiswhere we an lose preision.



3.2. DOMAIN PREDICATES 37General shemeConrete ommand:
c

ExampleConrete ommand:var x, y, z :: list

x.next := yDomain prediates:
P = {p1, . . . , pn}

Domain prediates:
p1 ≡ λv. x = v, p2 ≡ y = z,

p3 ≡ λv. next(v) = zBoolean heap program:var V :: set of bitvetors over Pfor eah ~p ∈ V dofor eah pi ∈ P doif ~p ∈ ˙wlp
#

(c)(pi)then ~p.pi:= trueelse if ~p ∈ ˙wlp
#

(c)(¬pi)then ~p.pi:= falseelse ~p.pi:= ∗

Boolean heap program:var V : set of bitvetors over {p1, p2, p3}for eah ~p ∈ V doif ~p.p1 then ~p.p1:= trueelse if ¬~p.p1 then ~p.p1:= falseif ~p.p2 then ~p.p2:= trueelse if ¬~p.p2 then ~p.p2:= falseif ¬~p.p1 ∧ ~p.p3 ∨ ~p.p1 ∧ ~p.p2 then
~p.p3:= trueelse if ¬(¬~p.p1 ∧ ~p.p3 ∨ ~p.p1 ∧ ~p.p2)then ~p.p3:= falseFigure 3.2: Constrution of a Boolean heap program from a onrete ommand.3.2 Domain PrediatesIn prediate abstration a state is abstrated by its evaluation under a �nite number ofprediates. These prediates are state prediates, i.e., sets of program states. As an example,onsider the formula

F ≡ x > 0 .Formula F denotes the prediate [[F ]]. A state s is in the denotation of F if s(x) is greaterthan 0. We generalize prediate abstration by onsidering prediates that do not just rangeover states, but also over objets in the domains of these states. As an example, onsiderthe term
G ≡ λv :: obj. f v = z .Given a state s, the term G evaluates to true for an objet ∈ s(obj) if its �eld f points toprogram variable z. Intuitively, the denotation [[G]] is a funtion of a dependent type

Πs ∈ States . s(obj) � {0, 1} .For tehnial reasons, we use an equivalent representation of the denotation of suh terms.We are not interested in arbitrary logial strutures, but in logial strutures that orrespondto program states. All remaining de�nitions in this hapter are subjet to a partiularprogram P . For onveniene we �x a partiular program P = (Σ,D,X,L, ℓ0, ℓE ,T ) for the



38 CHAPTER 3. DOMAIN PREDICATE ABSTRACTIONrest of this hapter and keep all dependenies on P impliit. Reall that the domains of allprogram states of program P are �xed by the domain mapping D. Thus, we an de�ne thedenotation of term G as follows:
[[G]] ∈ D(obj) � 2States

[[G]] = λo ∈ D(obj). { s ∈ States | s, [v 7→ o] |= f v=x }

= λo ∈ D(obj). [[f v=x]]D,[v 7→o] .These onsiderations suggest the following formal de�nition of domain prediates.De�nition 16 (Domain Prediates) A domain prediate p over basi types b1, . . . , bn isa funtion
p ∈ (D(b1) × · · · × D(bn)) � 2States .We all n the arity of p and we denote by DomPreds(D(b1) × · · · × D(bn)) the set of alldomain prediates over basi types b1, . . . , bn. A term F of the form

λv1 :: b1 . . . vn :: bn. Gwhere G is a losed formula, is alled a domain formula. The denotation of a domainformula is a domain prediate:
[[F ]]

def
= λ~o ∈ (D(b1) × . . . × D(bn)). [[G]]D,[~v 7→~o] .A domain formula is obtained by lambda abstration from a formula. Thus, we anthink of sets of states as 0-ary domain prediates. This observation suggest that we anlift operations on sets of states to operations on domain prediates. In partiular, we anobtain a partial order ⊆̇ on domain prediates by point-wise lifting set inlusion on sets ofstates as follows: let p and q be domain prediates over the same domain Dom then wede�ne:

p ⊆̇ q
def
⇐⇒ ∀~o ∈ Dom. p(~o) ⊆ q(~o) .Likewise, we lift set union ∪ and intersetion ∩ to operations ∪̇ and ∩̇ on domain prediates.Let p and q be domain prediates over the same domain Dom then we de�ne:

p ∪̇ q
def
= λ~o ∈ Dom. p(~o) ∪ q(~o)

p ∩̇ q
def
= λ~o ∈ Dom. p(~o) ∩ q(~o) .The order ⊆̇ together with the operations ∪̇ and ∩̇ indue a lattie struture.Proposition 17 The domain prediates over ommon domain Dom form a ompletely dis-tributive lattie with partial order ⊆̇, join ∪̇, meet ∩̇, least element λ~o ∈ Dom . ∅, and greatestelement λ~o ∈ Dom. States.Proof. Follows from Proposition 8 and Proposition 9.Not only an we lift the lattie struture of sets of states to domain prediates, wean further lift prediate tranformers (whih are operations on sets of states) to domainprediate transformers.



3.2. DOMAIN PREDICATES 39De�nition 18 (Domain Prediate Transformers) The domain prediate transformers
˙post and ẇlp for domain prediates over ommon domain Dom are de�ned as follows:

˙post, ˙wlp ∈ 2(States × States) � DomPreds(Dom) � DomPreds(Dom)

˙post(R)(p)
def
= λ~o ∈ Dom. post(R)(p(~o))

˙wlp(R)(p)
def
= λ~o ∈ Dom.wlp(R)(p(~o)) .For a given domain prediate p, we all ˙post(R)(p) the strongest domain postondition and

˙wlp(R)(p) the weakest domain preondition of p with respet to relation R.Domain prediate transformers are one of the key inredienes that allow us to hara-tierize Boolean heap programs. Sine the domain prediate transformers are obtained fromthe standard prediate transformers via a simple lifting, their harateristi properties arepreserved. In partiular, ˙post and ẇlp form a Galois onnetion on the omplete lattie ofdomain prediates.The intuition behind domain prediate transformers beomes more lear when one rep-resents domain prediates in terms of domain formulae. As in the ase of prediate trans-formers post and wlp, we an haraterize domain prediate transformers in terms of syn-tati transformations of domain formulae. For instane, onsider the domain formula
G ≡ (λv :: obj. f v = z) then the weakest domain preondition of domain prediate [[G]] andommand c = (x.f := y) is given by:

˙wlp([[c]])([[G]]) = λo ∈ D(obj).
{

s | ∀s′. (s, s′) ∈ [[c]] ⇒ s′ ∈ ([[G]](o))
}

= [[G[f := λv :: obj. if x = v then y else f v]]]

= [[λv :: obj. (λv :: obj. if x = v then y else f v) v = z]]

= [[λv :: obj. x = v ∧ y = z ∨ x 6= v ∧ f v = z]] .The resulting formula denotes the domain prediate that given an objet o ontains allstates s where the f -suessor of o is pointed to by z in the suessor state of s under c.The orretness of the transformation performed in the above example is justi�ed bythe following proposition.Proposition 19 Let F be a domain formula over domain Dom. The weakest domainpreondition of the domain prediate [[F ]] is haraterized as follows:
˙wlp([[x:= E]])([[F ]]) = [[F [x:= E]]]

˙wlp([[havoc(x)]])([[F ]]) = [[λ~v.∀w. (F ~v)[x:= w]]] with w 6∈ FV(F ~v)

˙wlp([[assume(E)]])([[F ]]) = [[λ~v.E → F ~v]]

˙wlp([[c1; c2]])([[F ]]) = [[λ~v.wlp(c1)(wlp(c2)(F ~v))]] .Proof. Let t(c, F ) be the syntati transformation on domain formulae F that is de�nedby the right-hand sides of the equations given for eah kind of ommand c. Then for all



40 CHAPTER 3. DOMAIN PREDICATE ABSTRACTIONommands c and domain formulae F of form λ~v. G:
˙wlp([[c]])([[F ]]) = λ~o ∈ Dom. wlp([[c]])([[F ]](~o)) (Def. of ˙wlp)

= λ~o ∈ Dom. wlp([[c]])([[G]]D,[~v 7→~o])

= λ~o ∈ Dom. [[t(c,G)]]D,[~v 7→~o] (Prop. 1)
= λ~o ∈ Dom. [[t(c, F )]](~o)

= [[t(c, F )]] .Given the haraterization of ˙wlp in Proposition 19, it is onvenient to overload ˙wlpto an operator on domain formulae in the same way we extended wlp to an operator onformulae. Thus, for a domain formula F and ommand c we denote by ˙wlp(c)(F ) theorresponding domain formula that is given on the right-hand side of the orrespondingequation in Proposition 19.3.3 Domain Prediate AbstrationWe now formally introdue domain prediate abstration. Following the framework ofabstrat interpretation [37℄, we formalize the abstration in terms of a Galois onnetionbetween a onrete and an abstrat lattie. In domain prediate abstration, we havetwo onrete and two abstrat latties that are de�ned in terms of eah other and twoGalois onnetions, eah onneting one pair of abstrat and onrete lattie. The onretelatties are sets of states, respetively, domain prediates and the abstrat latties are setsof abstrat states, respetively, sets of abstrat objets.3.3.1 Abstrat DomainsThe abstrat domains of our analysis is parameterized by a �nite set of domain prediates.For the rest of this hapter we �x a partiular �nite set of domain prediates P. We assumethat all prediate in P range over the same domain whih we denote by dom(P).De�nition 20 (Abstrat Objets) We all a funtion o# mapping abstration prediatesin P to values in {{0} , {1} , {0, 1}} an abstrat objet. We denote by AbsObjs the powersetover abstrat objets, i.e.:
AbsObjs

def
= 2P→{{0},{1},{0,1}}.We de�ne a relation ⊑̇ on sets of abstrat objets as follows: let O#

1 , O#
2 ∈ AbsObjs then

O#
1 ⊑̇ O#

2
def
⇐⇒ ∀o#

1 ∈ O#
1 .∃o#

2 ∈ O#
2 .∀p ∈ P. o#

1 (p) ⊆ o#
2 (p) .The relation ⊑̇ forms a preorder on sets of abstrat objets. For onveniene we identify

AbsObjs with the quotient (AbsObjs/(⊑̇ ∩ ⊑̇
−1

)) and onsider elements of AbsObjs asrepresentatives of their equivalene lass in the quotient. Then ⊑̇ forms a partial order onsets of abstrat objets.



3.3. DOMAIN PREDICATE ABSTRACTION 41We an de�ne a funtion expandmapping sets of abstrat objets to sets of total funtions
P → {{0} , {1}} as follows:

expand ∈ AbsObjs → 2P→{{0},{1}}

expand(O#)
def
=

⋃

o#∈O#

{

f | ∀p ∈ P. f(p) ⊆ o#(p)
}The funtion expand is bijetive. In fat, expand is an order isomorphism between sets ofabstrat objets ordered by ⊑̇ and the powerset over funtions P → {{0} , {1}} ordered byset inlusion. We an de�ne join and meet operations on sets of abstrat objets, as follows:let O#

1 and O#
2 be sets of abstrat objets then:

O#
1 ⊔̇ O#

2
def
= expand(O#

1 ) ∪ expand(O#
2 )

O#
1 ⊓̇ O#

2
def
= expand(O#

1 ) ∩ expand(O#
2 ) .Thus, by onstrution expand forms a lattie isomorphism between sets of abstrat objetsand the free lattie over funtions P → {{0} , {1}}.Proposition 21 Sets of abstrat objets AbsObjs form a omplete lattie with partial order

⊑̇, join ⊔̇, meet ⊓̇, least element ∅, and greatest element {λp. {0, 1}}.The motivation for de�ning sets of abstrat objets as a lattie over funtions of type
P → {{0} , {1} , {0, 1}} rather than the free lattie over funtions P → {{0} , {1}} (or even
P → {0, 1}) will beome lear in Setion 3.4.2.De�nition 22 (Abstrat States) We all a set of abstrat objets abstrat state anddenote by AbsStates the powerset over abstrat states, i.e.:

AbsStates
def
= 2AbsObjs .We extend the partial order ⊑̇ on sets of abstrat objets to a preorder ⊑ on sets of abstratstates as follows: let S#

1 , S#
2 be sets of abstrat states then

S#
1 ⊑ S#

2
def
⇐⇒ ∀s#

1 ∈ S#
1 . ∃s#

2 ∈ S#
2 . s#

1 ⊑̇ s#
2 .Again, we identify elements in AbsStates with their equivalene lasses in the quotient

(AbsStates/(⊑ ∩ ⊑−1)) whih gives us a partial order ⊑ on sets of abstrat states. Thepartial order ⊑ again indues join ⊔ and meet ⊓ operations on sets of abstrat states:
S#

1 ⊔ S#
2

def
= expand(S#

1 ) ∪ expand(S#
2 )

S#
1 ⊓ S#

2
def
= expand(S#

1 ) ∩ expand(S#
2 ) .Proposition 23 Sets of abstrat states AbsStates form a omplete lattie with partial order

⊑, join ⊔, meet ⊓, least element ∅, and greatest element {{λp. {0, 1}}}.



42 CHAPTER 3. DOMAIN PREDICATE ABSTRACTION3.3.2 ConretizationWe now de�ne funtions that assign meaning to elements in the abstrat domains by map-ping them to elements in the onrete domains.A set of abstrat objets denotes a Boolean ombination of domain prediates in P.Formally, we de�ne a funtion γ̇ that maps sets of abstrat objets to domain prediates asfollows:
γ̇ ∈ AbsObjs � DomPreds(dom(P))

γ̇(O#)
def
=

˙⋃

o#∈O#

˙⋂

p∈P

po#(p)

where pi =











p if i = {1}

λ~o ∈ dom(P). p(~o) if i = {0}

λ~o ∈ dom(P). States otherwise .For the onretization of a single abstrat objet o# we will write γ̇(o#) instead of γ̇({o#}).A onrete state s is represeted by an abstrat state s# if every tuple of domain objetsin s is represented by some abstrat objet in s#. Formally, the meaning funtion γ thatmaps sets of abstrat states to sets of states is de�ned in terms of γ̇ as follows:
γ ∈ AbsStates � 2States

γ(S#)
def
=

⋃

s#∈S#

⋂

~o∈dom(P)

γ̇(s#)(~o) .Again, for the onretization of a single abstrat state s# we will write γ(s#) instead of
γ({s#}).Proposition 24 The following properties hold:1. γ̇ is a omplete meet morphism between sets of abstrat objets and domain prediates2. γ̇ is a omplete join morphism between sets of abstrat objets and domain prediates3. γ is a omplete meet morphism between sets of abstrat states and sets of states4. γ is a omplete join morphism between sets of abstrat states and sets of states.Proof. Properties 2 and 4 immediately follow from the de�nition of γ̇, respetively, γ. Forproving property 1, let O# ⊆ AbsObjs. Let further I be an index set for the elements in
O#, i.e., O# = {O#

i | i ∈ I }. In addition, let for eah i ∈ I, Ji be an index set for theelements in O#
i ∈ O#, i.e., for all i ∈ I, O#

i = { o#
i,j | j ∈ Ji }. Finally, let F be the set ofall funtions mapping an index i ∈ I to some index j ∈ Ji. Now, de�ne for f ∈ F :

o#
f

def
= λp ∈ P.

⋂

i∈I

o#
i,f(i)(p)

O#
f

def
=

{

{o#
f } if for all p ∈ P, o#

f (p) 6= ∅

∅ otherwise.



3.3. DOMAIN PREDICATE ABSTRACTION 43Then we an haraterize the greatest lower bound of O# as follows:
l̇

O# =
˙⊔

f∈F

O#
f .We then have:

γ̇(
l̇

O#) = γ̇(
˙⊔

f∈F

O#
f ) =

˙⋃

f∈F

γ̇(O#
f ) (by Property 2)

=
˙⋃

f∈F

{

˙⋂
p∈P po

#
f

(p) if O#
f 6= ∅

λ~o ∈ dom(P). ∅ otherwise
=

˙⋃

f∈F

˙⋂

p∈P

˙⋂

i∈I

p
o
#
i,f(i)

(p)
=

˙⋃

f∈F

˙⋂

i∈I

˙⋂

p∈P

p
o
#
i,f(i)

(p)

=
˙⋂

i∈I

˙⋃

j∈Ji

˙⋂

p∈P

po
#
i,j

(p) (by Proposition 17)
=

˙⋂

i∈I

γ̇(O#
i ) =

˙⋂{

γ̇(O#) | O# ∈ O#
}Furthermore, we have:

γ̇({λp ∈ P. {0, 1}}) =
˙⋂

p∈P

p{0,1} =
˙⋂

p∈P

(λ~o ∈ dom(P). States)

= λ~o ∈ dom(P). States .Thus, γ̇ is a omplete meet morphism.The proof of Property 3 is similar. It uses Property 1, Property 4, and the fat thatsets of states form a ompletely distributive lattie.3.3.3 AbstrationBy Proposition 24 funtions γ̇ and γ are omplete meet morphisms on there respetivedomains. This implies that they are the upper adjoints of Galois onnetions betweendomain prediates and sets of abstrat objets, respetively, between sets of states and setsof abstrat states. The lower adjoints of these Galois onnetions de�ne the most preiseover-approximation of a given set of states (domain prediate) in terms of abstrat states(abstrat objets). Formally, we de�ne abstration funtions α̇+ and α+ by these loweradjoints as follows:
α̇+ ∈ DomPreds(dom(P)) � AbsObjs

α̇+(p)
def
=

l̇{

O# ∈ AbsObjs | p ⊆̇ γ̇(O#)
}

α+ ∈ 2States � AbsStates

α+(S)
def
=

l{

S# ∈ AbsStates | S ⊑ γ(S#)
}

.



44 CHAPTER 3. DOMAIN PREDICATE ABSTRACTIONSine γ̇ and γ are also omplete join morphisms, they also form the lower adjoints ofGalois onnetions. The orresponding upper adjoints de�ne the most preise under-approximations of sets of states, respetively, domain prediates. These under-approximatingabstration funtions α̇− and α− are de�ned as follows:
α̇− ∈ DomPreds(dom(P)) � AbsObjs

α̇−(p)
def
=

˙⊔{

O# ∈ AbsObjs | γ̇(O#) ⊆̇ p
}

α− ∈ 2States � AbsStates

α−(S)
def
=
⊔

{

S# ∈ AbsStates | γ(S#) ⊑ S
}

.Proposition 25 The following properties hold:1. (α̇+, γ̇) and (γ̇, α̇−) form Galois onnetions between domain prediates and sets ofabstrat objets.2. (α+, γ) and (γ, α−) form Galois onnetions between sets of states and sets of abstratstates.Proof. The statement follows from Proposition 12, Proposition 24, and the de�nitions ofthe abstration funtions.It is instrutive to give a more intuitive haraterization of the abstration funtions. Ifwe onsider a onrete state s then the abstration funtion α+ maps the singleton {s} tothe smallest abstrat state that ontains state s. This abstrat state desribes the Booleanovering of domain objets ~o ∈ dom(P) with respet to the domain prediates in P. Inorder to desribe these smallest Boolean overings, we assign an abstrat objet α̇+(s, ~o) toevery tuple ~o ∈ dom(P) and state s. This abstrat objet represents the equivalene lassof all tuples of objets that satisfy the same domain prediates as ~o in s:
α̇+(s, ~o)

def
= α̇+(λ~o0 ∈ dom(P). if ~o = ~o0 then {s} else ∅)

= {λp ∈ P. if s ∈ p(~o) then {1} else {0}} .The smallest abstrat state that ontains s onsists of all equivalene lasses α̇+(s, ~o) for
~o ∈ dom(P). Figure 3.3 visualizes this fat. Formally, the abstration of a set of states S isharaterized by the following proposition.Proposition 26 Let S be a set of states. Then α(S) is haraterized as follows:

α+(S) =
⊔

s∈S







˙⊔

~o∈dom(P)

α̇+(s, ~o)







.
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o α+(s1, o)

dom(P)

oα+(s2, o)

dom(P)

Figure 3.3: The abstrat states for two states s1 and s2. The same objet o ∈ dom(P) fallsinto di�erent equivalene lasses α̇+(s1, o) and α̇+(s2, o) for eah of the states s1 and s2.This leads to a di�erent Boolean overing of the set dom(P) in the two states and hene todi�erent abstrat states.3.3.4 Symboli Representation of Abstrat StatesWe an symbolially represent the onretization of abstrat states in terms of losed formu-lae. Assume that abstration prediates in P have arity n and assume that eah abstrationprediate p ∈ P is given by the denotation of a domain formula Fp. For a variable vetor
~v = (v1, . . . , vn) we write F (~v) for the formula that is obtained by applying domain formulae
F to the variables v1, . . . , vn:

(. . . (F v1) . . . ) vn .The onretization of a set of abstrat states is the denotation of a disjuntion of universallyquanti�ed Boolean ombinations of domain formulae:
γ(S#) = [[

∨

s#∈S#

∀~v.
∨

o#∈s#

∧

p∈P

F o#(p)
p (~v)]]

where F i =











F if i = {1}

λ~v.¬F (~v) if i = {0}

λ~v. true if i = {0, 1} .Consequently, an abstrat interpretation based on domain prediate abstration an be usedto infer invariants that express universally quanti�ed properties over domain objets.Example 27 We now give a onrete example of an abstrat state and its onretization.Assume a heap program that manipulates objets with a single referene �eld next . Givena program variable x in suh a heap program, we de�ne two kinds of domain prediates interms of the following domain formulae:
p(x)

def
= λv. x = v

r(x)
def
= λv. next∗ x v .Domain formula p(x) denotes the singleton objet pointed to by program variable x, whiledomain formula r(x) denotes the set of all objets that are reahable from x by following

next �elds in the heap. We will use these domain formulae throughout the next examples.Thereby, we will take the notational liberty and identify domain formulae with the domainprediates that they denote.
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o#
1 o#

2 o#
3

x null
next next next next

o#
4 o#

1 o#
3

x null
next next next next

Figure 3.4: Two onrete program states represented by Boolean heap {o#
1 , o#

2 , o#
3 , o#

4 } inExample 27.Assume that the set of abstration prediates is given by P = {p(x), p(null), r(x)}. Nowonsider the following 4 abstrat objets over P:
o#
1 = [p(x)7→ {1} , p(null)7→ {0} , r(x)7→ {1}]

o#
2 = [p(x)7→ {0} , p(null)7→ {0} , r(x)7→ {1}]

o#
3 = [p(x)7→ {0} , p(null)7→ {1} , r(x)7→ {1}]

o#
4 = [p(x)7→ {0} , p(null)7→ {0} , r(x)7→ {0}]The abstrat state s# = {o#

1 , o#
2 , o#

3 , o#
4 } represents all states that ontain at least one non-empty, null-terminated list that is pointed to by program variable x. Figure 3.4 shows twoonrete states that are in the onretization γ({s#}) of abstrat state s#. The framed boxesindiate the equivalene lasses of heap objets that are desribed by the abstrat objets in

s#. Note that the onretization funtion γ does not enfore that these equivalene lassesare non-empty, i.e., the �rst state is also represented by the Boolean heap {o#
1 , o#

2 , o#
3 } andthe seond state by the Boolean heap {o#

1 , o#
3 , o#

4 }.
�3.4 Abstrat Post OperatorWe now formally haraterize the abstrat post operator on sets of abstrat states thatorresponds to the post operator of a Boolean heap program. We haraterize the abstrat



3.4. ABSTRACT POST OPERATOR 47post operator assoiated with individal ommands rather than the whole program. The ex-tension from ommands to programs is straightforward. In the following, we �x a ommand
c and onsider all appliations of prediate transformers with respet to this partiularommand.Aording to [38℄ for a Galois onnetion with upper and lower adjoints (α+, γ) thatonnets the onrete and abstrat domain, the best abstrat post operator post# that isan abstration of the onrete post operator post is given by the omposition of α+, postand γ. Thus, for domain prediate abstration the image of a set of abstrat states S#under post# is given by:

post#(S#)
def
= α+ ◦ post ◦ γ(S#)

=
⊔

s′∈post(γS#)

α(s′) .Sine the onretization of a set of abstrat states is in general a set of in�nite ardinality,we an only ompute post#(S#) indiretly. If we represent the onretization of abstratstates symbolially in terms of formulae then we an hek for eah abstrat state overabstration prediates P whether it is ontained in post#(S#). This hek an be enodedinto a deision proedure query. Assuming that n is the number of domain prediates in
P, onsidering all 22n abstrats states expliitly results in a doubly-exponential number ofdeision proedure alls for the omputation of post#(S#). In the following, we develop anapproximation of the best abstrat post operator post# that in theory requires worst-aseexponentially many deision proedure alls and in pratie an be implemented using onlypolynomially many alls to a deision proedure. We formally haraterize this abstratpost operator in terms of an abstration of post by omposition of post# with upper losureoperators.3.4.1 Context-sensitive AbstrationNote that the best abstrat post operator distributes over joins in the abstrat domain, i.e.,we an ompute post#(S#) by omputing the join of post#({s#}) for all abstrat states
s# ∈ S#. We therefore haraterize the abstration of post# on abstrat states rather thansets of abstrat states. As illustrated in Fig. 3.5, the problem is that even if we apply post#to a single abstrat state s#, its image under post# will in general be a set of abstratstates. Our �rst approximation is to abstrat the resulting set of abstrat states by asingle abstrat state. We an think of this abstration as merging all Boolean overings ofdomain objets represented by abstrat states in post#({s#}) into a single one, or in otherwords, by pushing the universal quanti�ers in the onretization of post#({s#}) over theouter disjuntion. The resulting single abstrat state represents a overing of all domainobjets for all states that are represented by post#({s#}). Tehnially this abstration isaomplished by restriting the best abstrat post operator to singleton sets of abstratstates. We denote by AbsState the set of all singletons of abstrat states. If we restrit theorder ⊑ to AbsState then we obtain again a omplete lattie. We use the same symbols forjoin and meet operations on AbsState that we use for the lattie AbsStates . It will alwaysbe lear from the ontext whih lattie we are referring to. We write α+|AbsState for the
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dom(P)

s#

post# ⊔

dom(P)

αC

post#({s#})

dom(P)

dom(P)

post#|AbsState(s
#)Figure 3.5: Appliation of post# to a single abstrat state s# and the abstration of theresulting set of abstrat states by restriting post# to singleton sets of abstrat states.abstration funtion α+ restrited to singletons of abstrat states. Our �rst abstration of

post# is then desribed by the following abstrat post operator:
post#|AbsState ∈ AbsState → AbsState

post#|AbsState

def
= α+|AbsState ◦ post ◦ γ .We an think of the operator post#|AbsState as the abstration of post under a new Galoisonnetion. This new Galois onnetion is obtained by omposing the Galois onnetion

(α+, γ) with a Galois onnetion (αC, γC) that onnets AbsStates and AbsState:
αC ∈ AbsStates → AbsState

αC def
= λS#.

l{

{s#} ∈ AbsState | S# ⊑ {s#}
}

γC ∈ AbsState → AbsStates

γC def
= id .Then we get the following haraterization of operator post#|AbsState :

post#|AbsState = αC ◦ post# ◦ γC .It follows that post#|AbsState is an abstration of post#.Proposition 28 The abstrat post operator post#|AbsState is an abstration of the best ab-strat post operator post#, formally for all abstrat states s#:
post#({s#}) ⊑ post#|AbsState({s

#}) .The operator post#|AbsState omputes the new Boolean overing for all domain objets inthe post states of states represented by an abstrat state s#. We an therefore haraterizethis operator in terms of an abstrat domain prediate transformer. For this purpose, we



3.4. ABSTRACT POST OPERATOR 49may de�ne the best abstrations of the strongest domain postondition ˙post with respetto the given abstration prediates as follows:
˙post

#
∈ AbsObjs → AbsObjs

˙post
# def

= α̇+ ◦ ˙post ◦ γ̇Given a set of abstrat objets O# the operator ˙post
# omputes the smallest overing ofobjets represented by O# in arbitrary post states under the given ommand. Can weompute post#|AbsState({s

#}) by applying operator ˙post
# to the set of abstrat objetsgiven by s#? Unfortunately, operator ˙post

# is not quite su�ient in order to haraterize
post#|AbsState({s

#}) preisely: we are not interested in Boolean overings of domain objetsin arbitrary post states, but in Boolean overings of domain objets in post states of statesthat are represented by {s#}. We need to take into aount the ontext and restrit theoperator ˙post to states that are represented by {s#}. For this purpose we introdue a familyof ontext-sensitive domain prediate transformers.De�nition 29 (Context-sensitive Domain Prediate Transformers) Let S be a setof states. The ontext-sensitive domain prediate transformers with respet to S are de�nedas follows:
˙postS ∈ DomPreds(dom(P)) → DomPreds(dom(P))

˙postS(p)
def
= λ~o ∈ dom(P). post(S ∩ p(~o))

˙wlpS ∈ DomPreds(dom(P)) → DomPreds(dom(P))

˙wlpS(p)
def
= λ~o ∈ dom(P). S ∪ wlp(p(~o)) .Proposition 30 Let S be a set of states. The ontext-sensitive domain prediate transform-ers ˙postS and ˙wlpS form a Galois onnetion on domain prediates, i.e., for any domainprediates p and q:
˙postS(p) ⊆̇ q ⇐⇒ p ⊆̇ ˙wlpS(q) .Proof. We have for all sets of states S and domain prediates p and q:

˙postS(p) ⊆̇ q

⇐⇒ (λ~o ∈ dom(P). post(S ∩ p(~o))) ⊆̇ q

⇐⇒ ∀~o ∈ dom(P). post(S ∩ p(~o)) ⊆ q(~o)

⇐⇒ ∀~o ∈ dom(P). S ∩ p(~o) ⊆ wlp(q(~o))

⇐⇒ ∀~o ∈ dom(P). p(~o) ⊆ S ∪ wlp(q(~o))

⇐⇒ p ⊆̇ λ~o ∈ dom(P). S ∪ wlp(q(~o))

⇐⇒ p ⊆̇ ẇlpS(q) .The ontext-sensitive domain prediate transformers allow us to ompute the abstratpost on abstrat states by omputing an abstrat post on abstrat objets. The abstrat



50 CHAPTER 3. DOMAIN PREDICATE ABSTRACTIONpost on abstrat objets takes into aount the ontext of the given abstrat state. Wewould like to ontrol how muh ontext information is taken into aount. For this purposewe introdue an additional parameter to our analysis. This parameter allows us to adjustthe trade-o� between preision and e�ieny of the analysis.De�nition 31 (Context Operator) A ontext operator κ is a funtion mapping sets ofabstrat states to sets of states suh that κ is monotone and extensive with respet to γ, i.e.,for all sets of states S#, γ(S#) ⊆ κ(S#).The most preise ontext operator is the onretization funtion γ. The least preiseontext operator is the trivial one that maps any set of abstrat states S# to the full set ofstates.Given a ontext operator κ, we de�ne the ontext-sensitive abstrat domain prediatetransformers as follows:
˙post

#
κ ∈ AbsStates → AbsObjs → AbsObjs

˙post
#
κ (S#)

def
= α̇+ ◦ ˙postκ(S#) ◦ γ̇

˙wlp
#
κ ∈ AbsStates → AbsObjs → AbsObjs

ẇlp
#
κ (S#)

def
= α̇− ◦ ˙wlpκ(S#) ◦ γ̇ .Note that the ontext-sensitive abstrat domain prediate transformers are obtained byomposition of Galois onnetions. Therefore they form themselves a Galois onnetion.Proposition 32 Let S# be a set of abstrat states, then the pair ( ˙post

#
κ (S#), ˙wlp

#
κ (S#))is a Galois onnetion on sets of abstrat objets.Proof. By Proposition 25 the pairs (α̇+, γ̇) and (γ̇, α̇−) are Galois onnetions betweendomain prediates and sets of abstrat objets. Furthermore, by Proposition 30 the pair

(postκ(s#),wlpκ(s#)) is a Galois onnetion on domain prediates. Thus, by Proposition 13the pair (α̇+ ◦ postκ(s#),wlpκ(s#) ◦ γ̇) is a Galois onnetion between domain prediatesand sets of abstrat objets. Hene, again by Proposition 13 the pair (α̇+ ◦ postκ(s#) ◦

γ̇, α̇− ◦wlpκ(s#) ◦ γ̇) is a Galois onnetion on sets of abstrat objets.Now we an approximate the image of an abstrat state s# under abstrat post operator
post#|AbsState by applying the ontext-sensitive domain post operator to the abstrat objetsrepresented by s#.Proposition 33 Let s# be an abstrat state and let κ be a ontext operator. Applying

˙post
#
κ to s# results in an abstration of post#|AbsState({s

#}):
post#|AbsState({s

#}) ⊑ { ˙post
#
κ ({s#})(s#)} .
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post#|AbsState({s

#})

=
l{

{s#
1 } ∈ AbsState | post(γ({s#})) ⊆ γ({s#

1 })
}

=
l{

{s#
1 } ∈ AbsState | γ({s#}) ⊆ wlp(γ{s#

1 })
}

(1)

=

{

l̇{

O#
1 ∈ AbsObjs | γ({s#}) ⊆ wlp(γ{O#

1 })
}

}

=







l̇







O#
1 ∈ AbsObjs | γ({s#}) ⊆ wlp





⋂

~o∈dom(P)

γ̇(O#
1 )(~o)

















=







l̇







O#
1 ∈ AbsObjs | γ({s#}) ⊆

⋂

~o∈dom(P)

wlp(γ̇(O#
1 )(~o))













(2)

=

{

l̇{

O#
1 ∈ AbsObjs | ∀~o ∈ dom(P). γ({s#}) ∩ γ̇(s#)(~o) ⊆ wlp(γ̇(O#

1 )(~o))
}

}

(3)

⊑

{

l̇{

O#
1 ∈ AbsObjs | ∀~o ∈ dom(P). κ({s#}) ∩ γ̇(s#)(~o) ⊆ wlp(γ̇(O#

1 )(~o))
}

}

(4)

=

{

l̇{

O#
1 ∈ AbsObjs | ∀~o ∈ dom(P). γ̇(s#)(~o) ⊆ κ({s#}) ∪ wlp(γ̇(O#

1 )(~o))
}

}

=

{

l̇{

O#
1 ∈ AbsObjs | γ̇(s#) ⊆ ˙wlpκ({S#})(γ̇(O#

1 ))
}

}

=

{

l̇{

O#
1 ∈ AbsObjs | ˙postκ({s#})(γ̇(s#)) ⊆ γ̇(O#

1 )
}

}

(5)

= {α̇+ ◦ ˙postκ({s#}) ◦ γ̇(s#)}

= { ˙post
#
κ ({s#})(s#)}(1) follows from Proposition 14.(2) follows from Proposition 14 and Proposition 12, Statement 3.(3) follows from the tautology:

(∀~v. B(~v)) → ∀~v.A(~v) ≡ ∀~w. (∀~v.B(~v)) ∧ B(~w) → A(~w)(4) follows from the fat that κ is extensive.(5) follows from Proposition 30



52 CHAPTER 3. DOMAIN PREDICATE ABSTRACTIONThe proof of Proposition 33 indiates that there is only one reason for potential loss ofpreision when one uses the ontext-sensitive abstrat post to ompute the abstrat poston singletons of abstrat states, namely, the hoie of the ontext operator. If the ontextoperator takes into aount the full ontext in form of the abstrat state for whih the postis omputed then the two sides of the set inlusion in Proposition 33 beome equal.Corollary 34 The best abstrat post operator post#|AbsState on singleton sets of abstratstates is haraterized as follows:
post#|AbsState = λ{s#}. { ˙post

#
γ ({s#})(s#)} .Sine the operator ˙post

#
κ is the upper adjoint of a Galois onnetion on sets of abstratobjets, it distributes over joins. Thus, we have:

post#|AbsState({s
#}) ⊑ { ˙post

#
κ ({s#})(s#)}

=







˙⊔

o#∈expand(s#)

˙post
#
κ ({s#})({o#})







.Consequently, we an onstrut post#|AbsState({s
#}) by mapping loally eah abstrat objet

o# in s# to the new Boolean overing ˙post
#
κ ({s#})(

{

o#
}

) that represents all domain objetsin o# in the post states of s#. However, ˙post
#
κ ({s#})({o#}) will in general be a set ofabstrat objets. Essentially, we fae the same problem as in the ase of omputing post#:we would have to onsider all 2n abstrat objets over abstration prediates, in order toompute the preise image of a single abstrat objet under operator ˙post

#
κ . Therefore, weapply yet another abstration.3.4.2 Cartesian AbstrationAnalogously to the abstration of post# that is obtained by restriting post# to singletonsof abstrat states, we abstrat operator ˙post

#
κ by restriting it to singletons of abstratobjets. We denote by AbsObj the subset of AbsObjs that onsists of singleton sets ofabstrat objets. As in the ase of singletons of abstrat states, AbsObj forms a ompletelattie if we restrit the partial order ⊑̇ appropriately. Again we overload the symbolsfor joins and meets on AbsObjs to joins and meets on AbsObj . Now we de�ne a Galoisonnetion (α̇C, γ̇C) that onnets AbsObjs and AbsObj as follows:

α̇C ∈ AbsObjs → AbsObjs

α̇C def
= λO#.

l̇{

{o#} ∈ AbsObj | O# ⊑ {o#}
}

γ̇C ∈ AbsObj → AbsObjs

γ̇C def
= id .A more onstrutive haraterization of abstration funtion α̇C is given as follows:

α̇C(O#) =
{

λp ∈ P. O#(p)
}

where O#(p)
def
=
{

o#(p) | o# ∈ O#
}

.
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o1

o2

dom(P)

o#

˙post
#
κ

o1

o2

˙post
#
κ ({s#})({o#})

dom(P)

α̇C

o1

o2

α̇C( ˙post
#
κ ({s#})({o#}))

dom(P)

Figure 3.6: Appliation of ˙post
#
κ to a single abstrat objet o# and its approximationnunder Cartesian abstration.Thus, a set of abstrat objets O# is mapped to a single abstrat objets by projeting allabstrat objets in O# to the individual abstration prediates. This abstration prinipleis also known as Independant Attribute Abstration or Cartesian Abstration [8℄. Whenapplied to the abstrat post operator the e�et of Cartesian abstration is that one anupdate eah prediate in isolation.Figure 3.6 skethes the e�et of Cartesian abstration in our ontext. It abstratsall abstrat objets in the image under the operator ˙post

#
K by a single abstrat objet.Composing the operator ˙post

#
K with Cartesian abstration gives us our �nal abstration ofthe best abstrat post operator.De�nition 35 (Context-sensitive Cartesian Post) Let κ be a ontext operator. Theontext-sensitive Cartesian post for κ is de�ned as follows:

postCκ ∈ AbsStates → AbsStates

postCκ(S#)
def
=

⊔

s#∈S#







˙⊔

o#∈expand(s#)

α̇C ◦ ˙post
#
κ ({s#}) ◦ γ̇C({o#})







.There is a small tehnial inonveniene that is aused by Cartesian abstration. Notethat ˙post
#
κ ({s#})(s#) will always be a nonempty set of abstrat objets, as long as s#represents some onrete state that has a suessor under the given ommand. This is dueto the fat that all domains of logial strutures are guaranteed to be nonempty. However,if the given ommand is, e.g., an assume ommand and none of the states represented by s#satisfy the guard then no onrete post state exists. In this ase ˙post

#
κ ({s#})(s#) may be-ome empty. Unfortunately, there is no abstrat objet that represents the domain prediate

(λ~o ∈ dom(P). ∅) whih orresponds to the denotation of the empty set of abstrat objets,unless there are ontraditory prediates in P. Therefore, whenever ˙post
#
κ ({s#})(s#) be-omes empty then Cartesian abstration may lose preision. As we will show in Chapter 4,one an expliitly aount for this situation in order to avoid this loss of preision.The following theorem states soundness of the ontext-sensitive Cartesian post operator.Theorem 36 (Soundness of Cartesian Post) The ontext-sensitive Cartesian post isan abstration of post#. Formally, let κ be a ontext operator. Then For all sets of abstratstates S# we have

post#(S#) ⊑ postCκ(S#) .



54 CHAPTER 3. DOMAIN PREDICATE ABSTRACTIONProof. The statement follows immediately from Proposition 28, Proposition 33, and thede�nition of α̇C.We an now use abstrat weakest domain preonditions to haraterize the ontext-sensitive Cartesian post in terms of independent updates of individual prediates in abstratobjets. This shows that the ontext-sensitive Cartesian post operator for a given ommandorresponds to a Boolean heap program; f. Fig. 3.2.Theorem 37 (Charaterization of Cartesian Post) The ontext-sensitive Cartesian postfor ontext operator κ is haraterized as follows: for all sets of abstrat states S#:
postCκ(S#) =

⊔

s#∈S#







˙⊔

o#∈expand(s#)

{

λp ∈ P. upd(p, {s#}, {o#})
}







where upd(p, S#, O#)
def
=















{1} if O# ⊑̇ ˙wlp
#
κ (S#)({o#

p,1})

{0} if O# ⊑̇ ˙wlp
#
κ (S#)({o#

p,0})

{0, 1} otherwise

o#
p,i

def
= λp′ ∈ P. if p = p′ then {i} else {0, 1} .Proof. We need to show that the following equality holds for any abstrat state s# andabstrat objet o# ∈ expand(s#):

α̇C ◦ ˙post
#
κ ({s#}) ◦ γ̇C({o#}) =

{

λp ∈ P. upd(p, {s#}, {o#})
}

.We have by de�nition of α̇C and γ̇C:
α̇C ◦ ˙post

#
κ ({s#}) ◦ γ̇C({o#})

=
l̇{

{o#
1 } ∈ AbsObj | ˙post

#
κ ({s#})({o#}) ⊑̇ {o#

1 }
}

=
{

λp ∈ P. ˙post
#
κ ({s#})({o#})(p)

}

.Now it is easy to see that the following equality holds:
˙post

#
κ ({s#})({o#})(p) =











{1} if ˙post
#
κ ({s#})({o#}) ⊑̇ {o#

p,1}

{0} if ˙post
#
κ ({s#})({o#}) ⊑̇ {o#

p,0}

{0, 1} otherwise .Then the theorem follows from the fat that for any set of abstrat states S# we have that
˙post

#
κ (S#) and ẇlp

#
κ (S#) from a Galois onnetion on sets of abstrat objets.3.4.3 Symboli Computation of Abstrat PostThe haraterization of the ontext-sensitive Cartesian post given in Theorem 37 foussesthe abstration of a onrete ommand to the omputation of abstrat weakest domain



3.4. ABSTRACT POST OPERATOR 55preonditions of abstration prediates. We an automate the omputation of these abstratweakest domain preonditions using theorem provers. For instane, in order to ompute
˙wlpκ(S#)({o#

p,1}), the best under-approximation of ẇlpκ(S#)(p) with respet to abstrationprediates P and ontext S#, one needs to ompute the largest set of abstrat objets O#that satis�es:
∀~o ∈ dom(P). γ̇(O#)(~o) ⊆ κ(S#) ∪ ˙wlp(γ̇({o#

p,1}))(~o) (3.1)We an ompute the set O# by omputing the union of all abstrat objets that satisfyondition 3.1 and are minimal with respet to partial order ⊑̇. Assume again that everyabstration prediate p is represented by a domain formula Fp. Further, assume that ontextoperator κ maps abstrat states to losed formulae and onretization funtion γ̇ maps setsof abstrat objets to domain formulae. In order to hek whether some minimal abstratobjet o# satis�es ondition 3.1, we hek validity of the entailment:
κ(S#) ∧ γ̇({o#})(~v) |= ˙wlp(Fp)(~v) (3.2)Hereby γ̇({o#})(~v) is a omplete onjuntion of literals over the domain formulae Fp thatrepresent abstration prediates.Complexity of Analysis. The theoretial worst-ase omplexity of the analysis is dom-inated by the maximal number of iterations for omputing the least �xed point of theabstrat post operator. This number is bounded by the height of the abstrat domain,whih is doubly-exponential in the number of abstration prediates. However, in pratiethe running time is dominated by the number of deision proedure alls that are neededfor omputing abstrat weakest domain preonditions. The number of deision proedurealls is worst-ase exponential in the number of abstration prediates. In pratie, one anrestrit the entailment heks of the form 3.2 to abstrat objets that denote onjuntionsof a �xed length rather than omplete onjuntions. This gives a polynomial bound onthe number of deision proedure alls. In Chapter 6, we desribe an implementation ofthe ontext-sensitive Cartesian post and additional optimizations that further redue thenumber of deision proedure alls.Example 38 We want to onlude this setion with a onrete example that illustrates theomputation of the ontext-sensitive Cartesian post. Consider the following set of domainprediates:

P = {p(x), p(y), p(z), r(x), r(y), r(z)}and the following abstrat objets over P:
o#
1 = [p(x)7→ {0} , p(y)7→ {0} , p(z)7→ {1} , r(x)7→ {0} , r(y)7→ {0} , r(z)7→ {1}]

o#
2 = [p(x)7→ {0} , p(y)7→ {0} , p(z)7→ {0} , r(x)7→ {0} , r(y)7→ {0} , r(z)7→ {1}]

o#
3 = [p(x)7→ {1} , p(y)7→ {0} , p(z)7→ {0} , r(x)7→ {1} , r(y)7→ {0} , r(z)7→ {1}]

o#
4 = [p(x)7→ {0} , p(y)7→ {1} , p(z)7→ {0} , r(x)7→ {0} , r(y)7→ {1} , r(z)7→ {0}]

o#
5 = [p(x)7→ {0} , p(y)7→ {0} , p(z)7→ {0} , r(x)7→ {1} , r(y)7→ {1} , r(z)7→ {1}]



56 CHAPTER 3. DOMAIN PREDICATE ABSTRACTIONFigure 3.7 shows a onrete program state that is represented by abstrat state
s# = {o#

1 , o#
2 , o#

3 , o#
4 , o#

5 } .We ompute the abstrat post for the singleton {s#} and ommand x.next := y that updatesthe next �eld of objet x to objet y. The operator postCκ maps abstrat state s# to a newabstrat state
s#′

= {o#′
1, o

#′
2, o

#′
3, o

#′
4, o

#′
5} .Eah abstrat objet o#

i ∈ s# is updated to a new abstrat objet o#′
i ∈ s#′ by omputingnew values for eah domain prediate in isolation. For instane, in order to determinewhether o#

1 (r(z)) should be set to {1}, the following entailment is heked for validity:
γ(s#) ∧ γ(o#

1 ) |= next [x 7→ y]∗z v .This entailment holds beause o#
1 (r(z)) = {1} and o#

1 (r(x)) = {0}. Thus, o#
1

′
(r(z)) is setto {1}. The resulting abstrat objets in s#′ are as follows:

o#
1

′
= [p(x)7→ {0} , p(y)7→ {0} , p(z)7→ {1} , r(x)7→ {0} , r(y)7→ {0} , r(z)7→ {1}]

o#
2

′
= [p(x)7→ {0} , p(y)7→ {0} , p(z)7→ {0} , r(x)7→ {0} , r(y)7→ {0} , r(z)7→ {1}]

o#
3

′
= [p(x)7→ {1} , p(y)7→ {0} , p(z)7→ {0} , r(x)7→ {1} , r(y)7→ {0} , r(z)7→ {1}]

o#
4

′
= [p(x)7→ {0} , p(y)7→ {1} , p(z)7→ {0} , r(x)7→ {1} , r(y)7→ {1} , r(z)7→ {1}]

o#
5

′
= [p(x)7→ {0} , p(y)7→ {0} , p(z)7→ {0} , r(x)7→ {1} , r(y)7→ {1} , r(z)7→ {1}]Figure 3.7 shows a onrete state that is represented by abstrat state s#′.This example also niely demonstrates the importane of the ontext for the preision ofprediate updates. For instane, onsider the entailments that are heked for determiningthe value of o#

4 (r(z)). The entailment
γ(s#) ∧ γ̇(o#

4 ) |= next [x7→y]∗z vis valid beause γ(s#) entails next∗ z x and o#
4 (r(x))= {1}. However, the entailment

γ̇(o#
4 ) |= next [x7→y]∗z vis not valid. If the abstrat post would not take into aount the ontext of abstrat objet

o#
4 then o#

4

′
(r(z)) would be set to {0, 1}, i.e., the analysis would lose preision.

�3.5 Further Related WorkWe have shown that domain prediate abstration generalizes prediate abstration by usingthe key idea of three-valued shape analysis à la Sagiv, Reps, and Wilhelm [103℄. In thefollowing, we provide a more detailed omparison with these approahes and other shapeanalyses.



3.5. FURTHER RELATED WORK 57A state represented by abstrat state s# =
{

o#
1 , o#

2 , o#
3 , o#

4 , o#
5

}:
o#
1 o#

2 o#
3 o#

4 o#
5

z x y null
next next

next

next

A state represented by abstrat state s#′:
o#
1

′
o#
2

′
o#
3

′
o#
4

′
o#
5

′

z x y null
next next next next

Figure 3.7: Appliation of the ontext-sensitive Cartesian post to the abstrat state
{o#

1 , o#
2 , o#

3 , o#
4 , o#

5 } in Example 38.Three-valued Shape Analysis. In [103℄ Sagiv, Reps and Wilhelm desribe a parametriframework to shape analysis based on three-valued logi. They abstrat sets of states bythree-valued logial strutures. This anonial abstration is de�ned in terms of equivalenelasses of objets in the heap that are indued by a �nite set of prediates on heap objets.Adapting three-valued shape analysis to the analysis of spei� data strutures requires theuser to provide prediates and preomputed transfer funtions for these prediates. Reentapproahes enable the automati omputation of transfer funtions [81,100℄ some of whihare using deision proedures [118,120℄. Domain prediate abstration is inspired by three-valued shape analysis. In fat, there is a lose onnetion between the abstrat domainin [103℄ and ours: a translation from three-valued logial strutures, as they arise underanonial abstration, into formulae in �rst-order logi is given in [119℄. Shape analysisonstraints [69℄ haraterizes this lass in terms of a Boolean algebra of formulae that is iso-morphi to the lass of three-valued logial strutures obtained under anonial abstration;our abstrat domain subsumes the universal fragment of shape analysis onstraints.Prediate Abstration. Domain prediate abstration is a proper generalization of pred-iate abstration [49℄ that enables the inferene of universally quanti�ed invariants. Quan-ti�ed invariants are required for the veri�ation of quanti�ed properties whih naturallyour in programs with dynami memory alloation. Our analysis inorporated ideas suhas Cartesian abstration [8℄ that have been previously applied in the ontext of prediateabstration.In [98, 110℄ we presented the speial ase of Boolean heap programs where the arityof domain prediates is restrited to one and their domain to heap objets. The gener-



58 CHAPTER 3. DOMAIN PREDICATE ABSTRACTIONalization presented in this thesis is interesting for two reasons. First, it allows abstratstates in Boolean heap programs to quantify over relations between di�erent objets in theheap. Suh relations naturally our in many appliations, e.g., implementations of maps,instantiatable data strutures, and onurrent data strutures where an additional variablean be used to quantify over thread objets; see e.g. [16, 114℄. Seond, this generalizationallows abstrat states to quantify not just over heap objets, but over objets of arbitrarydomains, e.g., integers. Therefore, domain prediate abstration an be used for the veri�-ation of programs that are beyond the lassial appliation domain of shape analysis suhas programs manipulating arrays.Among the main approahes for dealing with quanti�ed invariants in prediate abstra-tion is the use of Skolem onstants [45℄, indexed prediates [71℄, range prediates [60℄, andthe use of abstration prediates that ontain quanti�ers.The key di�ulty in using Skolem onstants for shape analysis is that the properties ofindividual objets depend on the �ontext�, given by the properties of surrounding objets.A typial example of suh non-loal properties are reahability properties. In order to auto-matially verify suh properties it is not enough to use a �xed Skolem onstant throughoutthe analysis; it is instead neessary to instantiate universal quanti�ers from previous loopiterations, in some ases multiple times. Our analysis attempts to �nd a balane betweenthese extremes: it omputes the abstrat post loally on abstrat objets, but it still takesinto aount the ontext of surrounding objets.Compared to indexed prediates [71℄ our abstrat domain is more general beause itontains disjuntions of universally quanti�ed statements. The presene of disjuntions isnot only more expressive in priniple, but allows the analysis to keep formulae under theuniversal quanti�ers more spei�. This enables the use of less preise, but more e�ientalgorithms suh as Cartesian abstration for omputing hanges to properties of objets,without losing too muh preision in the overall analysis. Disjuntions also play an impor-tant role in the ontext of ounterexample-guided abstration re�nement; f. Chapter 4.Range prediates [60℄ are able to express quanti�ed properties over arrays. In priniple,range prediates ould also be used for shape analysis. However, the tehnique only appliesto linear data strutures suh as lists.Prediate abstration has also been used diretly for shape analysis; see e.g. [3, 19, 39℄.The advantage of using abstration tailored to shape analysis ompared to using globalprediates is that the parameters to shape-analysis-oriented abstration are properties ofobjets in a state, as opposed to global properties of a state, and the number of globalprediates that is needed to emulate shape analysis domains is exponential in the numberof properties [86℄.In template-based tehniques [17, 50℄ the user spei�es templates for quanti�ed invari-ants. The analysis �nds an invariant by automatially instantiating the template parame-ters. While [17℄ is spei� to the analysis of programs with arrays, [50℄ enables the liftingof a given abstrat interpretation to an abstrat interpretation over a quanti�ed abstratdomain. In partiular, this tehnique has been used to infer quanti�ed invariants for heap-manipulating programs.Other Shape Analyses. Our symboli shape analysis omputes the abstrat post loallyon abstrat objets rather than globally on the whole abstrat state. The idea of loal



3.6. CONCLUSION 59reasoning has also been exploited by other shape analyses [15, 28, 31, 34, 42, 51, 83℄ someof whih are based on separation logi [93, 94, 101℄. These analyses take a less generalapproah than domain prediate abstration; their abstrat domains are tailored towardsspei� programs and properties suh as memory safety of list-manipulating programs.However, these analysis an deliver impressive results for the programs they are designedfor [29, 51, 115℄.Some shape analysis are based on automata [22, 23, 25℄. The most general automata-based approah so far is desribed in [25℄. This method enodes heap programs into treetransduers. This enoding redues shape analysis to abstrat regular tree model heking[24℄. The enoding into tree transduers loses preision if the strutures observed in theheap program do not exhibit some regularity. It seems that the translation is preise forstrutures that are desribed by graph types [64℄ or some extension similar to what isaptured by our �eld onstraint analysis. We believe that our abstration is oneptuallysimpler. It is de�ned in terms of a omposition of the onrete post operator with upperlosure operators. Thus, it is sound by onstrution and we know preisely where it losespreision. Also, sine our abstrat domain is parameterized, there is no intrinsi restritionto spei� data strutures.3.6 ConlusionIn this hapter we proposed Domain Prediate Abstration. Domain prediate abstrationgeneralizes prediate abstration to the point where it beomes suitable for shape analysis.We showed how the abstration originally proposed in three-valued shape analysis an beast in the framework of prediate abstration. The onsequenes of our results are:
• a di�erent view on the underlying onepts of three-valued shape analysis.
• a framework of symboli shape analysis. Symboli means that the abstrat post op-erator is an operation over formulae and is itself onstruted solely by automatedreasoning.
• a lear phase separation between the omputation of the abstration and the om-putation of the �xed point. Among other potential advantages this allows the o�ineomputation of the abstrat post operator.
• the possibility to use e�ient symboli methods suh as BDDs or SAT solvers. Inpartiular, the abstrat post operator itself an be represented as a BDD.We formally haraterized the abstrat post operator of our analysis in terms of an ab-stration of the best abstrat post operator on sets of abstrat states. In the ourse of thisharaterization we identi�ed three soures for potential loss of preision:
• the restrition of the best abstrat post on sets of abstrat states to singleton sets ofabstrat states,
• Cartesian abstration on sets of abstrat objets,
• and the hoie of the ontext operator.



60 CHAPTER 3. DOMAIN PREDICATE ABSTRACTIONIn Chapter 4 we address the problem how to regain the preision that is lost due to the �rstand seond item.The ontext operator determines the trade-o� between e�ieny and preision of theanalysis. A less preise ontext operator will lose preision if the analysis attempts to keeptrak of non-loal properties suh as reahability. The most preise ontext operator isgiven by the onretization funtion on sets of abstrat states. However, hoosing a morepreise ontext operator might require reomputation of the abstration for eah individualappliation of the abstrat post. This defeats the purpose of separating the omputationof the abstration from the �xed point omputation and inreases the number of deisionproedure alls. In Chapter 6 we desribe a ontext operator that provides a good balanebetween preision and e�ieny.Domain prediate abstration does not a priori impose any restritions on the datastrutures and properties to verify. The apabilities of our analysis are determined bythe underlying deision proedur that is used for heking the entailments generated foromputing the abstration. There is ongoing researh on how to adapt or extend existingtheorem provers and deision proedures to the theories that are needed in the ontext ofshape analysis. We present one suh tehnique in Chapter 5.



Chapter 4Lazy Nested Abstration Re�nementIn the previous hapter we have developed domain prediate abstration, a new analysisthat generalizes prediate abstration to the point where it beomes e�etively appliableas a shape analysis. Domain prediate abstration provides a parameterized abstrat do-main and tehniques to automatially ompute the abstration for a given instane of theabstrat domain. However, the user of the analysis still needs to manually provide the rightabstration prediates in order to instantiate the analysis for the veri�ation of a partiularprogram and property. Can we push the degree of automation even further. In a wide rangeof existing program analyses [9, 30, 53℄, ounterexample-guided abstration re�nement [35℄provides an unmathed degree of automation by, essentially, instantiating a parameterizedabstrat domain automatially for a spei� program and a spei� orretness property. Inthis hapter we investigate the question whether it is possible to obtain the same automationin a shape analysis.We develop a lazy nested abstration re�nement tehnique for symboli shape analysis.Our abstration re�nement tehnique uses the notion of a spurious error trae whih is alsoused in [9,30,35,52,53℄. A spurious error trae is an error trae in the abstrat system thathas no orrespondene in the onrete system. We extrat new domain prediates from theproof of its spuriousness (in the spirit of [52℄ who, however, extrat state prediates). Wethus use a spurious error trae in order to automatially re�ne the abstrat domain.However, our new nested abstration re�nement loop uses spurious error traes to re�nenot only the abstrat domain but also the abstrat post operator on the abstrat domain.I.e., two re�nement phases are nested within a lazy abstration re�nement loop. The �rstphase re�nes the abstrat domain as desribed above. If a spurious error trae is not elim-inated by merely re�ning the abstrat domain, a seond phase alled Cartesian re�nementstarts. Cartesian re�nement uses the spurious error trae to inrease the preision of theabstrat post operator (its name refers to Cartesian abstration; see Chapter 3.4).As we will show in our experimental evaluation, the seond re�nement phase is ruialfor the pratial suess of our symboli shape analysis. In many benhmarks, the ver-i�ation does not sueed without. The pratial results are in line with the theoretial�ndings about the so-alled progress property [53℄. Progress means that every spuriouserror trae enountered during the analysis is eventually eliminated by a re�nement step.The shape analysis with Cartesian re�nement has the progress property and it does notwithout. In fat, it was this theoretial �nding that lead us to the nested re�nement and61



62 CHAPTER 4. LAZY NESTED ABSTRACTION REFINEMENTthe experimental suess on the above-mentioned benhmarks.Contributions. The tehnial ontributions of this hapter are summarized as follows:
• We develop a new abstration re�nement tehnique that re�nes both the abstratdomain of the analysis and the abstrat post operator on that abstrat domain.
• We show how this abstration re�nement tehnique an be ombined with lazy ab-stration [53℄.
• We prove that the resulting analysis is sound and has the progress property.4.1 ExampleIn the following, we disuss our nested abstration re�nement tehnique on an exampleprogram. While this example does not require the full power that the abstrat domain ofour symboli shape analysis provides, it illustrates all important aspets.Consider program ListFilter given in Figure 4.1. The left hand side shows the pseudoode of the program. The program iterates over a list pointed to by program variable firstand removes all nodes from the list whose data �eld is set to true. Our goal is to verifyabsene of null dereferenes. All but one dereferene are guarded by onditionals thatimply that the dereferened variable is not null. The ritial statement is the dereferene ofvariable tmp in the loop body. It is guarded by an assert statement. If we propagate thisassertion bak to loation ℓ1, we get the following formula:

NullCheck ≡ e 6=null ∧ data e ∧ prev 6=null → (next prev)6=nullThus, our goal is to verify that NullCheck is an invariant at loation ℓ1. The formula
NullCheck is implied by the following non-trivial indutive invariant Inv at loation ℓ1:

Inv ≡ prev 6=null → (next prev )=e .We an express invariant Inv in the abstrat domain of our symboli shape analysis as aset of abstrat states over unary domain prediates that denote sets of heap objets in agiven program state. The denotation of suh an abstrat domain element is given by thefollowing formula:
(∀v. p0 v ↔ p1 v) ∨ (∀v. p2 v ↔ p3 v)where the unary domain prediates p0 to p3 are given by:

p0 = (λv. prev=v), p1 = (λv. null=v),

p2 = (λv. (next prev )=v), p3 = (λv. e=v) .Our algorithm infers these prediates and synthesizes an invariant that implies the orret-ness of program ListFilter. We will now give a detailed presentation of our nested abstrationre�nement algorithm. In Setion 4.3 we will ome bak to the above example and explainin more details how program ListFilter is proved orret.
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ℓ0 : e:= first ;

prev := null;

ℓ1 : while e 6=null doif e.data thenif prev=null then
prev := e;

e:= e.next ;

first := e;

prev .next := null;

prev := null;else
e:= e.next ;

tmp:= prev .next ;assert(tmp 6=null);

tmp.next := null;

prev .next := e;else
prev := e;

e:= e.next ;

ℓ2 : done

ListFilter= (Σh, Dh, X,L, ℓ0, ℓE , T )
X= {next , data,first , prev , tmp, e}
L= {ℓ0, ℓ1, ℓ2, ℓE}
T = {τ0, τ1, τ2, τ3, τ4, τ5}

τ0 : (ℓ0,e:= first ;
prev := null, ℓ1)

τ1 : (ℓ1,assume(e 6=null);
assume(data(e));
assume(prev=null);
prev := e;
e:= next e;
first := e;
next :=next [prev := null];
prev := null, ℓ1)

τ2 : (ℓ1,assume(e 6=null);
assume(data e);
assume(prev 6=null);
e:= next e;
tmp:= next prev

assert(tmp 6=null);
next :=next [tmp:= null];
next :=next [prev := e], ℓ1)

τ3 : (ℓ1,assume(e 6=null);
assume(¬(data e));
prev := e;
e:= next e, ℓ1)

τ4 : (ℓ1,assume(e=null), ℓ2)
τ5 : (ℓ1,assume(¬NullCheck ), ℓE)Figure 4.1: Program ListFilter4.2 Lazy Nested Abstration Re�nementWe now present our lazy nested abstration re�nement algorithm1 in detail. We presentthe algorithm in a more abstrat setting and then identify neessary onditions on theunderlying analysis that guarantee soundness and progress of abstration re�nement. Inthe following setions we will prove that these onditions are satisi�ed by domain prediateabstration. Note, however, that the algorithm is also appliable for abstration re�nementof an analysis that uses Cartesian abstration on top of lassial prediate abstration.We assume a parametri abstrat domain AbsDom[P] over a set of abstration prediates

P. The abstration prediates P an either be state prediates or domain prediates. Weassume that the abstrat domain is equipped with a partial order ⊑, join ⊔ and meet ⊔operations, least element ⊥, and greatest element ⊤ suh that AbsDom[P](⊑,⊔,⊓,⊥,⊤) is1In general there is no guarantee that our method terminates. However, we stik to the term �algorihm�instead of �semi-algorithm�.



64 CHAPTER 4. LAZY NESTED ABSTRACTION REFINEMENTa omplete lattie. Furthermore, we assume funtions
α[P] ∈ 2States � AbsDom[P] and
γ[P] ∈ AbsDom[P] � 2Statessuh that (α[P], γ[P]) is a Galois onnetion between the latties AbsDom[P] and 2States .We assume that the onrete domain is given by sets of states. However, for notationalonveniene, we will often identify sets of state with formulae. In partiular, we assumethat for every onretization γ[P](S#) of some abstrat domain element S# ∈ AbsDom[P]there exists a formula whose models are given by the set γ[P](S#). For sets of abstrationprediates P1 and P2 suh that P1 ⊆ P2 we require that AbsDom[P1] is a sublattie of

AbsDom[P2] and for all sets of states S we have α[P2](S) ⊑ α[P1](S). We further requirethat γ[P] is a join morphism. Finally, we assume an abstrat post operator postA[P1,P2]that maps elements of the abstrat domain AbsDom[P1] to elements of AbsDom[P2] undera given ommand. We require that postA is monotone and an approximation of the onretepost operator, i.e., we assume that for all ommands c and s# ∈ AbsDom[P1] the followingondition holds:
post([[c]])(γ[P1](S

#)) ⊆ γ[P2](postA[P1,P2](c)(S
#)) .Our lazy nested abstration re�nement algorithm is shown in Figure 4.2. The proedure

LazyNestedRefine takes a program P = (L, ℓ0, ℓE ,T ) as input and onstruts an abstratreahability tree (ART) in the spirit of lazy abstration [53℄. An ART is a tree whereeah node r is labeled by a loation r.loc in L, a set of abstration prediates r.preds , andabstrat states r.states in AbsDom[r.preds ]. The root node r0 of the ART is labeled by theinitial loation r0.loc = ℓ0. Edges in the ART are labeled by ommands of transitions inprogram P . We write r
c
→ r′ to denote that there is an edge in the ART from node r tonode r′ whih is labeled by ommand c and we write r

π
→∗ r′ to indiate that there is a(possibly empty) path from r to r′ in the ART that is labeled by the sequene of ommands

π. Eah path r0
π
→∗ r that starts in the root node of the ART indued an abstrat trae.The abstrat trae onsists of the onseutive sequene of abstrat states labeling the nodeson the path and the ommands in π. We all an abstrat trae σ# = r0

c0→ . . .
cn−1
→ rn with

rn.loc = ℓE an abstrat error trae and we all the path π = (c0; . . . ; cn−1) the abstraterror path assoiated with σ. We say that σ# is feasible if there is some onrete trae
σ = s0

c0→ . . .
cn−1
→ sn of P that is represented by σ#, i.e., if for all i with 0 ≤ i ≤ n we have

si ∈ γ[ri.preds ](ri.states). An infeasible abstrat trae is alled spurious.The lazy nested abstration re�nement algorithm iteratively onstruts an ART untileither a �xed point is reahed and every trae of the program is ontained in some abstrattrae in the ART, or until the ART ontains a feasible abstrat error trae. If a spuriousabstrat error trae is enountered during the �xed point omputation then this trae isremoved from the ART and the orresponding abstrat error path is used to re�ne theabstration. We now desribe the algorithm in detail.The algorithm maintains a set of unproessed ART edges. In eah iteration one un-proessed ART edge (r1, c, r2) is seleted. Then the abstrat post for the orrespondingommand c is omputed and the resulting abstrat states are stored in r2.states . If theomputed abstrat states are already subsumed by other ART nodes then the node r2 is



4.2. LAZY NESTED ABSTRACTION REFINEMENT 65pro LazyNestedRefineinput (Σ, D, X,L, ℓ0, ℓE, T ) : programbeginlet r0 = 〈loc : ℓ0, preds : ∅, states : ⊤, covered : false〉let succ(r) =let Succ = ∅for all (r.loc, c, ℓ′) ∈ T dolet r′ = 〈loc : ℓ′, preds : ∅, states : ⊥, covered : false〉add an edge r
c
→ r′

Succ:= Succ ∪ {(r, c, r′)}donereturn Succlet Unprocessed = succ(r0)while Unprocessed 6= ∅ dohoose and remove (r1, c, r2) ∈ Unprocessed

r2.states := postA[r1.preds , r2.preds ](c)(r1.states)if r2.states ⊑
⊔

r { r.states | r 6= r2 ∧ r.loc = r2.loc } then r.covered := trueelse if r2.loc 6= ℓE then Unprocessed := Unprocessed ∪ succ(r′)elselet rs, π suh that π is maximal path with rs
π
→∗ r2 ∧

γ[rs.preds ](rs.states) 6|= wlp(π)(false)if rs.loc = ℓ0 then return counterexample(π)elselet rp, c suh that rp
c
→ rslet Pπ = extrPreds(wlp(π)(false))if Pπ 6⊆ rp.preds then rs.preds := rs.preds ∪ Pπelselet Pc;π = extrPreds(wlp(c; π)(false))

rp.preds := rp.preds ∪ Pc;π

rp.states :=α[rp.preds ](wlp(c; π)(false)) ⊓ rp.statesremove subtrees starting from r

rs.states:=⊥

rs.covered := false

Unprocessed :=Unprocessed ∪ {(rp, c, rs)}for all r2 suh that r2.covered ∧ r2.states 6⊑ ⊥ ∧ rs.states older than r2.states dolet r1, c suh that r1
c
→ r2

r2.covered := false

r2.states :=⊥

Unprocessed := Unprocessed ∪ {(r1, c, r2)}donedonereturn �program is safe�end Figure 4.2: Lazy nested abstration re�nement algorithm



66 CHAPTER 4. LAZY NESTED ABSTRACTION REFINEMENTmarked as overed. Otherwise if r2.loc is the error loation then there is an abstrat errortrae going from r0 to r2. In this ase, the analysis determines whether the error traeis spurious. For this purpose it performs a symboli bakward analysis of the error trae.This bakward analysis tries to �nd the oldest anestor node rs of r2 with rs
π
→∗ r2 suhthat rs.states represents some onrete state that an reah an error state by exeuting thesequene of ommands π, i.e., formally rs is the oldest node in the abstrat error trae suhthat:

γ[rs.preds ](rs.states) 6|= wlp(π)(false) .If rs is the root node of the ART then there exists a onrete error trae, i.e., the abstraterror trae is feasible and the proedure returns the orresponding error path. If, however,
rs is not the root node then the abstrat error trae is spurious. In this ase we all rs thespurious node of the abstrat error trae. The algorithm then determines the immediatepredeessor node rp of the spurious node. We all rp the pivot node of the abstrat errortrae. The pivot node is the youngest node that does not represent any onrete states thatan reah an error state by following the ommands in the abstrat error trae. Dependingon the re�nement phase either rs or rp is re�ned and the spurious subtree below rs is removedfrom the ART. The ART edge between rp and rs whih was spurious is then sheduled forreproessing. Finally, in order to ensure soundness, ART nodes that have potentially beenmarked as overed due to subsumption by nodes in the removed subtree are unovered andalso sheduled for reproessing.If the set of unproessed ART edges beomes empty then all outgoing edges of innerART nodes have been proessed and all leaf nodes are overed, i.e., the least �xed pointhas been omputed. For eah program loation ℓ in the input program an invariant an beomputed from the ART by taking the join of the abstrat states of all ART nodes labeledwith loation ℓ. The algorithm guarantees that the omputed invariant implies that theprogram is safe (Theorem 40).We now explain the two nested abstration re�nement phases. The spurious part of theerror trae starts from the spurious node rs. Assume that the ART edge from rs to rp islabeled by c and the path from rs to r2 by π. Our abstration re�nement proedure �rstattempts to re�ne the abstrat domain of node rs by adding new abstration prediates Pπthat are extrated from the spurious part π of the abstrat error path assoiated with theabstrat error trae. The prediate extration funtion extrPreds should guarantee that theweakest preondition wlp(π)(false) of the path is expressible in the abstrat domain of there�ned node rs, i.e., formally the following entailment should hold:

γ[Pπ](α[Pπ ](wlp(π)(false))) |= wlp(π)(false) .If the underlying analysis was to ompute the most preise abstrat post operator then wewould have:
γ[Pπ](postA[rp.preds ,Pπ](c)(rp.states)) |= wlp(π)(false) .Thus, we were guaranteed that after re�ning the prediate set of node rs and reproessingthe ART edge (rp, c, rs), the node rs would no longer be spurious for this abstrat errortrae. This would give us progress of abstration re�nement. However, if the abstrat postis not optimal then the same spurious error trae might be reprodued after the re�nement.Thus, the re�nement proedure might fail to derive new prediates for node rs. In this



4.2. LAZY NESTED ABSTRACTION REFINEMENT 67ase, the nested re�nement phase re�nes the abstrat post for ommand c and node rp.The re�nement of the abstrat post is performed indiretly by omputing the meet of theabstrat states that label node rp with an abstration of the weakest liberal preondition
wlp(c;π)(false). Note that in pratie omputing α[Pc;π](wlp(c;π)(false)) is heap, beause
Pπ onsists of the prediates extrated from the formula wlp(c;π)(false).The seond re�nement phase ounterats any Cartesian abstration that is performedduring the omputation of the abstrat post. We therefore refer to this re�nement stepas Cartesian re�nement. Note that Cartesian re�nement does not ensure that the bestabstrat post is omputed for the spurious ART edge. However, Cartesian re�nement stillensures progress of the abstration re�nement loop (Theorem 41).4.2.1 SoundnessThe soundness of our lazy nested abstration re�nement algorithm is formally stated inTheorem 40. The soundness proof depends on various invariants of the re�nement loop inproedure LazyNestedRefine. These invariants are stated in the following lemma. The proofof this lemma goes by indution on the runs of LazyNestedRefine.Lemma 39 Let P = (Σ,D,X,L, ℓ0, ℓE ,T ) be a program. In any run of LazyNestedRefine(P )the following properties hold at eah entry to the outer while loop of LazyNestedRefine:1. r0.covered = false2. γ[r0.preds ](r0.states) ≡ true3. ⊔r { r.states | r.loc = ℓE } = ⊥4. for all ART nodes r with r.covered = false and r.states 6= ⊥, and for all (r.loc, c, ℓ′) ∈

T there exists an ART node r′ with r′.loc = ℓ′ and either:(a) (r, c, r′) ∈ Unprocessed or(b) post([[c]])(γ[r.preds ](r.states)) ⊆ γ[r′.preds ](r′.states)5. for all ART nodes r with r.covered = true

r.states ⊑
⊔

r′

{

r′.states | r′.covered = false ∧ r′.loc = r.loc
}

.Theorem 40 (Soundness) Proedure LazyNestedRefine is sound, i.e., for any program Pif LazyNestedRefine(P ) terminates with �program is safe� then program P is safe.Proof. Let P = (Σ,D,X,L, ℓ0, ℓE,T ) and let σ = s0
c0→ . . .

cn−1
→ sn be a trae ofprogram P . We �rst prove the following property by indution on i: for all 0 ≤ i ≤ n thereexists an unovered ART node ri suh that ri.loc = si(pc) and si ∈ γ[ri.preds ](ri.states).Let i = 0 then r0.loc = s0(pc). Furthermore, from Properties 1 and 2 of Lemma 39follows that r0 is not overed and s0 ∈ γ[r0.preds ](r0.states). Now, let i > 0 then byindution hypothesis there exists an unovered ART node ri−1 with si−1(pc) = ri−1.loc and

si−1 ∈ γ[ri−1.preds ](ri−1.states), i.e., ri−1.states 6= ⊥. Let τi−1 = (si−1(pc), ci−1, si(pc)).



68 CHAPTER 4. LAZY NESTED ABSTRACTION REFINEMENTThen τi−1 ∈ T sine σ is a trae of P . Sine Unprocessed = ∅, it follows from Property 4of Lemma 39 that there exists some ART node r′ suh that r′.loc = si(pc) and
post([[comm]])(γ[ri−1.preds ](ri−1.states)) ⊆ γ[r′.preds ](r′.states) .Sine (si−1, si) ∈ [[τi−1]], we have r′.loc = si(pc) and si ∈ γ[r′.preds ](r′.states). If r′ isunovered hoose ri = r′. Otherwise, from Property 5 of Lemma 39 follows:
r′.states ⊑

⊔

r′′

{

r′′.states | r′′.covered = false ∧ r′′.loc = r′.loc
}

.Thus, from monotoniity of γ and the fat that γ is a join morphism follows:
γ[r′.preds ](r′.states) |=

∨

r′′

{

γ[r′′.preds ](r′′.states) | r′′.covered = false ∧ r′′.loc = r′.loc
}

.Hene there is at least one unovered ART node r′′ with r′′.loc = r′.loc = si(pc) and
si ∈ γ[r′′.preds ](r′′.states). Then hoose ri = r′′ for one suh r′′, whih onludes theindution proof.From Property 3 of Lemma 39 follows that ⊔r { r.states | r.loc = ℓE } = ⊥ holds when-ever LazyNestedRefine(P ) terminates with �program is safe�. Thus, if for any 0 ≤ i ≤ nwe had si(pc) = ℓE then for all ART nodes r with r.loc = ℓE we would have si /∈
γ[r.preds ](r.states). This would ontradit the property proved above. It follows that σis not an error trae. Sine σ was hosen arbitrarily, we onlude that P is safe.4.2.2 ProgressWe now identify su�ient onditions on the prediate extration funtion extrPreds andabstrat post operator postA that guarantee progress of abstration re�nement.Note that we annot prove that a given spurious error path an only our �nitely oftenin a run of proedure LazyNestedRefine. The reason is that whenever we re�ne an ART node
r we dispose the already explored subtrees of r. It is therefore possible that a spurious errortrae is redisovered in�nitely often beause the same subtree is repeatedly removed andreonstruted due to re�nement steps that are triggered by other spurious error traes. Inpriniple, one an modify proedure LazyNestedRefine and impose restritions on how theART is explored, or remember already explored subtrees, suh that a given error trae onlyours �nitely often in any run. However, this would not make the proedure terminatemore often: we prove that any non-terminating run of proedure LazyNestedRefine thatinvolves in�nitely many re�nement steps must involve in�nitely many spurious error paths.Thus, it an never happen that proedure LazyNestedRefine does not terminate beause itgets stuk on re�ning a spei� spurious error path over and over again.Theorem 41 (Progress) Assume that for all losed formulae F , ommands c, and P1,P2suh that P1 = extrPreds(wlp(c)(F )) and P2 = extrPreds(F ) the following entailment holds:

γ[P2](postA[P1,P2](c)(α[P1](wlp(c)(F )))) |= F .Then a run ∆ of proedure LazyNestedRefine terminates, unless the set of spurious errorpaths enountered in ∆ is in�nite.



4.2. LAZY NESTED ABSTRACTION REFINEMENT 69Proof. Let P be a program. Assume that there is a non-terminating run∆ of LazyNestedRefine(P )that only enounters �nitely many spurious error paths. For the i-th re�nement step in ∆,let πi be the spurious error path in this re�nement step, i.e., the sequene of ommandslabeling the path from the root node r0 of the ART to the error node in the i-th re�ne-ment step. Furthermore, let rp,i be the pivot node in this re�nement step, rs,i the spuriousnode, πp,i the pre�x of πi labeling the path to rp,i, πs,i the su�x of πi labeling the pathfrom rs,i to the error node, and ci the ommand labeling the edge between rp,i and rs,i,i.e., πi = πp,i; ci;πs,i. Furthermore, let states i (preds i) be the funtion assoiating abstratstates (abstration prediates) with ART nodes before the i-th re�nement step in ∆. For
i ∈ N let ext(i) be the set of all spurious error paths enountered in some re�nement step
j with i ≤ j that are extensions of πp,i, i.e.

ext(i)
def
= {πj | i ≤ j and πp,j = πp,i } .Finally, let inf (∆) be the set of paths πi,p that are enountered in�nitely often in ∆, i.e.

inf (∆)
def
= {πp | |{ i ∈ N | πi,p = πp }| = ∞} .Sine there are only �nitely many spurious error paths enountered in ∆ and eah suhpath itself is �nite, inf (∆) is nonempty. Moreover, there exists some πp ∈ inf (∆) suh thatfor all π′

p ∈ inf (∆), π′
p is not a proper pre�x of πp. Choose one suh path πp ∈ inf (∆). Wean onlude that there is some n ∈ N suh that πp,n = πp and for all j > n, πp,j is nota proper pre�x of πp. Thus, after the n-th re�nement step, ∆ will at most add additionalsuessors to the ART node rp,n. Neither rp,n nor any of its immediate suessor nodes willbe removed from the ART after the n-th re�nement step in ∆. Furthermore, for all j ≥ nwe have:1. rp,n.states j+1 ⊑ rp,n.statesj .2. for all nodes r with r = rp,n or rp,n

c
→ r for some ommand c: r.preds j ⊆ r.preds j+1Now hoose some spurious error path π ∈ ext(n). Then there exists some re�nement step

m in ∆ with n ≤ m suh that πm = π, πp,m = πp,n and for all j > m:
extrPreds(wlp(πs,m)(false)) ⊆ rs,m.predsjholds. Now assume there exists yet another re�nement step k > m with πk = π and πp,k =

πp,n. Then k is a Cartesian re�nement step. Thus, from the assumption in Theorem 41 andthe monotonity of α and postA, we onlude that for all j > k:
γ[rs,k.predsj ](postA[rp,k.predsj , rs,k.predsj ](ck)(rp,k.statesj )) ⊆ wlp(πs,k)(false) .From this we onlude that for all j > k:

γ[rs,k.predsj ](rs,k.statesj ) ⊆ wlp(πs,k)(false) .This means that for all j > k with π = πj we have rp,k 6= rp,j and thus rp,n 6= rp,j. Sine
rp,n is never removed from the ART and there is at most one path in the ART labeledby the ommands in πp,n, we onlude that for all j > k we have πp,j 6= πp,n and hene
πp,j 6= πp. Sine π was hosen arbitrarily in ext(n), it follows that for all π ∈ ext(n) thereexists some k ≥ n suh that for all j > k with π = πj we have πp,j 6= πp. Let kmax be themaximum of all these k. Then for all j > kmax we have πp,j 6= πp. This ontradits the fatthat πp ∈ inf (∆).



70 CHAPTER 4. LAZY NESTED ABSTRACTION REFINEMENT4.3 Example Run of Nested Abstration Re�nementWe now ome bak to our motivating example, program ListFilter shown in Figure 4.1. Theright-hand side of Figure 4.1 represents program ListFilter in a form that �ts our notionof programs de�ned in Setion 2.2. In order to make the presentation of the example moreonise, the program only onsists of four loations, the initial loation ℓ0, the loop utpoint ℓ1, an exit loation ℓ2, and an error loation ℓE . The basi bloks in the left-hand-side version of the program have been ontrated to single ommands. Note that we furthertransformed the assert ommand in the loop body into a ontrol-�ow edge from loation ℓ1to the error loation.We will now apply proedure LazyNestedRefine to this example program using domainprediate abstration as the underlying analysis. In our example, all domain prediates areunary prediates that range over heap objets. To inrease readability we will representabstrat objets as sets of (potentially omplemented) abstration prediates. For instane,the abstrat objet [p0 7→ {0} , p1 7→ {1} , p2 7→ {0, 1}] over domain prediates p0, p1, and
p2 is represented by the set {p0, p1}.We onstrut the ART starting from the root node r0 : (ℓ0, {∅} , ∅) labeled by loation
ℓ0, abstrat state {∅}, and an empty set of abstration prediates. The abstrat state {∅}denotes the set of all onrete states of program ListFilter. Two exeutions of the loopin proedure LazyNestedRefine produe an ART that onsists of the following abstrat errortrae σ0:

r0 : (ℓ0, {∅}, ∅)
c0→ r1 : (ℓ1, {∅}, ∅)

c5→ r2 : (ℓE , {∅}, ∅) .The trae reahes the error loation ℓE , beause the assertion NullCheck fails when loation
ℓ1 is reahed for the �rst time. Now the algorithm determines whether σ0 orresponds to aonrete error trae or whether it is an artefat of the abstration. The trae σ0 is spurious.The smallest su�x of σ0 that proves its spuriousness is σ0 itself: the weakest preondition
wlp(c0; c5)(false) is given by the formula:

first 6=null ∧ data first ∧ null 6=null � (next null)6=null .This formula is valid, sine one of the onjunts in the anteedent of the impliation isunsatis�able. The spurious node of this abstrat error trae is the ART node r1. We re�nethe abstrat domain of r1 by extrating new domain prediates that express atomi for-mulae in the weakest liberal preondition wlp(c5)(false) whih is equivalent to the assertion
NullCheck . From this formula we extrat the set of abstration prediates P0 onsisting ofthe following new domain prediates:

p0 ≡ (λv. prev=v)

p1 ≡ (λv. null=v)

p2 ≡ (λv. (next prev )=v) .Continuing the algorithm with the new prediates produes yet another abstrat error trae
σ1:

r0 : (ℓ0, {∅} , ∅)
c0→ r1 : (ℓ1, {{p0, p1} , {p0, p1}} ,P0)

c3→

r3 : (ℓ1, {{p0, p1} , {p1}} ,P0)
c5→ r4 : (ℓE, {∅} , ∅)



4.3. EXAMPLE RUN OF NESTED ABSTRACTION REFINEMENT 71The trae σ1 starts at loation ℓo, iterates one through the while loop by exeuting theelse branh of the �rst onditional in the body of the while loop, and goes bak to loation
ℓ1 where assertion NullCheck fails. Trae σ1 is again spurious. The �rst spurious node inthe trae is r3. From the spurious part of the trae we infer one new domain prediate:

p3 ≡ (λv. e=v) .Note that at this point our abstrat domain is able to express the indutive invariant Invat loation ℓ1 whih guarantees that the error loation is not reahable. A set of abstratstates whose onretization orresponds to the models of invariant Inv is, e.g., given by:
{{{p0, p1} , {p0, p1}} , {{p2, p3} , {p2, p3}}} .If our analysis was to ompute the best abstrat post operator for our abstrat domainthen it would guarantee that, after adding prediate p3 to r3, the abstrat error trae σ1 iseliminated.However, our analysis is based on the ontext-sensitive Cartesian post rather than thebest abstrat post. The prie that we pay for the loss of preision under this abstrat postis that progress of abstration re�nement is no longer guaranteed. In fat, in our examplethe re�nement algorithm produes the same spurious error trae σ1 even after prediate p3has been added, i.e., the abstration of ommand c3 remains spurious. The loss of preisionunder Cartesian abstration is aused by the fat that the best abstrat post operator forommand c3 behaves nondeterministially. We an think of this nondeterminism as a formof materialization [103℄. Cartesian abstration ounterats materialization. In order tobetter understand this problem, we take a loser look at the abstrat post for ommand c3.Consider the abstrat state

s# = {{p0, p1} , {p0, p1}}that labels ART node r1 and onsider abstrat objet o# = {p0, p1, p2, p3} in the expansionof abstrat state s#. Figure 4.3 shows three onrete states that are represented by s# andtheir post states under ommand c3. There is a onrete objet in state s3 that is representedby o# and this objet is pointed to by referene variable e after exeution of ommand c3.However, in state s1 there is a onrete objet that is also represented by abstrat objet
o#, but whih is not pointed to by e after exeution of c3. If we want to keep trak ofthe orrelation between prediates p2 and p3, we need to split s# and abstrat objets in
s# aording to the fat whether some objet is pointed to by referene variable e afterexeution of c3 or not. In shape analysis this proess of splitting is ommonly referred to asmaterialization. If the analysis is not able to perform materialization then it loses preisionand most ertainly fails to verify many interesting programs and properties [32℄. Thebest abstrat post operator performs materialization impliitly and we say that it behavesnondeterministially if materialization atually ours. Computing the best abstrat postfor ommand c3 and s# results in the following three abstrat states:

{{p1, p2, p3} , {p0, p1, p2, p3} , {p0, p2, p3}} ,

{{p1, p2, p3} , {p0, p1, p2, p3}} ,and {{p0, p1, p2, p3} , {p0, p2, p3}} .



72 CHAPTER 4. LAZY NESTED ABSTRACTION REFINEMENTAbstrating these three abstrat states by a single abstrat state results in:
{{p1, p2, p3} , {p0, p2, p3} , {p0, p2, p3} , {p1, p2, p3}} .This abstrat state orresponds to the join of the following two sets of abstrat objets:
{{p0, p1, p2, p3} , {p0, p1, p2, p3}} ,

{{p0, p1, p2, p3} , {p0, p1, p2, p3} , {p0, p1, p2, p3}} .The �rst set is the result of applying the ontext-sensitive abstrat post operator on abstratobjets to abstrat objet {p0, p1} in s#, i.e., this set of abstrat objets is the new Booleanovering in the post states of s# of objets represented by abstrat objet {p0, p1} ∈ s#.The seond set is the result of applying the ontext-sensitve Cartesian post operator toabstrat objet {p0, p1}. If we apply Cartesian abstration to eah of these two sets (i.e.,ompute the union of all abstrat objets in the set and remove prediates that our withboth polarities) and join the results, we obtain the Cartesian post for ommand c3 andabstrat state s#:
{{p0, p1} , {p1}} .The Cartesian post loses the orrelation between domain prediates p2 and p3, beause thebest abstrat post behaves nondeterministially.After re�ning ART node r3 using spurious error trae σ1 we still get the same spuriouserror path. Thus, we are not able to infer any new abstration prediates and our analysiswould be stuk if we used spurious error traes to re�ne only the abstrat domain. At thispoint Cartesian re�nement omes into play. Cartesian re�nement re�nes the Cartesian postindiretly by splitting the abstrat state s# labelling the pivot node r1 into a set of abstratstates and individual abstrat objets in s# into sets of abstrat objets, suh that thebest abstrat post operator behaves deterministially with respet to our target property

NullCheck .Thus, Cartesian re�nement performs materialization on-demand and guided by the prop-erty to verify. For the purpose of splitting we ompute the weakest liberal preondition
wlp(c3; c5)(false), extrat domain prediates from this formula so that it an be preiselyexpressed in our abstrat domain, and ompute its abstration. The splitting of s# is a-omplished by omputing the meet of s# with the abstrated weakest liberal preondition.In our example we extrat one new domain prediate:

p4 ≡ (λv. (next e)=v) .The meet of s# with the abstrated weakest liberal preondition is given by the followingtwo abstrat states:
{{p0, p1, p4} , {p0, p1, p4}} ,

{{p0, p1, p4} , {p0, p1, p4} , {p0, p1, p4}} .This re�ned set of abstrat states distinguishes between onrete states where null will bepointed to by e after exeution of ommand c3 and states where null will not be pointedto by e. Also, in eah abstrat state there is no abstrat objet whose overing in the poststates ontains, both, abstrat objets with p3 and abstrat objets with p3. The Cartesian
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{p0, p1, p2, p3} {p0, p1, p2, p3} {p0, p1, p2, p3} {p0, p1, p2, p3}

prev e null
next next next

s1

{p0, p1, p2, p3} {p0, p1, p2, p3} {p0, p1, p2, p3} {p0, p1, p2, p3}

prev e null
next next next

post(c3)(s1)

{p0, p1, p2, p3} {p0, p1, p2, p3} {p0, p1, p2, p3}

prev e null
next next

s2

{p0, p1, p2, p3} {p0, p1, p2, p3} {p0, p1, p2, p3}

prev
e,

null
next next

post(c3)(s2)

{p0, p1, p2}, p3 {p0, p1, p2, p3} {p0, p1, p2, p3}

prev e null
next

next

s3

{p0, p1, p2, p3} {p0, p1, p2, p3} {p0, p1, p2, p3}

e,
prev null

next

next

post(c3)(s3)

Figure 4.3: Three onrete states represented by abstrat state {{p0, p1} , {p0, p1}} and theirpost states under ommand c3.post for the re�ned set of abstrat states and ommand c3 results in the following twoabstrat states:
{{p0, p1, p2, p3} , {p1, p2, p3}} ,

{{p0, p1, p2, p3} {p1, p2, p3} , {p1, p2, p3}} .The onretization of these abstrat states implies invariant Inv , i.e., the outgoing ARTedge of r1 labeled by ommand c3 is no longer spurious. After three more iterations of theabstration re�nement loop the analysis produes an invariant that proves that the errorloation ℓE is not reahable.4.4 Progress for Domain Prediate AbstrationWe now show that domain prediate abstration ful�ls the requirements for soundness andprogress of lazy nested abstration re�nement. We require that the domain of all domainprediates that are used as abstration prediates is �xed a priori, i.e., all abstrationprediates that are inferred during the analysis range over the same �xed domain. Onean determine an appropriate domain, e.g., by looking at the formulae that our in the



74 CHAPTER 4. LAZY NESTED ABSTRACTION REFINEMENTanalyzed program. In the following, the hosen domain of abstration prediates is denotedby Dom.The abstrat domain AbsDom[P] over a set of domain prediates P is given by setsof abstrat states AbsStates[P] as de�ned in Chapter 3. The Galois onnetion betweenonrete and abstrat domain is given by the funtions α+ and γ. The abstrat postoperator postA is given by the ontext-sensitive Cartesian post operator postCκ , where κ issome ontext operator. We make two minor modi�ations to the de�nition of postCκ givenin Setion 3.4. First, we allow that abstrat states in the domain and range of postCκ arede�ned with respet to separate sets of abstration prediates. Seond, reall from thedisussion in Setion 3.4 that the Cartesian post operator loses preision in the ase wherethe image of the onrete post is the empty set of states. We handle this ase expliitlyin order to avoid suh loss of preision. The abstrat post operator of our analysis is thende�ned as follows: let P1 and P2 be two sets of abstration prediates then:
postA[P1,P2] ∈ Com → AbsStates[P1] → AbsStates [P2]

postA[P1,P2](c)(S
#)

def
=

⊔

s#∈S#

if γ(s#) |= wlp(c)(false) then ∅ else postCκ [P1,P2](c)({s
#}) .From the de�nitions and properties of domain prediate abstration that are given inChapter 3, it is easy to see that this setup ful�ls all the requirements for soundness of nestedlazy abstration re�nement. It remains to show that it also ful�ls the requirements for theprogress property.4.4.1 Progress for Havo-free ProgramsWe �rst prove that progress of nested lazy abstration re�nement is guaranteed for programsthat do not ontain any havoc ommands. We need to prove the assumption made inTheorem 41, i.e., for any deterministi ommand c and formulae F the following propertyholds: if P1 = extrPreds(wlp(c)(F )) and P2 = extrPreds(F ) then

γ[P2](postA[P1,P2](c)(α
+[P1](wlp(c)(F )))) |= F . (4.1)We annot prove this property without imposing any restritions on the prediate extra-tion funtion extrPreds. First, we expet that funtion extrPreds extrats su�iently manyprediates from a given formula F suh that there exists some set of abstrat states whoseonretization orresponds to the models of F . This restrition ensures that Condition 4.1would hold, if postA was the best abstrat post operator. We need to impose an additionalrestrition in order to prove Condition 4.1 for the ontext-sensitive Cartesian post. Forthe progress property to hold, Cartesian re�nement needs to ensure that the best abstratpost behaves deterministially with respet to abstrat states that imply the weakest lib-eral preondition of formula F . However, this is not possible if the prediate extrationfuntion dereases the granularity of the abstrat domain when it extrats prediates from

wlp(c)(F ). This means that if we have some abstrat objet o# over prediates extratedfrom F then the weakest domain preondition of the domain prediate represented by o#should be preisely representable in terms of abstrat objets over domain prediates ex-trated from wlp(c)(F ). The two restritions on the prediate extration funtion extrPredsare formalized in the following de�nition.



4.4. PROGRESS FOR DOMAIN PREDICATE ABSTRACTION 75De�nition 42 We say that a prediate extration funtion extrPreds is admissible if thefollowing two onditions hold:1. for any losed formula F , if P = extrPreds(F ) then
γ[P](α+[P](F )) ≡ F .2. for any losed formula F and deterministi ommand c, if P1 = extrPreds(wlp(c)(F ))and P2 = extrPreds(F ) then for all domain prediates p suh that either p or itsomplement is in P2, and for all abstrat states s# with {s#} = α+[P1]({s}) for somestate s:

γ̇[P1](α̇
+[P1]( ˙wlp(c)(p))) ∩̇ (λ~o. κ[P1]({s

#})) ⊆̇ ˙wlp(c)(p) .De�nition 42 suggests a simple rule for onstruting admissible prediate extrationfuntions. If we start from a set of domain prediates P2 that is able to express some formula
F , e.g., the atomi formulae ouring in F , then the set of prediates P1 for wlp(c)(F ) mayonsist of all prediates ˙wlp(c)(p) for p ∈ P2. However, in pratie one would like to avoidadding eah ẇlp(c)(p) as a single monolithi prediate. One would rather like to split theseprediates into simpler ones. For instane, if ˙wlp(c)(p) is of the form (λ~v.G � p′(~v)) where
G is a guard from an assume ommand (i.e., a losed formula) then one an split thisdomain formula into simpler domain formulae that represent G and domain formulae thatrepresent p′. In partiular, the prediate extration funtion an split a losed formulae Ginto simpler domain prediates that are not nullary prediates and still satisfy the seondondition of De�nition 42. For instane, in Setion 4.1 we split guards of the form e = nullinto domain prediates (λv. e = v) and (λv. null = v). If the abstrat domain is able toexpress both G and its negation then the abstration of a single onrete state s will preservethe information whether s satis�es G. The seond ondition of admissibility is still satisi�edif this information is also preserved by the ontext operator.The following lemma states that for deterministi ommands weakest liberal preondi-tions distribute over joins. The lemma an be easily proved from the semantis of deter-ministi ommands.Lemma 43 Let c be a deterministi ommand. Then wlp(c) and ˙wlp(c) are omplete joinmorphisms.The next lemma states that, given an admissible prediate extration funtion, if ab-strat domains are onstruted from a formula F , respetively its weakest liberal preondi-tion for some deterministi ommand, then the granularity of abstrat states representing
F is preserved under wlp.Lemma 44 Let extrPreds be an admissible prediate extration funtion, F a losed for-mula, c a deterministi ommand, and P1,P2 suh that extrPreds(wlp(c)(F )) and P2 =
extrPreds(F ). Then for all abstrat states s# ∈ α+[P2](F ):

γ[P1](α
+[P1](wlp(c)(γ[P2](s

#)))) ⊆ wlp(c)(γ[P2](s
#)) .



76 CHAPTER 4. LAZY NESTED ABSTRACTION REFINEMENTProof. We show that for all s#
1 ∈ α+[P1](wlp(c)(γ[P2](s

#))) we have:
γ[P1](s

#
1 ) ⊆ wlp(c)(γ[P2](s

#)) .Let s#
1 ∈ α+[P1](wlp(c)(γ[P2](s

#))). From Proposition 26 we know that there is a state s1suh that:
s#
1 = α+[P1]({s1}) =

˙⊔

~o∈Dom

α̇+(s1, ~o).Thus, we have by de�nition of γ:
γ[P1](s

#
1 ) =

⋂

~o2∈Dom

⋃

~o1∈Dom

γ̇[P1](α̇
+[P1](s1, ~o1))(~o2) .Furthermore, sine wlp(c) distributes over both joins and meets, we have:

wlp(c)(γ[P2](s
#)) =

⋂

~o∈Dom

⋃

o#∈s#

˙wlp(c)(γ̇[P2](o
#))(~o) .Thus, we need to show the following set inlusion:

⋂

~o2∈Dom

⋃

~o1∈Dom

γ̇[P1](α̇
+[P1](s1, ~o1))(~o2) ⊆

⋂

~o∈Dom

⋃

o#∈s#

˙wlp(c)(γ̇[P2](o
#))(~o) .Instead, we show that the following stronger property holds:

(λ~o ∈ Dom. κ[P1](s
#
1 )) ∩̇

˙⋃

~o1∈Dom

γ̇[P1](α̇
+[P1](s1, ~o1)) ⊆̇

˙⋃

o#∈s#

ẇlp(c)(γ̇[P2](o
#))Let ~o1 ∈ Dom. From s1 ∈ wlp(c)(γ[P2](s

#)) we onlude:
s1 ∈

⋃

o#∈s#

˙wlp(c)(γ̇[P2](o
#))(~o1) .Thus, there is some o# ∈ s# suh that

s1 ∈ ˙wlp(c)(γ̇[P2](o
#))(~o1) .Thus, we have by de�nition of α̇+(s1, ~o1) and monotoniity of γ̇:

γ̇(α̇+[P1](s1, ~o1)) ⊆̇ γ̇(α̇+[P1]( ˙wlp(c)(γ̇[P2](o
#)))) . (1)Furthermore, we have by de�nition of γ̇, the fat that for all joins ˙⋂P we have α̇+( ˙⋂P) ⊑̇

˙d{ α̇+(p) | p ∈ P
}, and the fat that γ̇ and ˙wlp distribute over meets:

γ̇[P1](α̇
+[P1](wlp(c)(γ̇[P2](o

#)))) ⊆̇
˙⋂

p∈P2

γ̇[P1](α̇
+[P1]( ˙wlp(c)(po#(p)))) . (2)From the fat that extrPreds is admissible follows that for all p ∈ P2:

γ̇[P1](α̇
+[P1]( ˙wlp(c)(po#(p)))) ∩̇ (λ~o. (κ[P1])(s

#
1 )) ⊆̇ ˙wlp(c)(po#(p)) . (3)



4.4. PROGRESS FOR DOMAIN PREDICATE ABSTRACTION 77Now, from (1)-(3) follows that for all p ∈ P2:
γ̇[P1](α̇

+[P1](s1, ~o1)) ∩̇ (λ~o. κ[P1](s
#
1 )) ⊆̇ ˙wlp(c)(po#(p)) .From this follows:

γ̇[P1](α̇
+[P1](s1, ~o1)) ∩̇ (λ~o. κ[P1](s

#
1 )) ⊆̇

˙⋂

p∈P2

˙wlp(c)(po#(p)) .Now, from the fat that ˙wlp distributes over meets and the de�nition of γ̇ we �nally onlude:
γ̇[P1](α̇

+[P1](s1, ~o1)) ∩̇ (λ~o. κ[P1](s
#
1 )) ⊆̇ ẇlp(c)(γ̇[P2](o

#)whih proves our goal.The following proposition together with Theorem 41 states that admissible prediateextration funtions and the abstrat post operator postA guarantee progress of abstrationre�nement for havo-free programs.Proposition 45 Let extrPreds be an admissible prediate extration funtion. Further-more, let F be a losed formula, c a deterministi ommand, and P1,P2 suh that P1 =
extrPreds(wlp(c)(F )) and P2 = extrPreds(F ). Then

γ[P2](postA[P1,P2](c)(α
+[P1](wlp(c)(F )))) |= F .Proof. It su�es to show that for all s#

1 ∈ α+(wlp(c)(F )) we have:
postA[P1,P2](c)(s

#
1 ) ⊑ α+[P2](F ) .The laim then follows from the fat that postA distributes over joins, monotoniity of γ,and the fat that extrPreds is admissible.Let s#

1 ∈ α+(wlp(c)(F )). If γ[P1](s
#
1 ) |= γ(wlp(c)(false)) then the goal immediatelyfollows from the de�nition of postA. Thus, assume γ[P1](s

#
1 ) 6|= γ(wlp(c)(false)). Sine

γ[P1](s
#
1 ) ⊆ wlp(c)(F ), it follows that there is at least one post state of wlp(c)(F ) underommand c that satis�es F . Hene, we know that there exists at least one abstrat state

s#
2 in α+[P2](F ).By Lemma 43, and the fat that α+ is the upper adjoint of a Galois onnetion we knowthat α+ and wlp(c) distribute over joins. We therefore onlude from the de�nition of γ:

α+[P1](wlp(c)(F )) =
⊔

s
#
2 ∈α+[P2](F )

α+[P1](wlp(c)(γ[P2](s
#
2 ))) .Thus there exists some s#

2 ∈ α+[P2](F ) suh that
s#
1 ⊑ α+[P1](wlp(c)(γ[P2](s

#
2 ))) .From monotoniity of γ and Lemma 44 it follows:

γ[P1](s
#
1 ) ⊆ wlp(c)(γ[P2](s

#
2 )) . (1)
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1 ∈ expand(s#

1 ). By the haraterization of α+ in Proposition 26 there is some s1and ~o1 ∈ Dom suh that s1 |= wlp(c)(F ), α[P1]({s1}) = s#
1 and α̇+(s1, ~o1) = o#

1 . Further-more, from (1) and the fat that γ[P1]◦α[P1] is extensive follows that s1 ∈ wlp(c)(γ[P2](s
#
2 )).By de�nition of γ and the fat that wlp(c) distributes over both joins and meets we have:

wlp(c)(γ[P2](s
#
2 )) =

⋂

~o∈Dom

⋃

o
#
2 ∈s

#
2

˙wlp(c)(γ̇[P2](o
#
2 ))(~o) .It follows that s1 ∈

⋃

o
#
2 ∈s

#
2

˙wlp(c)(γ̇[P2](o
#
2 ))(~o1). Hene, there is some o#

2 ∈ s#
2 suh that:

{o#
1 } ⊑̇ α̇+[P1]( ˙wlp(c)(γ̇[P2](o

#
2 ))) .From monotoniity of γ̇ we an onlude:

γ̇[P1](o
#
1 ) ⊆̇ γ̇[P1](α̇

+[P1]( ˙wlp(c)(γ̇[P2](o
#
2 )))) .Following the same hain of reasoning as in the proof of Lemma 44 we onlude that for all

p ∈ P2:
γ̇[P1](o

#
1 ) ∩̇ (λ~o. κ[P1](s

#
1 )) ⊆̇ ˙wlp(c)(po

#
2 (p))whih is equivalent to the statement that for all p ∈ P2:

γ̇[P1](o
#
1 ) ⊆̇ λ~o. κ[P1](s

#
1 ) ∪ wlp(c)(po

#
2 (p)(~o))From the de�nition of ˙wlp

#
κ we an therefore onlude that for all p ∈ P2 with o#

2 (p) = {i}:
{o#

1 } ⊑̇ ẇlp
#
κ (c)(s#

1 )(o#
p,i) .From Theorem 37 follows:

α̇C ◦ ˙post
#
κ [P1,P2](c)(s

#
1 ) ◦ γ̇C(o#) ⊑̇ {o#

2 } .Sine o#
1 was hosen arbitrarily in s#

1 , we have by de�nition of the ontext-sensitive Carte-sian post:
postCκ [P1,P2](c)(s

#
1 ) ⊑ {s#

2 }from whih we �nally onlude:
postCκ [P1,P2](c)(s

#
1 ) ⊑ α+[P2](F )The goal then follows from the de�nition of postA.



4.5. COSTS AND GAINS OF AUTOMATION 794.4.2 Progress for General ProgramsWe proved the progress property for the analysis of programs that do not ontain any
havoc ommands. Can we generalize this result to arbitrary programs? The problem with
havoc ommands is that they introdue unbounded nondeterminism in the onrete system.This unbounded nondeterminism is re�eted by the weakest liberal preonditions of havocommands:

wlp(havoc(x))(F ) = ∀v. F [x:= v] where v /∈ FV(F )One way to obtain progress in the presene of unbounded nondeterminism would beto dynamially hange the arity of abstration prediates suh that elements in the ab-strat domain an quantify over additional variables. However, this would unneessarilyompliate our analysis. Instead, we use a simple trik that sidesteps this problem.Whenever we add a new edge to the ART that is labeled by a ommand c of theform havoc(x) then we replae c by a deterministi update x:= x′ where x′ is a freshprogram variable. E�etively this transformation moves the nondeterminism to the hoieof the initial value of x′ in the initial states of the orresponding ART path. However, allommands that label edges in the ART are deterministi and we get progress of nested lazyabstration re�nement for general programs.4.5 Costs and Gains of AutomationWe implemented our nested abstration re�nement algorithm in our tool Bohne. We wereable to verify omplex properties of programs manipulating data strutures without manualspei�ation of abstrat transformers or abstration prediates. A detailed presentation ofour tool and an overview of our experiments is given in Chapter 6. It is instrutive to mea-sure the osts and gains of automation by omparing Bohne to other shape analysis tools.Due to the similarities between three-valued shape analysis [103℄ and domain prediate ab-stration it seems appropriate to ompare Bohne with TVLA [79℄, the implementation ofthree-valued shape analysis. A detailed overview and analysis of our omparison an befound in Setion 6.5.3.Our experiments indiate that the running time of our analysis is approximately oneorder of magnitude higher than the running time of TVLA. Almost all running time of theanalysis is spent in the underlying deision proedures. Thus, the inreased running timeis the prie we pay for automated omputation of abstrat transformers and automatedabstration re�nement.On the other hand, the inreased degree of automation redues the burden that is im-posed on the user of the analysis. However, this is not the only bene�t of an inreasedautomation. Our lazy nested re�nement loop seems to ahieve the loal �ne-tuning of theabstration at the required preision. This targeted preision results in a smaller spae on-sumption of our analysis. The spae onsumption of Bohne (measured in number of abstratstates in the least �xed point) an be signi�antly smaller than the spae onsumption ofTVLA. One of the main reasons for the lower spae onsumption is that Cartesian re�ne-ment serves as a property-driven fous operation. Our analysis performs materialization ofabstrat objets and abstrat states only when the additional preision is needed to verify a



80 CHAPTER 4. LAZY NESTED ABSTRACTION REFINEMENTpartiular property. In ontrast, TVLA's fous operation performs materialization eagerlywhih potentially leads to an inreased number of explored abstrat states.4.6 Further Related WorkThe advantages of ombining prediate abstration, abstration re�nement, and shape anal-ysis are learly demonstrated in lazy shape analysis [18℄. Lazy shape analysis performsindependent runs of a shape analysis algorithm, whose results are then used to improvethe preision of prediate abstration. In ontrast, domain prediate abstration general-izes prediate abstration to the point where it itself beomes e�etive as a shape analysis.This approah makes the bene�ts of lazy abstration [53℄ immediately aessible to shapeanalysis.In the previous setion we already made a detailed omparison with three-valued shapeanalysis [103℄. We now summarize additional related work. A method for automated gen-eration of prediates using indutive learning has been presented in [82℄. Reent tehniquesalso attempt to derease the spae onsumption [84,85,102℄. However, none of these meth-ods uses ounterexample-guided abstration re�nement. Thus, it is up to the user of theanalysis to determine when the appliation of suh a tehnique is appropriate.Shape analyses based on separation logi [93,94,101℄, suh as [31,42℄ are typially tailoredtowards spei� data strutures and properties. This makes them sale to programs ofimpressive size [115℄, but also limits their appliation domain. Reent tehniques introduesome degree of parametriity and allow the analysis to automatially adapt to spei�lasses of data strutures [13℄. A similar tehnique, while not based on separation logi, isdesribed in [77℄. None of these methods is based on abstration re�nement.Shape analysis based on abstrat regular tree model heking [25℄ an take advantageof abstration re�nement tehniques that have been developed in this ontext [24℄. Inpartiular, there is an automata-based version of prediate abstration that an be ombinedwith abstration re�nement and provide progress guarantees. However, these re�nementtehniques annot prevent any loss of preision that is aused by the initial enoding of aheap program into tree transduers. Also, this approah fouses on shape invariants of datastrutures and does not apply to properties suh as sortedness.Indexed prediates [71℄ use prediates with free variables to infer quanti�ed invariants,similarly to domain prediate abstration. Heuristis for automati disovery of indexedprediates are desribed in [72℄. Unlike indexed prediate abstration, our abstrat domainontains disjuntions of universally quanti�ed statements. The presene of disjuntionsavoids loss of preision on join points of the ontrol �ow graph. This is important in theontext of abstration re�nement beause it allows to preisely identify spurious error traesin the abstrat system.The SLAM tool [9℄ uses Cartesian abstration [8℄ on top of prediate abstration. In[5℄ Ball et al. present a tehnique based on [40℄ that guarantees progress of abstrationre�nement in this ontext. This tehnique gradually re�nes the abstrat post towardsthe most preise abstrat post for the urrent abstrat domain, if adding new prediatesalone does not rule out a partiular spurious error trae. Thus, the spurious error trae iseventually eliminated. Our lazy nested abstration re�nement does not implement the bestabstrat post. Remarkably it still guarantees the progress property. Our nested re�nement



4.7. CONCLUSION 81is inspired by materialization in shape analysis, i.e., it implements a property-driven fousoperation. In fat, one an think of nested abstration re�nement as an improvement of thefous operator that is used in lassial prediate abstration [8℄. The fous operator in [8℄eliminates loss of preision under Cartesian abstration in ases where the best abstrat postbehaves deterministially. Our nested abstration re�nement also prevents loss of preisionin ases where the best abstrat post is nondeterministi.4.7 ConlusionIn this hapter we presented a nested abstration re�nement tehnique for symboli shapeanalysis. This tehnique enabled us to verify omplex properties of a variety of data stru-ture implementations without providing any user assistane other than stating the proper-ties to verify.Our tehnique uses spurious error traes to re�ne both the abstrat domain of theanalysis and the abstrat post operator for that abstrat domain. We showed that ournested re�nement loop an be viewed as a solution to the problem of materialization inshape analysis and that the re�nement of the abstrat post operator implements a property-driven fous operation. We further showed that nested re�nement guarantees the progressproperty, i.e., every spurious error trae is eventually eliminated. While at �rst glane theprogress property seems to be merrily of theoretial importane, it was the key for makingthe analysis pratial.





Chapter 5Field Constraint AnalysisIn the last two hapters we have developed tehniques that use deision proedures asblak boxes in order to obtain a fully automated shape analysis. In this hapter we areonerned with deision proedures for reasoning about data strutures in heap programs.These deision proedures provide the missing link to make our shape analysis appliablein pratie.For reursive data strutures suh as lists and trees it is important to be able to reasonabout reahability. Reahability properties are useful for expressing onstraints on theshapes of data strutures as well as for de�ning preise abstrations. Unfortunately mostlogis for reasoning about reahability are either undeidable [58℄, or restrit the lass ofonsidered strutures. This makes any analysis that depends on suh a logi inappliableto many useful data strutures. Among the most striking examples is the restrition onpointer �elds in the Pointer Assertion Logi Engine [89℄. This restrition states that all�elds of the data struture that are not part of the data struture's tree bakbone must befuntionally determined by the bakbone; that is, suh �elds must be spei�ed by a formulathat uniquely determines where they point to. Formally, we have
∀v w. f(v) = v ↔ F (v,w) (5.1)where f is a funtion representing the �eld, and F is the de�ning formula for f . Therestrition that F is funtional means that, although data strutures suh as doubly-linkedlists with bakward pointers an be veri�ed, many other data strutures remain beyondthe sope of the analysis. This inludes data strutures where the exat value of pointer�elds depends on the history of data struture operations, and data strutures that userandomness to ahieve good average-ase performane, suh as skip lists [99℄. In suh ases,the invariant on the pointer �eld does not uniquely determine where the �eld points to, butmerely gives a onstraint on the �eld, of the form
∀v w. f(v)=w → F (v,w) (5.2)This onstraint is equivalent to ∀v. F (v, f(v)), whih states that the funtion f is a solutionof a given binary prediate. The motivation of this hapter is to �nd a tehnique thatsupports reasoning about onstraints of this, more general, form. In a searh for existingapproahes, we have onsidered struture simulation [57,59℄, whih, intuitively, allows riher83



84 CHAPTER 5. FIELD CONSTRAINT ANALYSISlogis to be embedded into existing logis that are known to be deidable, and of whih [89℄an be viewed as a spei� instane. Unfortunately, even the general struture simulationrequires de�nitions of the form
∀v w. r(v,w) ↔ F (v,w)where r(v,w) is the relation being simulated. When the relation r(v,w) is a funtion,whih is the ase with most referene �elds in programming languages, struture simulationimplies the same restrition on the funtionality of the de�ning relation. To handle thegeneral ase, an alternative approah therefore appears to be neessary.Field onstraint analysis. This hapter presents �eld onstraint analysis, our approahfor analyzing data strutures with general onstraints of the form (5.2). Field onstraintanalysis is a proper generalization of the existing approah and redues to it when theonstraint formula F is funtional. It is based on approximating the ourrenes of �eld fwith its onstraint formula F , taking into aount the polarity of f , and is always sound. Itis expressive enough to verify onstraints on pointers in data strutures suh as two-level skiplists. The appliability of our �eld onstraint analysis to nondeterministi �eld onstraints isimportant beause many omplex properties have useful nondeterministi approximations.Yet despite this fundamentally approximate nature of �eld onstraints, we were able toprove its ompleteness for some important speial ases. Field onstraint analysis naturallyombines with struture simulation, as well as with our symboli approah to shape analysispresented in Chapter 3 and 4. Our presentation and urrent implementation are in theontext of the monadi seond-order logi (MSOL) over trees [63℄, but our results extendto other logis. We therefore view �eld onstraint analysis as a useful omponent of shapeanalysis approahes that makes shape analysis appliable to a wider range of data strutures.Contributions. In this hapter we make the following ontributions:

• We introdue an algorithm (Figure 5.7) that uses �eld onstraints to eliminate de-rived �elds from veri�ation onditions.
• We prove that the algorithm is both sound (Theorem 48) and, in ertain ases,omplete. The ompleteness applies not only to deterministi �elds (Theorem 50),but also to the preservation of �eld onstraints themselves over loop-free ode (The-orem 56). The last result implies a omplete tehnique for heking that �eld on-straints hold, if the programmer adheres to a disipline of maintaining them, e.g., atthe beginning of eah loop.
• We desribe how to ombine our algorithm with our symboli shape analysis to inferloop invariants.5.1 ExamplesWe next explain our �eld onstraint analysis with a set of examples. The doubly-linkedlist example shows that our analysis handles, as a speial ase, the ubiquitous bak point-ers of data strutures. The skip list example shows how �eld onstraint analysis handles



5.1. EXAMPLES 85nondeterministi �eld onstraints on derived �elds, and how it an infer loop invariants.Finally, the students example illustrates inter-data-struture onstraints, whih are simplebut useful for high-level appliation properties.5.1.1 Doubly-Linked Lists with IteratorsThis setion presents a lass implementing doubly-linked lists with built-in iterators. Thisexample illustrates the usefulness of �eld onstraints for speifying pointers that formdoubly-linked strutures.Our doubly-linked list implementation is a data struture with operations add andremove that insert and remove elements from the list, as well as the operations initIter,nextIter, and lastIter for manipulating the iterator built into the list. We have veri�ed allthese operations using our system; we here present only the remove operation. Figure 5.2depits an instane of the data struture. It onsists of a list of Node objets whih areonneted via �elds next and prev and the list's head objet with two �elds �rst and urrent.Field �rst points to the �rst Node objet in the list and �eld urrent indiates the urrentposition of the iterator in the list.The behavior of method remove is given by a proedure ontrat. The ontrat uses twosets: ontent, whih ontains the set of Node objets in the list, and iter, whih spei�esthe set of elements that remain to be iterated over. These two sets abstratly haraterizethe behavior of operations, allowing the lients to soundly reason about the hidden imple-mentation of the data struture. The system veri�es that the implementation onformsto the spei�ation, using the de�nitions of sets ontent and iter. These de�nitions areexpressed in a subset of Isabelle/HOL [92℄ formulae that an be translated into monadiseond-order logi [63℄. The set ontent is de�ned as the set of all objets reahable from the�rst �eld of the head objet followed by arbitrary many next �elds. The set iter is de�nedorrespondingly by taking �eld urrent instead of �eld �rst.In addition to the proedure ontrat there are four data struture invariants spei�ed.The de�nitions of sets ontent and iter are hidden from the data struture lients. Thus,without exposing additional information lients would be unable to relate these two sets.Therefore, the �rst invariant is a publi invariant that expresses that the set of nodes thatremain to be iterated over is always a subset of the ontent of the list. The remainingrepresentation invariants are private to the data struture implementation. The invarianttree [�rst, next℄ expresses that �elds �rst from lass List and �eld next from lass Node arebakbone �elds that form a forest in the heap. The third invariant is a �eld onstrainton �eld prev. It expresses that �eld prev is the inverse of �eld next. The last invariantindiates that all objets whih are not ontained in the any instane of the data strutureare isolated: they have no outgoing next pointers.Our system veri�es that the remove proedure implementation onforms to its spei�-ation as follows. The system expands the modi�es lause into a frame ondition, whihit onjoins with the ensures lause. This frame ondition expresses that only the ontentand iter sets of other instanes of the doubly-linked list data struture are not modi�ed.Next, it onjoins the data struture invariants to both the requires and ensures lause. Theresulting pre- and postondition are expressed in terms of the sets Content and Iter, so thesystem applies the de�nitions of the sets to obtain pre and postondition expressed only



86 CHAPTER 5. FIELD CONSTRAINT ANALYSISpubli �nal lass Node {publi /∗: laimedby DLLIter ∗/ Node next;publi /∗: laimedby DLLIter ∗/ Node prev;}publi lass DLLIter{ private Node �rst , urrent ;/∗: publi spevar ontent :: objset ;publi spevar iter :: objset ;private vardefs "ontent == {x. x 6= null ∧ next∗ �rst x}";private vardefs " iter == {x. x 6= null ∧ next∗ urrent x}";publi invariant " iter ⊆ ontent";invariant "tree [ �rst ,next]";invariant "∀ x y. prev x = y →(y 6= null → next y = x) ∧(y = null ∧ x 6= null → (∀ z. next z 6= x))";invariant "∀ n (∀ l. l ∈ DLLIter → n /∈ ontent l) → next n = null";
∗/publi void remove(Node n)/∗: requires "n ∈ ontent"modi�es ontent, iterensures "ontent = old ontent − {n} ∧ iter = old iter − {n}"
∗/{ if (n==urrent) urrent = urrent.next;if (n==�rst) �rst = �rst .next;else n.prev .next = n.next;if (n.next != null) n.next.prev = n.prev;n.next = null ;n.prev = null ;}} Figure 5.1: Iterable lists implementation and spei�ation
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prevFigure 5.2: An instane of a doubly-linked list with iterator



5.1. EXAMPLES 87in terms of �elds �rst, urrent, next, and prev. It then uses standard weakest preonditionomputation [1℄ to generate a veri�ation ondition that aptures the orretness of remove.To deide the resulting veri�ation ondition, our system analyzes the veri�ation on-dition and reognizes assumptions of the form:1. tree [...℄ and2. ∀ x y. f x = y → F(x,y).These assumptions enable an enoding of the veri�ation ondition into monadi seond-order logi over trees [63℄. The details of this enoding are desribed in Setion 6.3. The �rstform of assumptions determines the bakbone �elds of the data struture. The seond formdetermines the derived �elds and their onstraints expressed in terms of bakbone �elds.The system uses the onstraints on the derived �elds to redue the veri�ation onditionto a formula expressible only in terms of the bakbone �elds. (This elimination is givenby the algorithm in Figure 5.7.) Beause the bakbone �elds form a tree, the system andeide the resulting formula using monadi seond-order logi over trees. In our ase, �elds�rst and next are the bakbone �elds and �eld prev is a derived �eld. The invariants in ourexample do not determine whether �eld urrent is a bakbone �eld or a derived �eld. Inthis ase the system handles �eld urrent as a derived �eld with a trivial �eld onstraint ofthe form
∀ x y. urrent x = y → (x = null → y = null).While reasoning over suh �elds whih are ompletely unonstrained is generally inomplete,our system is still able to prove the veri�ation onditions generated for our example.We note that a �rst implementation of the doubly-linked list with an iterator was in theontext of the Hob system [75℄. This implementation was veri�ed using a Hob plugin thatrelies on the Pointer Assertion Logi Engine tool [89℄. What distinguishes �eld onstraintanalysis from the previous Hob analysis based on PALE is the ability to handle the aseswhere the �eld onstraints are nondeterministi, suh as the trivial �eld onstraint generatedfor �eld urrent. In the examples that follow, we illustrate the usefulness of nondeterministi�eld onstraints for data struture spei�ation. Additionally, we show how �eld onstraintsare ombined with our symboli shape analysis to synthesize loop invariants.5.1.2 Skip ListWe next present the analysis of a two-level skip list. Skip lists [99℄ support logarithmiaverage-time aess to elements by augmenting a linked list with sublists that skip oversome of the elements in the list. The two-level skip list is a simpli�ed implementation ofa skip list, whih has only two levels: the list ontaining all elements, and a sublist ofthis list. Figure 5.3 presents an example two-level skip list. Our implementation uses thenext �eld to represent the main list, whih forms the bakbone of the data struture, anduses the derived nextSub �eld to represent a sublist of the main list. We fous on the addproedure, whih inserts an element into an appropriate position in the skip list. Figure 5.4presents the implementation of add, whih �rst searhes through nextSub links to get anestimate of the position of the entry, then �nds the entry by searhing through next links,
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root

next next next next next

nextSub
nextSub

Figure 5.3: An instane of a two-level skip listand inserts the element into the main next-linked list. Optionally, the proedure also insertsthe element into the nextSub list, whih is modelled using a nondeterministi hoie and isan abstration of the insertion with ertain probability in the original implementation. Theontrat for add indiates that add always inserts the element into the set of elements storedin the list. The abstrat set ontent is de�ned as the set of nodes reahable from root.The skip list implementation has three representation invariants. The �rst invariantde�nes next as the bakbone �eld of the data struture. The seond invariant is a �eldonstraint on the �eld nextSub, whih de�nes it as a derived �eld. It expresses that nextSubpoints from x to some objet y reahable via next �elds starting from the next suessorof x. Note that the onstraint for this derived �eld is nondeterministi, beause it onlystates that if x.nextSub=y, then there exists a path of length at least one from x to y alongnext �elds, without indiating where nextSub points. Indeed, the simpliity of the skip listimplementation stems from the fat that the position of nextSub is not uniquely given bynext; it depends not only on the history of invoations, but also on the random numbergenerator used to deide when to introdue new nextSub links. The ability to support suhnondeterministi onstraints is what distinguishes our approah from approahes that anonly handle deterministi �elds.Our analysis suessfully veri�es that add preserves all invariants, inluding the non-deterministi �eld onstraint on nextSub. While doing so, the analysis takes advantage ofthese invariants as well, as is usual in assume/guarantee reasoning. In this example, theanalysis is able to infer the loop invariants in add using our symboli shape analysis.5.1.3 Students and ShoolsOur next example illustrates the power of nondeterministi �eld onstraints. This exampleontains two linked lists: one ontaining students and one ontaining shools. Eah Elemobjet may represent either a student or a shool; students have a pointer to the shoolwhih they attend. Both students and shools use the next bakbone pointer to indiatethe next student or shool in the relevant linked list. Figure 5.5 presents an example of thedata struture.The spei�ation and implementation of the data struture is given in Figure 5.6. Themethod addStudent adds a student to the student list and assoiates it with a shool thatis supposed to be already ontained in the shool data struture. The spei�ation usesthe abstrat sets ST and SC. The spei�ation variable ST denotes all students, that is, allElem objets reahable from the root referene students through next �elds. The spei�ationvariable SC denotes all shools, that is, all Elem objets reahable from shools. The lassfurther de�nes several representation invariants. The �rst two invariants state disjointnessproperties: no objets are shared between ST and SC (if an objet is reahable from shoolsthrough next �elds, then it is not reahable from students through next �elds, and vie-



5.1. EXAMPLES 89publi �nal lass Node {publi /∗: laimedby Skiplist ∗/ Node next;publi /∗: laimedby Skiplist ∗/ Node nextSub;publi /∗: laimedby Skiplist ∗/ int value ;}publi lass Skiplist{ private stati Node root;/∗:publi stati spevar ontent :: objset ;private vardefs "ontent == {x. x 6= null ∧ next∗ root x}";invariant "tree [next℄";invariant "∀ x y. nextSub x = y → next∗ (next x) y";invariant "∀ x. x 6= null ∧ next∗ root x →next x = null ∧ (∀ y. y 6= null → next y 6= x)";
∗/publi stati void add(Node e)/∗: requires "e 6= null ∧ e /∈ ontent"modi�es ontentensures "ontent = old ontent ∪ {e}"
∗/{ if (root == null) {root = e;return;}int v = e.value ;Node sprev = root;Node surrent = root.nextSub;while (( surrent != null) && (surrent.value < v)) {sprev = surrent ; surrent = surrent.nextSub;}Node prev = sprev;Node urrent = sprev.next;while (( urrent != surrent) && (urrent.value < v)) {prev = urrent; urrent = urrent.next;}e.next = urrent; prev .next = e;boolean nondet;if (nondet) {sprev .nextSub = e; e.nextSub = surrent;} else {e.nextSub = null;}}} Figure 5.4: Skip list example



90 CHAPTER 5. FIELD CONSTRAINT ANALYSIS
students

next next nextschools

next next

at
te
nd

s

a
tt

en
d
s

atte
nds

at
te
nd

s

Figure 5.5: Students data struture instaneversa). The third invariant de�nes �eld next as the bakbone �eld of the data struture.The fourth invariant states that if an objet x is not in either ST or SC, then its next �eldis set to null, and no objet points to x.The last invariant is a �eld onstraint on the attends �eld: it states that for any student,�eld attends points to some (undetermined) element of the SC set of shools. Note that thisgoes beyond the power of previous analyses, whih required the identity of the shool pointedto by the student be funtionally determined by the identity of the student. The exampletherefore illustrates how our analysis eliminates a key restrition of previous approahes�ertain data strutures exhibit properties that the logis in previous approahes were notexpressive enough to apture. In general, previous approahes ould express and verifyproperties that were, in some sense, more restritive than the properties of many datastrutures that we would like to implement. Beause our analysis supports properties thatexpress the orret level of partial information (for example, that a �eld points to someundetermined objet within a set of objets), it is able to suessfully analyze these kindsof data strutures.5.2 Field Constraint AnalysisThis setion presents the �eld onstraint analysis algorithm and proves its soundness as wellas, for some important ases, ompleteness.5.2.1 Field ConstraintsWe onsider a logi L over a signature Σ = (B,C, ty) as desribed in Setion 2.2.1 where Σonsists of unary funtion symbols f ∈ Fld orresponding to �elds in data strutures andonstant symbols x ∈ Var orresponding to referene variables. For simpliity we assumethat there is only one other type onstant than bool and that D is the domain of that typeonstant. The extension to multisorted logis is straightforward.We use monadi seond-order logi (MSOL) over trees as our working example, but ingeneral we only require L to support onjuntion, impliation and equality reasoning. Fora formula F in L, we denote by Fields(F ) ⊆ C the set of all �elds ourring in F .We assume that L is deidable over some set of well-formed strutures and we assumethat this set of strutures is expressible by a losed formula I in L. We all I the simulationinvariant [59℄. For simpliity, we onsider the simulation itself to be given by the restritionof a struture to the �elds in Fields(I), i.e., we assume that there exists a deision proedurefor heking validity of impliations of the form I → F where F is a formula suh that



5.2. FIELD CONSTRAINT ANALYSIS 91lass Elem {publi /∗: laimedby Students ∗/ Elem attends;publi /∗: laimedby Students ∗/ Elem next;}lass Students {private stati Elem students;private stati Elem shools;/∗:publi stati spevar ST :: objset ;vardefs "ST == {x. x 6= null ∧ next∗ students x}";publi stati spevar SC :: objset ;vardefs "SC == {x. x 6= null ∧ next∗ shools x}";publi invariant "null /∈ (ST ∪ SC)";publi invariant "ST ∩ SC = ∅";invariant "tree [next℄";invariant "∀ x y. attends x = y → (x ∈ ST → y ∈ SC) ∧(x /∈ ST → y = null)";invariant "∀ x. x /∈ (ST ∪ SC ∪ {null}) →(∀ y. y /∈ null → next y /∈ x) ∧ next x = null";
∗/publi stati void addStudent(Elem st, Elem s)/∗: requires "st /∈ (ST ∪ SC ∪ {null}) ∧ s ∈ SC"modi�es STensures "ST = old ST ∪ {st}"

∗/{ st . attends = s;st .next = students;students = st;}} Figure 5.6: Students and shools example
Fields(F ) ⊆ Fields(I). In our running example, MSOL, the simulation invariant I statesthat the �elds in Fields(I) span a forest.We all a �eld f ∈ Fields(I) a bakbone �eld, and all a �eld f ∈ FldrFields(I) a derived�eld. We refer to the deision proedure for formulae with �elds in Fields(I) over the set ofstrutures de�ned by the simulation invariant I as the underlying deision proedure. Fieldonstraint analysis enables the use of the underlying deision proedure to reason aboutnondeterministially onstrained derived �elds. We state invariants on the derived �eldsusing �eld onstraints.De�nition 46 (Field onstraints on derived �elds) A �eld onstraint FCf for a sim-



92 CHAPTER 5. FIELD CONSTRAINT ANALYSISulation invariant I and a derived �eld f is a formula of the form
FCf ≡ ∀v w. f(v) = w → Ff (v,w)where Ff is a formula with two free variables suh that (1) Fields(Ff ) ⊆ Fields(I), and (2)

Ff is total with respet to I, i.e., I |= ∀v.∃y.Ff (v,w).We all the onstraint FCf deterministi if Ff is deterministi with respet to I, i.e.,
I |= ∀v w u. Ff (v,w) ∧ Ff (v, u) → w = u .We write FC for the onjuntion of FCf for all derived �elds f .Note that De�nition 46 overs arbitrary onstraints on a �eld beause FCf is equivalent to

∀v. Ff (v, f(v)).The totality ondition (2) is not required for the soundness of our approah, only forits ompleteness, and rules out invariants equivalent to �false�. The ondition (2) does notinvolve derived �elds and an therefore be heked automatially using a single all to theunderlying deision proedure.Our goal is to hek validity of formulae of the form I ∧FC → G, where G is a formulawith possible ourrenes of derived �elds. If G does not ontain any derived �elds thenthere is nothing to do beause in that ase heking validity immediately redues to thevalidity problem without �eld onstraints, as given by the following lemma.Lemma 47 Let G be a formula suh that Fields(G) ⊆ Fields(I).Then I |= G i� I ∧ FC |= G.Proof. The left-to-right diretion follows immediately. For the right-to-left diretionassume that I ∧FC → G is valid. Let A be a struture suh that A |= I. By totality of all�eld onstraints in FC there exists a struture A′ suh that A′ |= I∧FC and A′ di�ers from
A only in the interpretation of derived �elds. Sine Fields(G) ⊆ Fields(I) and I ontains noderived �elds we have for any assignment β that A′, β |= G implies A, β |= G.To hek validity of I ∧ FC → G, we therefore proeed as follows. We �rst obtain aformula G′ from G by eliminating all ourrenes of derived �elds in G. Next, we hekvalidity of G′ with respet to I. In the ase of a derived �eld f that is de�ned by adeterministi �eld onstraint, ourrenes of f in G an be eliminated by �attening theformula and substituting eah term f(x) = y by Ff (x, y). However, in the general ase ofnondeterministi �eld onstraints suh a substitution is only sound for negative ourrenesof derived �elds, sine the �eld onstraint gives an over-approximation of the derived �eld.Therefore, a more sophistiated elimination algorithm is needed.5.2.2 Eliminating Derived FieldsFigure 5.7 presents our algorithm Elim for elimination of derived �elds. Consider a derived�eld f and let F ≡ Ff . The basi idea of Elim is that we an replae an ourrene G(f(v))of f by a new variable w that satis�es F (v,w), yielding a stronger formula ∀w. F (v,w) →
G(w). As an improvement, if G ontains two ourrenes f(v1) and f(v2), and if v1 and
v2 evaluate to the same value, then we attempt to replae f(v1) and f(v2) with the same
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S − a term or a formula

Terms(S) − terms ourring in S

FV(S) − variables free in S

Ground(S) = {t ∈ Terms(S). FV(t) ⊆ FV(S)}

Derived(S) − derived funtion symbols in Spro Elim(G) = elim(G, ∅)pro elim(G : formula in negation normal form;

K : set of (variable,�eld,variable) triples):let T = {f(t) ∈ Ground(G). f ∈ Derived(G) ∧ Derived(t) = ∅}if T 6= ∅ dohoose f(t) ∈ Thoose v,w fresh �rst-order variableslet F = Fflet F1 = F (v,w) ∧
∧

(vi,f,wi)∈K(v = vi → w = wi)let G1 = G[f(t):= w]return ∀v. v = t → ∀w. (F1 → elim(G1,K ∪ {(v, f, w)}))else ase G of
| Qv. G1 where Q ∈ {∀,∃} :return Qv. elim(G1,K)

| G1 op G2 where op ∈ {∧,∨} :return elim(G1,K) op elim(G2,K)

| else return GFigure 5.7: Derived-�eld elimination algorithmvalue. Elim implements this idea using the set K of triples (v, f, w) to reord previouslyassigned values for f(v). Elim runs in time O(n2) where n is the size of the formula andprodues an at most quadratially larger formula. Elim aepts formulae in negation normalform, where all negation signs apply to atomi formulae. We generally assume that eahquanti�er Qu binds a variable u that is distint from other bound variables and distintfrom the free variables of the entire formula. The algorithm Elim is presented as ating on�rst-order formulae, but is also appliable to heking validity of quanti�er-free formulaebeause it only introdues universal quanti�ers whih an be replaed by Skolem onstants.The algorithm is also appliable to multisorted logis, and, by treating sets of elements asa new sort, to MSOL. To make the disussion simpler, we onsider a deterministi versionof Elim where the nondeterministi hoies of variables and terms are resolved by somearbitrary, but �xed, linear ordering on terms. We write Elim(G) to denote the result ofapplying Elim to a formula G.The orretness of Elim is given by Theorem 48. The proof of Theorem 48 relies on the



94 CHAPTER 5. FIELD CONSTRAINT ANALYSISmonotoniity of logial operations and quanti�ers in negation normal form of a formula.Theorem 48 (Soundness) The algorithm Elim is sound: if I ∧ FC |= Elim(G), then
I ∧ FC |= G. What is more, I ∧ FC ∧ Elim(G) |= G.Proof. By indution on the �rst argument G of elim we prove that, for all �nite K,

I ∧ FC ∧ elim(G,K) ∧
∧

(vi,fi,wi)∈K

Ffi
(vi, wi) |= GFor K = ∅ we obtain I ∧ FC ∧ Elim(G) |= G, as desired. In the indutive proof, the aseswhen T = ∅ are straightforward. The ase f(t) ∈ T uses the fat that if A, β |= G[f(t):= w]and A, β |= f(t) = w, then A, β |= G.5.2.3 CompletenessWe now analyze the lasses of formulae G for whih Elim is omplete.De�nition 49 We say that algorithm Elim is omplete for (FC , G) if and only if

I ∧ FC |= G implies I ∧ FC |= Elim(G) .Note that we annot hope to ahieve ompleteness for arbitrary onstraints FC . Indeed,if we let FC ≡ true, then FC imposes no onstraint whatsoever on the derived �elds, andreasoning about the derived �elds beomes reasoning about uninterpreted funtion symbols,that is, reasoning in unonstrained prediate logi. Suh reasoning is undeidable not onlyfor monadi seond-order logi, but also for muh weaker fragments of �rst-order logi [47℄.Despite these general observations, we have identi�ed two ases important in pratie forwhih Elim is omplete (Theorem 50 and Theorem 56).Theorem 50 expresses the fat that, in the ase where all �eld onstraints are determin-isti, Elim is omplete (and then it redues to previous approahes [59,89℄ that are restritedto the deterministi ase). The proof of Theorem 50 uses the assumption that F is totaland funtional to onlude ∀v w. F (v,w) → f(v)= w, and then uses an indutive argumentsimilar to the proof of Theorem 48.Theorem 50 (Completeness for deterministi �eld onstraints) Algorithm Elim isomplete for (FC , G) when eah �eld onstraint in FC is deterministi.What is more, I ∧ FC ∧ G |= Elim(G).Proof. Consider a �eld onstraint F ≡ Ff . Let A be a struture and β an assignmentsuh that A, β |= I ∧ FC ∧ F (v,w). Beause A, β |= F (v, f(v)) and F is deterministi byassumption, we have A, β |= f(v) = w. It follows that I ∧ FC ∧ F (v,w) |= f(v) = w. Wethen prove by indution on the argument G of elim that, for all �nite K,
I ∧ FC ∧ G ∧

∧

(vi,fi,wi)∈K

fi(vi) = wi |= elim(G,K)For K = ∅ we obtain I∧FC ∧G |= Elim(G), as desired. The indutive proof is similar to theproof of Theorem 48. In the ase f(t) ∈ T , we onsider a struture A and assignment β suh
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∧

(vi,fi,wi)∈K fi(vi) = wi. Consider any v̄, w̄ ∈ D and assignment β′suh that: 1) β′ = β[v 7→ v̄, w 7→ w̄], 2)A, β′ |= v = t, 3)A, β′ |= F (v,w) and 4)A, β′ |= v =
vi → w = wi for all (vi, f, wi) ∈ K. To show A, β′ |= elim(G1,K ∪ {(v, f, w)}), we onsidera modi�ed struture A1 = A[f v̄:= w̄] whih is like A exept that the interpretation of f at
v̄ is w̄. By A, β′ |= F (v,w) we onlude A1 |= I ∧ FC . By A, β′ |= v = wi → w = wi, weonlude A1, β

′ |=
∧

(vi,fi,wi)∈K fi(vi) = wi as well. Beause I ∧ FC ∧ F (v,w) |= f(v) = w,we onlude A1, β
′ |= f(v) = w. Beause A, β′ |= v = t and Derived(t) = ∅, we have

A1, β
′ |= v = t so from A, β′ |= G we onlude A1, β

′ |= G1 where G1 = G[f(t):= w].By indution hypothesis we then onlude A1, β
′ |= elim(G1,K ∪ {(v, f, w)}. Then also

A, β′ |= elim(G1,K ∪{(v, f, w)} beause the result of elim does not ontain f . Beause v̄, w̄were arbitrary, we onlude A, β |= elim(G,K).We next turn to ompleteness in the ases that admit nondeterminism of derived �elds.Theorem 56 states that our algorithm is omplete for derived �elds introdued by theweakest preondition operator to a lass of postonditions that inludes �eld onstraints.This result is very important in pratie. For example, when we used a previous versionof an elimination algorithm that was inomplete, we were not able to verify the skip listexample in Setion 5.1.2. To formalize our ompleteness result, we introdue two lasses ofwell-behaved formulae: nie formulae and pretty nie formulae.De�nition 51 (Nie Formulae) A formula G is a nie formula if eah ourrene of eahderived �eld f in G is of the form f(t), where t ∈ Ground(G).Nie formulae generalize the notion of quanti�er-free formulae by disallowing quanti�ersonly for variables that are used as arguments to derived �elds. Lemma 52 shows thatthe elimination of derived �elds from nie formulae is omplete. The intuition behindLemma 52 is that if I ∧ FC |= G, then for the hoie of wi suh that F (vi, wi) we an �ndan interpretation of the funtion symbol f suh that f(vi) = wi, and I ∧ FC holds, so Gholds as well, and Elim(G) evaluates to the same truth value as G.Lemma 52 Elim is omplete for (FC , G) if G is a nie formula.Proof.Lemma 52 Let G be a nie formula. To show that I ∧ FC |= G implies I ∧ FC |=
Elim(G), let I ∧ FC |= G and let f1(t1), . . . , fn(tn) be the ourrenes of derived �elds in
G. By assumption, t1, . . . , tn ∈ Ground(G) and Elim(G) is of the form

∀v1 w1. v1 = t1 → (F 1
1 ∧

∀v2 w2. v2 = t′2 → (F 2
1 ∧

. . .

∀vn, wn. vn = t′n → (Fn
1 ∧ G0) . . .))where t′i di�ers from ti in that some of its subterms may be replaed by variables wj for

j < i. Here F i = Ffi
and
F i

1 = F i(vi, wi) ∧
∧

j<i,fj=fi

(vi = vj → wi = wj).



96 CHAPTER 5. FIELD CONSTRAINT ANALYSISConsider a model A of I ∧FC , we show A is a models of Elim(G). Consider any assignment
β to variables vi, wi for 1 ≤ i ≤ n. If any of the onditions vi = ti or F i

1 are false for thisassignment, then Elim(G) is true beause these onditions are on the left-hand side of animpliation. Otherwise, onditions F i
1(vi, wi) hold, so by de�nition of F i

1, if β(vi) = β(vj),then β(wi) = β(wj). Therefore, for eah distint funtion symbol fj there exists a funtion
f̄j suh that f̄j(β(vi)) = β(wi) for fj = fi. Beause A, β |= F i(vi, wi) holds and eah
Ff is total, we an de�ne suh f̄j so that FC holds. Let A′ = A[fj 7→ f̄j]j be a modelthat di�ers from A only in that all fj are interpreted as f̄j. Then A′ |= I beause I doesnot mention derived �elds and A′ |= FC by onstrution. We therefore onlude A′ |= G.Beause A, β |= vi = ti and Derived(ti) = ∅ we have A′, β |= vi = ti. Using this fat, aswell as f̄j(β(vi)) = β(wi), by indution on subformulas of G0 we onlude that G0 has thesame truth value as G for A′ and β, so A′, β |= G0. Beause G0 does not ontain derivedfuntion symbols, A, β |= G0 as well. Beause β was arbitrary, we onlude A |= Elim(G).This ompletes the proof.Remark. Note that it is not the ase that a stronger statement I ∧ FC ∧ G |= Elim(G)holds. For example, take FC ≡ true, and G ≡ f(a) = b. Then Elim(G) is equivalent to
∀w. w = b and it is not the ase that I ∧ f(a) = b |= ∀w. w = b.De�nition 53 (Pretty Nie Formulae) The set of pretty nie formulae is de�ned in-dutively by 1) a nie formula is pretty nie; 2) if G1 and G2 are pretty nie, then G1 ∧G2is pretty nie; 3) if G is pretty nie and v is a �rst-order variable, then ∀v. G is pretty nie.Pretty nie formulae therefore additionally admit universal quanti�ation over argu-ments of derived �elds. De�ne funtion skolem as follows: 1) skolem(∀v. G) = G; 2)
skolem(G1 ∧ G2) = skolem(G1) ∧ skolem(G2); and 3) skolem(G) = G if G is not of theform ∀v.G or G1 ∧ G2.Lemma 54 The following observations hold:1. eah �eld onstraint FCf is a pretty nie formula;2. if G is a pretty nie formula, then skolem(G) is a nie formula and

H |= G i� H |= skolem(G) for any set of formulae H.The next Lemma 55 shows that pretty nie formulae are losed under wlp; the lemma followsfrom the onjuntivity of the weakest preondition operator.Lemma 55 Let c be a ommand. If G is a nie formula, then wlp(c)(G) is a nie formula.If G is a pretty nie formula, then wlp(c)(G) is equivalent to a pretty nie formula.Lemmas 55, 54, 52, and 47 imply our main theorem, Theorem 56. Theorem 56 impliesthat Elim is a omplete tehnique for heking preservation (over straight-line ode) of �eldonstraints, even if they are onjoined with additional pretty nie formulae. Eliminationis also omplete for data struture operations with loops as long as the neessary loopinvariants are pretty nie.Theorem 56 (Completeness for preservation of �eld onstraints) Let G be a prettynie formula, FC a onjuntion of �eld onstraints, and c a ommand. Then
I ∧ FC |= wlp(c)(G ∧ FC ) i� I |= Elim(wlp(c)(skolem(G ∧ FC ))).
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FCnextSub ≡ ∀v1 v2. nextSub(v1) = v2 → next+(v1, v2)

G ≡ wlp((e.nextSub:= root .nextSub ; e.next := root),FCnextSub)

≡ ∀u1 u2. nextSub[e:=nextSub(root )](u1) = u2 →

(next [e:= root ])+(u1, u2)

G′ ≡ skolem(Elim(G)) ≡

v1 = root → next+(v1, w1) →

v2 = v1 → next+[e:= w1](v2, w2) ∧ (v2 = v1 → w2 = w1) →

w2 = u2 → (next [e:= root ])+(u1, u2)Figure 5.8: Elimination of derived �elds from a pretty nie formula. The notation next+denotes the irre�exive transitive losure of prediate next(v) = w.Example 57 The example in Figure 5.8 demonstrates the elimination of derived �eldsusing algorithm Elim. It is inspired by the skip list example from Setion 5.1.The formula G expresses the preservation of �eld onstraint FCnextSub for updates of�elds next and nextSub that insert e in front of root . This formula is valid under the as-sumption that ∀v.next(v) 6= e holds. The algorithm Elim �rst replaes the inner ourrene
nextSub(root ) and then the outer ourrene of nextSub. Theorem 56 implies that the re-sulting formula skolem(Elim(G)) is valid under the same assumption as the original formula
G.
�Limits of ompleteness. In our implementation, we have suessfully used Elim in theontext of MSOL, where we enode transitive losure using seond-order quanti�ation.Unfortunately, formulae that ontain transitive losure of derived �elds are often not prettynie, leading to false alarms after the appliation of Elim. This behavior is to be expeteddue to the undeidability of transitive losure logis over general graphs [58℄. On the otherhand, unlike approahes based on axiomatizations of transitive losure in �rst-order logi,our use of MSOL enables omplete reasoning about reahability over the bakbone �elds. Itis therefore useful to be able to onsider a �eld as part of a bakbone whenever possible. Forthis purpose, it an be helpful to verify onjuntions of onstraints using di�erent bakbonefor di�erent onjunts.5.2.4 DisussionVerifying onjuntions of onstraints. In our skip list example, the �eld nextSubforms an ayli (sub-)list. It is therefore possible to verify the onjuntion of onstraintsindependently, with nextSub a derived �eld in the �rst onjunt (as in Setion 5.1.2) but a



98 CHAPTER 5. FIELD CONSTRAINT ANALYSISbakbone �eld in the seond onjunt. Therefore, although the reasoning about transitivelosure is inomplete in the �rst onjunt, it is omplete in the seond onjunt.Verifying programs with loop invariants. The tehnique desribed so far supportsthe following approah for verifying programs annotated with loop invariants:1. generate veri�ation onditions using loop invariants, pre-, and postonditions;2. eliminate derived �elds from veri�ation onditions using Elim (and skolem);3. deide the resulting formula using a deision proedure suh as MONA [63℄.Field onstraints spei� to program point. Our ompleteness results also applywhen, instead of having one global �eld onstraint, we introdue di�erent �eld onstraintsfor eah program point. This allows the developer to re�ne data struture invariants withthe information about the data struture spei� to partiular program points.Field onstraint analysis and loop invariant inferene. Field onstraint analysis isnot limited to veri�ation in the presene of loop invariants. It an also be used to inferloop invariants automatially. Our implementation desribed in Chapter 6 ombines �eldonstraint analysis with domain prediate abstration.Reall from Setion 3.4.3 that in domain prediate abstration the abstration of theonrete post operator is omputed by deiding validity of impliations of the form:
K ∧ C(~v) → wlp(c)(p(~v)) .Here K is a losed formula, C(~v) is a onjuntion of literals over abstration prediates and

p(~v) a literal over abstration prediates. We use �eld onstraint analysis to hek validityof these formulae by augmenting them with the appropriate simulation invariant I and �eldonstraints FC that speify the data struture invariants we want to preserve:
I ∧ FC ∧ K ∧ C(~v) → wlp(c)(p(~v)) .The only problem arises from the fat that these additional invariants may be temporarilyviolated during program exeution. To ensure appliability of the analysis, we abstratomplete loop free paths in the ontrol �ow graph of the program at one. That means weonly require that simulation invariants are valid at loop ut points and hene part of theloop invariants. This supports the programming model where violations of data strutureinvariants are on�ned to the interior of basi bloks [89℄.Amortizing invariant heking in loop invariant inferene. A straightforward ap-proah to ombine �eld onstraint analysis with abstrat interpretation would do a well-formedness hek for global invariants and �eld onstraints at every step of the �xed-pointomputation, invoking a deision proedure at iteration of the �xed-point omputation. Thefollowing insight allows us to use a single well-formedness hek per basi blok: the loopinvariant synthesized in the presene of well-formedness is idential to the loop invariantsynthesized by ignoring the well-formedness hek. We therefore speulatively ompute the



5.3. FURTHER RELATED WORK 99abstration of the system under the assumption that both the simulation invariant and the�eld onstraints are preserved. After the least �xed point lfp# of the abstrat system hasbeen omputed, we generate for every loop free path c with start loation ℓ a veri�ationondition: I ∧ FC ∧ γ(lfp#
ℓ ) → wlp(c)(I ∧ FC ) where lfp

#
ℓ is the projetion of lfp# toprogram loation ℓ. We then use again our elimination algorithm to eliminate derived �eldsand hek the validity of these veri�ation onditions. If they are all valid then the analysisis sound and the data struture invariants are preserved. Note that this approah su-eeds whenever the straightforward approah would have sueeded, so it improves analysisperformane without degrading the preision.5.3 Further Related WorkSome deision proedures are e�etive at reasoning about loal properties in data strutures[70, 87℄, but are not omplete for reasoning about reahability. Promising, although stillinomplete, approahes inlude [80℄ as well as [73, 90℄. Some reahability properties an beredued to �rst-order properties using hints in the form of ghost �elds [67, 87℄ or by usingdeidable extensions of �rst-order logi [48℄. Separation logi [93, 94, 101℄ eliminates theneed for reasoning about reahability, but instead requires tehniques for reasoning aboutindutive prediates [14, 91℄.In general, ompleteness an be ahieved by representing loop invariants or andidateloop invariants by formulae in a deidable logi that supports transitive losure [4, 69, 89,98, 110, 116, 118, 120℄. These approahes treat deision proedure as a blak box and, whenapplied to MSOL, inherit the limitations of struture simulation [59℄. Our work an beviewed as a tehnique for lifting existing deision proedures into deision proedures thatare appliable to a larger lass of strutures. Therefore, it an be inorporated into all ofthese previous approahes.5.4 ConlusionHistorially, the primary hallenge in shape analysis was seen to be dealing e�etively withthe extremely preise and detailed onsisteny properties that haraterize many (but by nomeans all) data strutures. Perhaps for this reason, many formalisms were built on logisthat supported only data strutures with very preisely de�ned referening relationships.This hapter presents a tehnique that supports both the extreme preision of previousapproahes and the ontrolled redution in the preision required to support a more generallass of data strutures whose referening relationships may be random, depend on thehistory of the data struture, or vary for some other reason that plaes the refereningrelationships inherently beyond the ability of previous logis and analyses to haraterize.We have deployed this analysis in the ontext of the Jahob program analysis and veri�ationsystem; our results show that it is e�etive at 1) analyzing individual data strutures to 2)verify interfaes that allow other, more salable analyses to verify larger-grain data strutureonsisteny properties whose sope spans larger regions of the program.In a broader ontext, we view our result as taking an important step towards the pra-tial appliation of shape analysis. By supporting data strutures whose bakbone fun-



100 CHAPTER 5. FIELD CONSTRAINT ANALYSIStionally determines the referening relationships as well as data strutures with inherentlyless strutured referening relationships, it promises to be able to suessfully analyze thebroad range of data strutures that arise in pratie. Its integration within the Jahob pro-gram analysis and veri�ation framework shows how to leverage this analysis apability toobtain more salable analyses that build on the results of shape analysis to verify importantproperties that involve larger regions of the program. Ideally, this researh will signi�antlyinrease our ability to e�etively deploy shape analysis and other subsequently enabledanalyses on important programs of interest to the pratiing software engineer.



Chapter 6Proof of ConeptIn the previous hapters we developed a new symboli shape analysis. All the presentedtehniques have been implemented and evaluated in a tool alled Bohne. Bohne is imple-mented on top of the Jahob data struture veri�ation system [65,66,121℄. In the following,we give an overview of the tool. We desribe details of the analysis that are more imple-mentation spei� but important for making the analysis pratial.Contributions. The main ontributions desribed in this hapter are summarized asfollows:
• We desribe a method for synthesis of Boolean heap programs that improves thee�ieny of �xed point omputation by preomputing abstrat transition relations andthat an ontrol the preision/e�ieny trade-o� by reomputing abstrat transitionrelations on demand during �xed point omputation.
• We present a domain-spei� quanti�er instantiation tehnique that signi�antly im-proves the running time of the analysis. Furthermore, it often eliminates the need forthe underlying deision proedures to deal with quanti�ers.
• We introdue semanti ahing of deision proedure queries aross di�erent �xedpoint iterations and even di�erent analyzed proedures. The ahing yields substan-tial improvements for proedures that exhibit some similarity, whih opens up thepossibility of using our analysis in an interative ontext.
• We desribe an implementation of �eld onstraint analysis that enables automatedreasoning in higher-order logi by approximating higher-order logi formulae withformulae in monadi seond-order logi over trees.We used Bohne to verify a range of data strutures implementations and data struturelients without manually spei�ed loop invariants or manually provided abstrations. Ourexamples inlude implementations of lists (with iterators and with bak pointers), two-level skip lists, sorted lists, trees (with and without parent pointers), threaded trees aswell as ombinations of these data strutures. An overview of our ase studies is found inSetion 6.5. 101



102 CHAPTER 6. PROOF OF CONCEPT6.1 Deployment in the Jahob SystemThe goal of the Jahob system [65,66,121℄ is to verify data struture onsisteny propertiesin the ontext of non-trivial programs. The input language for Jahob is a subset of Javaextended with annotations written as speial omments. Therefore, Jahob programs anbe ompiled and exeuted using existing Java ompilers and virtual mahines. Jahob'sspei�ation language is similar to JML [76℄: it supports preonditions, postonditions,invariants, and spei�ation variables. The main di�erene is that assertions in Jahob areexpressed in a subset of Isabelle/HOL [92℄.Figure 6.1 gives an overview of Jahob's system arhiteture. Our symboli shape analysisis implemented on top of Jahob. Bohne an be either used as a stand-alone program oralled from within Jahob. Both versions take as input the soure program annotated withthe properties to verify. The stand-alone version will analyze the program and either produean invariant that guarantees the orretness of the annotated properties, or an error traeif the system is inorret. If alled from within Jahob then the output of Bohne is thesoure program annotated with the inferred loop invariants. The annotated program anbe either passed diretly to a veri�ation ondition generator or used as input to otherprogram analyses. Bohne exploits Jahob's failities for veri�ation ondition generationand its reasoning bakend as blak boxes.Jahob's reasoning bakend integrates a diverse set of theorem provers and deision pro-edures whih are used to automate reasoning about higher-order logi formulae. Thereasoning bakend works as follows. Jahob �rst splits formulae into an equivalent onjun-tion of independent smaller formulae. Jahob then attempts to prove eah of the resultingonjunts using a (potentially di�erent) speialized reasoning proedure. Eah speializedreasoning proedure in Jahob deides a subset of higher-order logi formulae. Suh a proe-dure therefore �rst approximates a higher-order logi formula using a formula in the subset,and then proves the resulting formula using a speialized algorithm. We will desribe thisapproximation by means of our �eld onstraint analysis that we presented in Chapter 5.6.2 Implementation of Domain Prediate AbstrationIn this setion we disuss some of the algorithmi aspets of the implementation of domainprediate abstration in Bohne. Bohne implements the lazy nested abstration re�nementalgorithm presented in Chapter 4 with domain prediate abstration as the underlyinganalysis. The abstrat post operator of the analysis is the ontext-sensitive Cartesian postthat we desibed in Setion 3.4. Reall that we used the ontext operator κ as the keytuning parameter for the preision/e�ieny trade-o� of our abstrat post operator. Theontext operator is a montone funtion that maps a set of abstrat states S# to an over-approximation of the onretization of S#. Its purpose is to provide non-loal informationfor omputing preise loal updates of abstrat objets. In the following, we desribe theontext operator that is implemented in Bohne and explain how it is inorporated intoBohne's �xed point omputation loop.What makes Bohne's �xed point omputation loop speial is the fat that the abstratpost is omputed on-demand in eah �xed point iteration. In partiular, the ontext oper-ator that de�nes the abstrat post is not �xed throughout the analysis. Instead, it is pa-
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Figure 6.1: Jahob system arhiteture.rameterized by the already explored abstrat states. Note that this on-demand abstrationis diretly inorporated into the lazy abstration re�nement loop presented in Chapter 4.However, for exposition purposes we explain the idea of on-demand abstration by meansof a simple �xed point omputation loop without abstration re�nement. Therefore, in thefollowing we will �x a global set of abstration prediates P that is used throughout theanalysis.The proedure OnDemandAbstraction in Figure 6.2 skethes the �xed point omputationloop with on-demand abstration. The input of this proedure is the program to be analyzedand a set of abstration prediates. The proedure onstruts an abstrat reahability tree(ART), similar to the nested lazy abstration re�nement loop presented in Chapter 4. Eahnode in the ART is labeled by a loation and a set of abstrat states. Edges betweennodes are labeled by ommands of the input program. The paths in the ART orrespondto traes in the abstrat program. Upon termination the proedure returns the root nodeof the omputed ART from whih the least �xed point of the abstrat post operator an beextrated.In eah iteration of the loop in proedure OnDemandAbstraction, one unproessed ARTedge (r1, c, r2) is seleted. Then the abstrat post for ommand c and abstrat states
r1.states is omputed and the result stored in r2. If new abstrat states have been disoveredat loation r2.loc then new outgoing ART edges for r2 are reated and added to the setof unproessed edges. The abstration of ommand c is omputed on-demand. It uses aontext operator κ that depends on the abstrat states at loation r1.loc that have beendisovered, so far. Thus, the ontext operator and the abstration of a partiular ommandan hange from one iteration of the loop to the next. However, we make sure that theontext operator hanges monotonially. This allows our analysis to take advantage ofpreomputed abstrations from previous �xed point iterations and inrementally reomputethe abstration when the ontext hanges in a signi�ant way. In the following, we show howthe ontext operator and the ontext-sensitive Cartesian post operator are implemented.



104 CHAPTER 6. PROOF OF CONCEPTpro OnDemandAbstractioninput
(Σ,D,X,L, ℓ0, ℓE ,T ) : program
P : set of abstration prediatesbeginlet succ(r) =let Succ = ∅for all (r.loc, c, ℓ′) ∈ T dolet r′ = 〈loc : ℓ′, states : ⊥〉add an edge r

c
→ r′

Succ:= Succ ∪ {(r, c, r′)}donereturn Succlet r0 = 〈loc = ℓ0; states : ⊤〉let Unprocessed = succ(r0)while Unprocessed 6= ∅ dohoose (r1, c, r2) ∈ Unprocessed

Unprocessed :=Unprocessed − {(r1, c, r2)}let Context =
⊔

r { r.states | r.loc = r1.loc }let κ = contextop(Context)let New = CSCPost(c, κ, r1.states)let Old =
⊔

r { r.states | r.loc = r2.loc }

r2.states :=Newif New 6⊑ Old then
Unprocessed :=Unprocessed ∪ succ(r2)return r0Figure 6.2: On-demand abstration6.2.1 Implementation of Context OperatorIf we take into aount all available ontext for the abstration of a ommand (i.e., the on-text operator is the onretization funtion on abstrat states) then we need to reomputethe abstration in every iteration of the �xed point omputation. Otherwise the analy-sis would potentially be unsound. In order to avoid unneessary reomputations we usethe operator contextop to ompute a new ontext operator for eah iteration of the �xedpoint omputation. This ontext operator abstrats the ontext by a formula that lesslikely hanges from one iteration to the next, but still provides enough information to ob-tain su�iently preise updates. For this purpose we introdue a domain-spei� quanti�erinstantiation tehnique. We use this tehnique not only in onnetion with the ontext
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contextop(S#

0 )
def
= λS#. if S# ⊑ S#

0 then instantiate(
˙⊔

S#
0 ) else true

where instantiate(s#)
def
=

∧

(λv. t=v)∈P

γ̇(s# ⊓̇ o#(λv. t = v)) t

o#(p)
def
= λp′ ∈ P. if p = p′ then {1} else {0, 1}Figure 6.3: Context instantiation and the ontext operatoroperator, but more generally to eliminate any universal quanti�er in a deision proedurequery that originates from the onretization of an abstrat state. This eliminates the needfor the underlying deision proedures to deal with quanti�ers.Our ontext operator is spei�ally designed for the analysis of heap programs whereabstration prediates are mostly unary prediates. For the analysis of heap programs, theontext operator provides the neessary information for preisely omputing the e�et ofdestrutive updates on reahability properties. We observed that the most valuable part ofthe ontext is the information available over the objets that are involved in the destrutiveupdate: if we have a destrutive update s.f := t, these are the objets denoted by terms s and

t. If s and t are in fat relevant for proving some property then our abstration re�nementloop will generate orresponding domain prediates (λv. s = v) and (λv. t = v). We alldomain prediates of this form singleton prediates. Our ontext operator instantiates theuniversally quanti�ed formulae that result from the onretization of abstrat states to theobjets that satisfy suh singleton prediates.Figure 6.3 de�nes the funtion contextop. Let S#
0 be the set of already explored abstratstates in the urrent �xed point iteration. Then contextop(S#

0 ) maps all abstrat states thatare proessed in this iteration to one �xed formula. This �xed formula is omputed by thefuntion instantiate . Reall De�nition 31: the funtion contextop(S#
0 ) is a ontext operatorif (1) instantiate is monotone and (2) for every abstrat state s# the formula instantiate(s#)is entailed by the onretization of s#.Funtion instantiate uses singleton prediates to instantiate an abstrat state s# to aquanti�er free formula (assuming all domain prediates itself are quanti�er free). For everysingleton prediate p that denotes the objet given by the evaluation of some term t itomputes the meet of s# with abstrat objet o#(p), i.e., the set of all abstrat objets in

s# that have a positive ourrene of prediate p. This set of abstrat objets is onretizedand the resulting domain formula applied to t. The �nal formula is represents �nitely manyinstantiations of γ({s#}) with the terms t that our in singleton prediates. Thus, it is easyto see that instantiate is monotone and that for a given abstrat state s# instantiate(s#)is an abstration of γ({s#}).Proposition 58 For any set of abstrat states S# the funtion contextop(S#) is a ontextoperator.An important property of our �xed point omputation loop is that the omputed ontextoperators hange monotonially from one iteration to the next.



106 CHAPTER 6. PROOF OF CONCEPTpro CSCPostinput
c : Com

κ : ontext operator
S# : AbsStatesoutput
S#′

: AbsStatesbeginlet K = κ(S#)let c# = ⊤if c# is preomputed for (c,K) then c#:= lookup(c,K)else foreah p ∈ P do
c#:= c# ∧

(

p′ ∧ ¬AbstractWLP(c,K,¬p) ∨

¬p′ ∧ ¬AbstractWLP(c,K, p)

)

S#′
:= ∅foreah s# ∈ S# dolet s#′

= RelationalProduct(s#, c#)

S#′
:= S#′

⊔ {s#′
}return S#′endFigure 6.4: Implementation of ontext-sensitive Cartesian postProposition 59 The funtion contextop is monotone, i.e., let S#

1 and S#
2 be sets of ab-strat states with S#

1 ⊑ S#
2 . Then for all sets of abstrat states S#:

contextop(S#
1 )(S#) |= contextop(S#

2 )(S#) .Proposition 59 follows immediately from the monotoniity of joins and monotonity offuntion instantiate .6.2.2 Implementation of Abstrat Post OperatorWe now desribe the implementation of the ontext-sensitive Cartesian post operator.Bohne represents sets of abstrat states as sets of ordered binary deision diagrams (OB-DDs) [27℄. This representation is not anonial. While it is in priniple possible to anoni-ally represent sets of abstrat states (e.g., by using nondeterministi BDDs [43℄), in pratiethe number of explored abstrat states is rather small and there exist many e�ient andmature BDD implementations. In the following, we denote by the symbols ¬, ∧, and ∨negation, onjuntion and disjuntion of Boolean funtions represented as OBDDs.Figure 6.4 skethes the implementation of the ontext-sensitive Cartesian post operatorin Bohne. Proedure CSCPost takes a ommand, a ontext-operator and a set of abstrat



6.2. IMPLEMENTATION OF DOMAIN PREDICATE ABSTRACTION 107states as input and returns a set of abstrat states. The implementation exploits the repre-sentation of abstrat states as BDDs. First it preomputes an abstrat transition relation
c#. This abstrat transition relation represents the ontext-sensitive Cartesian post for thegiven ommand c in terms of abstrat objets over primed and unprimed abstration predi-ates. The omputation of the abstrat transition relation relies on a funtion AbstractWLPthat omputes an under-approximation of the weakest domain preonditions of abstrationprediates, as desribed in Setion 3.4.3.One the abstrat transition relation has been omputed, proedure CSCPost omputesthe relational produt of c# and eah given abstrat state. The relational produt is astandard operation provided by many BDD pakages. It onjoins an abstrat state withthe abstrat transition relation, projets the unprimed prediates, and renames primedto unprimed prediates in the resulting abstrat state. Note that the abstrat transitionrelation only depends on ommand c and the ontext formula K. This allows us to aheabstrat transition relations and avoid their reomputation in later �xed point iterations if
K is unhanged.6.2.3 Semanti CahingOur ontext operator does not prevent that the abstration of a given ommand has tobe reomputed oasionally in later �xed point iterations. Whenever we reompute theabstration, we would like to do this inrementally and reuse the results from previous �xedpoint iterations. We do this on the level of deision proedure alls by ahing the queriesand the results of the alls. Syntati ahing of deision proedure queries has been usedbefore (e.g. [6℄ mentions its use in the SLAM system [7℄). The problem with simple syntatiahing of formulae in our approah is that the ontext formulae are passed to the deisionproedure as part of the queries, so a simple syntati approah is ine�etive. However,we know that the ontext and, thus, the ontext formulae hange monotonially from oneiteration to the next. We therefore ahe formulae by keeping trak of the partial orderon the ontext. Sine ontext formulae our in the anteedents of the queries, this allowsus to reuse negative results of entailment heks from previous �xed point iterations. Thismethod is e�etive beause in pratie the number of invalid entailments that are hekedfor omputing the abstration is signi�antly higher than the number of valid ones.Furthermore, formulae are ahed up to alpha equivalene. Sine the ahe is self-ontained, this enables ahing results of deision proedure alls not only aross di�erent�xed point iterations for a single run of the analysis, but even aross di�erent runs of theanalysis. This yields substantial improvements for the analysis of programs that exhibitsome similarity, whih opens up the possibility of using our analysis in an interative on-text. For example, we veri�ed a proedure inserting an element into a sorted list (seeSortedList.add in Figure 6.1) and repeated the analysis without erasing the ahe on a mod-i�ed version of the same proedure where two ommuting assignments were exhanged.About 90% of the results to deision proedure alls were found in the ahe, ausing thatrunning time went down from 10s to 3s. TODO: this should betimed again.



108 CHAPTER 6. PROOF OF CONCEPT6.2.4 Further OptimizationsThe main hallenge for making our symboli shape analysis pratial is to redue the num-ber of queries to the underlying deision proedure. We have to deal with a general problemof prediate abstration based approahes, namely that the number of queries grows expo-nentially with the number of prediates. In the following, we desribe the tehniques thatwe use to solve this problem.Inremental Abstration and Prediate Abstration Heuristis. The ontext-sen-sitive Cartesian post redues the problem of abstrating a onrete ommand c to theproblem of heking entailments between onjuntions of domain prediates and weakestliberal preonditions of domain prediates. There are well-known tehniques in prediateabstration (see e.g. [7,45℄) that prevent an exponential explosion of the number of deisionproedure alls when omputing the abstration of suh formulae. We use these tehniquesin ombination with new methods that we developed for our generalized setting. First,Bohne only onsiders onjuntions up to a �xed length whih gives a polynomial boundon the number of deision proedure alls. Seond, Bohne inrementally omputes theabstration starting from onjuntions of length one: whenever some onjuntion C impliesa formula then so do all onjuntions subsumed by C. Finally, we use syntati heuristis todetermine whether a prediate is relevant for the abstration of a formula, e.g., by omparingthe free variables ourring in the prediate and the abstrated formula.Topologial Order on Loations. The number of reomputations of abstrat transi-tions also depends on the strategy used for exploring unproessed ART edges in the �xedpoint omputation beause it in�uenes how often the ontext hanges. For example, ifwe have a sequene of two loops in the ontrol �ow graph then one should �rst exploreall abstrat states reahable by following the �rst loop before one starts the abstration ofthe seond loop; otherwise the ontext of the seond loop hanges more often. To avoidthis problem we store unproessed edges in the reahability graph in a priority queue. Thepriority is de�ned by the topologial order of the assoiated program loations in the DAGthat results from removing loop bak-edges from the ontrol-�ow graph. We then hooseunproessed edges with minimal priority to ensure that they are explored in the properorder.6.3 Implementation of Field Constraint AnalysisThis setion presents one of the paths through Jahob's reasoning bak end to one of theexternal deision proedures. We desribe the translation from an expressive subset ofIsabelle/HOL formulae (the input language) to monadi seond-order logi over trees (theoutput language of the translation). Our �eld onstraint analysis is an integral part of thistranslation. The soundness of the translation is given by the ondition that, if the outputformula is valid, so is the input formula. Validity of the output formula is automatiallyheked using MONA [62℄.The input language allows onstruts suh as lambda abstration, sets and set ompre-hensions, higher-order quanti�ers, onditional expressions, and ardinality operators. The



6.3. IMPLEMENTATION OF FIELD CONSTRAINT ANALYSIS 109output language supports atomi formulae build from set expressions over uninterpretedsets, equalities over terms build from unary funtion symbols that ontribute to the treebakbone as well as �rst and seond-order quanti�ation.6.3.1 Splitting into SequentsThe proof obligations generated by Jahob's veri�ation ondition generator an be repre-sented as onjuntions of multiple statements, beause they represent all possible paths inthe veri�ed proedure, the validity of multiple invariants and postondition onjunts, andthe absene of run-time errors at multiple program points. The entailment tests generatedby Bohne often have a similar onjuntive struture. The �rst step in the translation splitsformulae into these individual onjunts to prove eah of them independently. This pro-ess does not lose ompleteness, yet it improves the e�etiveness of the theorem provingproess beause the resulting formulae are smaller than the starting formula. Moreover,splitting enables Jahob to prove di�erent onjunts using di�erent tehniques, allowing thetranslation desribed in this setion to be ombined with other translations [26, 68, 121℄.In partiular, Jahob has an inbuilt syntati prover that an disharge many simple proofobligations immediately. Thus, only a small number of split proof obligations is atuallypassed on to an external prover.After splitting, the resulting formulae have the form of sequents A1 ∧ . . . ∧ An =⇒ G.We all A1, . . . , An the assumptions and G the goal of the sequent. The assumptionstypially enode a path in the proedure being veri�ed, the preondition, lass invariantsthat hold at proedure entry, as well as properties of our semanti model of memory andthe relationships between sets representing Java types.6.3.2 Translation to Monadi Seond-order LogiAfter splitting of proof obligations the translation determines the set of bakbone �eldsand derived �elds for our �eld onstraint analysis. The bakbone �elds are the suessorfuntions in the trees that interpret formulae in the output language. The translationsearhes for the speial assumption of the form
tree [f1, . . . , fn]in the proof obligation. This assumption states that we are onsidering strutures that forma forest of trees with suessor funtions f1 to fn. Formally, the semantis of tree is de�nedas follows:

tree [f1, . . . , fn]
def
= let f = λv1 v2.

∨

1≤i≤n fi v1 = v2 in
(∀v w. f v w ∧ f∗w v → v = null) ∧

(∀v w u. f v u ∧ f w u ∧ v 6= w → u = null) .Next the translation searhes for assumptions that are �eld onstraints, i.e., assumptionsthat have the speial syntati form
∀v w. f v = w → F
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(H1 ∧ · · · ∧ Hi−1 ∧ v1 = v2 ∧ Hi+1 ∧ · · · ∧ Hn) =⇒ G
(

(H1 ∧ · · · ∧ Hi−1 ∧ Hi+1 ∧ · · · ∧ Hn) =⇒ G
)

[v1:= v2]Var-True
(H1 ∧ · · · ∧ Hi−1 ∧ v ∧ Hi+1 ∧ · · · ∧ Hn) =⇒ G

(

(H1 ∧ · · · ∧ Hi−1 ∧ Hi+1 ∧ · · · ∧ Hn) =⇒ G
)

[v:= true]Var-False
(H1 ∧ · · · ∧ Hi−1 ∧ ¬v ∧ Hi+1 ∧ · · · ∧ Hn) =⇒ G

(

(H1 ∧ · · · ∧ Hi−1 ∧ Hi+1 ∧ · · · ∧ Hn) =⇒ G
)

[v:= false]Var-Def
(H1 ∧ · · · ∧ Hi−1 ∧ v = e ∧ Hi+1 ∧ · · · ∧ Hn) =⇒ G
(

(H1 ∧ · · · ∧ Hi−1 ∧ Hi+1 ∧ · · · ∧ Hn) =⇒ G
)

[v:= e]
v /∈ FV (e)Figure 6.5: Rules for de�nition substitutionwhere F only refers to bakbone �elds. A �eld onstraint of this forms determines that f isa derived �eld. If some �eld in the input formula neither ours in the tree assumption norin the anteedent of a �eld onstraint then the translation adds a trivial �eld onstraint ofthe form

∀v w. f v = w → true .After eah �eld in the input formula has been determined to be either a bakbone orderived �eld, the translation applies the elimination algorithm for derived �elds presentedin Chapter 5. The outome is a formula that is potentially stronger than the input formulabut only refers to bakbone �elds. However, the resulting formula still ontains manyonstruts that are not supported by the output language. Therefore, the next step is toapply a set of rewrite and approximation rules that eliminate these onstruts. We desribethese rules in the following.De�nition Substitution and Funtion Unfolding. When one of the assumptions is avariable de�nition, the translation substitutes its ontent in the rest of the formula (usingrules in Figure 6.5). This approah supports de�nitions of variables that have omplex andhigher-order types, but are used simply as shorthands, suh as tree and the transitive losureoperator rtrancl_pt de�ned in Setion 2.2.1. When the de�nitions of variables are lambdaabstrations, the substitution enables the subsequent beta redution. In addition to betaredution, this phase also expands the equality between funtions using the extensionalityrule (with f = g beoming ∀x.f x = g x).



6.3. IMPLEMENTATION OF FIELD CONSTRAINT ANALYSIS 111Funtion-argument
v0 = f(e1, . . . ., ei−1, t, ei+1, · · · , ek)

∃v. v = t ∧ v0 = f(e1, . . . ., ei−1, v, ei+1, · · · , ek)

Equality-Normalization
t = v

v = tEquality-Unfolding
t1 = t2

∃v. v = t1 ∧ v = t2Figure 6.6: Rewriting rules for �attening omplex expressions below equalities. Term tdenotes a term whih is not a variable.Card-Constraint-Eq
card(S) = k

card(S) ≤ k ∧ card(S) ≥ k

Card-Constraint-Leq
card(S) ≤ k

∃v1, . . . , vk.S ⊆ {v1, . . . , vk}Card-Constraint-Geq
card(S) ≥ k

∃v1, . . . , vk. {v1, . . . , vk} ⊆ S ∧
∧

1≤i<j≤k

vi 6= vjFigure 6.7: Rules for onstant ardinality onstraintsFlattening. To simplify further rewriting the next step is to �atten the formula. Therules for �attening equalities are given in Figure 6.6. Similar rules apply to other pred-iate symbols. Flattening introdues fresh quanti�ed variables, whih ould in priniplereate additional quanti�er alternations, making the proof proess more di�ult. However,eah variable an be introdued using either an existential or universal quanti�er beause
∃v.v=e ∧ F is equivalent to ∀v.v=e → F . Our translation therefore hooses the quanti�erkind that orresponds to the most reently bound variable in a given sope (taking intoaount the polarity), preserving the number of quanti�er alternations. The starting quan-ti�er kind at the top level of the formula is ∀, ensuring that freshly introdued variables forquanti�er-free expressions beome Skolem onstants.Cardinality Constraints. Constant ardinality onstraints express natural generaliza-tions of quanti�ers. For example, the statement �there exists at most one element satisfyingprediate P � is given by card({x. P x}) ≥ 1. Our translation redues onstant ardinalityonstraints using the rules in Figure 6.7.Set Expressions. Both our input and output language support set expressions. How-ever, in the output language set expressions are exlusively built from uninterpreted sets.



112 CHAPTER 6. PROOF OF CONCEPTComprehension-Eq
S = {v. F}

∀v. v ∈ S ↔ F

Comprehension-Linl
{v. F} ⊆ S

∀v. F → v ∈ S

Comprehension-Rinl
S ⊆ {v. F}

∀v. v ∈ S → FComprehension-Elem
w ∈ {v. F}

F [v:= w]

Enumeration-Eq
S = {v1, . . . , vn}

∀v. v ∈ S ↔
∨

1≤i≤n

v = vi

Enumeration-Linl
{v1, . . . , vn} ⊆ S

∀v.





∨

1≤i≤n

v = vi



→ v ∈ SEnumeration-Rinl
S ⊆ {v1, . . . , vn}

∀v. v ∈ S →
∨

1≤i≤n

v = vi

Enumeration-Elem
w ∈ {v1, . . . , vn}

∨

1≤i≤n

v = viFigure 6.8: Rules for set omprehensions and �nite set enumerationsConditional
v1 = if v2 then v3 else v4

(v2 ∧ v1 = v3) ∨ (¬v2 ∧ v1 = v4)Figure 6.9: Rule for onditional expressionsWe therefore need to eliminate set omprehensions and �nite set enumerations. Set om-prehensions are useful, e.g., for de�ning spei�ation variables that model the ontent ofdata strutures. Figure 6.8 shows the rules for eliminating these onstruts from a �attenedformula.Conditional Expressions. Conditional expressions are used to express funtion updatesduring omputation of weakest liberal preonditions. Conditional expressions an be elimi-nated using ase analysis (Figure 6.9). Flattening ensures that this ase analysis dupliatesonly variables and not omplex expressions, keeping the translated formula polynomial.Approximation. Our translation maps higher-order formulae into monadi-seond orderlogi over trees, so there are onstruts that it annot translate exatly. Examples inludearithmeti, non-monadi relations, and symboli ardinality onstraints (as in BAPA [68℄).Our translation approximates suh subformulae in a sound way by replaing them withfresh set or Boolean variables. If the unsupported subformula F ontains free variablesthen the formula is replaed by a formula v ∈ S where v is the �rst free variable ouringin F and S is a fresh set variable. The variable S is bound in the same sope as v. These



6.3. IMPLEMENTATION OF FIELD CONSTRAINT ANALYSIS 113replaements also ensure that uninterpreted unary prediate symbols in the input formulaare translated into monadi sets. If unsupported subformula is losed then it is replaed bya fresh Boolean variable. In both ases, multiple ourrenes of a replaed subformula inthe same sope are replaed by the same fresh variable.Another problem is aused by the fat that the input language is multi-sorted while theoutput language is unsorted. Our translation only keeps subformulae that exlusively use thetype onstants bool and obj. Any subformula that uses other type onstants is approximatedusing the same tehnique as desribed above. The result of the approximation is a strongerformula whose validity implies the validity of the original formula.6.3.3 Struture Simulation with MONAAfter translation of the input formula into monadi seond-order logi over trees, we givethe translated formula to the MONA deision proedure. MONA supports di�erent modeswith di�erent semanti models suh as weak monadi seond-order logi with one suessor(WS1S) and weak monadi seond-order logi with two suessors (WS2S). Unfortunatelynone of these modes orresponds one-to-one to the semanti model in Jahob. In partiular,the assumption tree [f1, . . . , fn] only states that there ayliity and sharing-freeness forobjets that are di�erent from null. In fat, in Jahob we assume that for all �elds f wehave f null = null. On the other hand, the interpretations of suessor relations in MONAare always ayli and sharing-free. We therefore use struture simulation [59℄ to enodeformulae interpreted in logial strutures that satisfy Jahob's tree assumption in terms offormulae in MONA. For performane reasons we use di�erent modes depending on thenumber of bakbone �elds ouring in the proof obligation.Simulating Lists. If the proof obligation ontains a tree assumption tree [f ] over onebakbone �eld then we use MONA's m2l-str mode. In this mode MONA interprets for-mulae over �nite strings, or equivalently, over the natural numbers from 0 to some onstant
n; see [62, Setion 3.1℄ for details. Strutures that satisfy the assumption tree [f ] form a (�-nite) forest of sharing free lists over �eld f that are terminated by a unique objet null. Theobjet null has a self yle with respet to �eld f . We enode suh strutures by simulatingthe �eld f in terms of the suessor funtion on the natural numbers. In order to separatethe individual lists we de�ne a subset $NullSet of the natural numbers as terminals. Thismeans that the natural numbers between two onseutive elements in the set $NullSetform one list in the original struture. All prediate symbols suh as equality on individ-ual objets, equality on sets, and set operations orrespond to the respetive operations inMONA, modulo equivalene of terminals. Figure 6.10 shows an example of a sequent witha tree assumption over one bakbone �eld and the �nal output of the translation. MONAproves that the formula resulting from the translation is valid.Simulating Trees. If the proof obligation ontains a tree assumptions with more thanone bakbone �eld then we use MONA's ws2s mode. In this mode MONA interpretsformulae over binary trees; see [62, Setion 7℄. We an enode forests of trees with �nitelymany suessor relations into binary trees. In order to simplify suh an enoding MONAprovides reursive type delarations. We simulate strutures satisfying assumptions of the



114 CHAPTER 6. PROOF OF CONCEPTProof obligation:
tree [f ] ∧ x 6= null ∧ f∗z x ∧ ¬(f∗z y) ∧

(∀v w. b v = w → fw = v ∨ w = null ∧ (v = null ∨ (∀u. f u 6= v)))
=⇒ (λv w. (if v = x then y else b v) = w)∗ y zMONA input �le:m2l-str;var2 $NullSet where ex1 v : v in $NullSet & (all1 v' : v' ~= v + 1);pred null(var1 v) = v in $NullSet;pred $Eq1(var1 v1, v2) = null(v2) & null(v1) | v1 = v2;pred $Elem(var1 v1, var2 S) = ex1 v2 : v2 in S & $Eq1(v1, v2);pred $Sub(var2 S1, S2) = all1 v1 : $Elem(v1, S1) => $Elem(v1, S2);pred $Eq2(var2 S1, S2) = $Sub(S2, S1) & $Sub(S1, S2);pred $Union(var2 S1, S2, S3) = all1 v1 : $Elem(v1, S2) | $Elem(v1, S1) <=> $Elem(v1, S3);pred $Inter(var2 S1, S2, S3) = all1 v1 : $Elem(v1, S2) & $Elem(v1, S1) <=> $Elem(v1, S3);pred $Diff(var2 S1, S2, S3) = all1 v1 : $Elem(v1, S1) & ~ $Elem(v1, S2) <=> $Elem(v1, S3);var1 xvar1 yvar1 zpred f(var1 v1, v2) = null(v2) & null(v1) | $Eq1(v1 + 1, v2) & ~ null(v1);pred b(var1 v, w) = (f(w, v) | (null(v) | ~ (ex1 u : f(u, v))) & null(w));~ null(x) &(all2 S : $Elem(z, S) & (all1 v : $Elem(v, S) =>(ex1 w : $Elem(w, S) & f(v, w))) => $Elem(x, S)) &~ (all2 S : $Elem(z, S) & (all1 v : $Elem(v, S) =>(ex1 w : $Elem(w, S) & f(v, w))) => $Elem(y, S)) &=>(all2 S : $Elem(y, S) &(all1 v, w :ex1  : ($Elem(v, S) & (~ $Eq1(y, v) & $Eq1(, w) |$Eq1(y, v) & $Eq1(x, w)) => $Elem(w, S)) & b(v, )) => $Elem(z, S));Figure 6.10: Translation of a valid sequent with a tree assumption over one bakbone �eldand a �eld onstraint over a derived �eldform tree [f1, . . . , fn] by delaring a reursive type that represents lists of trees of arity n.Eah entry of suh a list orresponds to one root objet of a tree in the simulated struture.Similar to the enoding of lists we de�ne a unary prediate null that holds for all leaf nodesof trees in the list. All prediate symbols are again interpreted modulo equivalene of leavenodes. Figure 6.11 shows an example of a sequent with a tree assumption for binary treesand the result of our translation.6.3.4 OptimizationsMonadi-seond order logi is among the most expressive deidable logis. Thus, the de-ision problem has high omplexity. We developed a set of formula transformations thatsigni�antly dereases spae onsumption and running time of MONA. Without these trans-formations MONA would often run out of spae.Validity Preserving Transformations. The problem with MONA is not so muh thatthe omplexity of monadi seond-order logi is non-elementary. In pratie, the number



6.3. IMPLEMENTATION OF FIELD CONSTRAINT ANALYSIS 115Proof obligation:
tree [l, r] ∧ reach (l x) y ∧ reach (r x) y ∧

reach = rtrancl_pt (λv w. l v = w ∨ r v = w) =⇒ y = nullMONA input �le:ws2s;type Bb = Bb_null, Bb_node(l: Bb, r: Bb);type HEAP = Empty, BbTree(bbroot: Bb, $next: HEAP);universe $U: HEAP;tree [$U℄ $Heap where tree_root($Heap) = root ($U);pred null(var1 v) = variant(v, $Heap, Bb, Bb_null) & v in $Heap;pred $Eq1(var1 v1, v2) = null(v2) & null(v1) | v1 = v2;pred $Elem(var1 v1, var2 S) = ex1 v2 : v2 in S & $Eq1(v1, v2);pred $Sub(var2 S1, S2) = all1 v1 : $Elem(v1, S1) => $Elem(v1, S2);pred $Eq2(var2 S1, S2) = $Sub(S2, S1) & $Sub(S1, S2);pred $Union(var2 S1, S2, S3) = all1 v1 : $Elem(v1, S2) | $Elem(v1, S1) <=> $Elem(v1, S3);pred $Inter(var2 S1, S2, S3) = all1 v1 : $Elem(v1, S2) & $Elem(v1, S1) <=> $Elem(v1, S3);pred $Diff(var2 S1, S2, S3) = all1 v1 : $Elem(v1, S1) & ~ $Elem(v1, S2) <=> $Elem(v1, S3);var1 [$U℄ y where type(y, Bb) & y in $Heap;var1 [$U℄ z where type(z, Bb) & z in $Heap;pred r(var1 v1, v2) =type(v1, Bb) & type(v2, Bb) & v1 in $Heap & v2 in $Heap & $Eq1(v2, su(v1, Bb, Bb_node, r)) |null(v1) & null(v2);pred l(var1 v1, v2) =type(v1, Bb) & type(v2, Bb) & v1 in $Heap & v2 in $Heap & $Eq1(v2, su(v1, Bb, Bb_node, l)) |null(v1) & null(v2);(all2 S : (ex1 v : v in $Heap & type(v, Bb) & $Elem(v, S) & r(x, v)) &(all1 w : ((ex1 u : u in $Heap & type(u, Bb) & $Elem(u, S) & l(u, w)) |(ex1 u : u in $Heap & type(u, Bb) & $Elem(u, S) & r(u, w))) &w in $Heap & type(w, Bb) => $Elem(w, S)) & S sub $Heap => $Elem(y, S)) &(all2 S : (ex1 v : v in $Heap & type(v, Bb) & $Elem(v, S) & l(x, v)) &(all1 w : ((ex1 u : u in $Heap & type(u, Bb) & $Elem(u, S) & l(u, w)) |(ex1 u : u in $Heap & type(u, Bb) & $Elem(u, S) & r(u, w))) &w in $Heap & type(w, Bb) => $Elem(w, S)) & S sub $Heap => $Elem(y, S))=> null(y);Figure 6.11: Translation of a valid sequent with tree assumption over two bakbone �eldsof quanti�er alternations in proof obligations is rather small. Instead, the problem is thatthe size of the onstruted automata an be exponential in the number of variables thatour in the same sope of a quanti�er. Unfortunately, MONA itself does not implementany strong optimizations on the formula representation. We therefore implemented severalvalidity preserving transformation in Jahob that optimize the formula representation forautomata onstrution in MONA. The �rst transformation is to push quanti�ers inside theformula as muh as possible, so that quanti�ed subformulae are minimized. Next, we tryto eliminate quanti�ers of the form ∀v. v=e → F and ∃v. v=e ∧ F by replaing them with
F [v = e]. This means that the formula is un�attened and thus the size of the formula isinreased. However, our experiene is that the e�et of a dereased number of quanti�edvariables far outweighs the e�et of inreased formula size.Formula Sliing. We faed the problem that the formulae passed to the deision proe-dure ontain many assumptions oming from the guards of transitions and the bakground



116 CHAPTER 6. PROOF OF CONCEPTformula. Often these assumptions are irrelevant for proving a partiular goal. However,they introdue additional free variables to the proof obligation. This signi�antly inreasesthe running time of MONA. Using domain-spei� knowledge, we developed heuristis foreliminating irrelevant assumptions from proof obligations. Our experiene suggest that thisis one of the most valuable tehniques that are needed to make the deployment of expensivedeision proedures suh as MONA pratial.6.4 Implementation of Nested Abstration Re�nementOur tool uses a few simple heuristis to guess an initial set of domain prediates from theinput program and its spei�ation. In partiular, Bohne uses a simple syntati analysisthat omputes for eah program loation a set of singleton domain prediates that denoteobjet valued program variables that are relevant for this program point. For this purposethe analysis propagates bak weakest liberal preonditions from the program's error loationand extrats for eah program loation the set of objet valued program variables ouringin the omputed weakest liberal preondition. The propagation is ontinued until a �xedpoint is reahed and the set of generated domain prediates stabelizes at eah programloation. Additional domain prediates are inferred using our nested abstration re�nementproedure presented in Chapter 4.6.4.1 Domain Prediate ExtrationWe now desribe the prediate extration funtion extrPreds that is used in the nestedabstration re�nement algorithm to extrat new prediates from spurious error traes. Fora formula F , extrPreds(F ) skolemizes top-level universal quanti�ers in F and extrats allatomi propositions in the resulting formula. The new heap prediates are obtained bylambda abstration over the introdued Skolem onstants in the atomi propositions.6.4.2 Reahability PrediatesOur prediate extration funtion syntatially extrats new prediates from weakest liberalpreonditions of �nite paths in the analyzed program. Thus, using this approah we annotinfer new reahability prediates if suh prediates do not already our in the program'sspei�ation. We therefore use an additional widening tehnique to infer new reahabilityprediates from the domain prediates that are extrated from weakest liberal preonditions.For instane, if the prediate extration funtion extrats a domain prediate (λv. f (f x) =
v) then Bohne will also add the widening of this prediate (λv. f∗ x v).Furthermore, if a reahability prediate ours in the spei�ation of the program thenomputing weakest liberal preonditions will often introdue �eld updates in �elds thatour below the transitive losure operator. It is useful to split suh prediates into simplerprediates in order to obtain a more �ne grained abstration. For instane Bohne usesthe following equivalene to rewrite �eld updates below re�exive transitive losure of single�elds:

(f [x:= y])∗v w ≡ rtrancl_pt (λv1 v2. f v1=v2 ∧ v1 6=x) v w ∨

f∗v x ∧ rtrancl_pt (λv1 v2. f v1=v2 ∧ v1 6=x) y w .



6.5. CASE STUDIES 117benhmark heked properties DP time (in s) CRList.traverse MS, AC, SF MONA 0.11 noList.reate MS, AC, SF MONA 0.78 yesList.getLast MS, AC, SF, PC MONA 0.53 noList.ontains MS, AC, SF, PC MONA 0.53 noList.insertBefore MS, AC, SF MONA 2.48 yesList.append MS, AC, SF MONA 8.95 noList.�lter MS, AC, SF MONA 5.31 yesList.partition MS, AC, SF MONA 149.16 yesList.reverse MS, AC, SF MONA 5.52 yesDLL.addLast MS, AC, SF, DL, PC MONA 2.05 yesSortedList.add MS, AC, SF, SO, PC MONA, Z3 9.88 noSkipList.add MS, AC, SF, PC MONA 10.82 yesTree.add MS, AC, SF, PC MONA 18.51 noParentTree.add MS, AC, SF, PL, PC MONA 20.48 noThreadedTree.add MS, AC, SF, TH, SO, PC MONA, Z3 445.93 noClient.move MS, CS Z3 3.11 noClient.reateMove MS, CS, PC Z3 41.07 yesClient.partition MS, CS, FC, PC Z3 108.15 noProperties: MS = memory safety, CS = all safety, AC = ayli, SF = sharing free, DL = doublylinked, PL = parent linked, TH = threaded, SO = sorted, FC = frame ondition, PC = postonditionTable 6.1: Summary of experiments. Column DP lists the used deision proedures. Col-umn CR indiates whether Cartesian re�nement was required to suessfully verify theorresponding program.Note that this kind of rewriting does not violate the admissibility riterion on the prediateextration funtion that is formulated in De�nition 42 of Setion 4.4.6.5 Case StudiesWe now provide the details of the ase studies that we used to evaluate our approah.6.5.1 OverviewWe applied Bohne to verify operations on a diverse set of data strutures and properties.Our ase studies over data strutures suh as (sorted) singly-linked lists, doubly-linkedlists, two-level skip lists, trees, trees with parent pointers, and threaded trees. The veri�edproperties inlude:
• absene of runtime errors suh as null dereferenes,
• omplex data struture onsisteny properties suh as preservation of the tree stru-ture and sortedness
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• proedure ontrats stating, e.g., how the set of elements stored in a data struture isa�eted by the proedure, and
• full funtional orretness of individual proedures.In partiular, we veri�ed proedure ontrats and preservation of representation invariantssuh as sortedness and the in-order traversal invariant for operations on threaded binarytrees.We further performed modular veri�ation of data struture lients that use the interfaefor sets with iterators from the java.util library [105℄. For these benhmarks we annotatedproedure ontrats to all operations in the interfaes Set and Iterator. We then usedassume-guarantee reasoning inside Bohne to infer invariants for the lient. The inferredinvariants ensured that all preonditions of data struture operations are satis�ed at allsites in the lient. Furthermore we veri�ed funtional orretness properties of the lientode. All benhmarks an be found in the Jahob distribution that is provided on the Jahobprojet web page [66℄.Table 6.1 shows a summary for a olletion of benhmarks running on a 2.66 GHzIntel Core2 with 3 GB memory using one ore. The system is implemented in ObjetiveCaml and ompiled to native ode. All the listed properties have been veri�ed in a singlerun of the analysis. We used di�erent deision proedures for verifying the data strutureimplementations and the data struture lients. We used mainly MONA [62℄ for reasoningabout data struture implementations and the SMT solver Z3 [41℄ for proving sortednessproperties. For the data struture lients we used Z3 only.Note that our examples are not limited to stand-alone programs that build and thentraverse their own data strutures. Instead, our examples verify proedures with non-trivialpreonditions, postonditions and representation invariants that an be part of arbitrarilylarge ode.Further details of the benhmarks are given in Tables 6.2 and 6.3. Table 6.3 gives detailson the alls to the validity heker and its underlying deision proedures. One immediatelyobserves that the alls to the validity heker are the main bottlenek of the analysis.On average, 98% of the total running time is spent in the validity heker. The reasonsfor the high running times are diverse. First, ommuniation with deision proedures isurrently implemented via �les whih is slower than passing data diretly. Seond, weuse expensive deision proedures suh as MONA. In some of the examples individualalls to these deision proedures an take up to several seonds. Running times an beimproved by inorporating more e�ient deision proedures for reasoning about spei�data strutures [19, 74, 117℄.6.5.2 Impat of Context-sensitive Abstration and OptimizationsWe also examined the impat of ontext-sensitive abstration and our optimizations suhas ontext instantiation on the analysis. The results are shown in Table 6.4. As expeted,running times for ontext-sensitive abstration without any of the optimizations enabledare signi�antly higher (2-21 times) than with our optimizations. In partiular, withoutontext instantiation abstrat transition relations have to be reomputed many times andahing of deision proedure alls is less e�etive. If ontext-sensitive abstration is disabled



6.5. CASE STUDIES 119benhmark #appl. of #ref. �nal ART #prediatesabs. post steps size depth st./lo. total avrg. max.List.traverse 3 0 4 4 1.00 4 2.8 3List.reate 11 6 6 6 1.67 11 6.7 9List.getLast 7 1 6 6 2.00 7 6.0 7List.ontains 5 1 5 5 2.00 6 5.2 6List.insertBefore 8 2 5 5 13.50 10 7.4 8List.append 5 1 4 4 1.50 13 8.2 11List.�lter 31 5 14 5 2.50 12 7.1 10List.partition 62 21 40 7 3.50 15 10.8 12List.reverse 9 3 5 5 2.00 11 7.0 9DLL.addLast 7 3 5 5 1.50 8 7.2 8SortedList.add 21 3 13 5 1.33 9 6.2 9Skiplist.add 19 4 16 6 3.67 12 9.6 11Tree.add 11 0 12 5 3.00 11 10.5 11ParentTree.add 11 0 12 5 3.00 11 10.5 11ThreadedTree.add 151 4 82 6 4.33 17 7.8 17Client.move 8 0 9 9 1.00 16 8.4 11Client.reateMove 46 6 21 18 1.00 33 10.1 14Client.partition 118 18 24 19 1.00 32 11.9 15Table 6.2: Analysis details for experiments. The olumns list the number of appliations ofthe abstrat post, the number of re�nement steps, the size and depth of the �nal ART thatrepresents the omputed �xed point, the average number of abstrat states per loation inthe �xed point, the total number of prediates, and the average and maximal number ofprediates in a single ART node.ompletely the analysis beomes less preise, but also in many ases slower. Most likely theless preise analysis needs to explore a larger part of the abstrat state spae.6.5.3 Comparison with TVLAIn order to estimate the osts and gains of an inreased degree of automation, we omparedBohne to TVLA [79℄, the implementation of three-valued shape analysis [103℄.We used TVLA version 3.0 alpha [21℄ for our omparison. We ran both tools on a setof singly-linked list benhmarks. For eah example program we used the same preonditionin both tools: heaps that form a forest of ayli, sharing free lists. For TVLA we providedpreonditions in the form of sets of three-valued logial strutures. Bohne automatiallyomputed the abstration of preonditions given as logial formulae. We did not use �nitedi�erening [100℄ to automatially ompute prediate updates in TVLA. With �nite di�er-ening TVLA was unable to prove preservation of ayliity of lists in some of the examples.We therefore used the standard prediates and prediate updates for singly-linked lists thatare shipped with TVLA. The orresponding abstrat domain provides high preision foranalyzing list-manipulating programs. We heked for properties that require suh highpreision, in order to get a meaningful omparison. We heked for absene of null deref-erenes as well as preservation of ayliity and absene of sharing. All properties where



120 CHAPTER 6. PROOF OF CONCEPTbenhmark #VC alls rel. time spent in VC time/DP alltotal DP ahe total abstr. re�ne. avrg. max.List.traverse 41 20 51.22% 92.59% 92.59% 0.00% 0.005 0.012List.reate 189 68 64.02% 95.36% 57.22% 38.14% 0.011 0.016List.getLast 158 56 64.56% 97.74% 54.89% 42.86% 0.009 0.028List.ontains 114 52 54.39% 95.45% 55.30% 40.15% 0.010 0.028List.insertBefore 246 143 41.87% 97.25% 80.61% 16.64% 0.017 0.052List.append 311 254 18.33% 99.46% 97.10% 2.37% 0.035 0.080List.�lter 820 273 66.71% 97.36% 87.20% 10.17% 0.019 0.060List.partition 7650 3027 60.43% 99.17% 95.63% 3.54% 0.049 0.088List.reverse 615 312 49.27% 98.55% 89.05% 9.50% 0.017 0.048DLL.addLast 161 89 44.72% 97.86% 62.57% 35.28% 0.023 0.040SortedList.add 470 190 59.57% 97.89% 65.65% 32.24% 0.051 0.120Skiplist.add 679 241 64.51% 97.52% 43.84% 53.68% 0.044 0.076Tree.add 390 124 68.21% 99.52% 67.59% 31.94% 0.149 0.624ParentTree.add 428 141 67.06% 99.36% 63.41% 35.94% 0.144 0.596ThreadedTree.add 2882 619 78.52% 99.65% 91.80% 7.85% 0.720 3.816Client.move 111 82 26.13% 97.17% 85.48% 11.70% 0.037 0.136Client.reateMove 662 393 40.63% 96.35% 33.35% 63.00% 0.101 5.428Client.partition 2138 896 58.09% 94.92% 27.13% 67.79% 0.115 5.540Table 6.3: Statistis for validity heker alls. The olumns list the total number of alls tothe validity heker, the number of atual alls to deision proedures and the orrespondingahe hit ration, the time spent in the validity heker relative to the total running time,and the average and maximal time spent for a single all to a deision proedure.benhmark List.reverse List.�lter List.insertBefore List.append Skiplist.add Tree.addontext-sensitive and with optimizationsrunning time (in s) 5.52 5.31 2.48 8.95 10.82 18.51DP alls 615 820 246 311 679 390(ahe hits) (49.27%) (66.71%) (41.87%) (18.33%) (64.51%) (68.21%)ontext-sensitive (κ = γ) and without optimizationsrunning time (in s) 43.93 14.38 5.64 83.61 128.8 391.3DP alls 1555 1222 336 1374 3049 1611(ahe hits) (19.55%) (36.74%) (22.62%) (8.95%) (26.57%) (27.56%)no ontext (κ = λS#. true) but with optimizationsrunning time (in s) 11.26 timeout timeout 11.75 timeout 15.86DP alls 2396 - - 954 - 465(ahe hits) (67.86%) (29.45%) (73.98%)Table 6.4: E�et of ontext-sensitive abstration and optimizations



6.6. CONCLUSION 121heked in a single run of eah analysis. Both tools were able to verify these properties forall our benhmarks.The results of our experiments are summarized in Table 6.5. The running times forBohne are between one and two orders of magnitude higher than for TVLA. Observe thatalmost all time is spent in the deision proedure. Thus, the inrease in running time is theprie that we pay for automation.What might be surprising is the fat that the spae onsumption of Bohne (measured innumber of explored abstrat states) is smaller than TVLA's, in some examples signi�antly.We believe that there are three reasons that explain this fat. First, in ontrast to sum-mary nodes in three-valued strutures, abstrat objets in domain prediate abstration areallowed to be empty. This results in a more ompat abstration. For instane, in order torepresent the set of all states ontaining a list of arbitrary length, one needs at least twothree-valued strutures, one representing a nonempty list and one representing the emptylist. On the other hand, this set of states an be represented by just one Boolean heap.Next, TVLA uses a �xed set of prediates throughout the analysis. This means that theanalysis often traks information whih is irrelevant for proving a spei� property. In on-trast, our analysis re�nes the abstrat domain by adding prediates on demand and targetedtowards spei� properties. This an be seen, e.g., at program ListFilter in Setion 4.1where we only need 5 prediates to prove absene of null dereferenes. For both analysesthe size of the abstrat domain is triple exponential in the number of prediates. Thus, alower number of traked prediates an make a signi�ant di�erene in spae onsumption.The �nal reason for lower spae onsumption is related to materialization. TVLA's fousoperator eagerly splits abstrat states (and summary nodes) during �xed point omputationin order to retain high preision. This potentially leads to an explosion in the number ofexplored abstrat states. Instead, our Cartesian re�nement splits abstrat states on demand,only if the additional preision is required to rule out some spurious error trae. We antherefore think of Cartesian re�nement as a property-driven fous operation.6.5.4 LimitationsThe set of data strutures that our implementation an handle is limited by the deisionproedures that we have, so far, inorporated into our system. Currently we use monadiseond-order logi over trees as our main logi for reasoning about reahability properties.This makes it di�ult to verify data strutures that admit yles or sharing. While struturesimulation [59℄ makes it possible to verify some of these data strutures with our urrentimplementation, suh a simulation needs to be de�ned by the user.Furthermore, our widening tehnique for inferring new reahability prediates only worksfor �at tree-like strutures. It is not appropriate for handling nested data strutures suhas lists of lists, whih may require the inferene of nested reahability prediates.6.6 ConlusionIn this hapter we have presented Bohne, our implementation of symboli shape analysis.We have deployed a range of tehniques that signi�antly improve the running time of the



122 CHAPTER 6. PROOF OF CONCEPTbenhmark running time (in s) avrg. #abs. states #prediatesBohne w/o VC TVLA Bohne TVLA Bohne TVLAtraverse 0.11 0.008 0.179 1.0 8 4 12reate 0.78 0.036 0.133 1.7 6 11 12getLast 0.53 0.012 0.214 2.0 10 7 14insertBefore 2.48 0.068 0.503 13.5 15 10 18append 8.95 0.048 0.462 1.5 23 13 18�lter 5.31 0.140 0.600 2.5 19 12 18partition 149.16 1.238 1.508 3.5 72 15 18reverse 5.52 0.080 0.331 2.0 12 11 14Table 6.5: Comparison between Bohne and TVLA. The olumns list total running times,average number of abstrat states per loation in the �xed point, and total number ofprediates (we refer to the total number of unary prediates used by TVLA.). The thirdolumn shows the running time of Bohne without the time spent in the validity heker, i.e.,this would be the total running time if we had an orale for heking validity of formulaethat would always return instantaneously.analysis ompared to diret appliation of the algorithms developed in the previous hap-ters. These tehniques inlude ontext-sensitive �nite-state abstration, semanti ahingof formulae, and domain-spei� quanti�er instantiation.We further ompared Bohne to TVLA, the implementation of a non-symboli shapeanalysis. In terms of running time, we have to pay the prie for the inreased degree ofautomation. In terms of spae onsumption, however, we even gain from automation; thenested abstration re�nement loop of our symboli shape analysis seems to ahieve the loal�ne-tuning of the abstration at the required preision.Our urrent experiene with Bohne in the ontext of the Jahob data struture veri�ationsystem suggests that it is e�etive for verifying omplex properties of a wide range of datastrutures with a high degree of automation.



Chapter 7ConlusionIn this thesis we have presented a symboli shape analysis. Our shape analysis uses log-ial formulae to symbolially represent sets of states in heap programs. Automated rea-soning is used to automatially onstrut a �nitary abstration from the onrete heapprogram and to automatially re�ne the abstration guided by spurious ounterexamples.To our knowledge this is the �rst shape analysis that inorporates ounterexample-guidedabstration re�nement from �rst priniples. We used our shape analysis to verify omplexuser-spei�ed properties of a variety of data strutures. Our examples inlude programsmanipulating lists (with iterators and with bak pointers), two-level skip lists, sorted lists,trees (with and without parent pointers), threaded trees as well as ombinations of thesedata strutures. The analysis o�ers a high degree of automation: we were able to verifythese examples without manually adjusting the analysis to the spei� veri�ation problemand without providing user assistane beyond stating the properties to verify.Our shape analysis is based on a new abstrat interpretation alled domain prediateabstration. Domain prediate abstration provides a new abstrat domain that enablesthe inferene of universally quanti�ed invariants over the program's unbounded memory.Our approah inorporates the key idea of three-valued shape analysis [103℄ into prediateabstration [49℄ by replaing prediates on program states by prediates on objets in theheap of program states. Domain prediate abstration not only provides the foundationfor our symboli shape analysis, but also shades a new light on the underlying onepts ofthree-valued shape analysis.Building on top of domain prediate abstration we developed a new ounterexample-guided abstration re�nement tehnique for shape analysis. Our searh for an appropriatere�nement proedure was guided by the so-alled progress property, i.e., the requirementthat every spurious ounterexample is eventually eliminated by a re�nement step. Theresulting proedure uses a lazy nested abstration re�nement loop that re�nes both theabstrat domain of the analysis and the abstrat transformer on these abstrat domains.The nested re�nement guarantees the progress property. In retrospet, it was this searhfor the progress property that ensured the pratial suess of our analysis: for many of ourexample programs the analysis would not sueed without the nested re�nement.Finally, we presented �eld onstraint analysis whih provides the missing link to theunderlying reasoning proedures that automate our shape analysis. Field onstraint analysisrelaxes the restritions on the veri�ed data strutures that are imposed by the logis of123



124 CHAPTER 7. CONCLUSIONthe underlying deision proedures. This approah promises to enable our shape analysissuessfully analyze the broad range of data strutures that arise in pratie.We implemented the presented tehniques in our prototype tool Bohne. Our experienewith Bohne is in the ontext of the Jahob system [66℄ for modular data struture veri-�ation. The modular veri�ation exploits user-provided proedure ontrats to separatethe veri�ation of libraries (that implement data strutures) from the veri�ation of lients(that use these data strutures). The library interfaes hide the omplexity of the underly-ing data struture implementation. The analysis of the lients alls for more salable (butperhaps less preise) tehniques while the analysis of the libraries requires high preision.Our symboli shape analysis enables suh a modular veri�ation and provides the requiredpreision to verify proedure ontrats that express funtional orretness properties of datastruture operations. We believe that suh a modular approah towards data struture ver-i�ation may be the key to make preise and �exible, but also omparably expensive shapeanalyses appliable to large programs.7.1 Future WorkWe would like to onlude this thesis with an outlook on possible diretions for future work.Inreased Salability. We have given experimental evidene that the targeted preisionthat omes with the inreased degree of automation in symboli shape analysis dereases thespae onsumption ompared to non-symboli shape analyses. Still, automation also omesat the prie of inreased running times. We have seen that almost the omplete running timeof our analysis is spent in the underlying deision proedures. We are urrently inorporatingmore e�ient deision proedures for spei� lasses of data strutures into our automatedreasoning framework. Our symboli shape analysis an immediately take advantage of theseimprovements. We are also taking more radial measures for dereasing the running times.One idea is to persistently ahe the results of deision proedure alls aross multiple runsof the analysis. We are urrently investigating how tehniques developed in the ontext ofdata base systems an be used to inrease ahe hit ratios by exploiting the partial orderon formulae. First experiments with this idea are very promising.Beyond Safety. In this thesis we investigated tehniques for verifying safety propertiesof heap-manipulating programs, i.e., properties that an be expressed in terms of reah-ability of an error loation. However, safety properties only over one dimension of thespae of temporal properties. Liveness properties over the other dimension. Like anysafety property an be redued to reahability, any liveness property an be redued totermination. Automati termination hekers require di�erent tehniques [2,36,95,96℄ thansafety hekers. Still, a termination proof often depends on ertain assumptions that aresafety properties, e.g., a termination proof for a loop that iterates over a list might de-pend on the assumption that the list is ayli. We started to explore how symboli shapeanalysis an be used to automatially infer and verify suh assumptions. In [97℄ we pre-sented an algorithm for the inferene of preonditions for termination of heap-manipulatingprograms. The algorithm exploits a unique interplay between a ounterexample-produing



7.1. FUTURE WORK 125abstrat termination heker and symboli shape analysis. The shape analysis produesheap assumptions on demand to eliminate ounterexamples, i.e., non-terminating abstratomputations. Currently our results only apply to list-manipulating programs. Extendingthis approah to more omplex data struture remains an interesting diretion for futureresearh.Unifying Program Analysis and Automated Reasoning. Many of the innovationsthat have been made in automated reasoning in reent years have been driven by the desireto apply these tehniques in program veri�ation. Among the most striking examples is thedevelopment of e�ient satis�ability modulo theory solvers and tehniques for ombiningdeision proedures for di�erent logial theories. An infesting question is whether it ispossible to ahieve a more tight integration of these tehniques into program analyses.Along these lines we are urrently exploring how fats that are synthesized by our programanalysis an be used to exhange information between di�erent deision proedures. Theresult would be a ombination of program analysis and deision proedures that is ableto prove properties in theories that are beyond the sope of any of the individual deisionproedures and that annot be e�etively handled by traditional ombination tehniquesfor logial theories.Beyond Shape Analysis. So far, the experiene with domain prediate abstration is inthe ontext of heap-manipulating programs. However, this approah is learly not restritedto veri�ation of heap programs. Instead, it an more generally be used to verify systemswhere properties that involve universal quanti�ation over some unbounded domain playan important role. Programs that manipulate arrays, onurrent programs with unboundedthread reation, parameterized systems, and distributed systems with an unbounded num-ber of partiipants � to name only a small seletion of use ases where our analysis ould bebene�ial. Exploring the potential appliations of domain prediate abstration is a maingoal for our future researh.





ZusammenfassungSoftware ist häu�g der unzuverlässigste Bestandteil von Computersysteme. Dennoh drin-gen Computer weitherhin in alle tehnologishen Bereihe vor. Ein zentrales Ziel in derErforshung von Programmiersprahen besteht daher darin, Methoden zu entwikeln, diedie Zuverlässigkeit von Software erhöhen können.Den ambitioniertesten Weg an dieses Problem heranzugehen beshreitet die formale Pro-grammveri�kation. Das Ziel formaler Programmveri�kation besteht darin, einen mathema-tishen Beweis zu erbringen, der siher stellt, dass ein Programm seine Spezi�kation erfüllt.Traditionell werden solhe Beweise vom Programmierer selbst in einem formalen Kalkül wiezum Beispiel Hoare-Logik [46, 56℄ erbraht. Es gibt zwei Gründe, die der praktishen An-wendung dieser Methode in der Softwareentwiklung entgegenstehen. Zum einen gibt es nurwenige Softwareentwikler, die die nötigen Kenntnisse und Erfahrungen besitzen solhe for-malen Korrektheitsbeweise zu erbringen. Zum anderen führt die zunehmende Komplexitätvon Software dazu, dass es extrem aufwendig ist selbst einfahe Korrektheitseigenshaftenfür ein vollständiges Softwaresystem manuell zu veri�zieren.Die Forshung in der Programmveri�kation ist daher seit vielen Jahren von dem Idealgeleitet, Programmanalysewerkzeuge zu entwikeln, die den Programmierer dabei unter-stützen die Korrektheit seiner Software siherzustellen, d.h. Software zu entwikeln, die inder Lage ist Software automatish zu veri�zieren. Da die meisten Veri�kationsproblemeunentsheidbar sind, können solhe Verfahren nur approximative Lösungen bieten. Einenformalen Rahmen für den Entwurf approximativer Programmanalyseverfahren bietet dieabstrakte Interpretation [37, 38℄. Eine abstrakte Interpretation transformiert das konkreteProgramm in ein abstraktes Programm für das das Veri�kationsproblem entsheidbar ist. DieAbstraktion garantiert, dass das konkrete Programm immer dann korrekt ist, wenn auhdas abstrakte Programm korrekt ist. Die Analyse ist approximativ, weil das konkrete Pro-gramm auh dann korrekt sein kann, wenn das abstrakte Programm niht korrekt ist, d.h.die Analyse kann Gegenbeispiele für die zu beweisende Programmeigenshaft generieren, dieauf das konkrete Programm niht zutre�en. Wir nennen solhe Gegenbeispiele Sheingegen-beispiele. Die Methode der abstrakten Interpretation vershiebt das Problem der formalenBeweisführung über Programme vom Programmierer auf den Designer des Programmanal-ysewerkzeugs, d.h. es ist die Aufgabe des Designers eine geeignete Abstraktion für ein spez-i�shes Veri�kationsproblem zu �nden. Auh wenn es immer Programmeigenshaften gebenwird, deren automatishe Veri�kation shwierig ist und die daher einen manuellen Beweiserfordern, so ist die Methode der abstrakten Interpretation dennoh ein groÿer Erfolg. Siebildet die Grundlage vieler moderner Werkzeuge, die Eigenshaften wie zum Beispiel die Ab-wesenheit von Laufzeitfehlern für Programme industrieller Gröÿe automatish veri�zieren127



128 ZUSAMMENFASSUNGkönnen [20, 113℄.Jüngst haben Forsher damit begonnen die Frage zu untersuhen, ob es möglih istden Automatisierungsgrad in der Programmveri�kation noh weiter zu erhöhen. In denletzten Jahren gab es wesentlihe Fortshritte im Bereih des automatishen Theorembe-weisens [12,41,108,109℄ und leistungsfähige Entsheidungsprozeduren wurden entdekt [62℄.Diese Fortshritte haben es ermögliht das Führen von Beweisen über Programme selbst zuautomatisieren. Das Ziel dieser Forshung ist es, Programmveri�kation vollständig auf dasProblem automatisher Beweisführung in ausdruksstarken Logiken zu reduzieren, d.h. manverwendet Software, um automatish Software zu konstruieren, die Software automatishveri�ziert.Wir nennen die Symbiose aus abstrakter Interpretation und Methoden der automa-tishen Beweisführung symbolishe Programmanalyse. Symbolishe Programmanalysever-fahren sind aus vielerlei Gründen interessant. Zum ersten ermögliht die Verwendung vonMethoden zur automatishen Beweisführung niht nur die Automatisierung der Transforma-tion eines konkreten Programms in ein abstraktes Programm und die darau�olgende Analysedes abstrakten Programms, sondern sie ermögliht sogar die Automatisierung der Konstruk-tion der Abstraktion. Abstraktionsverfeinerungstehniken [35, 52℄ verwenden Prozedurenzur automatishen Beweisführung, um Sheingegenbeispiele, die die Analyse des abstraktenProgramms generiert, als solhe zu erkennen. Die erkannten Sheingegenbeispiele werdendann dazu verwendet die Abstraktion automatish zu verfeinern. Zum zweiten separiert derEinsatz von Logiken das Problem der Beweisführung über die Semantik des Programms vonder eigentlihen Analyse des Programms. Dies erlaube es die Analyse als ein algorithmishesProblem zu formulieren, das unabhängig vom konkreten Programm und der zu beweisendenEigenshaft ist. Eine Konsequenz dieser Aufgabenteilung ist, dass der Korrektheitsbeweisfür eine symbolishe Programmanalyse in der Regel einfaher zu führen ist als für einenihtsymbolishe Analyse. Der aufwendigste Teil des Korrektheitsbeweises, d.h. der Teil,der die Semantik des Programms betri�t, folgt aus der Korrektheit der zugrundeliegendenautomatishen Beweisführungsprozeduren. Shlieÿlih stellen Logiken auh eine natürliheSprahe zur Verfügung, um das Verhalten von Programmfragmenten zu beshreiben. Dieserlaubt eine einfahe Kombination von symbolishe Programmanalysen mit Tehniken, diedie Programmveri�kation modularisieren [11, 44, 65℄.Auh wenn es immer Veri�kationsprobleme geben wird, die den Einfallsreihtum einesProgrammanalysedesigners erfordern, der eine Abstraktion für das gegebene Problem maÿ-shneidert, so kann die symbolishe Programmanalyse diesen doh entlasten. In der Tat hatdie Idee der symbolishen Programmanalyse eine neue Generation von Veri�kationswerkzeu-gen hervorgebraht [9, 30, 54℄, die einen unübertro�en hohen Automatisierungsgrad bieten.Diese Werkzeuge sind bereits im industriellen Einsatz, zum Beispiel als Bestandteil desMirosoft Windows devie driver development kid [88℄.Ein Problem, dem in jüngster Zeit viel Beahtung geshenkt wurde, ist die Fragestel-lung, wie man in der Veri�kation und Programmanalyse e�ektiv mit dynamish alloziertenZeigerstrukturen umgehen kann. Die Fähigkeit von Zeigerstrukturen ihre Gröÿe und Formdynamish zu verändern, maht sie zu einem wihtigen Programmierkonzept in impera-tiven Programmiersprahen. Daher ist es niht überrashend, dass Zeigerstrukturen denKern vieler e�zienter Algorithmen bilden und in vielen Software-Entwurfsmustern Verwen-dung �nden. Die Flexibilität und Vielfalt von Zeigerstrukturen ershwert aber auh die



ZUSAMMENFASSUNG 129Veri�kation von Programmen, die diese manipulieren. Die praktishe Relevanz und die Her-ausforderungen, die die Veri�kation von Zeigerstrukturen aufwirft, erklärt das gestiegeneInteresse daran dieses Problem zu lösen.Programmanalysen, deren Hauptaufgabe in der Veri�kation von Eigenshaften solherZeigerstrukturen besteht, werden im allgemeinen als Shape-Analysen bezeihnet [61℄. Einesymbolishe Shape-Analyse versprähe ein Spektrum vershiedener dynamish allozierterZeigerstrukturen und ein Spektrum an Eigenshaften veri�zieren zu können, ohne dass derBenutzer die Analyse manuell an eine spezi�she Probleminstanz anpassen müsste. DieFrage, wie solh eine symbolishe Shape-Analyse aussieht und ob sie ihre Versprehen ein-halten könnte, war o�en. In der vorliegenden Dissertation beshäftigen wir uns mit diesenFragen.Symbolishe Shape-AnalyseDas Ziel einer Shape-Analyse ist die Veri�kation komplexer Konsistenzeigenshaften vonZeigerstrukturen. Unter Konsistenzeigenshaften verstehen wir Invarianten, die die Formeiner Datenstruktur beshreiben und die an bestimmten Punkten während der Programm-ausführung gelten müssen (zum Beispiel an Ein- und Austrittspunkten von Bibliotheks-funktionen, die die Datenstruktur implementieren). Als Beispiel betrahten wir das in Ab-bildung 7.1 dargestellte Fragment eines Java-Programms. Dieses Programmfragment zeigtTeile einer Datenstruktur, die Container zur Speiherung einer unbeshränkten Menge vonObjekten implementiert. Die Datenstruktur stellt vershiedene Operationen bereit, wie zumBeispiel das Hinzufügen und Entfernen von Elementen aus einer Menge von Objekten, aberauh komplexere Operationen wie das Filtern der gespeiherten Objekte in Abhängigkeitvon einem gegebenen Prädikat. Die eigentlihe Menge ist durh eine doppeltverkettete Listeimplementiert. Eine der Konsistenzeigenshaften dieser Datenstruktur besagt daher, dassdie Liste, auf die das Feld root zeigt, tatsählih eine doppeltverkettete Liste ist. Man kanneine Shape-Analyse dazu verwenden, um zu veri�zieren, dass solhe Invarianten unter allenOperationen der Datenstruktur erhalten bleiben.Die Veri�kation von Konsistenzeigenshaften ist für sih betrahtet bereits wihtig,da die korrekte Ausführung eines Programms häu�g von der Konsistenz der verwende-ten Datenstrukturen abhängt. Wenn zum Beispiel die Liste, auf die das Referenzfeld rootzeigt, bei Eintritt in die Methode �lter niht doppeltverkettet ist, dann wird das Verhal-ten der Methode niht vorhersagbar sein. Unter Umständen wird die Methode sogar einenLaufzeitfehler verursahen. Darüber hinaus spielen Konsistenzeigenshaften eine wihtigeRolle bei der Veri�kation anderer Programmeigenshaften. So lässt sih zum Beispiel dieTerminierung der while-Shleife in der Methode �lter unter der Annahme beweisen, dassdie Liste, auf die das Feld root zeigt, azyklish ist. Man kann eine Shape-Analyse dazuverwenden, solhe Annahmen zu veri�zieren.In dieser Dissertation untersuhen wir eine neuartige symbolishe Shape-Analyse. Un-sere Shape-Analyse verwendet automatishe Beweisführungsprozeduren, um ein Programm,dass Zeigerstrukturen manipuliert, automatish durh ein Programm zu abstrahieren, daslogishe Formeln manipuliert. Unser Ansatz verallgemeinert das Prinzip der Prädikatenab-straktion [49℄, ein existierendes symbolishes Programmanalyseverfahren, durh Einbezugder Shlüsselidee in der dreiwertigen Shape-Analyse [103℄, einem existierenden nihtsym-



130 ZUSAMMENFASSUNGpubli interfae Prediate {//: publi spevar pred :: objset ;publi boolean ontains(Objet o);//: ensures " result = (o ∈ pred)"}publi lass DLLSet {lass Node {Node next;Node prev;Objet data;}private Node root;/∗: publi spevar ontent :: objset ;private vardefs "ontent == {x. <root erreiht ein NodeObjekt y via next, so dass y.data=x>}";invariant "<die Liste ausgehend von root ist azyklish>";invariant "<die Liste ausgehend von root ist doppeltverkettet >"; ∗/publi void add(Objet o)/∗: requires "o /∈ ontent"modi�es ontentensures "ontent = old ontent ∪ {o}" ∗/{ Node n = new Node();n.next = root;n.data = o;root .prev = n;root = n;}...publi void �lter (Prediate p)/∗: requires "p 6= null"modi�es ontentensures "ontent = old ontent ∩ (pred p)" ∗/{ Node e = root;while (e != null) {Node  = e;e = e.next;if (!p. ontains(.data)) {if (.prev == null) {e.prev = null ;root = e;} else {.prev .next = e;e.prev = ;}}}}}Abbildung 7.1: Kontäner für Mengen von Objekten, die durh doppeltverkettete Listenimplementiert sind



ZUSAMMENFASSUNG 131bolishen Shape-Analyseverfahren. Die Verknüpfung dieser Tehniken resultiert in einerShape-Analyse, die über eine einzigartige Kombination von Eigenshaften verfügt. UnsereShape-Analyse ist niht a priori auf die Veri�kation einer bestimmte Klasse von Datenstruk-turen und Eigenshaften eingeshränkt. Dennoh bietet sie einen hohen Automatisierungs-grad. Insbesondere waren wir in der Lage die Erhaltung von Konsistenzeigenshaften fürOperationen auf geketteten Binärbäumen [107℄ zu veri�zieren (darunter Sortiertheit unddie Inorder-Traversierungseigenshaft). Dies gelang ohne unsere Analyse speziell für diesesProblem anzupassen und ohne jeglihe Hilfe des Benutzers, die über die bloÿe Formulierungder zu beweisenden Eigenshaften hinausginge. Uns ist keine andere Shape-Analyse bekannt,die diese Eigenshaften mit einem vergleihbaren Automatisierungsgrad veri�zieren könnte.Shlieÿlih fügt sih unsere Shape-Analyse auf natürlihe Weise ein in den Ansatz dermodularen Veri�kation von Datenstrukturen, den wir im Jahob-System [65,121℄ beshreiten.Dieser Ansatz verwendet vom Benutzer zur Verfügung gestellte Prozedurkontrakte, um dieVeri�kation von Bibliotheken (die Datenstrukturen implementieren) von der Veri�kation vonKlienten (die diese Datenstrukturen verwenden) zu trennen. Die Shnittstellen der Biblio-theken deklarieren abstrakte Mengen und Relationen, die das Verhalten der Datenstrukturharakterisieren, dabei aber die Komplexität der darunterliegenden Implementierung ver-bergen. Zum Beispiel deklariert die Shnittstelle der Klasse DLLSet in Abbildung 7.1 eineabstrakte Menge ontent, die die Menge der in einer gegebenen Instanz der Klasse gespei-herten Objekte denotiert. In den Vor- und Nahbedingungen der ö�entlihen Methoden derKlasse DLLSet wird die Menge ontent dazu verwendet, um den vom Klienten der Daten-struktur beobahtbaren E�ekt der Methoden zu beshreiben. Wir waren in der Lage solheProzedurkontrakte von Bibliotheksfunktionen mit unserer Shape-Analyse zu veri�zieren.Während die Analyse der Bibliotheken die hohe Präzision einer Shape-Analyse erfordert,so verlangt die Analyse der Klienten den Einsatz einer skalierbaren (aber vielleiht wenigerpräzisen) Programmanalyse. Wir glauben, dass solh ein modularer Veri�kationsansatz denShlüssel darstellen könnte, der präzise Shape-Analyseverfahren auf groÿe Programme an-wendbar maht.Tehnishe BeiträgeUnsere neue Shape-Analyse basiert auf einer Reihe tehnisher Beiträge. Diese Beiträgelassen sih wie folgt zusammenfassen:
• Wir entwikeln die universelle Prädikatenabstraktion, eine neuartige parametrierteabstrakte Domäne für symbolishe Shape-Analyse, die detaillierte Eigenshaften ver-shiedener Regionen im unbeshränkten Speiher eines Programms ausdrüken kann.
• Wir stellen Mittel bereit, um mit Hilfe von automatishen Beweisführungsprozedurenein Programm, das Zeigerstrukturen manipuliert, automatish in ein abstraktes Pro-gramm zu transformieren.
• Wir präsentieren eine Abstraktionsverfeinerungsmethode für die universelle Prädika-tenabstraktion. Diese Methode beseitigt die Anforderung an den Benutzer, die Ab-straktion manuell für die Analyse eines bestimmten Programms oder einer bestimmtenProgrammeigenshaft anpassen zu müssen.
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• Wir entwikeln die Feldbedingungsanalyse, eine neue Tehnik zur Beweisführung überEigenshaften von Datenstrukturen. Unsere Feldbedingungsanalyse ermögliht dieVerwendung entsheidbarer Logiken für die Veri�kation von Datenstrukturen, die ur-sprünglih auÿerhalb des Anwendungsbereihs dieser Logiken lagen.Im folgenden diskutieren wir diese Beiträge im Detail.Universelle Prädikatenabstraktion. Wir zeigen, dass sih die Shlüsselidee der drei-wertigen Shape-Analyse [103℄, die Partitionierung des Heaps bezüglih einer Menge vonPrädikaten über Heap-Objekten, in die Methode der Prädikatenabstraktion [49℄ einbet-ten lässt. Die Symbiose dieser Ideen resultiert in einer neuen Analyse, die wir universellePrädikatenabstraktion (engl. domain prediate abstration) nennen. Die universelle Prädika-tenabstraktion ermögliht die Herleitung von Invarianten in der Form von Disjunktionenuniversell quanti�zierter Aussagen über den unbeshränkten Speiher eines Programms. DieBausteine dieser quanti�zierten Aussagen sind Prädikate über Heap-Objekte. Unsere Kon-struktion des abstrakten Post-Operators verläuft analog zur entsprehenden Konstruktionin der klassishen Prädikatenabstraktion, mit dem Untershied, dass Prädikate über Heap-Objekte den Platz von Zustandsprädikaten einnehmen und Booleshe Heaps (Mengen vonBitvektoren) den Platz von Booleshen Zuständen (Bitvektoren). Das konkrete Programmwird abstrahiert durh ein Programm über Booleshe Heaps. Für jedes Kommando deskonkreten Programms konstruieren wir das entsprehende abstrakte Kommando e�ektivmit Hilfe von Methoden der automatishen Beweisführung. Die universelle Prädikatenab-straktion bietet daher den parametrisierten Unterbau für eine symbolishe Shape-Analyse.Bedarfsgerehte, vershahtelte Abstraktionsverfeinerung. Wir entwikeln eineautomatishe Abstraktionsverfeinerungsmethode für unsere symbolishe Shape-Analyse. Un-sere Tehnik verwendet Sheingegenbeispiele, um sowohl die abstrakte Domäne, als auhden abstrakten Post-Operator unserer symbolishen Shape-Analyse zu verfeinern. Diesebeiden Phasen der Abstraktionsverfeinerung sind in einer Shleife vershahtelt, die einebedarfsgerehte Abstraktionsverfeinerung ermögliht [53℄. Die zweite Phase der Abstrak-tionsverfeinerung ist entsheidend für den praktishen Erfolg unserer Shape-Analyse. Invielen unserer Fallstudien shlägt die Analyse ohne diese zweite Phase fehl. Dieses prakti-she Resultat stimmt mit unserem theoretishen Befund überein, der sih mit der so genan-nten Fortshritteigenshaft befasst. Diese Eigenshaft besagt, dass jedes von der Analysegefundene Sheingegenbeispiel irgendwann durh einen Verfeinerungsshritt ausgeshlossenwird. Unsere Methode der Abstraktionsverfeinerung besitzt die Fortshrittseigenshaft nurmit der zweiten Verfeinerungsphase.Wir liefern auÿerdem einen experimentellen Nahweis dafür, dass der erhöhte Automa-tisierungsgrad unserer Analyse auh zu zielgerihteter Präzision führt. Diese zielgerihtetePräzision spiegelt sih in einem geringeren Platzverbrauh unserer Analyse wider; die ver-shahtelte Verfeinerungsshleife sheint die lokale Feinabstimmung der Abstraktion auf daserforderlihe Maÿ an Präzision zu bewirken.Feldbedingungsanalyse. Eine der faszinierenden Eigenshaften unserer symbolishenShape-Analyse ist die Tatsahe, dass die zugrundeliegende automatishe Beweisführungspro-



ZUSAMMENFASSUNG 133zedur als Blak-Box betrahtet wird. Man kann daher einen beliebigen, existierenden Theo-rembeweiser oder Entsheidungsprozedur verwenden. In der Praxis erfüllen existierendeEntsheidungsprozeduren aber häu�g niht alle Anforderungen, die die Analyse stellt. Da-her kann es nötig sein, eine zusätzlihe Shiht zwishen Analyse und der tatsählihenEntsheidungsprozedur einführen zu müssen. Wir präsentieren eine solhe Tehnik in dieserDissertation.Wir entwikeln die so genannte Feldbedingungsanalyse (engl. �eld onstraint analysis),ein neues Verfahren, um Eigenshaften von Datenstrukturen zu beweisen. Eine Feldbedin-gung für ein Referenzfeld einer Datenstruktur ist eine logishe Formel, die eine Menge vonObjekten spezi�ziert, auf die das Feld zeigen kann. Feldbedingungen ermöglihen die An-wendung entsheidbarer Logiken für die Veri�kation von Datenstrukturen, die ursprünglihauÿerhalb des Anwendungsbereihs dieser Logiken lagen, indem sie die Referenzfelder in zweiKlassen aufteilen: Felder, die das Grundgerüst der Datenstruktur aufspannen und abgeleit-ete Felder, die dieses Grundgerüst in beliebiger Weise durhkreuzen können. Die Feldbedin-gungen der abgeleiteten Felder werden ausgenutzt, um das Beweisen von Eigenshaften derDatenstruktur auf das Beweisen von Eigenshaften des Grundgerüsts der Datenstruktur zureduzieren. Bisher war die Behandlung solher abgeleiteten Felder nur möglih, wenn sievollständig durh ihre Feldbedingungen harakterisiert waren. Die Klasse der unterstütztenDatenstrukturen wurde dadurh signi�kant eingeshränkt.Unsere Feldbedingungsanalyse erlaubt die Spezi�kation nihtdeterministisher Feldbe-dingungen für abgeleitete Felder. Nihtdeterministishe Feldbedingungen ermöglihen dieVeri�kation von Datenstrukturen wie zum Beispiel Skip-Listen und erlauben auÿerdemdie Veri�kation von Invarianten zwishen Datenstrukturen. Damit stellen sie eine aus-druksstarke Verallgemeinerung statisher Typedeklarationen da.Die Allgemeinheit unserer Feldbedingungen erfordert neue Tehniken, die orthogonalzur traditionellen Methode der Struktursimulation sind [57,59℄. Wir präsentieren eine solheMethode und beweisen sowohl ihre Korrektheit, als auh ihre Vollständigkeit in bestimmten,interessanten Fällen. Mit Hilfe unserer neuen Tehnik waren wir in der Lage Datenstruk-turen zu veri�zieren, die zuvor auÿerhalb der Reihweite vergleihbarer Verfahren waren.MahbarkeitsstudieAlle in dieser Dissertation präsentierten Tehniken wurden in einem Werkzeug namensBohne implementiert und evaluiert. Bohne baut auf dem Jahob-System [66℄ für die Veri�ka-tion der Konsistenz von Datenstrukturen auf. Bohne analysiert Java-Programme, ähnlihdem in Abbildung 7.1 gezeigten, die mit speziellen Kommentaren annotiert werden, umProzedurkontrakte und Repräsentationsinvarianten von Datenstrukturen zu spezi�zieren.Unser Werkzeug veri�ziert, dass alle Methoden ihre Prozedurkontrakte einhalten und alleRepräsentationsinvarianten unter Ausführung von Datenstrukturoperationen erhalten blei-ben. Wir haben Bohne dazu verwendet komplexe, benutzerspezi�zierte Eigenshaften füreine Reihe von Datenstrukturimplementierungen und deren Klienten zu veri�zieren, ohneShleifeninvarianten manuell zu spezi�zieren oder die Abstraktion von Hand zu erstellen.Dies beweist, dass die symbolishe Shape-Analyse ihre Erwartungen erfüllen kann, nämliheine Vielfalt von Datenstrukturen und Eigenshaften mit einem hohen Automatisierungs-grad zu veri�zieren.
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