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SE-412 96 Göteborg
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Göteborg, 2008



Calculi for Program Incorrectness and Arithmetic
Philipp Rümmer
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Abstract

This thesis is about the development and usage of deductive methods in two
main areas: (i) the deductive dis-verification of programs, i.e., how techniques
for deductive verification of programs can be used to detect program defects, and
(ii) reasoning modulo integer arithmetic, i.e., how to prove the validity (and, in
special cases, satisfiability) of first-order formulae that involve integer arithmetic.

The areas of program verification and of testing are traditionally considered
as complementary: the former searches for a formal proof of program correctness,
while the latter searches for witnesses of program incorrectness. Nevertheless, de-
ductive verification methods can discover bugs indirectly: the failure to prove the
absence of bugs is interpreted as a sign for the incorrectness of the program. This
approach is bound to produce “false positives” and bugs can be reported also for
correct programs. To overcome this problem, I investigate how techniques that
are normally used for verification can be used to directly prove the incorrectness
of programs. This covers both the detection of partial incorrectness (a program
produces results that are inconsistent with a declarative specification), and the
detection of total incorrectness (a program diverges erroneously).

As a prerequisite for both program correctness and incorrectness proofs, I
investigate and extend the concept of updates, which is the central component for
performing symbolic execution in Java dynamic logic. Updates are systematically
developed as an imperative programming language that provides the following
constructs: assignments, guards, sequential composition and bounded as well
as unbounded parallel composition. Further, I formulate a calculus for integer
arithmetic that is tailored to program verification. While restricted to ground
problems, the calculus can handle both linear and nonlinear arithmetic (to some
degree) and is useful both for automated and interactive reasoning.

The calculus for integer arithmetic can naturally be generalised to a stand-
alone procedure for Presburger arithmetic with uninterpreted predicates, which
is a logic that subsumes both Presburger arithmetic and first-order logic. The
procedure has similarities both with SMT-solvers and with the methods used in
automated first-order theorem provers. It is complete for theorems of first-order
logic, decides Presburger arithmetic, and is complete for a substantial fragment
of the combination of both.
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Pseudo-Reduction and Gröbner Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6 Handling of Nonlinear Polynomial Inequalities:
Cross-Multiplication and Case Splits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
8 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
A Proof Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

Paper 7

A Constraint Sequent Calculus for First-Order Logic with Linear
Integer Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Philipp Rümmer
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Introduction

Advances in hardware technology over the last decades have turned computers
from expensive, large, and cryptic machines into small, highly specialised, and
nearly ubiquitous tools or accessories that are an unavoidable part of daily life.
An aspect of this development is an increasing demand for software programs
that become more complex, more safety or security critical, and that are expected
to be produced in shorter time and with less effort. Surprisingly and despite this
development, the prevalent methods to produce software have changed only little
over the last 30 years.

One approach to improve software quality is to analyse programs with the
help of deductive and formal methods. Deduction is the principle of rigorously
deriving conclusions from assumptions by means of syntactic arguments (also
called rules). While originally devised in the areas of mathematics and philos-
ophy, deduction has, again due the spread of computers, become a universal
(and often automatic) tool that is applied in various areas to analyse systems
and to manage information. This thesis is about the development and usage of
deductive methods in two areas:

– Deductive dis-verification of programs: How can techniques for deductive ver-
ification of programs be used to detect program defects? This covers both the
detection of partial incorrectness, i.e., the case that a program produces re-
sults that are inconsistent with a declarative specification, and the detection
of total incorrectness, i.e., the situation that a program erroneously diverges.

– Reasoning modulo integer arithmetic: The problem of proving the validity
(and, in special cases, satisfiability) of first-order formulae that involve in-
teger arithmetic is investigated. The two examined settings are the case of
quantifier-free linear and nonlinear arithmetic, and the case of Presburger
arithmetic augmented with uninterpreted predicates (which subsumes both
Presburger arithmetic and first-order logic).

Both topics are closely related: on the one hand, integers are the most common
datatype in programs, and any deductive verification method has to offer a so-
lution to reasoning about integers. On the other hand, we approach program
dis-verification and reasoning about integers using techniques that are very sim-
ilar in nature: in both cases, we start from tableau-style theorem proving with
free variables and constraints.

This thesis is a collection of seven papers that were presented at conferences
and workshops on deductive methods and their application. While each of the
papers is a self-contained document, the thesis starts with a broader introduction
to the field.



2 Introduction

Contributions of the Thesis

Deductive dis-verification of programs. The areas of (deductive) program verifi-
cation and of testing are traditionally considered as complementary: the former
works under the hypothesis of program correctness and searches for a formal
proof, while the latter assumes program incorrectness and searches for concrete
witnesses. In the context of software development, the more realistic hypothesis
is that of program incorrectness, and the usefulness of a tool primarily depends
on its ability to discover program defects.

Deductive verification methods normally discover bugs indirectly: the fail-
ure to prove the absence of bugs is interpreted as a sign for the incorrectness
of the program. Due to the inherent incompleteness of deductive methods, this
approach is bound to produce “false positives,” i.e., bugs can be suspected also
in correct programs. A large number of false positives can make it nearly im-
possible to identify the actual defects and is commonly considered as one of
the main obstacles preventing a broad usage of deductive methods in software
development.

To overcome this problem, I investigate how techniques that are normally
used for verification can be used to prove the (partial or total) incorrectness
of programs. Because the presence of bugs is actually proven in this approach,
no false positives can occur (but, vice versa, the incompleteness of the method
makes it in general impossible to find all bugs in a program). The usage of
symbolic reasoning allows to derive whole classes of inputs simultaneously for
which a program behaves incorrectly, or to detect bugs like non-termination that
are not accessible for testing.

As a prerequisite for both program correctness and incorrectness proofs, I
investigate and extend the concept of updates, which is the central component
for performing symbolic execution in Java dynamic logic (“Sequential, Parallel,
and Quantified Updates of First-Order Structures,” page 115). Updates are sys-
tematically developed as an imperative programming language that provides the
following constructs: assignments, guards, sequential composition and bounded
as well as unbounded parallel composition. The language is equipped both with
a denotational semantics and a correct rewriting system for execution, whereby
the latter is a generalisation of the syntactic application of substitutions.

Theorem proving modulo integer arithmetic. A second ingredient for reasoning
about program correctness and incorrectness is the treatment of integer arith-
metic. Automatic verification systems that use SMT-solvers as back-end typi-
cally handle arithmetic with the help of integer linear programming techniques
(possibly extended with axioms about simple properties of multiplication like
commutativity and distributivity) and cannot be applied even to simple pro-
grams that involve nonlinear arithmetic. The paper “A Sequent Calculus for
Integer Arithmetic with Counterexample Generation” (page 149) formulates a
calculus for integer arithmetic that is tailored to program verification. While re-
stricted to ground problems, the calculus can handle both linear and nonlinear



Calculi for Program Incorrectness and Arithmetic 3

arithmetic (to some degree) and is useful both for automated and interactive
reasoning.

In the paper “A Constraint Sequent Calculus for First-Order Logic with Lin-
ear Integer Arithmetic” (page 173), I develop an approach to theorem proving
modulo linear integer arithmetic that is an alternative to that of SMT-solvers.
The problem, in both cases, is to handle a logic in which validity is not a semi-
decidable property. SMT-solvers approach this issue by starting with the (decid-
able) ground problem and augment the reasoning with heuristics to add quan-
tifiers. The result are powerful reasoners, but there is no simple description of
the fragment on which completeness is achieved, and there are simple examples
of quantified problems where all heuristics fail.

The alternative approach described here is to start with a simple and idealised
calculus for Presburger arithmetic with arbitrary uninterpreted predicates. To
prove the validity of a formula in this logic, the calculus iteratively computes
approximating formulae in Presburger arithmetic, which in turn can be checked
using an arbitrary decision procedure for Presburger arithmetic. The result is a
calculus that is complete for a rather regular fragment of Presburger arithmetic
with predicates. It is easy to reason about the fragment and to show that it
subsumes, e.g., both the universal and the existential fragment of the logic, as
well as the whole of first-order logic.

As the next step, the idealised calculus is optimised to achieve greater ef-
ficiency without changing the set of provable formulae. A major step to this
end is to add capabilities for more efficient reasoning about ground problems
(similar to the approach in “A Sequent Calculus for Integer Arithmetic with
Counterexample Generation,” page 149), which brings the calculus closer to the
architecture of SMT-solvers.



Background

1 First-Order Theorem Proving and Integer Arithmetic

Because all chapters of this thesis are written in the context of classical first-
order logic, and most of them in the context of the theory of integer arithmetic,
we start with an introduction into these topics.

1.1 First-Order Logic (FOL)

The definition of classical logics consists of three parts: the definition of a lan-
guage as the syntax in which assumptions or conjectures are stated; a semantics

that gives meaning to the elements of this language; and calculi that allow to
reason on the syntactic level in a manner that is faithful to the semantics.

Classical first-order logic (FOL, also called predicate calculus, see [1] for a
more detailed introduction) is an example for such a logic. FOL is an extension
of propositional logic that allows to talk about individuals or objects, which are
syntactically represented by terms. Quantifiers allow to state properties that are
supposed to hold for all or for some individuals. A simple version of the syntax
of FOL is defined by the following grammar for formulae:

φ ::= φ ∧ φ || φ ∨ φ || ¬φ || ∀x.φ || ∃x.φ || p(x, . . . , x)

in which x ranges over a predefined and fixed set of variables and p over a fixed
vocabulary of predicates. The first three constructors ∧ (and), ∨ (or), and ¬
(negation) are the connectives that are also present in propositional logic, while
the quantifiers ∀ (for all), ∃ (there exists), and the application of predicates are
specific to FOL. A common further propositional connective is implication →,
but in classical logic the formula φ→ ψ can be considered as an abbreviation of
¬φ ∨ ψ.

As an example, the following formulae are the first five axioms of Tarski’s
first-order axiomatisation of Euclidean geometry [2]:

∀x.∀y. cg(x, y, y, x) (Ta1)

∀x.∀y.∀z.
(

cg(x, y, z, z) → x
.
= y

)

(Ta2)

∀x.∀y.∀z.∀u.∀v.∀w.
(

cg(x, y, z, u) ∧ cg(x, y, v, w) → cg(z, u, v, w)
)

(Ta3)

∀x.∀y.
(

bw(x, y, x) → x
.
= y

)

(Ta4)

∀x.∀y.∀z.∀u.∀v.

(

bw(x, u, z) ∧ bw(y, v, z)
→ ∃a. (bw(u, a, y) ∧ bw(v, a, x))

)

(Ta5)

The predicate cg represents congruence: cg(a, b, c, d) means that the distance
between the points a and b is the same as the distance between c and d. The
predicate bw represents betweenness: bw(a, b, c) means that the point b is on
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the line segment ac. We also need the binary predicate
.
= to represent equality

between two points.
It is usually required (and the case for the five formulae from above) that

axioms are closed, which means that every occurrence of a variable x in such a
formula has to be in the scope of a quantifier ∀x or ∃x.

Functions. Traditionally, it is common to understand the notions of equality and
functions not as first-class members in predicate calculus, but rather as special
cases of predicates

.
=, f that satisfy (explicitly stated) axioms. In the case of

functions, the required properties are totality and functionality (or, vice versa,
the congruence property of equality). A unary function can be represented as a
binary predicate f with the help of the following axioms (similarly for functions
of higher arity):

∀x.∃y. f(x, y), ∀x, y, y′. (¬f(x, y) ∨ ¬f(x, y′) ∨ y
.
= y′)

In the classical exposition of tableaux by Smullyan [3], for instance, functions
are not treated at all. Due to the importance of the theory of functions and
equality for applications and as more focus is put on automatic deduction, this
conception of FOL has shifted: modern approaches (like theorem proving based
on ordered paramodulation, see [4] for an overview) often consider functions and
equality as the primary concepts of FOL, whereas predicates can be introduced
as boolean-valued functions if needed.

Semantics. The semantics for FOL that is most frequently used nowadays is
model-theoretic and goes back to Tarski [5]. Evaluation of formulae in this se-
mantics is defined over structures (U, I) that consist of a non-empty set U , the
universe of individuals, and an interpretation I that maps every predicate sym-
bol to a subset of U∗ (the set of U -tuples) on which the predicate is considered
to hold. Given a structure (U, I), an evaluation function val (U,I) can then recur-
sively be defined that maps every formula to one of the boolean values tt or ff .
In the first case, (U, I) is called a model of the formula.

Formulae that evaluate to tt for every structure are called valid, while for-
mulae that evaluate to tt for some structure are called satisfiable. To determine
whether a given formula belongs to one of these two classes is usually considered
the most important problem of reasoning in a logic: many other questions can
be reduced to the question whether a certain formula is valid or satisfiable (and
what a model for the formula is). It is not necessary to actually refer to the
(model-theoretic) semantics of a logic in order to check validity or satisfiability:
the by far more common approach is to reason on the syntactic level with the
help of calculi. The correctness of a calculus, in turn, has to be justified using the
semantics. In fact, the idea of calculi is much older than the concept of semantics
and goes back as far as Aristotle’s syllogisms.

It is well-known that the validity of a first-order formula is not a decidable
problem, although the valid formulae in FOL are recursively enumerable (which
implies that the satisfiable formulae are not even recursively enumerable). FOL
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is therefore strictly more expressive than propositional logic, in which validity
is decidable. On the other hand, FOL does not allow quantification over func-
tions or sets of individuals (higher-order quantification), which entails that its
expressiveness is strictly less than that of higher-order logics. As a consequence,
FOL allows comparatively efficient automated reasoning and is one of the most
popular logics for applications (although often in combination with various the-
ories). A good overview of state-of-the-art FOL reasoners is the annual CADE
ATP System Competition.1

Theories. Working with pure FOL can be too uncomfortable, too inefficient, or
simply insufficient because FOL is not expressive enough: to apply the logic it is
often necessary to have further concepts or datatypes like lists, arrays, ordering
relations, integer or rational numbers, etc. available. Also functions and equality
can be counted as such theories (see [6] for an overview).

More formally, a theory is a satisfiable (finite or infinite) set T of closed
formulae, which are called the axioms of the theory. The theory A of (non-
extensional) arrays [7], for instance, is defined by the following axioms:

∀a, x, y. select(update(a, x, y), x)
.
= y,

∀a, x1, x2, y.
(

x1
.
= x2 ∨ select(update(a, x1, y), x2)

.
= select(a, x2)

)

Given a theory T , we define a T -structure to be a structure (U, I) in which
each element of T evaluates to tt . Adapting the definitions from above, formulae
that evaluate to tt for every T -structure are called T -valid, while formulae that
evaluate to tt for some T -structure are called T -satisfiable. As an example, the
following formula is A-valid (valid in the theory of arrays), but it is not valid
because there are non-A-structures in which it does not hold:

update(a, x, y)
.
= a→ select(a, x)

.
= y

If a theory T is finite, then it is in principle possible to reason about the T -
validity of a formula φ by examining the validity of the implication

∧

T → φ.
Because this approach is often too inefficient, however, much research is put into
the design of dedicated theory-reasoners. Efficient reasoning in the presence of
theories is considered as one of the major challenges of the field.

A theory that is particularly interesting (and exceptionally intricate) is the
theory of integer arithmetic with the operations 0, succ, +, ·,

.
=,

.
≤. The most

commonly used axioms for this theory are due to Peano [8]. The first-order
version of the Peano axiomatisation is incomplete, however, in the sense that
there are formulae φ (that do not contain any operations apart from 0, succ,
+, ·,

.
=,

.
≤, variables, and quantifiers) for which neither φ nor ¬φ are implied

by the Peano axioms [9]. In fact, the situation is even worse: the famous first
incompleteness theorem by Gödel [10] states that there is no complete recursively
enumerable (and consistent) axiomatisation of the integers in FOL.

1 http://www.cs.miami.edu/~tptp/CASC/
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A much weaker (in fact, decidable) system is the theory of integer arithmetic
without multiplication, which is known as Presburger arithmetic (PA) [11] and
discussed in more detail in Sect. 1.3. There is no finite axiomatisation of Pres-
burger arithmetic, which is the reason why the notion of PA-structures (U, I) is
usually defined semantically (informally) by postulating that the universe U = Z

of such a structure are the integers, and that the operations 0, succ, +,
.
=,

.
≤ are

interpreted by I in the “canonical” way on Z.

Syntactic methods. There are two main concepts to determine syntactically
whether a formula in FOL (or equivalently in propositional logic) is valid: one is
to reason about a set of formulae that were assumed to hold (i.e., about a con-

junction of formulae) and to perform inferences in order to synthesise further
formulae from these assumptions; the other one is to analyse the structure of a
formula by repeatedly performing case distinctions such that each case becomes
simpler than the whole problem (i.e., to analyse by generating a disjunction).
Traditional calculi realise rather pure versions of these two concepts:

– Resolution [12] operates on a set of clauses (formulae in normal form) and
works by deriving new clauses until eventually the empty clause and thus a
contradiction (unsatisfiability of the clause set) can be derived.

– Tableaux [13] are trees that are constructed by analysing and taking apart
a formula. In order to show that the analysed formula is unsatisfiable, the
tree has to be expanded to a point at which an obvious contradiction occurs
on every branch of the tree.

In the last years it has been generally recognised, however, that the two tech-
niques are complementary and have to be combined to obtain powerful calculi
[14–18]. The first technique is usually more successful for problems in pure FOL
(without additional theories) and can handle quantifiers, functions, and equality
in a natural manner. The second technique yields more efficient procedures for
problems with a complex propositional structure and for quantifier-free prob-
lems modulo various theories. Because the work in this thesis primarily builds
on tableaux, we give an introduction to them in Sect. 1.2 (see [13] for a more
detailed exposition).

Relationship to this thesis. All papers in this thesis build on FOL as base logic.
In the paper “A Sequent Calculus for Integer Arithmetic with Counterexample
Generation” (page 149), we introduce a calculus for quantifier-free reasoning in
the theory of integer arithmetic (both linear and nonlinear) that is designed for
program verification systems. This calculus is developed further in the paper “A
Constraint Sequent Calculus for First-Order Logic with Linear Integer Arith-
metic” (page 173) to a calculus for full FOL (including quantifiers) combined
with the theory of Presburger arithmetic.

1.2 Tableaux and Sequent Calculi

Tableau-like calculi were first introduced by Gentzen [19] in the form of sequent

calculi, a kind of calculi that has remained in use until today and is applicable
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to a large variety of logics. Most chapters of this thesis use sequent calculi as
the format for proofs. Proofs in such a calculus are trees (growing upwards) in
which each node is labelled with a sequent Γ ⊢ ∆ consisting of two lists Γ , ∆
of formulae. Furthermore, each node that is not a leaf has to be labelled with a
proof rule that determines how the parent sequents (the premisses) are related
with the child sequent (the conclusion). While original versions of the calculus
provided explicit rules for rearranging and contracting formulae in Γ , ∆, it has
since then become more common to consider the two collections of formulae as
sets right away. An example of a proof in sequent calculus is given in Fig. 1.

Gentzen’s calculus was reformulated independently by Beth [20] as semantic

tableaux and by Hintikka [21] as model sets, although their notations did not
become successful (the name tableau stems from the representation of proofs
as tables that was introduced by Beth). The version of tableaux that is almost
exclusively used nowadays was introduced by Smullyan [3]: a tableau can be
understood as a tree (usually growing downwards) in which each node is labelled
with a signed formula, i.e., with a formula preceded by T or F to indicate whether
the formula is negated (there are also unsigned versions of the calculus). Proof
rules are represented in unifying notation that comprises the categories α, β
for non-splitting and splitting propositional rules and γ, δ for universal and
existential quantifier instantiation.

Tableaux differ in one main point from sequent calculi: while each node in
a sequent calculus proof can be interpreted independently from all other nodes
because it repeats assumptions and conjectures, in a tableau the formulae of
a whole branch (the path between the proof root and a leaf) are available for
inferences. This makes the sequent notation somewhat more flexible when for-
mulating calculi for non-classical logics, for instance modal logics. While the
tableau representation is more popular in the area of automated theorem prov-
ing, interactive proof assistants are more often based on sequent calculi.

DPLL. A calculus for propositional logic that is strongly related to tableaux
is the Davis-Putnam-Logemann-Loveland (DPLL) procedure [22] that forms the
basis of most propositional theorem provers (SAT-solvers). DPLL is analytic and
follows the approach of analysing formulae (in clause normal form) through a
case analysis. As the main difference between propositional tableaux and DPLL,
the only rule that causes proof splitting in the latter calculus is the cut-rule,
which splits over the cases that an atomic formula evaluates to tt or to ff (the
principle of bivalence). On each branch, DPLL simplifies formulae by performing
unit resolution steps.2

DPLL has recently become a popular basis to build automated reasoners for
FOL and various theories (SMT-solvers): in the DPLL(T) architecture [27] the
DPLL method to handle propositional problems is combined with decision pro-
cedures for ground problems in theories like equality, uninterpreted functions,

2 The cut-rule is also central in Gentzen’s sequent calculus, although its importance
for avoiding redundancy in proofs was only recognised much later [23]. Both the
cut-rule and formula simplification can be carried over to tableaux and are crucial
from the efficiency point of view, e.g., [24–26].
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integers, etc. The resulting provers are currently among the most efficient deci-
sion procedures for quantifier-free FOL and can also be combined with heuristics
to treat (simple cases of) quantified formulae [28, 29]. For an overview of state-
of-the-art SMT-solvers, see [30].

Quantifiers. Handling quantified formulae is the primary problem when building
FOL theorem provers: to show the validity of a formula like (∀x.φ) → ψ, it is
necessary to discover suitable instances φ[x/t1], φ[x/t2], . . . of the quantified
part so that ψ is entailed. This issue is more difficult to handle in tableaux
than in resolution (intuitively, because universal quantifiers distribute through
conjunctions but not through disjunctions), which is why quantifier handling in
tableau calculi is often inspired by or based on resolution.

Three main techniques to treat quantifiers in tableaux are:

– ground approaches (also called instance-based), which work by generating
instances φ[x/t] that are added to the problem so that reasoning is reduced
to the quantifier-free case. Because quantifier-free reasoning is usually very
efficient, this technique can offer a good performance even if a large number
of unnecessary instances is generated. The terms t to produce instances can
be determined using heuristics (this is mostly common in SMT-solvers, e.g.,
[28, 29]), by a complete enumeration of all terms up to some redundancy
[31–33], or in various ways using unification [34–36].

– free-variable approaches [37] resemble instance-based methods, with the dif-
ference that variables are used as placeholder symbols to generate instances
φ[x/X1], φ[x/X2], . . . . The terms that are denoted by the placeholders X1,
X2, . . . are at a later point determined using unification [37] and either sub-
stituted into the proof or remembered using constraints (a more detailed
description is given below). The name “free variable” for a placeholder is
mostly used in the tableau community, in other areas the term “metavari-
able” is more common and denotes the same concept.

– quantifier elimination (QE) is possible for certain theories, including Pres-
burger arithmetic [11] and real-closed fields [38], which means that for every
formula in these theories there is an equivalent quantifier-free formula (in the
mentioned cases, this formula can also be computed effectively). While QE
methods are mostly popular for interactive proof assistants (e.g., [39–41])
and less for automated theorem provers, also the SMT-solver Yices [42] and
the tableau calculus described in [43] make use of QE.

Free variables and constraints. The standard approach to discover the terms that
are denoted by free variables is to use unification for finding substitution candi-
dates, apply such candidates speculatively to a proof, and possibly backtrack at
a later point to undo substitutions that appear misleading. An example is the
proof attempt (1) in Fig. 2, in which the variable X is used as a place-holder
for the witness that is needed to prove the existentially quantified formula. At
this point, it can be read off from the two top-most sequents that the proof can
be closed by applying the substitution {X 7→ c}. It can also be seen, however,
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⊢ X = c, X = d

⊢ X = c ∨ X = d
or-right

⊢ f(c) = f(X)

⊢ (X = c ∨ X = d) ∧ f(c) = f(X), . . .
and-right

⊢ ∃x. ((x = c ∨ x = d) ∧ f(c) = f(x))
ex-right

(1)

[ X ≡ c ], [ X ≡ d ]

⊢ X = c, X = d

⊢ X = c ∨ X = d
or-right

[ f(c) ≡ f(X) ]

⊢ f(c) = f(X)

⊢ (X = c ∨ X = d) ∧ f(c) = f(X), . . .
and-right

⊢ ∃x. ((x = c ∨ x = d) ∧ f(c) = f(x))
ex-right

(2)

Fig. 2. Two example proofs in a sequent calculus with free variables

that finding the right substitution is not always a simple task. When trying to
use the equation X = d for closing the left branch, applying the substitution
{X 7→ d}, a dead end would be reached and it would be necessary to backtrack
or to introduce further variables and instances of the quantified formula.

In [1, 44], an alternative to the destructive application of substitutions is dis-
cussed, which removes the need for backtracking. The method works by collect-
ing substitution candidates for the individual proof branches, without immedi-
ately applying the substitutions. The avoidance of backtracking is, in particular,
advantageous for proof systems that can be used both automatically and in-
teractively. Empirical results [44] show that it can also be a basis for realising
automated state-of-the-art theorem provers.

For the left branch in the previous example, here two unification constraints

are derived as substitution candidates and stored for this branch. Analogously,
one constraint is created for the right branch, as shown in (2) in Fig. 2. In
order to close the whole proof, it is now necessary to find constraints for all
open branches that are compatible, which in this case are the two constraints
X ≡ c and f(c) ≡ f(X). The constraint X ≡ c ∧ f(c) ≡ f(X) is consistent and
is solved by the substitution (the unifier) {X 7→ c}.

Relationship to this thesis. Most chapters of this thesis use sequent calculi com-
bined with free variables and constraints to reason in various first-order logics.
We generalise the solution described in [44] to other kinds of constraints to
handle the theory of integer arithmetic more efficiently: in the papers “Proving
Programs Incorrect using a Sequent Calculus for Java Dynamic Logic” (page 39)
and “Non-Termination Checking for Imperative Programs” (page 61), unifica-
tion constraints modulo linear arithmetic are used; in “A Constraint Sequent
Calculus for First-Order Logic with Linear Integer Arithmetic” (page 173), con-
straints are arbitrary formulae in Presburger arithmetic. The latter paper also
uses quantifier elimination in Presburger arithmetic.
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1.3 Reasoning about Presburger Integer Arithmetic (PA)

Due to its convenient properties and the omnipresence of integers in computer
programs, quantifier-free linear integer arithmetic (LIA, [45]) is widely used for
applications and supported by virtually all SMT-solvers. The dominant decision
procedure for LIA in such solvers is the Simplex method, which has to be com-
bined with branch-and-bound or cutting-plane methods to ensure completeness
over the integers (some SMT-solvers also use the Fourier-Motzkin method, see
[46] for such a solver and [47] for an overview). Support for quantifiers is in this
setting (normally) only provided by the general heuristic instantiation methods
of SMT-solvers.

In contrast, support for full first-order linear integer arithmetic (which in-
cludes quantifiers and is known as Presburger arithmetic) (PA) is mostly present
in interactive theorem provers. Two possible reasons for this are: (i) the worst-
case complexity of decision procedures for PA is at least doubly exponential [48],
and the worst-case complexity of quantifier elimination is triply exponential [49],
which is often considered as prohibitive for automated reasoners; (ii) pure PA
is too weak for many applications and has to be combined with uninterpreted
functions or predicates. Adding only a single uninterpreted unary predicate to
PA is enough, however, to create a logic in which valid formulae are no longer
recursively enumerable [50]. There has recently been renewed interest in using
(decidable) extensions of Presburger arithmetic for program verification [51, 52].

The languages of terms and formulae in Presburger arithmetic can be defined
by the following grammar:

t ::= α || x || αt+ · · · + αt

φ ::= φ ∧ φ || φ ∨ φ || ¬φ || ∀x.φ || ∃x.φ || t
.
= t || t

.
≤ t

where x ranges over variables and α over integer literals. Compared to the gram-
mar for FOL in Sect. 1.1, the only allowed predicates are equality

.
= and the

ordering
.
≤ on integers. Besides variables, the term language of PA also provides

integer literals and linear combinations of terms, but no multiplication of vari-
ables. Formulae are always evaluated over the universe Z of integers (there is
a corresponding logic PNA of Presburger arithmetic over the natural numbers,
which has similar properties as the integer version).

The first proof of decidability of PA was given by Presburger [11] in the
form of a QE procedure, which was later improved by Cooper [53] and is one of
the standard decision procedures for PA. A second common QE procedure that
was originally developed for compiler optimisation purposes is the Omega test
[54]. The latter approach is based on the Fourier-Motzkin elimination method
[45] and, thus, requires that formulae are put into disjunctive normal form be-
fore elimination is possible. This implies that the worst-case complexity of the
Omega test is non-elementary (every quantifier alternation can lead to an expo-
nential blowup), while the complexity of Cooper’s method is triply exponential
[55]. Nevertheless, the Omega test is a popular method to decide PA, and the
(little) experimental data that is available indicates that the practical runtime of
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both approaches is comparable [56, 57] (in the latter paper, Cooper’s method is
compared with Hodes’ procedure, which resembles the Fourier-Motzkin method
on rationals).

The Omega test. Quantifier elimination is usually formulated for the special
case of a formula ∃x.φ that only contains a single quantifier ∃x (i.e., no further
quantifiers occur in φ). Given such a formula, a QE procedure determines an
equivalent quantifier-free formula ψ. This is sufficient to eliminate the quantifiers
in arbitrary formulae in the considered logic: in general, quantifiers can be treated
one by one, starting with the innermost quantifiers. Universal quantifiers can first
be turned into existential ones using the equivalence ∀x.φ⇔ ¬∃x.¬φ. Because
it is normally easy to decide closed quantifier-free formulae, a QE procedure
practically gives rise to a decision procedure.

It is possible (but less efficient) to consider an even more restricted case,
namely that ∃x.φ is a quantified conjunction of literals. To handle general for-
mulae, the matrix of an innermost quantifier is then first turned into disjunctive
normal form and the quantifier is distributed over all disjuncts. In the case of
PA, further assumptions can be made: because negated equations can be turned
into disjunctions of inequalities, it can be assumed that φ only contains inequal-
ities and positive equations (we ignore the issue of divisibility statements for
sake of brevity). This is the way in which the Omega test works: the central
transformation step of the test is the elimination of the existential quantifier in
a formula

∃x. (L(x) ∧ U(x) ∧ E(x))

where L(x) =
∧

i ai

.
≤ αix is a conjunction of lower bounds, U(x) =

∧

j βjx
.
≤ bi

is a conjunction of upper bounds, and E(x) =
∧

k γkx
.
= ck is a conjunction of

equations (all coefficients αi, βj , γk are positive). This consists of two subprob-
lems: (i) the equations E(x) have to be eliminated, which can be done, e.g., using
the algorithm described in [58, Chapter 4.5.2], and (ii) the existential quantifier
has to be eliminated from the remaining formula over inequalities.

The Fourier-Motzkin elimination method [45] provides a solution for the lat-
ter problem over the rationals. In this case, the following equivalence holds:

∃x. (L(x) ∧ U(x)) ⇔
∧

i,j

aiβj

.
≤ αibj (3)

Over the integers, the implication ⇒ is still true, but ⇐ is violated: a counterex-
ample is the formula ∃x. (1

.
≤ 2x ∧ 2x

.
≤ 1) that is not implied by 2

.
≤ 2. The

main contribution of the Omega test is a version of (3) that also works over the
integers through an additional case analysis over the border cases, see page 167
for the exact theorem.

Relationship to this thesis. The paper “A Sequent Calculus for Integer Arith-
metic with Counterexample Generation” (page 149) describes a sequent calcu-
lus that covers quantifier-free Presburger arithmetic as well as non-linear inte-
ger arithmetic (incompletely). In the paper “A Constraint Sequent Calculus for
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First-Order Logic with Linear Integer Arithmetic” (page 173), a sequent calculus
is introduced that decides Presburger arithmetic and can also handle arbitrary
predicate symbols (again, in an incomplete manner). Both calculi are partially
based on the Omega test. The calculus given in the latter paper is also complete
for LIA* [52] (but not a decision procedure).

2 Program Analysis and Deductive Program Verification

The main application of FOL and theorem proving in this thesis is the deductive
analysis of programs, with the particular goal to detect program defects. We
focus on imperative programs, which means that the semantics of a program
is centred around the notion of states, and that the execution of a program
consists of a series of state changes. As a second choice, we investigate mostly
object-oriented programs, which on the one hand means that programs can store
data as a graph, the heap, and on the other hand that the language conceptually
attaches behaviour to pieces of data. For this thesis, the only important aspect of
object-oriented languages is the handling of heap and of linked datastructures.
The same effects as with heaps can already be observed when working with
arrays: the number of involved locations is in general unbounded, and it is not
decidable whether two program expressions denote the same or different locations
(aliasing).

Although most parts of the thesis are independent of a particular program-
ming language and are meaningful for all (object-oriented, imperative) lan-
guages, the language that is used throughout the thesis is Java [59]. We do
not consider issues like concurrency, so that the treated fragment of Java mostly
corresponds to the JavaCard language [60].

2.1 Approaches to Find Bugs in Programs

In the context of software development, the primary usage of program analysis
techniques is to reveal bugs: unfinished software is with high likelihood incorrect,
and any technique to discover bugs can be of great help for a developer. The
following paragraphs give a short overview of existing approaches that do not
require human interaction. An experimental comparison of related tools is given
in [61].

Ill-formed programs: The most basic step is to ensure that a piece of code actu-
ally is a well-formed program according to some language specification. This is
done by syntactic and type-based analyses that are part of interpreters and com-
pilers for programming languages (see, e.g., [62] for an overview) and normally
has a very low complexity.

Unsafe programs: There is a variety of safety properties that are commonly not
considered as part of functional correctness, although they are undecidable and
their verification is in general not simpler than full functional correctness. Safety
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means that it is supposed to be guaranteed that a program never performs unde-
sired, harmful, or illegal operations during runtime, which can include (i) absence
of dereferentiation of undefined pointers or accesses to data-structures outside of
their bounds, (ii) absence of arithmetic errors (like division by zero), (iii) correct
usage of the functionality that is provided by libraries or frameworks, (iv) correct
usage of concurrency, (v) bounded usage of resources, and (vi) secure handling
of information. Methods to detect such defects are:

– Abstract interpretation-based techniques, which are often known or repre-
sented as type systems, data-flow analysis, or constraint-based analyses [63,
64]. Such techniques derive safety properties by approximating the set of
possible program states at the various points in a program.

– Software model checking, which proves the safety of a program by completely
exploring the set of reachable program states [65–70]. Because software pro-
grams often have a large or even infinite state space, model checking is usu-
ally combined with abstract interpretation in order to reduce the number of
states. In case of an incorrect program, model checking is able to produce
concrete examples (in terms of the program inputs) that demonstrate the
incorrectness.

– Heuristic methods search for patterns in program code that indicate the
presence of bugs. Such methods are often integrated in compilers, but there
are also stand-alone tools such as FindBugs [71] or JLint [72].

– Deductive verification and testing, see below.

Functionally incorrect programs: Going beyond “generic” defects as described
in the previous point, it is also possible to investigate whether a program is
correct wrt. a given functional specification. Such a functional specification can
in principle be as complex as the program itself, which entails that verification is
more difficult than for generic properties. The methods mentioned so far can to
some degree be used to find violations of specifications, but are often too weak
and have to be supplemented with more expensive approaches such as deductive

verification and testing (which are introduced in more detail on the next pages).

It can be observed that the many of the described techniques work indirectly
by verifying the correctness of a program; in case of an incorrect program, the
inability to conduct this verification leads to information about the cause of
the failure. Because verification techniques are usually incomplete and unable to
verify all correct programs (either because the considered properties are not semi-
decidable, or to achieve a better performance), this can lead to false positives:
bugs can be reported even if the program in question actually is correct.

Relationship to this thesis. The papers “Proving Programs Incorrect using a
Sequent Calculus for Java Dynamic Logic” (page 39) and “Non-Termination
Checking for Imperative Programs” (page 61) of this thesis discuss how deduc-
tive verification can be used to find bugs in programs. The particular approach
described in the papers implements a direct search for bugs and never generates
false positives.
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2.2 Semantics and Analysis of Programs

The behaviour of an imperative program can be investigated on different levels
of abstraction. A denotational view will reduce a program to its input-output-

relation (I/O-relation), i.e., to the binary relation between pre-states and the
post-states that can be reached by running the program. Because we only inves-
tigate deterministic programs, the I/O-relations are partial functions, i.e., map
a pre-state to at most one post-state. In this thesis, the behaviour of programs
is always specified by stating properties of the I/O-relation. The most common
approach for such specifications are pre- and post-conditions, which is a concept
that, for instance, is essential for Design by Contract [73].

A second view on the semantics of programs is operational semantics. De-
scribing the operational meaning of an imperative programming language essen-
tially means to write an interpreter for the language. Because this is a compar-
atively simple task even for complicated languages, it is—in different flavours,
like for actual or for symbolic execution—often used as basis of program anal-
ysis. The execution of an imperative program consists of a sequence of state
transitions. When looking at these transitions one at a time, we see the small-

step operational semantics of the program. If all steps, from the beginning of
the execution until the (possible) termination of the program, are combined, we
are talking about the big-step operational semantics, which essentially coincides
with the I/O-relation of a program.

Specifications and assertion languages. We need a language for describing prop-
erties of I/O-relations. In practice, often natural language is used, but in order
to mechanically reason about a program it is necessary to provide a formal spec-
ification. The languages that this thesis concentrates on are based on FOL (see
Sect. 1.1), extended with algebraic theories like integers and lists. When used for
specification, this language often appears in disguise and with an unusual syn-
tax: specification languages that essentially coincide with first-order logic are,
for instance, the Java Modelling Language (JML) [74] or the Object Constraint
Language (OCL) [75]. For reasoning about programs and specifications, this is
mostly irrelevant. How first-order logic is used in specifications is illustrated in
the paper “Verifying Object-Oriented Programs with KeY: A Tutorial” (page 81)
in this thesis.

It should be noted that already the effort of creating a formal specification is
usually significant, even though specification languages are designed to be easy
to learn and to use. The lack of a tailor-made specification for a program does not
necessarily mean, however, that the techniques discussed here are not applicable.
It can be interesting to reason about standard properties that are often not stated
explicitly, for instance about termination or exception-freeness. Such properties
are one of the main application areas for deduction-based verification systems
and software model checkers.

Relationship to this thesis. Denotational and operational models are equally im-
portant in this thesis: while we specify programs by stating desired properties
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of their denotation, the actual analysis of the programs is performed using an
operational definition of the language semantics. In this context, the paper “Se-
quential, Parallel, and Quantified Updates of First-Order Structures” (page 115)
discusses the topic of capturing the operational semantics of an imperative lan-
guage as rules of dynamic logic.

2.3 Deductive Verification

In the following, we assume that we are given a program, together with a formal
specification that describes properties of the I/O-relation of the program. If the
correctness of the program wrt. the specification is of great importance, then it
can be necessary to verify the program, i.e., to find a mathematical/logical argu-
ment that entails that the program cannot violate the specification. Verification
is an intricate problem: (i) it is well-known that, in general, the correctness of a
program is not decidable, and furthermore (ii) for most kinds of specifications,
verification of real-world programs is currently beyond the capabilities of auto-
mated tools. Likewise, interactive verification is a difficult and time-consuming
process.

This thesis concentrates on deductive verification, which is verification that
uses a proof procedure for a logic as back-end. Deductive verification is one of
the main approaches to program verification. Using a logic raises the number of
involved formal languages to three (although some or all of the languages can
coincide): a programming language, a specification language and a logic in which
deduction takes place.

When trying to verify a program, we implicitly make a positive assumption:
the hypothesis is the correctness of the program, and through verification this
claim is supposed to be substantiated. Deductive verification systems are pri-
marily designed for this purpose. This does not mean that the failure to verify
a program is not helpful for finding a possible defect (in the program or in the
specification). Unfortunately, if the verification of a program fails, the reason
is not necessarily the presence of a bug: because the correctness of programs
is undecidable (and not even semi-decidable), sound verification methods are
incomplete and can fail even for correct programs.

Embeddings. In order to verify a program deductively, it is necessary to draw a
connection between the programming language, the specification language and
the logic in which deduction takes place: translations have to be defined that
turn both the program and the specification into an expression of the logic. We
concentrate on the first case, the creation of an embedding of an object-oriented,
imperative programming language into a logic.

There are two main approaches for embedding a formal language into a logic,
which differ in the way in which the semantics of the language is represented:

– Creating a deep embedding means to formalise both the syntax and the
semantics of the language within the target logic. As an example, a deep
embedding of a programming language and its operational semantics would
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essentially be an interpreter that is written in the target logic. Deep embed-
dings are mostly used to reason about the properties of programming lan-
guages (“meta-reasoning” about programs), and are in most cases written in
higher-order frameworks that are expressive enough to capture the seman-
tics of a language in a natural way. For the actual verification of individual
programs wrt. a specification, deep embeddings are rather a disadvantage:
the effort of creating a deep embedding is big, and using the formalisation of
a language semantics itself to determine the meaning of a program is usually
not very efficient. Examples in which deep embeddings are used for verifi-
cation are the deep embedding of the Java virtual machine in ACL2 [76],
the LOOP tool [77], and the EVT tool for verifying Erlang programs [78]
(although the deep embedding is here also used to derive more efficient proof
rules).

– A shallow embedding is established by defining a translation from the lan-
guage in question to the target logic outside of the target logic. For a pro-
gramming language, this translation would map programs to a representa-
tion of the meaning of the program within the target logic, e.g. to a formula
describing the I/O-relation of the program. This means that the embedding
function knows about the semantics of the source language. A shallow em-
bedding is usually easier to realise than a deep embedding, and can be more
efficient for the actual verification. The downside is that a shallow embedding
cannot directly be used for meta-reasoning.

Again, in this thesis we focus on the case of shallow embedding. We find
this paradigm in a number of verification systems for imperative programming
languages (probably in most of them), although in very different flavours and
often somewhat hidden:

Verification condition generators. Many tools, in particular automated ones,
contain a component called the verification condition generator (VCG), which
is a translator that takes a program and a specification and produces a formula
that can consequently be tackled using a theorem prover or an interactive proof
assistant. From a technical point of view, this means that the translation of
the programming language into a formula and the actual reasoning are strictly
separated. The essential correctness property of a VCG is that the produced
formula must only be valid if the program is correct wrt. the given specification.
We can prove a program correct by showing that the formula produced by a
correct VCG is valid. In this architecture, this is mostly done using automated
theorem provers, because the formulae that a VCG produces usually have only
little structure in common with the original program, and are, therefore, hard
to comprehend.

The analysis of a program when computing verification conditions is in most
cases very similar to the actual execution of the program, i.e., resembles the op-
erational semantics. A primary distinction that can be drawn is the direction of
the analysis, which can be either forwards or backwards. One of the most pop-
ular approaches is the classical weakest-precondition calculus (wp-calculus) [79],
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which is a backwards analysis but still very near to the operational semantics.3

The wp-calculus is known for its surprising simplicity (at least for simple, aca-
demic languages), which can intuitively be explained with the facts that (i) when
starting with a post-condition and trying to derive the corresponding weakest
pre-condition, it is natural to start with the last statement of a program, and
(ii) when looking at a post-condition, substituting a term for a variable is equiva-
lent to assigning the value of the term to the variable (the substitution theorem),
which can be exploited in backwards reasoning. Examples of verification sys-
tems for imperative languages (in particular for Java) that use wp-calculus are
ESC/Java2 [80], Boogie/Spec# [81], Jack [82], and Why/Krakatoa [83, 84].

Symbolic execution. An approach for creating verification conditions that uses
forward-reasoning—but that is otherwise very similar to wp-calculus—is sym-

bolic execution (SE) [85]. SE works by executing an imperative program with
symbolic initial inputs. The values of variables during the execution are repre-
sented as terms over the program inputs (in the original paper [85], as polynomi-
als). The SE of a program is in general not linear, because the values of branch
predicates cannot be decided, but can be visualised as a symbolic execution tree.
Each node in the tree represents a path from the program entry to one of the
program statements and shows the values of variables as well as a path condition

(PC), which is a predicate of the program inputs and determines whether an
actual program execution would follow the represented path.

While the wp-calculus works by modifying the post-condition and gradually
turns it into a weakest pre-condition, we can imagine that SE operates on the
pre-condition (which corresponds to the initial path condition and is often chosen
to be true) and finally produces a strongest post-condition. Because the values
of variables are stored explicitly during SE, however, it is also possible to use
symbolic execution for deriving weakest pre-conditions in a natural manner.

For the implementation of verification condition generators, SE is by far less
often used than the wp-calculus, although there are no striking reasons to prefer
one of the two techniques in this area. In contrast, some of the techniques used
in program logics like Hoare logics or dynamic logic can be identified as SE. SE
is also popular in the area of software model checking (e.g., [86]) or test data
generation (see [87] for a survey). One reason for this is the flexibility of only
analysing parts of a SE tree, and the possibility to detect unfeasible paths.

Program logics. Instead of separating the generation of verification conditions
and the actual reasoning, it is also possible to combine both aspects in one
logic. The calculus of such a logic contains both the VCG and a calculus for
the underlying logic. The most well-known examples are Hoare-style logics [88],
which exist for many imperative languages. Examples of verification systems
that are based on Hoare logics for Java are Jive [89] and the system developed
as part of Bali [90]. A further program logic is dynamic logic [91], which strongly

3 Initially, the wp-calculus is in fact introduced as predicate transformer semantics,
i.e., as an independent means of defining the semantics of a programming language.
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resembles Hoare logics and is described in more detail in the paper “Verify-
ing Object-Oriented Programs with KeY: A Tutorial” (page 81) in this thesis.
Strictly speaking, Hoare logics and dynamic logic are examples for a shallow
embedding of a programming language, because the semantics of the language
is not formalised on the object level of the target logic. The practical difference
to an architecture with a separate VCG is that the translation of the program
into the logic can be performed lazily, it is not necessary to translate the whole
program in one go. This is advantageous for interactive verification, because the
structure of a program can be preserved as long as possible.

Program analysis in Hoare logics can be performed both in forward and
backward direction, and can to a certain degree be seen as a simulation of either
symbolic execution or the wp-calculus. A difference to both techniques4 is that
the usage of intermediate assertions in Hoare proofs (annotated programs) allows
to reduce proof branching, because the splitting that is necessary to handle
conditional statements in a program can be localised.

Heap representation. Both wp-calculus and SE as well as many program logics
were initially only formulated for programs without heap or arrays, i.e., for
programs whose state is completely determined by the values of the program
variables. Program variables can comparatively simply be carried over to a logic
and be handled using logical variables or constants. Handling the heap of a
program, which can be seen as a mapping from addresses to values, is more
intricate. Two main approaches for representing heaps in a first-order logic are:

– Because a heap has the property of being unbounded, but finite, it can be
modelled through algebraic datatypes like lists, arrays [93, 7], or through
more specialised types. This approach is used in ESC/Java2 [80], Boogie
[81], Krakatoa [84], and KIV [94].

– The heap can directly be represented as a first-order structure, i.e., by choos-
ing an appropriate vocabulary that represents arrays as functions mapping
indexes to values, etc. This approach is chosen in Jack [82] and KeY [95],
but also the memory model of separation logic [96] falls into this category.

This distinction resembles the earlier categorisation in deep embeddings and
shallow embeddings. The second approach has the disadvantages that arbitrary
quantification of program states is not directly possible (in first-order logic), and
that additional effort is needed to express well-formedness properties like the
existence of only finitely many objects. As an advantage of the second approach,
on the other hand, heap accesses can be translated more directly to logical
expressions, which is convenient for interactive verification.

Relationship to this thesis. Several chapters in the thesis use dynamic logic
to reason about programs. In “Sequential, Parallel, and Quantified Updates of
First-Order Structures” (page 115), a formalism for symbolic execution as well as

4 An optimisation of the wp-calculus that leads to a similar effect is described in [92].
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heap representation and modification in dynamic logic is developed. In this set-
ting, symbolic execution is used as a method to compute weakest pre-conditions.
The paper also proposes to use a more general representation of the symbolic
program state in order to handle certain kinds of loops (more details are given
in [97]).

A method to circumvent the limitation of not being able to quantify over
program states is described in the paper “Proving Programs Incorrect using a
Sequent Calculus for Java Dynamic Logic” (page 39). Conceptually, the paper
shows how the first and the second approach to heap representation can be
related using updates.

2.4 Testing

As a second approach to program analysis, we shortly describe methods for
generating test data in order to analyse the behaviour of programs. Given a
program and/or a specification, such methods produce concrete program inputs
on which the program can be run. By observing the output of the program, one
then decides whether the behaviour is correct or not. Although testing is also
used to examine whether a program is correct, the premisses are different from
those of deductive verification. Testing is a search for program inputs for which a
program behaves wrongly, which means that it is an attempt to substantiate the
hypothesis that the program is incorrect. At the same time, testing can (apart
from special cases) not prove that programs are correct. In this sense, testing is
the opposite of program verification.

The notion of testing as a whole is not directly comparable to deductive
verification, it is more general: test data can also be produced by hand or in
cases where no formal specification of a program exists. In this regard, we can
see testing as a complementary method to verification that can, for instance,
also help to validate a specification. In this thesis, however, we concentrate on
methods for automatically creating test data. Traditionally, two approaches are
distinguished:

Specification-based testing. Following this approach, the generation of test data
is driven by an analysis of the specification of a program. In its purest form,
specification-based testing does not analyse the actual program and is therefore
also called black-box testing. Instead, a specification (or model) of the program,
for instance pre- and post-conditions, are used to guess program inputs and to
evaluate whether the corresponding program outputs are correct. The program
inputs can, for instance, be generated so that all classes of program inputs (up
to a suitable notion of isomorphism) that are allowed by the pre-condition are
covered (e.g. [98, 99]). Also the generation of random program inputs is common
(e.g. [100]).

Implementation-based testing. The other extreme is to generate test data by
analysing the program and ignoring the specification, which is also known as
white-box testing. Such techniques select test data with the goal of optimising
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coverage criteria, like that all statements of the program are executed by some
test case (statement coverage) or that all branches of conditional statements are
taken (branch coverage). This is achieved, besides others, by means of symbolic
execution and constraint solving. A survey of coverage criteria and methods is
given in [87].

Although implementation-based testing does, in its purest form, not refer to
an explicit specification of a program (like pre- and post-conditions), it still has
the purpose of ensuring that the program behaves correctly: by testing whether
a program terminates properly, raises exceptions or reaches violated assertions,
a specification is reintroduced through the back door.

Relationship to this thesis. The papers “Proving Programs Incorrect using a
Sequent Calculus for Java Dynamic Logic” (page 39) and “Non-Termination
Checking for Imperative Programs” (page 61) of this thesis discuss how de-
ductive verification (based on dynamic logic) can be used to find bugs in pro-
grams. Depending on the proof strategy that is used, both specification-based
and implementation-based testing can be simulated. Deductive methods also al-
low to find classes of program inputs that reveal bugs instead of only concrete
program inputs, or to find bugs like non-termination that are inaccessible for
testing approaches.



Conclusions

In the course of the PhD work presented in this thesis, deduction systems for
recognising incorrectness in software programs and for deriving theorems in inte-
ger arithmetic have been developed. The method investigated in the first field has
some similarities with testing, but is based on symbolic reasoning and allows to
generate more general counterexamples for a larger class of possible defects than
normal testing approaches do. Like in testing, no false positives are produced.
The method is fully automatic and has been designed with a tight integration
into development environments in mind, where a checker could run in the back-
ground and provide online error messages, similarly to existing tools for extended
static checking. While the feasibility of the approach has been demonstrated, it
is planned to improve and optimise its prototypical implementation to enable
such an integration.

As the theory of integer arithmetic is particularly important when analysing
programs, a sequent calculus for ground problems in arithmetic was developed
that can be integrated in software verification systems. This calculus can natu-
rally be generalised to a stand-alone procedure for Presburger arithmetic with
uninterpreted predicates. The procedure has similarities both with SMT-solvers
and with automated first-order theorem provers, but it can be shown to be com-
plete for a larger and more regular fragment of the accepted logic than SMT-
solvers. It is an ongoing task to find and eliminate efficiency problems in the
calculus. In order to obtain more experimental data, it is also planned to inte-
grate the (prototypical) implementation of the procedure as a prover back-end
into systems such as KeY and Boogie.

All calculi in the thesis are based on the tableau approach (in the notation
of Gentzen-style sequent calculi), which is augmented with incremental closure
when necessary to handle quantifiers. The idea of incremental closure has been
extended, compared to earlier work, by integrating more powerful constraint lan-
guages that allow to treat arithmetic more efficiently. It seems obvious that this
approach can be generalised and be investigated independently of the particular
constraint language and theory, which is planned as future work.



Overview of the Papers

The following pages summarise the papers that are part of the thesis. In addition,
my contributions to papers of which I am not the sole author are listed. Each of
the papers has been peer-reviewed and accepted to a conference or workshop.

Program Incorrectness Analysis

Paper 1: Proving Programs Incorrect using a Sequent Calculus for
Java Dynamic Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Philipp Rümmer, Muhammad Ali Shah

We show how Java dynamic logic can be used to prove the incorrectness of
programs. To this end, we use the concept of quantified updates together with
existential quantification over algebraic datatypes. We show that the approach,
carried out in a sequent calculus for dynamic logic, creates a connection between
calculi and proof procedures for program verification and test data generation
procedures. In comparison, starting with a program logic enables to find more
general and more complicated counterexamples for the correctness of programs.

This paper is in parts based on the Master’s thesis [101] of Muhammad
Ali Shah, which was supervised by the author. The paper has appeared in the
proceedings of the First International Conference on Tests and Proofs, Zurich,
Switzerland, 2007 [102]. The version in this thesis contains minor modifications.

My Contributions: I developed the main ideas to characterise and verify incor-
rectness in dynamic logic. My coauthor Muhammad Ali Shah did most of the
implementation on top of the KeY system and evaluated the approach on exam-
ples (including the example in the paper). The writing of the paper was almost
completely done by me.

Paper 2: Non-Termination Checking for Imperative Programs 61
Helga Velroyen, Philipp Rümmer

Building on the techniques from paper 1, we present an approach to automatic
non-termination checking for Java programs that relates to termination checking
in the same way as symbolic testing does to program verification. Our method
is based on the automated generation of invariants that show that a program
cannot reach terminating states when given certain program inputs. The exis-
tence of such critical inputs is shown using constraint-solving techniques. We
fully implemented the method on top of the KeY system, the implementation
is available for download. We also give an empirical evaluation of the approach
using a collection of non-terminating example programs.
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The only non-termination checker for imperative programs that is compa-
rable to our work (to the best of our knowledge) is described in [103] and was
developed independently and simultaneously to our system.

This paper is in parts based on the Master’s thesis [104] of Helga Velroyen,
which was supervised by the author. The paper has appeared in the proceedings
of the Second International Conference on Tests and Proofs, Prato, Italy, 2008
[105]. The version in this thesis contains only minor modifications.

My Contributions: Most ideas for proving non-termination were developed in
discussions with my coauthor Helga Velroyen, details for generating invariants
and the invariant generator tool were worked out by Helga Velroyen. The inter-
face and proof strategies for KeY were written by me. Helga Velroyen collected
the examples and performed the experiments. I wrote Sect. 2, 3, and 6 of the
paper, Helga Velroyen wrote Sect. 4 and 5, and Sect. 1 and 7 were jointly written.

Technical background: Proving and Architecture in KeY

Paper 3: Verifying Object-Oriented Programs with KeY:
A Tutorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Wolfgang Ahrendt, Bernhard Beckert, Reiner Hähnle, Philipp

Rümmer, Peter H. Schmitt

Following a small case study, the paper gives an introduction to the logic and
usage of the KeY system. The tutorial aims to fill the gap between elementary
introductions using toy examples and state-of-art case studies by going through
a self-contained, yet non-trivial, example.

The paper is an updated version of the paper that appeared in the post-
proceedings of the 5th International Symposium on Formal Methods for Com-
ponents and Objects, Amsterdam, The Netherlands, 2006 [106]. It was presented
by Wolfgang Ahrendt and me in the form of a tutorial at the symposium.

My Contributions: I developed the calendar application used as case study and
did all proofs with KeY that are described in the paper. Sect. 3 and parts of
Sect. 4.3 and 5.2 are written by me.

Paper 4: Sequential, Parallel, and Quantified Updates of
First-Order Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Philipp Rümmer

This paper describes the concept of updates, which is the central artifact for per-
forming symbolic execution in Java dynamic logic. Updates are systematically
developed as an imperative programming language that provides the following
constructs: assignments, guards, sequential composition and bounded as well as
unbounded parallel composition. The language is equipped both with a denota-
tional semantics and a correct rewriting system for execution, whereby the latter
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is a generalisation of the syntactic application of substitutions. The normalisa-
tion of updates is discussed. All results and the complete theory of updates have
been formalised and proven using the Isabelle/HOL proof assistant [40].

This paper is an extended version of the paper that appeared in the proceed-
ings of the 13th International Conference on Logic for Programming, Artificial
Intelligence and Reasoning (LPAR), Phnom Penh, Cambodia, 2006 [107].

Paper 5: The KeY System (Deduction Component) . . . . . . . . . . . 141
Bernhard Beckert, Martin Giese, Reiner Hähnle, Vladimir

Klebanov, Philipp Rümmer, Steffen Schlager, and Peter H. Schmitt

We give an overview of the theorem prover that is at the heart of the KeY
system: the logic that the prover accepts as input language, the proof-confluent
free-variable sequent calculus that is used to handle first-order logic, the notation
available to specify inference rules (both pre- and user-defined), and reasoning
capabilities in linear and nonlinear integer arithmetic. The deduction component
is complemented with a frontend to translate specifications given in OCL or JML
into the logic used by the prover.

This system abstract has appeared in the proceedings of the 21st Interna-
tional Conference on Automated Deduction, Bremen, Germany, 2007 [108]. The
version in this thesis contains only minor modifications.

My Contributions: I wrote the section on arithmetic handling and also imple-
mented the described parts of KeY.

Reasoning modulo Integer Arithmetic

Paper 6: A Sequent Calculus for Integer Arithmetic with
Counterexample Generation . . . . . . . . . . . . . . . . . . . . . . . . . 149
Philipp Rümmer

I introduce a calculus for handling integer arithmetic in first-order logic. The
method is tailored to Java program verification and meant to be used both as
a supporting procedure and simplifier during interactive verification and as an
automated tool for discharging (ground) proof obligations. There are four main
components: a complete procedure for linear equations, a complete procedure
for linear inequalities, an incomplete procedure for nonlinear (polynomial) equa-
tions, and an incomplete procedure for nonlinear inequalities. The calculus is
complete for the generation of counterexamples for invalid ground formula in
integer arithmetic. All parts described here have been implemented as part of
the KeY verification system.

This paper is an extended version of the paper that has appeared in the pro-
ceedings of the 4th International Verification Workshop at CADE 21, Bremen,
Germany, 2007 [109].
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Paper 7: A Constraint Sequent Calculus for First-Order Logic with
Linear Integer Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Philipp Rümmer

I introduce a sequent calculus that combines ideas from free-variable constraint
tableaux with the Omega quantifier elimination procedure. The calculus is com-
plete for theorems of first-order logic (without functions, but with arbitrary
uninterpreted predicates), can decide Presburger arithmetic, and is complete for
a substantial fragment of the combination of both. In this sense, the calculus
handles a similar logic as SMT-solvers that are commonly used in program ver-
ification, but is complete for a larger and more regular fragment of the logic. A
prototypical implementation of the calculus is available, whose performance is
evaluated on benchmarks.

This paper is an extended version of a paper accepted at the 15th Interna-
tional Conference on Logic for Programming, Artificial Intelligence and Reason-
ing (LPAR), Doha, Qatar, 2008 [110].



Summary of the Contributions

1. I develop a general concept to combine verification in dynamic logic with
constraint solving to discover program states with certain properties. This
was instantiated to an automatic search for:
– violations of partial-correctness specifications in programs (page 39), and

for
– divergence of programs (page 61).

2. As part of 1, an approach to loop invariant synthesis is given that targets
non-termination proofs. The approach is based on refinement and invariant
templates (page 61).

3. I give a foundation of the update concept in dynamic logic, including different
semantics and a complete formalisation in Isabelle/HOL. The considered
notion of updates extends earlier work by including guards and quantification
of updates (page 115).

4. I formulate a calculus for reasoning about ground problems in linear and
nonlinear integer arithmetic that targets program verification (page 149).

5. I develop a novel approach for reasoning about first-order problems in linear
integer arithmetic with uninterpreted predicates. Results about soundness,
completeness, proof confluence, and refinements are derived (page 173).

Further Work Relevant for this Thesis

– The architecture and usage of the KeY tool5 was introduced in two published
articles, one of which is based on a case study (page 81 and 141).

– The approaches 1 and 2 were implemented and evaluated using benchmarks
(page 39 and 61).6

– The version of updates considered in 3 and the calculus developed in 4 were
implemented in the KeY tool and are part of the standard KeY distribution.

– The calculus developed in 5 was implemented as a standalone theorem
prover7 and evaluated using benchmarks (page 173).

5 http://www.key-project.org
6 http://www.key-project.org/nonTermination/
7 http://www.cse.chalmers.se/~philipp/princess
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Mostowski, W., Roth, A., Schlager, S., Schmitt, P.H.: The KeY Tool. Software
and System Modeling 4 (2005) 32–54

96. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
Proceedings, 17th IEEE Symposium on Logic in Computer Science, Copenhagen,
Denmark, IEEE Computer Society (2002) 55–74
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Abstract. Program verification is concerned with proving that a pro-
gram is correct and adheres to a given specification. Testing a program,
in contrast, means to search for a witness that the program is incorrect.
In the present paper, we use a program logic for Java to prove the in-

correctness of programs. We show that this approach, carried out in a
sequent calculus for dynamic logic, creates a connection between calculi
and proof procedures for program verification and test data generation
procedures. Starting with a program logic enables to find more general
and more complicated counterexamples for the correctness of programs.

1 Introduction

Testing and program verification are techniques to ensure that programs behave
correctly. The two approaches start with complementary assumptions: when we
try to verify correctness, we implicitly expect that a program is correct and want
to confirm this by conducting a proof. Testing, in contrast, expects incorrectness
and searches for a witness (or counterexample for correctness):

“Find program inputs for which something bad happens.”

In the present paper, we want to reformulate this endeavour and instead write
it as an existentially quantified statement:

“There are program inputs for which something bad happens.” (1)

Written like this, it becomes apparent that we can see testing as a proof proce-
dure that attempts to eliminate the quantifier in statements of form (1). When
considering functional properties, many program logics that are used for veri-
fication are general enough to formalise (1), which entails that calculi for such
program logics can in fact be identified as testing procedures.

The present paper discusses how the statement (1), talking about a Java
program and a formal specification of safety-properties, can be formalised in
dynamic logic for Java [1, 2]. Through the usage of algebraic datatypes, this
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formalisation can be carried out without leaving first-order dynamic logic. Sub-
sequently, we use a sequent calculus for automatic reasoning about the resulting
formulae. The component of the calculus that is most essential in this setting
is quantifier elimination. Depending on the way in which existential quanti-
fiers are eliminated—by substituting ground terms, or by using metavariable
techniques—we either obtain proof procedures that much resemble automated
white-box test generation methods, or we arrive at procedures that can find more
general and more complicated solutions (program inputs) of (1), but that are
less efficient for “obvious” bugs. We believe that this viewpoint to incorrectness
proofs can both lead to a better understanding of testing and to more powerful
methods for showing that programs are incorrect.

Organisation of the paper: Sect. 2 introduces dynamic logic for Java and de-
scribes how (1) can be formalised. In Sect. 3, we show how different versions of
a sequent calculus for dynamic logic can be used to reason about (1). Sect. 4
discusses how solutions of (1) can be represented. Sect. 5 provides further de-
tails about incorrectness proofs using the incremental closure approach. Sect. 6
discusses related work, and Sect. 7 gives future work and concludes the paper.

Running example: erroneous list implementation. The Java program shown in
Fig. 1 is used as example in the whole paper. It is interesting for our purposes
because it operates on a heap datastructure and contains unbounded loops,
although it is not difficult to spot the bug in the method delete.

2 Formalisation of the Problem in Dynamic Logic

In the scope of this paper, the only “bad things” that we want to detect are
violated post-conditions of programs. Arbitrary broken safety-properties (like
assertions) can be reduced to this problem, whereas the violation of liveness-
properties (like looping programs) falls in a different class and the techniques
presented here are not directly applicable. This section describes how the state-
ment that we want to prove can be formulated in dynamic logic:

There is a pre-state—possibly subject to pre-conditions—such that the
program at hand violates given post-conditions.

(2)

Dynamic logic. First-order dynamic logic (DL) [1] is a multi-modal extension of
first-order predicate logic in which modal operators are labelled with programs.
There are two kinds of modal operators that are dual to each other: a diamond
formula 〈α〉φ expresses that φ holds in at least one final state of program α.
Box formulae can be regarded as abbreviations [α]φ ≡ ¬〈α〉 ¬φ as usual. The
DL formulae that probably appear most often have the form φ→ 〈α〉ψ and
state, for a deterministic program α, the total correctness of α concerning a
precondition φ and a postcondition ψ. In this paper, we will only use dynamic
logic for Java [2] (JavaDL) and assume that α is a list of Java statements.
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lass IntList {private ListNode head;publi
 void add (int n) { ... }

/*@

@ publi
 normal_behavior
@ ensures !contains(n);

@*/publi
 void delete(int n) {

ListNode cur = head, prev = head;while (cur != null) {if (cur.val == n) prev.next = cur.next;else prev = cur;

cur = cur.next;

}

}publi
 /*@ pure @*/ boolean contains(int n) {

ListNode temp = head;while (temp != null) {if (temp.val == n) return true;
temp = temp.next;

}return false;
}

}


lass ListNode {publi
 int val;publi
 ListNode next;

}

IntList

+add(n:int)

+delete(n:int)

+contains(n:int)

ListNode

+val: int

head0..1

next0..1

Fig. 1. The running example, a simple implementation of singly-linked lists, annotated
with JML [3] constraints. We concentrate on the method delete for removing all
elements with a certain value, which contains bugs.

Updates. JavaDL features a notation for updating functions in a substitution-
like style [4] (page 115), which is primarily useful because it allows for a simple
and natural memory representation during symbolic execution. For our purposes,
updates can be seen as a simplistic programming language and are defined by
the grammar:

Upd ::= skip || f(s1, . . . , sn) := t || Upd |Upd || if φ {Upd} || for x {Upd}

in which s1, . . . , sn, t range over terms, f over function symbols, φ over formulae
and x over variables. The update constructors denote effect-less updates, assign-
ments, parallel composition, guarded updates and quantified updates. Updates u
can be attached to terms and formulae (like in {u} t) for changing the state in
which the expression is supposed to be evaluated:

Expression with update: Equivalent update-free expr.:
{a := g(3)} f(a) f(g(3))
{x := y | y := x+ 1} (x < y) y < x+ 1
{a := 3 | for x {f(x) := 2 · x+ 1}} f(f(a)) 15
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As illustrated here, it is always possible to apply updates to terms and formu-
lae like a substitution, unless a formula contains further modal operators. In
the latter case, the application has to be delayed until the modal operator is
eliminated.

2.1 Heap Representation in Dynamic Logic for Java

Reasoning in JavaDL always takes place in the context of a system of Java
classes, which is supposed to be free of compilation errors. From this context,
a vocabulary of sorts and function symbols is derived that represents variables
and the heap of the program in question [2].

Most importantly, objects of classes are in JavaDL identified with natural
numbers. For each class C, a sort with the same name and a injective function
C.get : nat → C are introduced. The term C.get(i) denotes the ith object of
class C (i is the index or “address”). For distinct classes C and D, the expres-
sions C.get(i) and D.get(j) never have the same value. Each sort C representing
a class also contains a distinguished individual denoted by null to represent un-
defined references. Attributes of type T of a class C are modelled by functions
C → T . Instead of attr(o), we usually write o.attr for attribute accesses.

C can be seen as a reservoir containing both those objects that are already
created and those that can possibly be created later by a program: JavaDL uses
a constant-domain semantics in which modal operators never change the do-
mains of existing individuals. In order to distinguish existing and non-existing
objects, for each class C also a constant C.nextToCreate : nat is declared that
denotes the lowest index of a non-created object. All objects C.get(i) with
i < C.nextToCreate are created, all others are not.

For the program in Fig. 1, the vocabulary is as follows:

Sorts: Functions:
IntList ,ListNode, IntList .get : nat → IntList
int ,nat , . . . ListNode.get : nat → ListNode

IntList .nextToCreate : nat
ListNode.nextToCreate : nat
head : IntList → ListNode
next : ListNode → ListNode
val : ListNode → int

2.2 Formalising the Violation of Post-Conditions

We go back to (2). It is almost straightforward to formalise the part of (2) that
comes after the existential quantifier “there is a pre-state”:

¬
(

pre-conditions → 〈 statements 〉 post-conditions
)

(3)

Formula (3) is true if and only if the pre-conditions hold, the program fragment
does not terminate, or terminates and the post-conditions do not hold in the
final state.
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Property (2) does not mention termination, which could be interpreted in
different ways. If in (3) the box operator [α]φ was used instead of a diamond,
we would also specify that the program has to terminate for the inputs that we
search for. JavaDL does, however, not distinguish between non-termination due
to looping and abrupt termination due to exceptions (partial correctness model).
Because we, most likely, will consider abrupt termination as a violation of the
post-conditions, the diamond operator is more useful at this point.

2.3 Quantification over Program States

In order to continue formalising (2), it is necessary to close the statement (3)
existentially and to add quantifiers that express “there is a pre-state”:

∃ pre-state. {pre-state}¬
(

pre-conditions → 〈 statements 〉 post-conditions
)

(4)

Because state quantification is not directly possible in JavaDL, we use an up-
date {pre-state} to define the state in which (3) is to be evaluated. For a Java
program, the pre-state covers (i) variables that turn up in a program, and (ii) the
heap that the program operates on. Following Sect. 2.1, at a first glance this
turns out to be a second-order problem, because the heap is modelled by func-
tions like head , next , etc.3 A second glance reveals, fortunately, that a proper
Java program and proper pre- and post-conditions4 will only look at the val-
ues C.get(i).attr of attributes for i < C.nextToCreate: the state of non-existing
objects is irrelevant. Quantification of C.nextToCreate and the finite prefix

C.get(0).attr , C.get(1).attr , . . . , C.get(C.nextToCreate − 1).attr

can naturally be realised through quantification over algebraic datatypes like
lists. The number of quantified locations is unbounded, but finite.

Attributes of primitive types. The simplest case is an attribute attr of a primitive
Java type. If attr has type int , the quantification can be performed as follows:

∃ attrV : intList . {for x : nat {C.get(x).attr := attrV ↓x}} . . .

Apart from the actual quantifier, an update is used for copying the contents of
the list variable attrV to the attribute. The expression also contains an operator
for accessing lists [a0, . . . , an], which we define by

[a0, . . . , an]↓ i :=

{

ai for i ≤ n

0 otherwise
(i : nat)

The fact that the operator returns a default value (0, but any other value would
work equally well) for accesses outside of the list bounds simplifies the overall
treatment and basically renders the length of lists irrelevant. Instead of lists, one
could also talk about functions with finite support.

3 JavaDL does not provide higher-order quantification.
4 In the whole paper, we assume that pre- and post-conditions only talk about the

program state, and only about created objects.
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Attributes of reference types. The quantification is a bit more involved for at-
tributes attr of type D, where D is a reference type like a class: (i) attributes
can be undefined, i.e., have value null , (ii) attributes of created objects must
not point to non-created objects, and (iii) attributes of type D can also point
to objects of type D′, provided that D′ is a subtype of D. We capture these re-
quirements by overloading the function D.get . Assuming that D0 (= D), . . . ,Dk

is an arbitrary, but fixed enumeration of D’s subtypes, we define:

D.get(s, i) :=

{

Ds.get(i) for i < Ds.nextToCreate, s ≤ k

null otherwise
(s, i : nat)

Apart from the object index i, we also pass D.get(s, i) the index s of the re-
quested subtype of D. The result of D.get(s, i) is either a created object (if i
and s are within their bounds Ds.nextToCreate and k) or null . With this defi-
nition, the quantification part for a reference attribute boils down to

∃ aS , aV : natList . {for x : nat {C.get(x).attr := D.get(aS ↓x, aV ↓x)}} . . .

In case of a class D that does not have proper subclasses, the list aS can of
course be left out (and the first argument of D.get can be set to 0).

Example. We show the formalisation of (2) for the method delete in the pro-
gram of Fig. 1. Apart from the values of the attributes head , next and val ,
which are treated as discussed above, one also has to quantify over the number
of created objects (IntList .nextToCreate and ListNode.nextToCreate), over the
receiver o of the method invocation, and over the argument n. The receiver o
is assumed to be either an arbitrary created object or null (IntList .get(0, oV )).
The pre- and post-conditions correspond to the JML specification: initially, o is
not null , and delete in fact removes the elements with value n.

∃ kIL, kLN , oV : nat . ∃nV : int . ∃ headV ,nextV : natList . ∃ valV : intList .

{IntList .nextToCreate := kIL | ListNode.nextToCreate := kLN }

{for x : nat {IntList .get(x).head := ListNode.get(0, headV ↓x)} |

for x : nat {ListNode.get(x).next := ListNode.get(0,nextV ↓x)} |

for x : nat {ListNode.get(x).val := valV ↓x} |

o := IntList .get(0, oV ) | n := nV }

¬
(

o 6= null → 〈 o.delete(n) 〉 〈 b = o.contains(n) 〉 b = FALSE
)

(5)

3 Constructing Proofs for Program Incorrectness

A Gentzen-style sequent calculus for JavaDL is introduced in [2], which has been
implemented in the KeY system and is used by us as test-bed. Fig. 2 shows a
small selection of the rules. Relevant for us are the following groups of rules:
(i) rules for a sequent calculus for first-order predicate logic with metavariables
(the first 5 rules of Fig. 2), (ii) rules that implement symbolic execution [5] for
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Γ ⊢ φ,∆ Γ ⊢ ψ,∆

Γ ⊢ φ ∧ ψ,∆
∧r

Γ, φ, ψ ⊢ ∆

Γ, φ ∧ ψ ⊢ ∆
∧l

Γ, φ ⊢ ∆

Γ ⊢ ¬φ,∆
¬r

Γ ⊢ φ[x/f(X1, . . . , Xn)], ∆

Γ ⊢ ∀x.φ,∆
∀r

(X1, . . . , Xn all
metavariables in φ)

Γ ⊢ φ[x/X], ∃x.φ,∆

Γ ⊢ ∃x.φ,∆
∃r

(X a fresh
metavariable)

Γ, {u} {r := l} 〈. . .〉φ ⊢ ∆

Γ, {u} 〈r = l; . . .〉φ ⊢ ∆
assign-l

(r, l side-effect-free)

Γ, {u} 〈α1; . . .〉φ, {u} b ⊢ ∆
Γ, {u} 〈α2; . . .〉φ ⊢ {u} b,∆

Γ, {u} 〈if (b) α1 else α2 . . .〉φ ⊢ ∆
if-l

(b side-effect-free)

Γ, {u} 〈if (b) {α; while (b) α} . . .〉φ ⊢ ∆

Γ, {u} 〈while (b) α . . .〉φ ⊢ ∆
while-l

Fig. 2. Examples of (simplified) sequent calculus rules for JavaDL. In the last three
rules, the update u can also be empty (skip) and disappear. Γ and ∆ denote arbitrary
sets of formulae (side-formulae).

Java (the last three rules of Fig. 2), and (iii) rewriting rules for applying and
simplifying updates (not shown here, see [4] on page 115). The rule assign-

l turns a Java assignment into an update, which can subsequently be merged
with the preceding update u and simplified. In if-l, a case analysis for an if-
statement is performed by splitting on the branch predicate b evaluated in the
current program state u. Both rules require that expressions with side-effects are
simplified first. Finally, the rule while-l unwinds a loop once.

The fact that the calculus directly integrates symbolic execution—and covers
all important features of Java like dynamic object creation and exceptions—
is most central for us. When symbolically executing a program, the proof tree
resembles the symbolic execution tree of the program [5] and reflects the (feasible)
paths through the program. Branch predicates that describe, in terms of the pre-
state, when a certain path is taken are accumulated as formulae in a sequent.
JavaDL introduces such predicates for conditional statements and for statements
that might raise exceptions. A simple example is the following proof:

....
p+ 1 ≤ 0, p ≥ 0 ⊢

{p := p+ 1} 〈〉 p ≤ 0, p ≥ 0 ⊢

〈p = p+ 1; 〉 p ≤ 0, p ≥ 0 ⊢
assign-l

....
−p ≤ 0 ⊢ p ≥ 0

{p := −p} 〈〉 p ≤ 0 ⊢ p ≥ 0

〈p = −p; 〉 p ≤ 0 ⊢ p ≥ 0

〈if (p ≥ 0) p = p+ 1; else p = −p; 〉 p ≤ 0 ⊢
if-l
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Symbolic execution and update application can usually be automated easily—in
contrast to reasoning in first-order logic—because in each proof situation only
few rules are applicable, and because the application order does not matter.

This section discusses how the sequent calculus can be used to prove formu-
lae (4). The first and essential task is always to eliminate the existential quan-
tifiers, i.e., to provide the programs inputs, which can be concrete or symbolic.
Assuming that pre- and post-conditions only talk about the program state, it is
sufficient to apply ∃r once for each quantifier in ∃ pre-state, because the validity
of (4) only depends on the program fragment and the pre- and post-conditions
in question, not on the values of other symbols.

We focus on and propose two methods for constructing proofs: the usage of
metavariables and depth-first search (Sect. 3.2) and the usage of metavariables
and backtracking-free search with constraints (Sect. 3.3, Sect. 5). In our experi-
ments, we have concentrated on the latter method, because the implementation
KeY follows this paradigm. As a comparison, Sect. 3.1 shortly discusses how
a ground calculus would handle (4), which resembles common test generation
techniques.

3.1 Construction of Proofs using a Ground Procedure

The simplest approach to prove (4) is ground reasoning, i.e., to not use metavari-
ables at all. A ground version of ∃r is sufficient in this case:

Γ ⊢ φ[x/t],∃x.φ,∆

Γ ⊢ ∃x.φ,∆
∃rg (t an arbitrary term)

Equivalently, also the normal rule ∃r can be applied, immediately followed by
a substitution step that replaces the introduced metavariable X with a concrete
term t. For (4), the usage of rule ∃rg encompasses that a concrete pre-state has
to be chosen up-front that satisfies the pre-condition and makes the program
violate its post-condition. If we consider (5), for instance, we see that a proof
can be conducted with the following instantiations:

kIL kLN oV nV headV nextV valV
1 1 0 5 [0] [7] [5]

(6)

The instantiations express that the classes IntList and ListNode have one cre-
ated object each (kIL, kLN ), that the object IntList .get(0) receives the method
invocation (oV ) with argument 5 (nV ), that IntList .get(0).head points to the
object ListNode.get(0) (headV ), that ListNode.get(0).next is null (nextV , be-
cause of 7 ≥ kLN ), i.e., that the receiving list has only one element, and that
ListNode.get(0).val is 5 (valV ).

A ground proof of a formula (4) is the most specific description of an er-
roneous situation that is possible. For debugging purposes, this is both an ad-
vantage and a disadvantage: (i) it is possible to concretely follow a program
execution that leads to a failure, but (ii) the description does not distinguish
between those inputs (or input features) that are relevant for causing a failure
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∗
[P 7→ 2 ]

P + 1 > 3, P ≥ 0 ⊢

{p := P + 1} 〈〉 p > 3, p ≥ 0 ⊢

{p := P} 〈p = p+ 1; 〉 p > 3, P ≥ 0 ⊢

∗
[P 7→ 2 ]

{p := P} 〈p = −p; 〉 p > 3 ⊢ P ≥ 0

{p := P} 〈if (p ≥ 0) p = p+ 1; else p = −p; 〉 p > 3 ⊢
if-l

⊢ ¬{p := P} 〈if (p ≥ 0) p = p+ 1; else p = −p; 〉 p > 3, . . .
¬r

⊢ ∃ pV : int . {p := pV }¬〈if (p ≥ 0) p = p+ 1; else p = −p; 〉 p > 3
∃r

Fig. 3. Proof that a program violates its post-condition p > 3. The initial (quantified)
formula is derived as described in Sect. 2. The application of updates is not explicitly
shown in the proof.

and those that are irrelevant. The disadvantage can partly be undone by look-
ing at more than one ground proof, and by searching for proofs with “minimal”
input data (e.g., [6]). Technically, the main advantage of a ground proof is that
program execution (and checking pre- and post-conditions) is most efficient for a
concrete pre-state. The difficulty, of course, is to find the right pre-state, which is
subject of techniques for automated test data generation. Common approaches
are the generation of random pre-states (e.g., [6]), or the usage of backtrack-
ing, symbolic execution, and constraint techniques in order to optimise coverage
criteria and to reach the erroneous parts of a program (see, e.g., [7]).

3.2 Construction of Proofs using Metavariables and Backtracking

The most common technique for efficient automated proof search in tableau or se-
quent calculi are rigid metavariables (also called free variables) and backtracking
(depth-first search), for an overview see [8]. The rules shown in Fig. 2, together
with a global substitution rule that allows to substitute terms for metavariables
in a proof tree, implement a corresponding sequent calculus. Because the substi-
tution rule is destructive and a wrong decision can hinder the subsequent proof
construction, proof procedures usually carry out a depth-first search with itera-
tive deepening and backtrack when earlier rule applications appear misleading.

The search space of a proof procedure can be seen as an and/or search tree:
(i) and-nodes occur when the proof branches, for instance when applying ∧r,
because each of the new proof goals has to be closed at some point; (ii) or-nodes
occur when a decision has to be made about which rule to apply next, or about
a substitution that should be applied to a proof; in general, only one of the
possible steps can be taken.

Metavariables and backtracking can be used to prove formulae like (4). The
central difference to the ground approach is that metavariables can be introduced
as place-holders for the pre-state, which can later be refined and made concrete
by applying substitutions. A simple example is shown in Fig. 3, where the ini-
tial value of the variable p is represented by a metavariable P . After symbolic
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execution of the program, it becomes apparent that the post-condition p > 3
can be violated in the left branch by substituting 2 for P . The right branch can
then be closed immediately, because this path of the program is not executed
for P = 2: the branch predicate P ≥ 0 allows to close the branch. Generally, the
composition of the substitutions that are applied to the proof can be seen as a
description of the pre-state that is searched for. A major difference to the ground
case is that a substitution also can describe classes of pre-states, because it is
not necessary that concrete terms are substituted for all metavariables.

Branch predicates. Strictly speaking, the proof branching that is caused by the
rule if-l (or by similar rules for symbolic execution) falls into the “and-node”
category: all paths through the program have to be treated in the proof. The
situation differs, however, from the branches introduced by ∧r, because if-l

performs a cut (a case distinction) on the branch predicate {u} b. As the program
is executed with symbolic inputs (metavariables), it is possible to turn {u} b into
true or false (possibly into both, as one pleases), by applying substitutions and
choosing the pre-state appropriately. Coercing {u} b in this way will immediately
close one of the two branches.

There are, consequently, two principal ways to close (each of) the proof
branches after executing a conditional statement: (i) the program execution can
be continued until termination, and the pre-state can be chosen so that the post-
condition is violated, or (ii) one of the two branches can be closed by making
the branch predicate true or false, which means that the program execution is
simply forced not to take the represented path. Both cases can be seen in Fig. 3,
in which the same substitution P 7→ 2 leads to a violation of the post-condition
in the left branch and turns the branch predicate in the right branch into true.

Proof strategy. The proof construction consists of three parts: (i) pre-conditions
have to be proven, (ii) the program has to be executed symbolically in order
to find violations of the post-conditions, and (iii) it has to be ensured that the
program execution takes the right path by closing the remaining proof branches
with the help of branch predicates. These steps can be performed in different
orders, or also interleaved. Furthermore, it can in all phases be necessary to
backtrack, for instance when a violation of the post-conditions was found but
the pre-state does not satisfy the pre-condition, or if the path leading to the
failure is not feasible.

Example. Formula (5) can be proven by choosing the following values, which
could be found using metavariables and backtracking:

kIL kLN oV nV headV nextV valV
1 1 0 NV [0, . . .] [7, . . .] [NV , . . .]

(7)

Comparing this solution to (6), the main difference is that no concrete value
has to be chosen for nV . It suffices to state that the value of nV coincides with
the first element of the list valV : when calling delete, the actual parameter
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coincides with the first element of the receiving linked list. Likewise, the parts
of the pre-state that are described by lists do not have to be determined com-
pletely: the tail of lists can be left unspecified by applying substitutions like
VALV 7→ cons(NV ,VALtail) (which is written as [NV , . . .] in the table). Sect. 4
discusses how the representation of solutions can be generalised further.

3.3 Construction of Proofs using Incremental Closure

There are alternatives to proof search based on backtracking: one idea is to work
with metavariables, but to delay the actual application of substitutions to the
proof tree until a substitution has been found that closes all branches. The idea
is described in [9] and worked out in detail in [10]. While backtracking-free proof
search is, in principle, also possible when immediately applying substitutions,
removing this destructive operation vastly simplifies proving without backtrack-
ing. Because KeY implements this technique, it is used in our experiments.

The approach of [10] works by explicitly enumerating and collecting, for
each of proof goals, the substitutions that would allow to close the branch.
Substitutions are represented as constraints, which are conjunctions of unifi-
cation conditions t1 ≡ t2. A generalisation is discussed in Sect. 4. For the ex-
ample in Fig. 3, the “solutions” of the left branch could be enumerated as
[P ≡ 2 ], [P ≡ 1 ], [P ≡ 0 ], [P ≡ −1 ], . . . , and the solutions of the right branch
as [P ≡ 0 ], [P ≡ 1 ], [P ≡ 2 ], . . . In this case, we would observe that, for in-
stance, the substitution represented by [P ≡ 0 ] closes the whole proof. Gener-
ally, the conjunction of the constraints for the different branches describes the
substitution that allows to close a proof (provided that it is consistent).

When proving formulae (4) using metavariables, a substitution (i.e., pre-
state) has to be found that simultaneously satisfies the pre-conditions, vio-
lates the post-conditions in one (or multiple) proof branches, and invalidates
the branch predicates of all remaining proof branches. The constraint approach
searches for such a substitution by enumerating the solutions of all three in a
fair manner. In our experiments, we also used breadth-first exploration of the
execution tree of programs, which simply corresponds to a fair selection of proof
branches and formulae that rules are applied to. For formula (5), the method
could find the same solution (7) as the backtracking approach of Sect. 3.2.

Advantages. Compared to backtracking, the main benefits of the constraint ap-
proach are that duplicated rule applications (due to removed parts of the proof
tree that might have to be re-constructed) are avoided, and that it is possible
to search for different solutions in parallel. Because large parts of the proofs in
question—the parts that involve symbolic execution—can be constructed algo-
rithmically and do not require search, the first point is particularly significant
here. The second point holds because the proof search never commits to one par-
ticular (partial) solution by applying a substitution. Constraints also naturally
lead to more powerful representations of classes of pre-states (Sect. 4).
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Disadvantages. Destructively applying substitutions has the effect of propagating
decisions that are made in one proof branch to the whole proof. While this is
obviously a bad strategy for wrong decisions, it is by far more efficient to verify
a substitution that leads to a solution (by applying it to the whole proof and by
closing the remaining proof branches) than to hope that the remaining branches
can independently come up with a compatible constraint. In Fig. 3, after applying
the substitution [P 7→ 2 ] that is found in the left branch, the only work left in
the right branch is to identify the inequality 2 ≥ 0 as valid. Finding a common
solution of P + 1 6> 3 and P ≥ 0 by enumerating partial solutions, in contrast,
is more naive and less efficient. One aspect of this problem is that unification
constraints are not a suitable representation of solutions when arithmetic is
involved (Sect. 4).

3.4 A Hybrid Approach: Backtracking and Incremental Closure

Backtracking and non-destructive search using constraints do not exclude each
other. The constraint approach can be seen as a more fine-grained method for
generating substitution candidates: while the pure backtracking approach always
looks at a single goal when deriving substitutions, constraints allow to compare
the solutions that have been found for multiple goals. The number of goals that
can simultaneously be closed by one substitution, for instance, can be considered
as a measure for how reasonable the substitution is. Once a good substitution
candidate has been identified, it can also be applied to the proof destructively and
the proof search can continue focussing on this solution candidate. Because the
substitution could, nevertheless, be misleading, backtracking might be necessary
at a later point. Such hybrid proof strategies have not yet been developed or
tested, to the best of our knowledge.

4 Representation of Solutions: Constraint Languages

In Sect. 3.2 and 3.3, classes of pre-states are represented as substitutions or
unification constraints. These representations are well-suited for pure first-order
problems [10], but they are not very appropriate for integers (or natural num-
bers) that are common in Java: (i) Syntactic unification does not treat inter-
preted functions like +, − or literals in special way. This rules out too many
constraints, for instance [X + 1 ≡ 2 ], as inconsistent. (ii) Unification conditions
t1 ≡ t2 cannot describe simple classes of solutions that occur frequently, for in-
stance classes that can be described by linear conditions like X ≥ 0.5

The constraint approach of Sect. 3.3 is not restricted to unification con-
straints: we can see constraints in a more semantic way and essentially use any
sub-language of predicate logic (also in the presence of theories like arithmetic)

5 Depending on the representation of integers or natural numbers, certain inequal-
ities like X ≥ 1 ⇔ X ≡ succ(X ′) might be expressible, but this concept is rather
restricted.
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that is closed under the connective ∧ as constraint language. For practical pur-
poses, validity should be decidable in the language, although this is not strictly
necessary. The language that we started using in our experiments is a combina-
tion of unification conditions (seen as equations) and linear arithmetic:

C ::= C ∧ C || tint = tint || tint 6= tint || tint < tint || tint ≤ tint || toth = toth

in which tint ranges over terms of type int and toth over terms of other types.
The constraints are given the normal model-theoretic semantics of first-order
formulae (see, for instance, [9]):

Definition 1. A constraint C is called consistent if for each arithmetic struc-
ture (interpreting the symbols +, −, 6=, <, ≤ and literals as is common over the
integers, and all other function symbols arbitrarily), there is an assignment of
values to metavariables such that C is evaluated to tt.

Example 2. Of the following constraints, C1, C2 and C3 are consistent, while
the others are not. C4 is inconsistent because the ranges of f and g could be
disjoint, C5 because f could be the identity, and C6 because 5 could be outside
of the range of the function ·↓ ·. Our constraint language does not know about
lists, so that ·↓ · is just an arbitrary function symbol in this regard.

C1 := X = 5 ∧ 2 = Y + 1 C2 := h(A, 2) = h(h(c, Y ), Y + 1)

C3 := c < X ∧ d ≤ X C4 := f(X) = g(Y )

C5 := X < f(X) C6 := (ATTR ↓O) = 5

We are in the process of working out details of this language—so far, we do
not know whether consistency of constraints is decidable. Using a prototypical
implementation of the constraints in KeY (as part of the constraint approach of
Sect. 3.3), it is possible to find the following solution of (5) automatically:

kIL kLN oV nV headV nextV valV
KIL KLN 0 NV [0, . . .] [E, . . .] [NV , . . .]

KIL > 0 ∧
KLN > 0 ∧
E ≥ KLN

Compared to (7), this description of pre-states is more general and no longer con-
tains the precise number of involved objects of IntList and ListNode. It is enough
if at least one object of each class is created (KIL > 0,KLN > 0). Further, the so-
lution states that IntList .get(0) receives the invocation of delete with arbitrary
argumentNV , that IntList .get(0).head points to the object ListNode.get(0), that
the attribute ListNode.get(0).next is null (E ≥ KLN ), i.e., the receiving list has
only one element, and that the value of this element coincides with NV .

5 Reasoning about Lists and Arithmetic

The next pages give more (implementation) details and treat some further as-
pects of the backtracking-free method from Sect. 3.3. As incremental closure
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works by enumerating the closing constraints of all proof branches, the central
issue is to design suitable goal-local rules that produce such constraints, and
to develop an application strategy that defines which rule should be applied at
which point in a proof. The solutions shown here are tailored to the constraint
language of the previous section.

5.1 Rules for the Theory of Lists

For proof obligations of the form (4), the closing constraints of a goal mostly
describe the values of metavariables X1, X2, . . . over lists—the lists that in
Sect. 2.3 are used to represent program states—and usually have the form:

X1 = cons(X1

1
, cons(X2

1
, . . .)) ∧ X2 = cons(X1

2
, cons(X2

2
, . . .)) ∧ · · ·

∧ C(X1

1
,X2

1
, . . . ,X1

2
,X2

2
, . . .)

Such constraints consist of a first part that determines to which depth the
listsX1,X2, . . . have been “expanded,” and of a part C(X1

1
,X2

1
, . . . ,X1

2
,X2

2
, . . .)

(which is again a constraint, e.g. in the language from Sect. 4) that describes the
values of list elements. Following Sect. 2.3, each of the list elements X1

1
,X2

1
, . . .

belongs to one object of a class.
The expansion of lists is handled by a single rule that introduces fresh

metavariables H, T for the head and the tail of a list. We use the constrained
formula approach from [10] to remember this decomposition of a list L into two
parts. A constrained formula is a pair φ≪ C consisting of a formula φ and a
constraint C. The semantics of a formula φ≪ C that occurs in the antecedent
of a sequent is (roughly) the same as of the implication C → φ, and in the succe-
dent the semantics is C ∧ φ: intuitively, the presence of φ can only be assumed
if the constraint C holds. C has to be kept and propagated to all formulae that
are derived from φ≪ C during the course of a proof. If φ≪ C is used to close a
proof branch, the closing constraint that is created has to be conjoined with C.

The rule for expanding lists is essentially a case distinction on whether the
head (i = 0) or a later element (i > 0) of a list is accessed. An attached constraint
[L = cons(H,T ) ] expresses that the nameH is introduced for the head of the list
and T for its tail. In practice, the rule is only applied if an expression L↓ i occurs
in the sequent Γ ⊢ ∆, where L is a metavariable. As described in Sect. 2.3, the
length of lists is irrelevant, so that the case L = nil does not have to be taken
into account:

Γ, (i = 0 ∧ (L↓0) = H) ≪ [L = cons(H,T ) ] ⊢ ∆
Γ, (i > 0 ∧ (L↓ i) = (T ↓(i− 1))) ≪ [L = cons(H,T ) ] ⊢ ∆

Γ ⊢ ∆
expand-list

(H,T fresh metavariables)

Fig. 4 shows an example how expand-list is used to enumerate the solutions of
the formula L↓X > 3. By repeated application of expand-list, all list access
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∗
[H > 3 ∧ C ]

X = 0 ≪ C,L↓0 = H ≪ C,H ≤ 3 ≪ C ⊢
≤l

X = 0 ≪ C,L↓0 = H ≪ C ⊢ H > 3 ≪ C

X = 0 ≪ C,L↓0 = H ≪ C ⊢ L↓X > 3

(X = 0 ∧ L↓0 = H) ≪ C ⊢ L↓X > 3

D

D

∗
[X < 1 ∧ C ]

X ≥ 1 ≪ C,L↓X = T ↓(X − 1) ≪ C ⊢ L↓X > 3
≥l

X > 0 ≪ C,L↓X = T ↓(X − 1) ≪ C ⊢ L↓X > 3

(X > 0 ∧ L↓X = T ↓(X − 1)) ≪ C ⊢ L↓X > 3

⊢ L↓X > 3
expand-list

Fig. 4. Example for a proof involving lists and metavariables L, T : intList , H : int ,
X : nat . We write C as abbreviation for the constraint [L = cons(H,T ) ]. The first so-
lution (shown here) that is produced by the proof is [L = cons(H,T ) ∧X < 1 ∧H > 3 ]
and stems from the formulae X ≥ 1 ≪ C and H ≤ 3 ≪ C in the two branches. When
applying further rules to the proof—instead of closing it—and expanding the list more
than once, further solutions like [L = cons(H, cons(H ′, T ′)) ∧X = 1 ∧H ′ > 3 ] can be
generated. Concerning the handling of inequalities in the proof, see Sect. 5.3.

expressions L↓ i in a sequent can be replaced with scalar metavariables, which
subsequently can be handled with other rules for first-order logic and arithmetic.

Because expand-list splits on the value of the list index i, it can happen
that different isomorphic heap arrangements are explored in different goals of a
proof. For a larger number of objects, this can obviously leads to a combinatorial
explosion. Generally, two possibilities to handle this issue (which we have not
investigated yet) are (i) to work with a constraint language that directly supports
the theory of lists, or to (ii) use the approach suggested in Sect. 3.4 to focus on
one particular heap arrangement, ignoring isomorphic heaps. In this manner, it
is, for instance, possible to simulate the lazy-initialisation approach from [11].

5.2 Fairness Conditions

As the different branches (and formulae) of a proof are expanded completely in-
dependently when using incremental closure, it is important to choose a fairness
strategy that ensures an even distribution of rule applications. When proving
program incorrectness, there are two primary parameters that describe how far
a problem has been explored: (i) how often loops have been unwound on a branch
(the number of applications of the rule while-l from Fig. 2), and the (ii) the
depth to which lists have been expanded (the size of the heap under considera-
tion, or the number of applications of the rule expand-list from the previous
section).
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In the KeY prover, automatic reasoning is controlled by strategies, which are
basically cost computation functions that assign each possible rule application
in a proof an integer number as cost. The rule application that has been given
the least cost (for the whole proof) is carried out first. In this setting, we achieve
fairness in the following way:

– Applications of while-l are given the cost cw = αw · kw + ow, where kw is
the number of applications of while-l that have already been performed on
a proof branch, and αw > 0, ow are constants. This means that the cost for
unwinding a loop a further time grows linearly with the number of earlier
loop unwindings.

– Applications of expand-list are given the cost ce = αe · ke + oe, where ke

is the sum of the depths to which each of the list metavariables has been
expanded on a proof branch. This sum can be computed by considering the
constraints C that are attached to formulae φ≪ C in a sequent that contain
list access expressions L↓ i: one can simply count the occurrences of cons in
the terms that have to be substituted for the original list metavariables when
solving the constraint C.6

Good values for the constants αw, αe are in principle problem-dependent, but
in our experience it is meaningful to choose αe (a lot) bigger than αw. When
proving the formula (5), yielding the constraint shown in Sect. 4, we had chosen
αw = 50, ow = 200, αe = 2500, oe = −2000.

A slightly different approach is to choose a fixed upper bound either for
the number of loop unwindings or for the heap size, and to let only the other
parameter grow unboundedly within one proof attempt. If the proof attempt
fails, the bound can be increased and a new proof is started. In the experiments
so far, we have not found any advantages of starting multiple proof attempts
over the method described first, however.

5.3 Arithmetic Handling in KeY

The heap representation that is introduced in Sect. 2.3 heavily uses arithmetic
(both natural and integer numbers). After the elimination of programs using
symbolic execution, of updates and of list expressions, the construction of solu-
tions or closing constraints essentially boils down to handling arithmetic formu-
lae. Although KeY is in principle able to use the theorem prover Simplify [12]
as a back-end for discharging goals that no longer contain modal operators and
programs, this does not provide any support when reasoning with metavariables.
In this section, we shortly describe the native support for arithmetic that we,
thus, have added to KeY (see page 149 for a more detailed account).

6 The actual computation of ce is more complicated, because smaller costs are chosen
when applying expand-list for terms L↓ i in which i is a concrete literal, or when
the rule has already been applied for the same list L earlier.
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Linear arithmetic. Equations and inequalities over linear polynomials is the most
common and most important fragment of integer arithmetic. We use Fourier-
Motzkin variable elimination to handle such formulae—inspired by the Omega
test [13], which is an extension of Fourier-Motzkin. Although Fourier-Motzkin
does not yield a complete procedure over the integers, in contrast to the Omega
test, we have so far not encountered the need to create a full implementation of
the Omega test.

As a pre-processing step, the equations and inequalities of a sequent are
always moved to the antecedent and are transformed into inequalities c · x ≤ s
or c · x ≥ s, where c is a positive number and s is a term. In order to ensure
termination, we assume the existence of a well-ordering on the set of variables
of a problem and require that x is strictly bigger than all variables in s. Fourier-
Motzkin variable elimination can then be realised by the following rule:

Γ, c · x ≥ s, d · x ≤ t, d · s ≤ c · t ⊢ ∆

Γ, c · x ≥ s, d · x ≤ t ⊢ ∆
transitivity

(c > 0, d > 0)

Apart from the rule for eliminating variables from inequalities, we also have
to provide rules for generating closing constraints (using the constraint language
from Sect. 4):

[ s = t ]

Γ ⊢ s = t,∆
=r

[ s 6= t ]

Γ, s = t ⊢ ∆
=l

[ s > t ]

Γ, s ≤ t ⊢ ∆
≤l

[ s < t ]

Γ, s ≥ t ⊢ ∆
≥l

Non-linear arithmetic. In order to handle multiplication, division- and modulo-
operations that frequently occur in programs, we have also added some support
for non-linear integer arithmetic to KeY. Our approach is similar to that of the
ACL2 theorem prover [14] and is based on the following rule (together with the
rules for handling linear arithmetic):

Γ, s ≤ s′, t ≤ t′, 0 ≤ (s′ − s) · (t′ − t) ⊢ ∆

Γ, s ≤ s′, t ≤ t′ ⊢ ∆
mult-inequalities

Often, it is also necessary to perform a systematic case analysis. The rule mult-

inequalities alone is, for instance, not sufficient to prove simple formulae like
x · x ≥ 0. Case distinctions can be introduced with the following rules:

Γ, x < 0 ⊢ ∆
Γ, x = 0 ⊢ ∆
Γ, x > 0 ⊢ ∆

Γ ⊢ ∆
sign-cases

Γ, s < t ⊢ ∆
Γ, s = t ⊢ ∆

Γ, s ≤ t ⊢ ∆
strengthen

We can now prove x · x ≥ 0 by first splitting on the sign of x. The rules sign-

cases and strengthen are in principle sufficient to find solutions for arbitrary
solvable polynomial equations and inequalities. Combined with the rules =r,
=l, ≤l, ≥l from above, this guarantees that the calculus can always produce
solutions and closing constraints for satisfiable sequents that (only) contain such
formulae.
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6 Related Work

Proof strategies based on metavariables and backtracking are related to common
approaches to test data generation with symbolic execution, see, e.g., [5, 7]. Con-
ceiving the approach as proving provides a semantics, but also opens up for new
optimisations like backtracking-free proof search. Likewise, linear arithmetic is
frequently used to handle branch predicates in symbolic execution, e.g. [15]. This
is related to Sect. 4, although constraints are in the present paper not only used
for branch predicates, but also for the actual pre- and post-conditions.

As discussed in Sect. 3.1, there is a close relationship between ground proof
procedures and test data generation using actual program execution. Construct-
ing proofs using metavariables can be seen as exhaustive testing, because the
behaviour of a program is examined (simultaneously) for all possible inputs.
When using the fairness approach of limiting the size of the initial heap that
is described in Sect. 5.2, the method is related to bounded exhaustive testing,
because only program inputs up to a certain size are considered.

A technique that can be used both for proving programs correct and incor-
rect is abstraction-refinement model checking (e.g., [16–18]). Here, the typical
setup is to abstract from precise data flow and to prove an abstract version of
a program correct. If this attempt fails, usually symbolic execution is used to
extract a precise witness for program incorrectness or to increase the precision
of the employed abstraction. Apart from abstraction, a difference to the method
presented here is the strong correlation between paths in a program (reacha-
bility) and counterexamples in model checking. In contrast, our approach can
potentially produce classes of pre-states that cover multiple execution paths.

Related to this approach is the general idea of extracting information from
failing verification attempts, which can be found in many places. ESC/Java2 [19]
and Spec#/Boogie [20] are verification systems for object-oriented languages
that use the prover Simplify [12] as back-end. Simplify is able to derive coun-
terexamples from failed proof attempts, which are subsequently used to create
warnings about possible erroneous behaviour of a program for certain concrete
situations. Another example is [21], where counterexamples are created from
unclosed sequent calculus proofs. Making use of failing proof attempts has the
advantage of reusing work towards verification that has already been performed,
which makes it particularly attractive for interactive verification systems. At the
same time, it is difficult to obtain completeness results and to guarantee that
proofs explicitly “fail,” or that counterexamples can be extracted. In this sense,
our approach is more systematic.

7 Conclusions and Future Work

The development of the proposed method and of its prototypical implementation
has been driven by working with (small) examples [22], but we cannot claim to
have a sufficient number of benchmarks and comparisons to other approaches
yet. It is motivating, however, that our method can handle erroneous programs
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like in Fig. 1 (and similar programs operating on lists) automatically, which we
found to be beyond the capabilities of commercial test data generation tools
like JTest [23, 22]. This supports the expectation that the usage of a theorem
prover for finding bugs (i) is most reasonable for “hard” bugs that are only
revealed when running a program with a non-trivial pre-state, and (ii) has the
further main advantage of deriving more general (classes of) counterexamples
than testing methods. The method is probably most useful when combined with
other techniques, for instance with test generation approaches that can find
“obvious” bugs more efficiently.

For the time being, we consider it as most important to better understand
the constraint language of Sect. 4 for representing solutions, and, in particular,
to investigate the decidability of consistency. Because of the extensive use of
lists in Sect. 2.3, it would also be attractive to have constraints that directly
support the theory of lists. As explained in Sect. 5.1, such constraints would
introduce a notion of heap isomorphism, which is a topic that we also plan to
address. Further, we want to investigate the combination of backtracking and
incremental closure (as sketched in Sect. 3.4). A planned topic that conceptually
goes beyond the method of the present paper are proofs about the termination
behaviour of programs (page 61).
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nology, Göteborg, Sweden (2005)

23. Parasoft: JTest (2006) http://www.parasoft.com.



Paper 2

Non-Termination Checking for
Imperative Programs

Helga Velroyen and Philipp Rümmer
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Abstract. While termination checking tailored to real-world library
code or frameworks has received ever-increasing attention during the last
years, the complementary question of disproving termination properties
as a means of debugging has largely been ignored so far. We present an
approach to automatic non-termination checking that relates to termi-
nation checking in the same way as symbolic testing does to program
verification. Our method is based on the automated generation of invari-
ants that show that terminating states of a program are unreachable from
certain initial states. Such initial states are identified using constraint-
solving techniques. The method is fully implemented on top of a program
verification system and available for download. We give an empirical eval-
uation of the approach using a collection of non-terminating example
programs.

1 Introduction

Termination properties of programs are crucial for liveness and safety: a piece
of software which does not terminate can have vast consequences, especially
when employed in critical environments or wide-spread. The latter concerns in
particular library code or frameworks, whose specific use is often unknown at
the time of development. Non-termination bugs can be very subtle and hide long
before they take effect in productivity situations.

Although the concept of formally proving termination properties has been
known and investigated for a long time, the last years have seen intensified re-
search on how to check the termination of real-world code [1, 2]. During the same
time, however, the complementary field of showing the potential non-termination

of programs as a means of debugging has largely been ignored. This is a surpris-
ing situation, because programs under development are prone to contain defects.
In this context, direct attempts to find those bugs might be more successful and
more useful than to learn from failed correctness or termination proofs.

Traditional dynamic techniques of testing program behavior by means of
concrete execution are not adequate to show non-termination (they can nev-
ertheless provide valuable hints). As a consequence, although the purpose of
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non-termination analysis is more related to testing than to program verification,
in most cases the usage of symbolic reasoning cannot be avoided. In the present
paper, we introduce an approach to automatic non-termination checking that
relates to termination checking in the same way as symbolic testing does to pro-
gram verification. The method has been implemented on top of a general-purpose
program verification system. Experiments using a database of non-terminating
programs indicate that it can be a useful tool for detecting termination defects
early during software development.

Showing the non-termination of a program consists of two parts: (i) to prove
that a potential loop in a program is reachable from some initial state, and
(ii) to prove that the potential loop can indeed cause non-termination. We use
constraint solving techniques to achieve the first part, following the approach in
[3] (page 39). For the second part, we introduce an algorithm to synthesise invari-
ants that show that the found loop is never exited and that terminating states of
the program are therefore unreachable. Our approach is based on two main tech-
niques, a template method for generating invariants (together with constraint
solving) and refinement (strengthening) of invariants based on counterexamples.
Because our experiments show that invariants for proving non-termination are
typically much smaller than invariants for proving partial correctness, we believe
that this yields a practical procedure for constructing non-termination proofs.

The paper is organised as follows: In Sect. 2 we define the programming lan-
guage that is analysed in the whole paper. Sect. 3 introduces the logic and the
calculus that we use to reason about programs, which is the basis for an effective
algorithm in Sect. 4. An empirical evaluation of our approach is given in Sect. 5.
Finally, we list related work in Sect. 6 and conclude in Sect. 7.

2 Preliminaries

We assume that the reader is familiar with classical first-order logic and Gentzen-
style sequent calculi, see [4] for an introduction. For sake of simplicity, all con-
siderations of this paper are done in the context of a simple while-language that
operates on the (infinite) domain of integers. The generalisation to other im-
perative languages is mostly straightforward, and, in our experience, occurring
problems tend to be orthogonal to the task of proving non-termination. More
details are given in [5, 3] (page 39).

In order to introduce the while-language, we first assume a fixed vocabularyΣ
of functions and predicates (with fixed arity) that describe the native side-effect-
free operations that are available, as well as a fixed set Vp of program variables.
The set Σ is supposed to contain at least literals and the standard operations
on integers (0, 1,−1, . . . ,+,−, ·,=, <,≤). Ground terms, ground formulae and
programs are then inductively defined by the following grammars:

tg ::= v | f(tg, . . . , tg)

φg ::= true | false | φg ∧ φg | ¬φg | · · · | p(tg, . . . , tg)

α ::= α ; . . . ; α | v = tg | if (φg) α else α | while (φg) α
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where f ∈ Σ ranges over functions, p ∈ Σ over predicates and v ∈ Vp over pro-
gram variables.

Semantics of Programs. Because only the integers are considered as domain, a
structure is a pair S = (Z, I) consisting of the set Z of integers and an interpre-

tation I with I(f) : Zn → Z if f ∈ Σ is a function of arity n and I(p) ⊆ Zn if
p ∈ Σ is a predicate of arity n. Only those structures are considered in which
the standard integer operations from above (like 0, 1,−1,+, . . .) have their usual
meaning. A program variable assignment is a mapping γ : Vp → Z. The space of
all program variable assignments is denoted by PA = Vp → Z. While-programs α
are evaluated in structures S and denote partial mappings [[α]]

S
: PA ⇀ PA from

program variable assignments to program variable assignments:

[[α]]
S
(γ) =

{

γ′ α terminates in state γ′ when started in γ

⊥ α does not terminate when started in γ

Given an evaluation function valS,γ for ground terms and formulae, which is
defined as is common for first-order logic (e.g., [4]), the concrete definition of
[[α]]

S
follows the lines of denotational semantics (for instance, [6]).

3 Proving Non-Termination: The Calculus Level

We introduce our approach to non-termination detection in two parts: in this
section, we describe the logic and the calculus to reason about programs. Based
on this declarative framework, Sect. 4 defines an algorithm (a proof procedure)
for automatically detecting non-termination.

Dynamic Logic for the While-Language (WhileDL). First-order dynamic
logic (DL) [7] is a multi-modal extension of first-order predicate logic, in which
modal operators are labelled with programs. Most importantly, given a pro-
gram α and a formula φ, a box-formula [α ]φ expresses that φ holds in each
final state of α. This paper uses a version of dynamic logic for the simple while-
language [7] that is enriched with an explicit operator for simultaneous substi-
tutions called updates [8, Sect. 3] (also see [9] on page 115). Updates allow us to
present some of the techniques of this papers in a simpler way, but also simplify
the generalisation to more involved languages like Java [5, 3, 8].

We assume the same vocabulary Σ and the same set Vp of program variables
as in Sect. 2, but in addition we define a disjoint set Vl of logical variables that
can occur in formulae and terms (outside of programs). Because some of our rules
need to introduce fresh function symbols, we assume that Σ contains infinitely
many functions for each arity n. Extending the grammar from Sect. 2, arbitrary
terms, formulae and updates are then defined by:

t ::= tg | x | f(t, . . . , t) | {U } t

φ ::= φg | φ ∧ φ | ¬φ | · · · | p(t, . . . , t) | [α ]φ | {U } φ

U ::= v := t | U, . . . , U
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where f ∈ Σ ranges over functions, p ∈ Σ over predicates, x ∈ Vl over logical
variables and v ∈ Vp over program variables.

In order to define the semantics of terms, formulae and updates, besides
structures S = (Z, I) and program variable assignments γ ∈ PA we also need
logical variable assignments β : Vl → Z. The denotation [[U ]]

S,β
: PA → PA of

an update U is a total operation on program variable assignments:

[[v1 := t1, . . . , vk := tk]]
S,β

(γ)(w) =











valS,β,γ(ti) w = vi and

w 6∈ {vi+1, . . . , vk}

γ(w) w 6∈ {v1, . . . , vk}

This means that the assignments of an update are executed in parallel, and
that assignments that syntactically occur later can override the effects of earlier
assignments (vj := tj will override vi := ti for vi = vj and j > i).

The evaluation valS,β,γ of terms and formulae is mostly defined as it is com-
mon for first-order predicate logic. Formulae are mapped into a Boolean domain,
where tt stands for semantic truth. The cases for programs and updates are:

valS,β,γ([α ]φ) =

{

valS,β,[[α]]S(γ)(φ) if [[α]]
S
(γ) is defined

tt otherwise

valS,β,γ({U } φ) = valS,β,[[U ]]S,β(γ)(φ)

We interpret free logical variables x ∈ Vl existentially: a formula φ is valid iff for
each structure S and each program variable assignment γ ∈ PA there is a variable
assignment β : Vl → D such that valS,β,γ(φ) = tt. Likewise, a sequent Γ ⊢ ∆ is
called valid iff

∧

Γ →
∨

∆ is valid. Free variables are used to express symbolic
program inputs and as parameters in loop invariants and serve as an interface
to constraint solving (see below for more details).

Characterisation of Non-Termination. Because box-formulae [α ]φ are triv-
ially rendered true by a diverging program α, we can express non-termination by
asserting false as post-condition: [α ] false. This means that, given a structure S,
valS,γ([α ] false) = tt holds for exactly those initial states γ ∈ PA for which α

diverges.

In order to express non-termination for some arbitrary initial state, it is
necessary to quantify the variables occurring in α existentially, following the
approach from [3] (page 39). For the while-language, this is done by prefixing the
formula from above with an update that assigns arbitrary values to all program
variables in α:

{ v1 := x1, . . . , vn := xn } [α ] false (1)

where v1, . . . , vn ∈ Vp are the variables occurring in α and x1, . . . , xn ∈ Vl are
fresh logical variables. (1) is valid iff there are initial states from which α diverges.
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A Sequent Calculus for WhileDL. To reason formally about the non-
termination of programs, we introduce a Gentzen-style sequent calculus for
WhileDL that follows closely the calculi in [3, 8]. Fig. 1 contains the most impor-
tant calculus rules, which can be categorised as program-independent first-order

rules (the upper part of the figure) and symbolic execution rules.

The rule Assign turns assignments into updates, which subsequently can be
merged with the former preceding update U and simplified. The simplification
and application of updates is performed by the rewriting rules in Fig. 2, which
propagate updates in formulae or terms downwards until they can be applied to
program variables like substitutions.

In If, a case analysis for an if-statement is performed by splitting on the
branch predicate ψ evaluated in the current program state U . The invariant
rule While is a simplified version of the rule for Java defined in [8, Chap. 3].
In While, the erasure of side formulae is avoided with the help of anonymising

updates A1, A2 that assign unspecified values to all variables that can be modified
by the loop body α. More formally, given that (i) v1, . . . , vn ∈ Vp are the variables
that occur as left-hand sides of assignments in α, that (ii) x1, . . . , xm ∈ Vl are
the logical variables that occur in U , φ, or Inv , and that (iii) f1, . . . , fn are fresh
function symbols, we say that the update

v1 := f1(x1, . . . , xm), . . . , vn := fn(x1, . . . , xm)

is a fresh anonymising update for α with respect to U, φ, Inv . Note, that we need
to inject the logical variables x1, . . . , xm as arguments of the functions f1, . . . , fn

for exactly the same reasons as in the standard Skolemisation rule (e.g., [4]).

Finally, theory rules are necessary to handle equality, integers, etc. in the
calculus, we refer the reader to [10] (page 149) for more details. An example
proof using the WhileDL calculus is shown below.

When inspecting the calculus rules, it can be observed that all rules but
While are local equivalence transformations: for all structures, program variable
assignments and logical variable assignments, the conclusion of a rule holds iff
all premisses hold. This property is important for us, because it implies that
countermodels of an open goal are also countermodels of the initial conjecture
(unless While has been applied). In Sect. 4, we use counterexamples that were
extracted from open proof goals to refine invariant candidates.

Incremental Closure of Proofs. In order to close a proof tree that contains
free logical variables, we have to show that the variables can be given values
(depending on the considered structure) such that all remaining goals are turned
into obviously valid sequents. We apply the idea of incremental closure [4, 11]
together with the arithmetic constraint language from [3, Sect. 4] (page 50)
to check the existence of such values. The rules in Fig. 3 are responsible for
introducing closure constraints for proof goals. If it is possible, in this way, to
find compatible closure constraints for all proof goals (i.e., the conjunction of
the constraints is valid), then it is sound to close the proof.
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∗
Γ ⊢ true, ∆

true-right
Γ ⊢ ∆

Γ, true ⊢ ∆
true-left

Γ ⊢ φ,∆ Γ ⊢ ψ,∆

Γ ⊢ φ ∧ ψ,∆
∧-right

Γ, φ, ψ ⊢ ∆

Γ, φ ∧ ψ ⊢ ∆
∧-left

Γ, φ ⊢ ∆

Γ ⊢ ¬φ,∆
¬-right

Γ ⊢ φ,∆

Γ,¬φ ⊢ ∆
¬-left

· · ·

Γ ⊢ {U }φ,∆

Γ ⊢ {U } [ ]φ,∆
Skip

Γ ⊢ {U } { v := t } [ . . . ]φ,∆

Γ ⊢ {U } [v = t ; . . . ]φ,∆
Assign

Γ ⊢ {U } (ψ → [α1 ; . . . ]φ), ∆ Γ ⊢ {U } (¬ψ → [α2 ; . . . ]φ), ∆

Γ ⊢ {U } [if (ψ) α1 else α2 ; . . . ]φ,∆
If

Γ ⊢ {U } Inv , ∆

Γ ⊢ {U } {A1 } (Inv ∧ ψ → [α ] Inv), ∆
Γ ⊢ {U } {A2 } (Inv ∧ ¬ψ → [ . . . ]φ), ∆

Γ ⊢ {U } [while (ψ) α ; . . . ]φ,∆
While

(A1, A2 are fresh anonymising updates for α w.r.t. U, φ, Inv)

Fig. 1. Sequent calculus for WhileDL. In the last four rules, the update {U } can also
be empty and disappear.

{ v1 := t1, . . . , vk := tk } vi → ti if vi 6∈ {vi+1, . . . , vk}

{ v1 := t1, . . . , vk := tk } t → t if v1, . . . , vk do not occur in t

{U } f(t1, . . . , tn) → f({U } t1, . . . , {U } tn)

{U } p(t1, . . . , tn) → p({U } t1, . . . , {U } tn)

{U } ¬φ → ¬{U } φ

{U } (φ ∧ ψ) → {U } φ ∧ {U } ψ

{U } { v1 := t1, . . . , vk := tk } φ → {U, v1 := {U } t1, . . . , vk := {U } tk } φ

{ . . . , v := s, . . . , v := t, . . . } φ → { . . . , v := t, . . . } φ

Fig. 2. The main application rules for updates in WhileDL. Further rules to simplify
updates can be formulated, but are not shown here [8, Chap. 3].

[ s = t ]

Γ ⊢ s = t,∆
=-right

[ s ≤ t ]

Γ ⊢ s ≤ t,∆
≤-right

[ s ≥ t ]

Γ ⊢ s ≥ t,∆
≥-right

[ s 6= t ]

Γ, s = t ⊢ ∆
=-left

[ s > t ]

Γ, s ≤ t ⊢ ∆
≤-left

[ s < t ]

Γ, s ≥ t ⊢ ∆
≥-left

Fig. 3. Closure rules for the WhileDL sequent calculus
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Example. We illustrate the usage of the sequent calculus by proving the non-
termination of the following program:

Lcm =















a = a0 ; b = b0 ;
while (a 6= b) {

if (a > b) b = b+ b0 else a = a+ a0

}

In case of termination, the post-value of a and b is the least common multiple
of the two integers a0, b0. The program fails, however, to handle negative inputs
correctly: if the signs of a0 and b0 are different, for instance, the program does
not terminate. To prove this formally, we instantiate (1) with Lcm and construct
a proof tree (Fig. 4).

The only step in the course of the proof that requires creativity is the choice
of the formula Inv that is used as invariant when applying the rule While (our
technique for synthesising such formulae is described in the next section). In
terms of the program execution, Inv has to describe a set of program states
that (i) is entered when Lcm reaches the while-loop, (ii) is not left during the
execution of the loop, and (iii) does not contain any states in which the loop
guard becomes false. We chose a < b as invariant in this example, but similar
proofs can be given for the invariants a < 0 ∧ b > 0 or a 6= b. In all cases, the
technique of incremental closure has to be used to determine some initial state
(i.e., values of the variables a0, b0) for which the chosen formula Inv actually
is an invariant and the proof can be closed. The closing constraint in Fig. 4 is
[xa < 1 ∧ xa < xb ], which means that we have proven the non-termination for
initial states (a0, b0) like (0, 1), (0, 2), (−10,−5), etc.

4 Automatically Detecting Non-Termination

In our work, we developed an algorithm to identify non-terminating programs au-
tomatically. It has two components, an invariant generator and a theorem prover.
The theorem prover is used to prove formulae that state the non-termination of
a program. This done by construction of proof trees using the calculus rules and
incremental closure, described in Sect. 3. The other component, the invariant
generator, is used to provide and refine invariants for the theorem prover. It was
used to construct the invariant a < b from the previous section in a systematic
way.

The idea of the algorithm is to construct a non-termination proof as described
in the preceding section. The essential part of a non-termination proof is the
invariant which is used in the application of the While rule. Our algorithm tries
to find this invariant by repeatedly constructing proof attempts. In each iteration
a different invariant is used, starting with the formula true, representing that the
prover has no knowledge about the invariant at start up. After each failed proof
attempt, the incomplete proof tree is examined. The retrieved information from
this examination is then used to refine the invariant. There are several ways of
refinement of which one uses template variables for the invariants.
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[xa < xb ]

xa ≥ xb ⊢
≥-left

⊢ xa < xb

(∗)

⊢ {U0, a := xa, b := xb } a < b
∗

→
Inv. Preservation Inv. Usage

⊢ {U0, a := xa, b := xb } [while (a 6= b) β ] false
While

⊢ {U0, a := xa, b := x2 } [b = b0 ; while (a 6= b) β ] false
Assign,

∗

→

⊢ {U0, a := x1, b := x2 } { a := a0 } [b = b0 ; while (a 6= b) β ] false
∗

→

⊢ { a0 := xa, b0 := xb, a := x1, b := x2 } [a = a0 ; b = b0 ; . . . ] false
Assign

⊢ { a0 := xa, b0 := xb, a := x1, b := x2 } [Lcm ] false

∗.... (∗)

[xa < 1 ]

fa ≤ fb − 1, fa ≥ fb − xa, xa ≥ 1 ⊢
≥-left

fa ≤ fb − 1 ⊢ fa + xa < fb

(∗)

fa ≤ fb − 1 ⊢ {U0, a := fa + xa, b := fb } [ ] a < b
Skip,

∗

→

fa ≤ fb − 1 ⊢ {U0, a := fa, b := fb } [a = a+ a0 ] a < b
Assign,

∗

→

fa ≤ fb − 1 ⊢ fa 6> fb → {U0, a := fa, b := fb } [a = a+ a0 ] a < b
(∗)

fa ≤ fb − 1 ⊢ {U0, a := fa, b := fb } (a 6> b→ [a = a+ a0 ] a < b)
∗

→

fa ≤ fb − 1 ⊢ {U0, a := fa, b := fb } [if (a > b) . . . else . . . ] a < b
If

⊢ fa < fb ∧ fa 6= fb → {U0, a := fa, b := fb } [β ] a < b
(∗)

⊢ {U0, a := xa, b := xb } { a := fa, b := fb } (a < b ∧ a 6= b→ [β ] a < b)
∗

→

Inv. Preservation

∗
⊢ ga < gb ∧ ga = gb → {U0, a := ga, b := gb } [ ] false

(∗)

⊢ {U0, a := xa, b := xb } { a := ga, b := gb } (a < b ∧ a = b→ [ ] false)
∗

→

Inv. Usage

Fig. 4. Proof for the (potential) non-termination of the program Lcm using the in-
variant a < b. The proof can be closed with the constraint [xa < 1 ∧ xa < xb ], which
describes a set of initial states that causes Lcm to diverge. We write β for the body of
the while-loop, fa, fb, ga, gb as abbreviation for the Skolem terms fa(xa, xb), fb(xa, xb),
ga(xa, xb), gb(xa, xb), and U0 as abbreviation for the update a0 := xa, b0 := xb. Rewrit-
ing steps to apply updates are denoted by

∗

→ , whereas (∗) means that rules for propo-
sitional and arithmetic reasoning are applied which are not shown in detail.

It. cur. Inv. Open goals Queue after step 5 of algorithm

1 true a = b ⊢ b > a, b < a, b < Ub, a < Ua, b > Lb, a > La, a 6= b

2 b > a none b < a, b < Ub, . . .

Fig. 5. Application of the algorithm on Lcm. Technically, a and b in the open goals
are Skolem terms like fa(xa, xb) in Fig. 4, which have to be translated back to obtain
invariants in terms of the program variables. In iteration 2, the non-termination proof
can be closed with the constraint [xa < xb ∧ xa < 1 ]. The result expresses that Lcm

does not terminate if the initial value of a0 is less than that of b0 and not positive.
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A positive result of the algorithm is a successful non-termination proof of the
program together with a description of a set of input values for which the loop
of the program runs forever.

Note on Nested Loops. The algorithm as it is described here is only applicable
to single, unnested loops. As it is always possible to transform nested loops into
unnested ones, this is no real restriction. Besides, in [5] we describe how our
algorithm can be adapted so that it directly works on nested loops.

Outline of the Algorithm. Let α be the program whose termination is in
question. The input of the algorithm is α’s source code, which is inserted into a
WhileDL formula φ (formula (1) in Sect. 3) that states that there are inputs for
which α does not terminate.

Initialisation

1. The formula φ is handed over to the theorem prover. The proof procedure
is invoked and constructs a proof tree in which the program is symbolically
executed until the execution reaches the loop.

Iteration

2. The proof procedure applies the invariant rule While (Fig. 1). The invariant
Invcur which is used in the invariant rule’s application is chosen from a queue
of invariants. Initially there is only Invcur ≡ true in the queue.

3. The proof procedure keeps on constructing the proof as far as possible with-
out human interaction.

4. If the proof procedure can close the proof, the algorithm terminates with the
result that the program does not terminate. If the proof cannot be closed,
the open goals of the proof are extracted and handed over to the invariant
generator.

5. The invariant generator inspects the formulae of the open goals. The ob-
tained information is used to refine the invariant candidate to create one or
more new candidates, which are then added to the queue.

The algorithm repeats step 2 to 5 iteratively, each time using one of the
invariant candidates from the invariant queue. The iterations are carried out
until one of these events occurs: the proof can be closed with the help of the
invariant candidate, the algorithm runs out of new invariant candidates or a
maximum number of iterations is reached. In case of a successful termination
of the algorithm, it outputs the invariant used for the final proof, together with
the (consistent) closing constraint.

There are three parts of step 5 of the algorithm that we like to describe in
more detail. The first is the actual creation of the invariants.
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Invariant Creation. There are different methods to create new invariants from
the open goals of failed proofs. Assume that we obtained the open goal

φ1, . . . , φn ⊢ ψ1, . . . ψm

where φi and ψi are WhileDL-formulae. Given such an open goal, the invariant
generator creates invariant fragments ρ which are conjunctively added to the
invariant Invcur which was used in the current iteration to obtain a new invari-
ant Invnew = Invcur ∧ ρ. The invariant fragments are created by the following
operations:

– Add. A formula ψi in the succedent states a situation in which there is a
problem with the non-termination proof when ψi does not hold. Most often
that means that in this situation the loop actually terminates. We exclude
this situation by setting ρ = ψi.

– NegAdd. A formula φi in the antecedent means that there is a problem
with the non-termination in the situation where φi holds. Here, the same
idea applies as for formulae in the succedent, but in this case we have to
negate it before we add it to the old invariant, which means ρ = ¬φi.

– Ineq. In case a formula φi of the antecedent is of form φi ≡ a = b, we do not
only add the negation as in negAndAdd, but an inequality. That means
from a = b we obtain two fragments ρ1 ≡ a ≥ b and ρ2 ≡ a ≤ b, yielding
two different new invariants.

– IneqVar. Often it is useful to express that there are upper or lower bounds
for an expression rather than specifically setting one like in Ineq. This is
done through the introduction of free logical variables. Those variables stand
for particular but not yet specified values. For each term in the open goal, we
provide two new variables U and L, one for the upper and one for the lower
bound. Thus, for each term tk occurring in one φi, we obtain two fragments
ρu

k ≡ tk ≤ Uk and ρl
k ≡ tk ≥ Lk. The values for the new variables are

estimated by the constraint solver of the proof procedure.

The latter two creation methods are of course only applicable if a, b and tk
are expressions of an ordered type, in our case integers.

Invariant Filtering. In the process of invariant creation, sometimes invariant
candidates are created that are not helpful in the search of a non-termination
invariant. This is due to the fact that these methods are applied “blindly” with-
out actually examining the old invariant candidate. Therefore, after the creation
of invariants in step 5 of the algorithm, we filter out those candidates which are
obviously useless:

– Inconsistent Invariant. A newly created invariant candidate can be equiv-
alent to the formula false. Because the first property of non-termination
invariants is that the invariant must hold before the loop execution, it is
dismissed.



Non-Termination Checking for Imperative Programs 71

– Equivalence to Previous Invariants. A new invariant candidate can be equiv-
alent to a candidate that was already created and/or used in an earlier iter-
ation. Dismissal of these candidates avoid unnecessary calculations and thus
save resources.

– Impossible Closure of the Init-branch. The application of the invariant rule
makes the proof branch into three branches. The first branch proves that the
invariant holds when the loop is reached in the execution of the program. In
the refinement process, invariant candidates might be created that do not
hold in the beginning of the loop, even if they are satisfiable in general. Once
we have created an invariant candidate which prevents the first branch from
closing, it does not make sense to refine any further: refinement would only
strengthen the candidate even more.3

– Complexity. For performance reasons, we set a limit on the complexity of
formulae to keep the runtime at a reasonable level.

Invariant Scoring. In each iteration of the algorithm, when the invariant can-
didates are created and filtered in step 5 still a lot of invariants can remain. In
order to traverse the search space of invariants in a reasonable way, we have
to queue invariants according to their probable usefulness for non-termination
proofs.

We estimate this usefulness by several criteria and express it in a score, which
is a real number between 0 and 1. The lower the score is, the more the invariant
is preferred in the queue. The score is calculated as a weighted average of scores
for each of the following criteria.

– Complexity. In order to find the most general description of a set of critical
inputs, we prefer simple invariants to complex ones. The complexity is mea-
sured in both the term depth and the number of operators of the invariant.

– Existence of Free Variables. The creation method IneqVar is a strong tool
(and sometimes the only effective one) to find the desired invariant. The
problem with free variables is that in cases where they do not lead to a
closed proof, they tend to lead to even bigger open proofs. It is reasonable to
prefer invariant candidates that do not contain free variables to those who do
in order to keep the number of newly created candidates as low as possible.

– Multiple Occurrence of Formulae. In an open proof, sometimes the same
formulae occur in several open goals. We prefer invariant candidates made
from those formulae to others, because if the candidate makes the algorithm
close branches, it will close several branches in the same proof.

– Reoccurring Formulae. Formulae which occurred in open proofs in several it-
erations of the algorithm might be suitable candidates for the next invariant,
because they hint to situations where the non-termination proof repeatedly
failed.

3 The filtering of inconsistent invariants is subsumed in this filter. We kept it in the list
of filters, because checking for inconsistency is easier than for closure of the initial
branch. So, for performance reasons it is useful to first check only for consistency
before examining the closability of the first branch.
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– Proof Size. We presume that the smaller an open proof is (measured in the
number of open goals) the closer it is to being closed. Therefore we prefer
formulae which come from small open proofs to those from big open proofs.

Experiments have shown that the choice and weighting of the criteria is
extremely important for the search in the space of invariants. In our work, we
ran several experiments to test the impact of different heuristics, the results of
which are given in Sect. 5 and [5].

Examples. We apply our algorithm to the example programs Fib and Lcm, of
which the latter one was introduced in Sect. 3 already. For the sake of simplicity,
we assume that for scoring of the invariants only the criteria of complexity is
applied.

Example Lcm. Fig. 5 shows how the algorithm works on Lcm. In this case all
presented creation methods are used.

Example Fib. Given a Fibonacci number n as input, Fib calculates how many
calculation steps are necessary in the series of Fibonacci numbers to reach n. The
result is stored in variable c. In case n is not a Fibonacci number, the program
does not terminate.

Fib =















i = 0 ; j = 1 ; t = 0 ; c = 2 ;
while (j 6= n) {

t = j + i ; i = j ; j = t ; c = c+ 1
}

In contrast to Lcm, the algorithm needs several refinement steps (Fig. 6)
to prove the non-termination of Fib. The input variable n is associated with
the free logical variable xn. This time, we used only the creation methods Add,
NegAdd, Ineq, together with the complexity scoring criterion. We abstained
from showing the creation method IneqVar, because it increases the number of
necessary iterations too much to be shown here. However, we did run the same
experiment with IneqVar and will present the results in the following section.

Properties of the Algorithm. We would like to have a closer look at the
properties of the algorithm which we presented here.

– Soundness. The algorithm is sound for non-termination: it will never iden-
tify a terminating program as non-terminating. This is an immediate conse-
quence of the soundness of the calculus from Sect. 3, because non-termination
is only reported if it was possible to construct a proof for it. Applied to a
terminating program, the algorithm will fail to find such a proof and will
output that it was not able to prove non-termination.



Non-Termination Checking for Imperative Programs 73

– Incompleteness. Unfortunately, but expectedly, both our calculus and the
algorithm are not complete for non-termination: there are programs that
do not terminate for some inputs, but there is no proof of this fact in the
calculus from Sect. 3. This is implied by the soundness, because the set of
programs that do not terminate for some inputs is not recursively enumer-
able.4 Because the algorithm is based on heuristics, it might also fail to find
existing non-termination proofs for a program, of course.

– Automation. The algorithm works fully automatic, in the sense that no man-
ual “human” actions are necessary to obtain the results.

– Determinism. The algorithm is deterministic, because for the same input it
always produces the same results. The indeterministic calculus which forms
the base of the prover is made deterministic by choice of heuristics and
prioritisation.

– Termination. Our algorithm itself always terminates. This is ensured by
setting an upper limit for the number of iterations, and by limiting the size
of proofs in the calculus from Sect. 3 that are constructed. Of course these
limits have to be chosen carefully, because the lower they are the fewer non-
terminating programs can be identified.

5 Experiments

To evaluate our method, we implemented the algorithm presented in Sect. 4 in
the Java programming language: we wrote an invariant generator as a stand-
alone tool, in which the KeY theorem prover [8] was embedded to take care of
the proofs in dynamic logic. Since there was no publicly available standardised
example set of non-terminating programs, we also built up such a set to estimate
the quality of our approach and to test different heuristics.

Example Set. Our example set consists of 55 programs, of which 53 are known to
be non-terminating for all or some input values, one whose termination behaviour
is not fully known, and one which is terminating. All programs are written in
a fragment of Java that captures the functionality of the While language from
Sect. 2. The programs operate on between one and five variables and consist of
up to 25 lines of code each. The selection of programs was made with the goal to
cover both typical programming errors and particularly tricky (non-)termination
behaviour.

Results of the Experiments. We tested different settings for creation and scoring
of invariants in several experiments [5]. Our software could solve 41 of the 55
examples automatically, but not more than 37 with one setting. This fact shows
how sensitive the algorithm’s heuristics are.

Some of the experiments were used to estimate the usefulness of the different
creation methods of Sect. 4, in particular the method IneqVar. When including

4 Note that the set of programs that terminate for all possible inputs is not recursively
enumerable either.
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It. cur. Inv. Open goals

1 Inv1 ≡ true j = x ⊢
2 Inv2 ≡ j > x x ≥ 1 ⊢ , j ≤ x− i, i ≤ −1, j ≥ 1 + x ⊢
3 Inv3 ≡ j < x x ≤ 1 ⊢ , i ≥ 1, j ≥ x− i, j ≤ −x ⊢
4 Inv4 ≡ j 6= x x = 1 ⊢ , j = x− i, i = 0 ⊢
5 Inv5 ≡ j > x ∧ x < 1 x ≥ 1 ⊢ , j ≤ x− i, x ≤ 0, i ≤ −1, j ≥ 1 + x ⊢
6 Inv6 ≡ j > x ∧ x > −1 none

The next invariants to be tried:

Inv7 ≡ j < x ∧ x > 1 Inv14 ≡ j 6= x ∧ j > x− i

Inv8 ≡ j < x ∧ i < 1 Inv15 ≡ j > x ∧ x < 1 ∧ x > 0
Inv9 ≡ j 6= x ∧ i = 0 Inv16 ≡ j > x ∧ j > x− i

Inv10 ≡ j 6= x ∧ x > 1 Inv17 ≡ j < x ∧ j < x− i

Inv11 ≡ j 6= x ∧ x < 1 Inv18 ≡ j 6= x ∧ j 6= x− i

Inv12 ≡ j 6= x ∧ x 6= 1 Inv19 ≡ j > x ∧ x < 1 ∧ j > x− i

Inv13 ≡ j > x ∧ x < 1 ∧ i > −1

Fig. 6. Application of the algorithm on example Fib. Again, technically, i and j in
the open goals are Skolem terms like fa(xa, xb) in Fig. 4. In iteration no. 6, the non-
termination proof can be closed with the constraint [xn < 1 ∧ −2 < xn ] for the free
variables. This result expresses that for n being 0 or −1, Fib does not terminate. The
following invariants were dismissed by the filters because of inconsistency: j > xn∧j <
1 + xn, j < xn ∧ j > xn − 1, and j > xn ∧ xn < 1 ∧ j < 1 + xn.

this creation method, and thus invariant templates with free logical variables,
about 20% more problems could be solved than without the method. This shows
that free variables are a strong tool to conduct non-termination proofs. Unfor-
tunately, proof attempts that use invariants with free variables also tend to be
considerably larger and more complex than those without, and more iterations
are needed in the algorithm. This means that the algorithm is slowed down
by free variables in those cases in which they are not strictly necessary to find
proofs. The average number of iterations in successful cases (in which a suitable
invariant was found) lay between 1.5 and 3.5 depending on the heuristics.

The example Lcm of Sect. 4 was solved in all experiments and needed between
2 and 8 iterations. The example Fib was solved by some of the experiments with
an iteration number between 6 and 39. The best run is illustrated in Fig. 6.
The number of iterations increases if the creation method IneqVar is used
(depending on the heuristics). An invariant which was found in this case is
j > Lj ∧ i > Li, where the proof was closed with the (simplified) constraint
[Lj = −1 ∧ Li = −1 ∧ x < 0 ]. Invariant and constraint describe the situation
where the input value n is negative and the variables j and i are non-negative.

The example set and the implementation of the software is publicly available
at http://www.key-project.org/nonTermination/.
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6 Related Work

Although the development of termination checkers is a flourishing research sub-
ject, we only know of two methods (and implementations) that are directly
comparable to the non-termination analysis presented in this paper:

The more similar approach is [12], which uses concolic program execution to
search for lassos (loops) in a program, and constraint solving for proving the
feasibility of lassos. The latter part is similar to the invariant generation method
shown in the present paper, but it does not make use of counterexamples to refine
invariant candidates. Because we use purely symbolic reasoning to determine
critical initial program states, it can also be expected that our approach is able
to derive more general descriptions of such input states than [12], at the cost of
being less scalable.

Secondly, the AProVE system [13] is able to prove both the termination and
non-termination of term rewrite systems [14] and is in principle also applicable to
imperative programs: such programs can be analysed after a suitable translation
to rewrite systems [2]. So far, existing translations are incomplete, however,
which means that the resulting rewrite system might be non-terminating even
if the original program is terminating.

Construction of invariants using invariant templates and constraint solving
is an approach that is employed in many contexts, e.g., [15, 16]. The principle is
usually not embedded in a program logic as it is done in the present paper.

The iterative refinement of invariants described in this paper has some sim-
ilarities to iterative backwards-propagation of assertions, which is described in
[17] but can, in some form or another, be found in many static program analysis
techniques.

7 Conclusion and Future Work

We have introduced a novel approach to automated detection of non-termination
defects in software programs. The approach is built on the basis of a sequent
calculus for dynamic logic and works by generating invariants that prove the
unreachability of terminating states. In experiments, the majority of our example
programs could automatically be proven non-terminating. Furthermore, when
experimenting with more complex non-terminating Java programs [5], we found
that also here it is often possible to find small and simple invariants that witness
non-termination. The intuitive explanation for this is that (i) the usage of the
invariant rule While (with anonymising updates) allows to ignore those parts
of the program state that are not changed in the loop, and that (ii) the precise
character of state changes caused by a loop can be ignored in the invariant as
well, as long as non-termination is preserved. Although further investigations
concerning such programs are necessary, this indicates that our method is also
applicable to programs that operate on heap data structures.

When moving from the while-language to actual Java-like programs, one
modification of the algorithm that appears helpful is to automatically add heap-
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wellformedness conditions to the invariant candidates. Partly, this is a conse-
quence of using dynamic logic for Java [8, Sect. 3], in which properties like
“attributes of allocated objects only point to allocated objects” are non-trivial
and can be difficult to synthesise for the invariant generator. Another aspect
that becomes more central with Java programs is the detection of the variables
and heap locations that a loop can assign to. It might be useful to determine
also these locations incrementally and simultaneously with the loop invariant,
based on failed proof attempts.

As a prerequisite for more extensive experiments, we want to develop an
implementation of our non-termination checker that is more tightly integrated
with the program verification tool used. This way, we expect to achieve a signif-
icantly higher performance. On the more theoretic level, we are in the process
of investigating the usage of closure constraints (Sect. 3) more systematically in
order to define fragments of first-order logic with integer arithmetic for which
the calculus is complete, and in order to further develop the approach.
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Abstract. This paper is a tutorial on performing formal specification
and semi-automatic verification of Java programs with the formal soft-
ware development tool KeY. This tutorial aims to fill the gap between
elementary introductions using toy examples and state-of-art case studies
by going through a self-contained, yet non-trivial, example. It is hoped
that this contributes to explain the problems encountered in verifica-
tion of imperative, object-oriented programs to a readership outside the
limited community of active researchers.

1 Introduction

The KeY system is the main software product of the KeY project, a joint ef-
fort between the University of Karlsruhe, Chalmers University of Technology
in Göteborg, and the University of Koblenz. The KeY system is a formal soft-
ware development tool that aims to integrate design, implementation, formal
specification, and formal verification of object-oriented software as seamlessly as
possible.

This paper is a tutorial on performing formal specification and semi-auto-
matic verification of Java programs with KeY. There is already a tutorial intro-
duction to the KeY prover that is set at the beginner’s level and presupposes
no knowledge of specification languages, program logic, or theorem proving [1,
Chapt. 10]. At the other end of the spectrum are descriptions of rather advanced
case studies [1, Chapt. 14 and 15] that are far from being self-contained. The
present tutorial intends to fill the gap between first steps using toy examples
and state-of-art case studies by going through a self-contained, yet non-trivial,
example. We found few precisely documented and explained, yet realistic, case
studies even for other verification systems. Therefore, we believe that this tuto-
rial is of interest in its own right, not only for those who want to know about KeY.
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We hope that it can contribute to explain the problems encountered in verifica-
tion of imperative, object-oriented programs to a readership outside the limited
community of active researchers.

We assume that the reader is familiar with the Java programming language,
with first-order logic and has some experience in formal specification and verifica-
tion of software, presumably using different approaches than KeY. Specifications
in the Java Modeling Language (JML) [2] and expressions in KeY’s program logic
Java Card DL [1, Chapt. 3] are explained as far as needed.

In this tutorial we demonstrate in detail how to specify and verify a Java
application that uses most object-oriented and imperative features of the Java
language. The presentation is such that the reader can trace and understand
almost all aspects. To this end, we provided the complete source code and speci-
fications at www.key-project.org/fmco06. We strongly encourage reading this
paper next to a computer with a running KeY system. The descriptions of this
paper refer to the upcoming version 1.4 of KeY, which is available under GPL
and can be freely downloaded from www.key-project.org. Information on how
to install the KeY tool can also be found on that web site.

The tutorial is organised as follows: in Section 2 we provide some background
on the architecture and technologies employed in the KeY system. In Section 3
we describe the case study that is used throughout the remaining paper. It is
impossible to discuss all verification tasks arising from the case study. Therefore,
in Section 4, we walk through a typical proof obligation (inserting an element
into a datastructure) in detail including the source code, the formal specification
of a functional property in JML, and, finally, the verification proof. In Section 5
we repeat this process with a more difficult proof obligation. This time around,
we abstract away from most features learned in the previous section in favour
of discussing some advanced topics, in particular complex specifications written
in Java Card DL, handling of complex loops, and proof modularisation with
method contracts. We conclude with a brief discussion.

2 The KeY Approach

The KeY Program Verification System. KeY supports several languages for spec-
ifying properties of object-oriented models. Many people working with UML and
MDA have familiarity with the specification language OCL (Object Constraint
Language), as part of UML 2.0. KeY can also translate OCL expressions to nat-
ural language (English and German). Another specification language supported
by KeY, which enjoys popularity among Java developers and which we use in
this paper, is the Java Modeling Language (JML). Optional plugins of KeY into
the popular Eclipse IDE and the Borland Together CASE tool suite are avail-
able with the intention to lower initial adoption cost for users with no or little
training in formal methods.

The target language for verification in KeY is Java Card 2.2.1. KeY is the
only publicly available verification tool that supports the full Java Card standard
including the persistent/transient memory model and atomic transactions. Rich
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specifications of the Java Card API are available both in OCL and JML. Java 1.4
programs that respect the limitations of Java Card (no floats, no concurrency,
no dynamic class loading) can be verified as well.

The Eclipse and Together KeY plugins allow to select Java classes or methods
that are annotated with formal specifications and both plugins offer to prove a
number of correctness judgements such as behavioural subtyping, partial and
total correctness, invariant preservation, or frame properties. In addition to the
JML/OCL-based interfaces one may supply proof obligations directly on the
level of Java Card DL. For this, a stand-alone version of the KeY prover not
relying on Eclipse or Together is available.

The program logic Java Card DL is axiomatised in a sequent calculus. Those
calculus rules that axiomatise program formulae define a symbolic execution en-
gine for Java Card and so directly reflect the operational semantics. The calculus
is written in a small domain-specific so-called taclet language that was designed
for concise description of rules. Taclets specify not merely the logical content
of a rule, but also the context and pragmatics of its application. They can be
efficiently compiled not only into the rule engine, but also into the automation
heuristics and into the GUI. Depending on the configuration, the axiomatisation
of Java Card in the KeY prover uses 1000–1300 taclets.

The KeY system is not merely a verification condition generator (VCG), but
a theorem prover for program logic that combines a variety of automated rea-
soning techniques. The KeY prover is distinguished from most other deductive
verification systems in that symbolic execution of programs, first-order reason-
ing, arithmetic simplification, external decision procedures, and symbolic state
simplification are interleaved.

At the core of the KeY system is the deductive verification component, which
also can be used as a stand-alone prover. It employs a free-variable sequent
calculus for first-order Dynamic Logic for Java. The calculus is proof-confluent,
i.e., no backtracking is necessary during proof search.

While we constantly strive to increase the degree of automation, user inter-
action remains indispensable in deductive program verification. The main design
goal of the KeY prover is thus a seamless integration of automated and interac-
tive proving. Efficiency must be measured in terms of user plus prover, not just
prover alone. Therefore, a good user interface for presentation of proof states
and rule application, a high level of automation, extensibility of the rule base,
and a calculus without backtracking are all important features.

Syntax and Semantics of the KeY Logic. The foundation of the KeY logic is
a typed first-order predicate logic with subtyping. This foundation is extended
with parameterised modal operators 〈p〉 and [p], where p can be any sequence
of legal Java Card statements. The resulting multi-modal program logic is called
Java Card Dynamic Logic or, for short, Java Card DL [1, Chapt. 3].

As is typical for Dynamic Logic, Java Card DL integrates programs and
formulae within a single language. The modal operators refer to the final state of
program p and can be placed in front of any formula. The formula 〈p〉φ expresses
that the program p terminates in a state in which φ holds, while [p]φ does not
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demand termination and expresses that if p terminates, then φ holds in the final
state. For example, “when started in a state where x is zero, x++; terminates in
a state where x is one” can be expressed as x

.
= 0 −> 〈x++;〉(x

.
= 1). The states

used to interpret formulae are first-order structures sharing a common universe.

The type system of the KeY logic is designed to match the Java type sys-
tem but can be used for other purposes as well. The logic includes type casts
(changing the static type of a term) and type predicates (checking the dynamic
type of a term) in order to reason about inheritance and polymorphism in Java
programs [1, Chapt. 2]. The type hierarchy contains the types such as boolean,
the root reference type Object, and the type Null, which is a subtype of all
reference types. It contains a set of user-defined types, which are usually used
to represent the interfaces and classes of a given Java Card program. Finally,
it contains several integer types, including both the range-limited types of Java
and the infinite integer type Z.

Besides built-in symbols (such as type-cast functions, equality, and opera-
tions on integers), user-defined functions and predicates can be added to the
signature. They can be either rigid or non-rigid. Intuitively, rigid symbols have
the same meaning in all program states (e.g., the addition on integers), whereas
the meaning of non-rigid symbols may differ from state to state.

Moreover, there is another kind of modal operators called updates. They
can be seen as a language for describing program transitions. There are simple
function updates corresponding to assignments in an imperative programming
language, which in turn can be composed sequentially and used to form parallel
or quantified updates. Updates play a central role in KeY: the verification calcu-
lus transforms Java Card programs into updates. KeY contains a powerful and
efficient mechanism for simplifying updates and applying them to formulae.

Rule Formalisation and Application. The KeY system has an automated-proof-
search mode and an interactive mode. The user can easily switch modes during
the construction of a proof.

For interactive rule application, the KeY prover has an easy to use graphical
user interface that is built around the idea of direct manipulation. To apply a
rule, the user first selects a focus of application by highlighting a (sub-)formula
or a (sub-)term in the goal sequent. The prover then offers a choice of rules
applicable at this focus. This choice remains manageable even for very large rule
bases. Rule schema variable instantiations are mostly inferred by matching. A
simpler way to apply rules and give instantiations is by drag and drop. If the
user drags an equation onto a term the system will try to rewrite the term with
the equation. If the user drags a term onto a quantifier the system will try to
instantiate the quantifier with this term.

The interaction style is closely related to the way rules are formalised in the
KeY prover. There are no hard-coded rules; all rules are defined in the “taclet
language” instead. Besides the conventional declarative semantics, taclets have a
clear operational semantics, as the following example shows—a “modus ponens”
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rule in textbook notation (left) and as a taclet (right):

φ, ψ, Γ =⇒ ∆

φ, φ→ ψ, Γ =⇒ ∆

\find (p −> q ==>) // implication in antecedent
\assumes (p ==>) // side condition
\replacewith(q ==>) // action on focus
\heuristics(simplify) // strategy information

The find clause specifies the potential application focus. The taclet will be
offered to the user on selecting a matching focus and if a formula mentioned in
the assumes clause is present in the sequent. The action clauses replacewith

and add allow modifying (or deleting) the formula in focus, as well as adding ad-
ditional formulae (not present here). The heuristics clause records information
for the parameterised automated proof search strategy.

The taclet language is quickly mastered and makes the rule base easy to main-
tain and extend. Taclets can be proven correct against a set of base taclets [3]. A
full account of the taclet language is given in [1, Chapt. 4 and Appendix B.3.3].

Applications. Among the major achievements using KeY in the field of program
verification so far are the treatment of the Demoney case study, an electronic
purse application provided by Trusted Logic S.A., and the verification of a Java
implementation of the Schorr-Waite graph marking algorithm. This algorithm,
originally developed for garbage collectors, has recently become a popular bench-
mark for program verification tools. Chapters 14 and 15 of the KeY book [1] are
devoted to a detailed description of these case studies. A case study [4] performed
within the HIJA project has verified the lateral module of the flight management
system, a part of the on-board control software from Thales Avionics.

Lately we have applied the KeY system also on topics in security analysis [5],
and in the area of model-based test case generation [6, 7] where, in particular,
the prover is used to compute path conditions and to identify infeasible paths.

The flexibility of KeY w.r.t. the used logic and calculus manifests itself in
the fact that the prover has been chosen as a reasoning engine for a variety of
other purposes. These include the mechanisation of a logic for Abstract State
Machines [8] and the implementation of a calculus for simplifying OCL con-
straints [9].

KeY is also very useful for teaching logic, deduction, and formal methods.
Its graphical user interface makes KeY easy to use for students. They can step
through proofs with different degrees of automation (using the full verification
calculus or just the first-order core rules). The authors have been successfully
teaching courses for several years using the KeY system. An overview and course
material is available at www.key-project.org/teaching.

Related Tools. There exist a number of other verification systems for object-
oriented programs. The KIV4 tool [10] is closest to ours in that it is also in-
teractive and also based on Dynamic Logic. Most other systems are based on

4 www.informatik.uni-augsburg.de/lehrstuehle/swt/se/kiv/
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a verification condition generator (VCG) architecture and separate the transla-
tion of programs into logic from the actual proof process. A very popular tool
of this kind is ESC/Java25 (Extended Static Checker for Java2) [11], which uses
the Simplify theorem prover [12] and attempts to find run-time errors in JML-
annotated Java programs. ESC/Java2 compromises on completeness and even
soundness for the sake of ease of use and scalability. Further systems are JACK
[13], Krakatoa [14], LOOP [15], which can also generate verification conditions
in higher order logic that may then be proved using interactive theorem provers
like PVS, Coq, Isabel, etc. Like KeY, JACK, Krakatoa, and LOOP support JML
specifications. With JACK, we moreover share the focus on smart card applica-
tions.

3 Verification Case Study:

A Calendar Using Interval Trees

In this tutorial, we use a small Java calendar application to illustrate how spec-
ifications are written and programs are verified with the KeY system. The ap-
plication provides typical functionality like creating new calendars, adding or
removing appointments, notification services that inform about changes to a
particular appointment or a calendar, and views for displaying a time period
(like a particular day or month) or for more advanced lookup capabilities.

The class structure of the calendar application is shown in Fig. 1 and 2. It
consists of two main packages: a datastructure layer intervals that provides
classes for working with (multisets of) intervals, and a domain layer calendar

that defines the actual logic of a calendar. Intervals (interface Interval) are the
basic entities that our calendars are built upon. In an abstract sense, each entry
or appointment in a calendar is primarily an interval spanned by its start and
its end point in time. A calendar is a multiset of such intervals. For reasons of
simplicity, we represent discrete points of time as integers, similarly to the time
representation in Unix (the actual unit and offset are irrelevant here). Further,
we use the observer design pattern (package observerPattern) for being able
to observe all modifications that occur in a calendar entry.

Interval Datastructures. The most important lookup functionality that our cal-
endar provides, is the ability to retrieve all entries that overlap a certain query
time interval (i.e., have a point of time in common with the query interval). Such
queries are used, for instance, when displaying all appointments for a particular
day. We consequently store intervals in an interval tree datastructure [16] (class
IntervalTree in Fig. 2), which allows to retrieve overlapping entries with loga-
rithmic complexity in the size of the calendar. An interval tree is a binary tree,
in which each node (class IntervalTreeNode) stores (a) the multiset of inter-
vals that include a certain point (the cutPoint) and (b) pointers to the subtrees
that handle the intervals strictly smaller (association left) resp. strictly bigger

5 http://secure.ucd.ie/products/opensource/ESCJava2/
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observerPattern

intervals

<<interface>>

Interval

+getStart(): int

+getEnd(): int

IntervalTree

CalendarEntry

-start: int

-end: int

-description: String

+moveEntry(newStart:int,newEnd:int)

Calendar

+add(e:CalendarEntry)

+remove(e:CalendarEntry)

+getCompleteView(): SortedCalendarView

Subject

+addObserver(o:Observer)

+removeObserver(o:Observer)

<<interface>>

CalendarListener

+addedEntry(e:CalendarEntry)

+removedEntry(e:CalendarEntry)

<<interface>>

Observer

+prepareForModification(s:Subject)

+updated(s:Subject)

<<interface>>

CalendarView

+getEntries(): CalendarEntrySeq SortedCalendarView

+getOverlappingEntries(iv:Interval): CalendarEntrySeq

TimeFrameCalendarView

-timeFrame: Interval

CalendarModificationServer

+registerListener(l:CalendarListener)

+unregisterListener(l:CalendarListener)

#fireAddedEntry(e:CalendarEntry)

#fireRemovedEntry(e:CalendarEntry)

CalendarEntrySeq

+size(): int

+at(i:int): CalendarEntry

+insert(e:CalendarEntry)

+removeFirst(e:CalendarEntry): boolean

{ordered,bag}

TimeFrameDisplay

-timeFrameView: TimeFrameCalendarView

+add(entry:CalendarEntry): void
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intervals

<<interface>>

Interval

+getStart(): int

+getEnd(): int

SimpleInterval

-start: int

-end: int

IntervalSeq

+size(): int

+at(i:int): Interval

+insert(iv:Interval)

+removeFirst(iv:Interval): boolean

SortedIntervalSeq

+getBoundary(iv:Interval): int

+collectLeq(seq:IntervalSeq,p:int)

+collectGeq(seq:IntervalSeq,p:int)

SortedByStartIntervalSeq

+getBoundary(iv:Interval): int

SortedByEndIntervalSeq

+getBoundary(iv:Interval): int

IntervalTree

+size(): int

+insert(iv:Interval)

+remove(iv:Interval): boolean

+getOverlappingIntervals(iv:Interval): IntervalSeq

root 0 .. 1

left

0 .. 1

right

0 .. 1

1

sortedByStart

sortedByEnd

1

*

contents

{ordered,bag}

IntervalTreeNode

-cutPoint: int

 size(): int

 insert(iv:Interval)

 remove(iv:Interval): boolean

 collectOverlappingIntervals(seq:IntervalSeq,
                             iv:Interval)

Fig. 2. The package intervals of the calendar case study

(association right) than the cut point. The intervals belonging to a particular
node have to be stored both sorted by the start and by the end point, which is
further discussed in Sect. 4.

Package Calendar. The two primary classes that implement a calendar are
CalendarEntry for single appointments (an implementation of the interface
Interval) and Calendar for whole calendars. The basic Calendar provides the
interface CalendarView for accessing all entries that are part of the calendar in
an unspecified order. A more advanced lookup interface, SortedCalendarView,
can be accessed through the method getCompleteView of Calendar. It allows
to retrieve all entries that overlap with a given interval. This interface is realised
using the interval trees from package intervals.

A further view on calendars is TimeFrameCalendarView, which pre-selects
all appointments within a given period of time, and which is based on the class
SortedCalendarView. Both Calendar and TimeFrameCalendarView also pro-
vide a notification service (CalendarModificationServer) that informs about
newly added and removed entries. We illustrate the usage of this service (and
of TimeFrameCalendarView) in class TimeFrameDisplay, which is further dis-
cussed and verified in Sect. 5.

4 First Walk-through:

Verifying Insertion into Interval Sequences

In this section, we zoom into a small part of the scenario described above, namely
the insert() method belonging to the class IntervalSeq and its subclasses. In
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the context of that method, we demonstrate the different basic stages of formal
software development with the KeY system. We discuss the formal specification
of the insert() method, the generation of corresponding proof obligations in
the used program logic, and the formal verification with the KeY prover. Along
with demonstrating the basic work-flow, we introduce the used formalisms on
the way, when they appear, but just to the extent which allows to follow the
example. These formalisms are: the specification language JML (Java Modeling
Language) [2], the program logic Java Card DL, and the corresponding calculus.6

As described in Section 3, the basic data structure of the case study scenario
is a tree, the nodes of which are instances of the class IntervalTreeNode. Each
such node contains one integer number (representing a point in time, the “cut
point” of the node), and two interval sequences, both containing the same in-
tervals (all of which contain the cut point of the node). The difference between
the two sequences is that the contained intervals are sorted differently, once by
their start, and once by their end.

Correspondingly, the two sequences contained in each node are instances of
the classes SortedByStartIntervalSeq and SortedByEndIntervalSeq, respec-
tively. Both are subclasses of SortedIntervalSeq, which in turn is a subclass
of IntervalSeq. One of the basic methods provided by (instances of) these
classes is insert(Interval iv). In this section, we discuss, as an example, the
implementation and specification of that method, as well as the verification of
corresponding proof obligations.

The specification of the insert() method of the class SortedIntervalSeq

also involves the superclass, IntervalSeq, because parts of the specification are
inherited from there. Later, in the verification we will also be concerned with the
two subclasses of SortedIntervalSeq, which provide different implementations
of a method called by insert(), namely getBoundary().

4.1 Formal Specification and Implementation

Within the Class IntervalSeq. This class is the topmost one in this small
hierarchy, instances of which represent a sequence of intervals. Internally, the
sequence is realised via an array contents of type Interval[]. This array can
be longer than the actual size of the interval sequence. Thereby, we avoid having
to allocate a new array at each and every increase of the sequence’s size. Instead,
size points to the index up to which we consider contents be filled with “real”
intervals; only if size exceeds contents.length, a new array is allocated, into
which the old one is copied. This case distinction is encapsulated in the method
incSize(), to be called by insert().

Java (1.1)

prote
ted void incSize() {

++size;

6 All these are described in more detail in the KeY book [1]: JML in Section 5.3,
Java Card DL and the calculus in Chapter 3.



90 First Walk-through: Verifying Insertion into Interval Sequences

if ( size > contents.length ) {

final Interval[] oldAr = contents;

contents = new Interval[contents.length * 2];

int i = 0;

while (i < oldAr.length) {contents[i] = oldAr[i]; ++i;}

}

}

Java

We turn to the actual insert() method now. The class IntervalSeq is igno-
rant of sorting, so all we require from insert(iv) is that iv is indeed inserted,
wherever, in the sequence. To the very least, this means that, in a post state,
iv is stored at any of the indices of contents. Using mathematical standard
notation, we can write this as

∃i. 0 ≤ i ∧ i < size ∧ contents[i] = iv

Note that, already in this mathematical notation, we are mixing in elements
from the programming language level, namely the instance field names, and the
array access operator “[ ]”. Now, the specification language JML takes this
several steps further, using Java(like) syntax wherever possible: <= for ≤, && for
∧, == for =, != for 6=, and so on. Special keywords are provided for concepts not
covered by Java, like \exists for ∃. Altogether, the above formula is expressed
in JML as:

\exists int i; 0 <= i && i < size; contents[i] == iv

As we can see, quantified formulae in JML have three parts, separated by “;”.
The first declares the type of the quantified variable, the second is intended
to further restrict the range of the variable, while the third states the “main”
property, intuitively speaking. Logically, however, the second and the third part
of a JML “\exists”-formula are connected via “and” (∧).

The above formula is a postcondition, as it constrains the admissible states
after execution of insert(). A sensible precondition would be that the interval
to be inserted is defined: iv != null. Because assumptions like this are so
common, however, they are implicitly assumed in the latest versions of the JML
standard [2, Sect. 2.8] and do not have to be added by hand. This behaviour
is called “non-null by default.” Vice versa, a reference for which null is a legal
value has to be declared as nullable:

Java + JML

stati
 boolean remove(IntervalTreeNode /*@ nullable @*/ node,

Interval iv) {

if ( node == null ) return false;

...

Java + JML
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In general, JML specifications are written into Java source code files, in form
of Java comments starting with the symbol “@”. The location of the comment
depends on the kind of the specification: while tags like nullable are attached to
variable declarations, JML method specifications (including pre/post-conditions)
precede the method they specify. In our example, IntervalSeq.java would
contain the following lines:

Java + JML (1.2)

/*@ publi
 normal_behavior

@ ensures (\exists int i; 0 <= i && i < size;

@ contents[i] == iv);

@*/

publi
 void insert(Interval iv) {

...

Java + JML

This is an example for a method contract in JML. For the purpose of our
example, this contract is, however, still very weak. It does, for instance, not
specify how the values of size before and after execution of insert() relate
to each other. For such a purpose, JML offers the “\old” construct, which
is used in a postcondition to refer back to the pre-state. With that, we can
state size == \old(size) + 1. Further, the contract does not yet tell whether
all (or, in fact, any) of the intervals previously contained in contents remain
therein, not to speak of the indices under which they appear. What we need to
say is (a) that, up to the index i where iv is inserted, the elements of contents
are left untouched, and (b) that all other elements are shifted by one index.
Both can be expressed using the universal quantifier in JML, “\forall”, which
is quite analogous to the “\exists” operator. Using that, (b) would translate
to:

\forall int k; i < k && k < size;

contents[k] == \old(contents[k-1])

Note that, in case of “\forall”, the second “;” logically is an implication, not a
conjunction as was the case for “\exists”. In the above formula, i refers to the
index of insertion, which we have existentially quantified over earlier, meaning
we get a nested quantification here.

Together with an appropriate assignable clause to be explained below, we
now arrive at the following JML specification of insert():

Java + JML (1.3)

/*@ publi
 normal_behavior

@ ensures size == \old(size) + 1;

@ ensures (\exists int i; 0 <= i && i < size;

@ contents[i] == iv

@ && (\forall int j; 0 <= j && j < i;

@ contents[j] == \old(contents[j]))
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@ && (\forall int k; i < k && k < size;

@ contents[k] == \old(contents[k-1])));

@ assignable contents, contents[*], size;

@*/

publi
 void insert(Interval iv) {

...

Java + JML

The assignable clause, in this example, says that the insert() is allowed to
change the value of contents, the value of the element locations of contents,
and of size, but nothing else. The purpose of the assignable clauses is not so
much the verification of the method insert (in this case), but rather to keep
feasible the verification of other methods calling insert().

Within the Abstract Class SortedIntervalSeq. This class extends the
class IntervalSeq, augmenting it with the notion of sortedness. In particular,
this class’ implementation of insert() must respect the sorting. To specify this
requirement in JML, one could be tempted to add sortedness to both, the pre-
and the postcondition of insert(). However, such invariant properties should
rather be placed in JML class invariants, which like method contracts are added
as comments to the source code.

The following lines are put anywhere within the class SortedIntervalSeq:

JML (1.4)

/*@ publi
 invariant

@ (\forall int i; 0 <= i && i < size - 1;

@ getBoundary(contents[i]) <= getBoundary(contents[i+1]));

@*/

JML

The actual sorting criterion, getBoundary(), is left to subclasses of this class,
by making it an abstract method.

Java + JML (1.5)

prote
ted /*@ pure @*/ abstra
t int getBoundary(Interval iv);

Java + JML

The phrase “/*@ pure @*/” is another piece of JML specification, stating that
all implementations of this method terminate (on all inputs), and are free of
side effects. Without that, we would not be allowed to use getBoundary() in
the invariant above, nor in any other JML formula.

Finally, we give the SortedIntervalSeq implementation of insert() (over-
riding some non-sorted implementation from IntervalSeq):

Java (1.6)

publi
 void insert(Interval iv) {

int i = size;
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incSize ();

final int ivBoundary = getBoundary( iv );

while ( i > 0 && ivBoundary < getBoundary( contents[i-1] ) ) {

contents[i] = contents[i - 1];

--i;

}

contents[i] = iv;

}

Java

Within the SortedByStart. . . and SortedByEnd. . . Classes. These two
classes extend SortedIntervalSeq by defining the sorting criteria to be the
“start” resp. “end” of the interval. Within SortedByStartIntervalSeq, we
have:

Java + JML (1.7)

prote
ted /*@ pure @*/ int getBoundary(Interval iv) {

return iv.getStart ();

}

Java + JML

and within SortedByEndIntervalSeq, we have

Java + JML (1.8)

prote
ted /*@ pure @*/ int getBoundary(Interval iv) {

return iv.getEnd ();

}

Java + JML

4.2 Dynamic Logic and Proof Obligations

After having completed the specification as described in the previous section we
start bin/runProver (in your KeY installation directory) as a first step towards
verification. The graphical user interface of the KeY prover will pop up. To load
files with Java source code and JML specifications, we select File → Load . . . (or

in the tool bar). For the purposes of this introduction we navigate to where
the calender-sources7 are stored locally, select that very directory (not any
of the sub-directories), and push the open button. After an instant the proof
obligation browser will appear on the screen. In the left of the two window
panes, the Classes and Operations pane, we expand the folder corresponding to
the package intervals, then the folder for the class IntervalSeq, and finally
we select method insert(Interval iv). Now also the Proof Obligations pane
shows some entries, of which we choose EnsuresPost. Clicking on Start Proof takes

7 The sources can be downloaded from www.key-project.org/fmco06.
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KeY

1 inReachableState

2 & \forall intervals.IntervalSeq i_0; (i_0.<created>=TRUE & !i_0=null
3 -> !i_0.contents = null)
4 & \forall intervals.IntervalSeq i_0; (i_0.<created>=TRUE & !i_0=null
5 -> i_0.contents.length >= i_0.size)

6 & \forall intervals.IntervalSeq i_0; (i_0.<created>=TRUE & !i_0=null
7 -> i_0.contents.length >= (jint)(1))

8 ...

9 & (self.<created> = TRUE & !self = null)
10 & (iv.<created> = TRUE | iv = null)
11 & !iv = null
12 ->

13 {_iv:=iv ||

14 \for intervals.IntervalSeq x; contentsAtPre_0(x):=x.contents ||

15 \for (int x1; intervals.Interval[] x0) getAtPre_0(x0,x1):=x0[x1] ||

16 \for intervals.IntervalSeq x; sizeAtPre_0(x):=x.size}

17 \<{
18 exc=null;try {

19 self.insert(_iv)@intervals.IntervalSeq;

20 } 
at
h (java.lang.Throwable e) {

21 exc=e;

22 }

23 }\> ( self.size = (jint)(javaAddInt(sizeAtPre_0(self),(jint)(1)))

24 & \exists jint i; ...

25 & exc = null)
KeY

Fig. 3. Proof obligation for the insert method in class IntervalSeq

us to a second dialogue in which the contract to be verified can be chosen (only
one is available for the method insert), along with the object invariants that
are assumed by the method implementation. For the time being, the pre-selected
contract and invariants are just fine and we proceed by clicking on Ok, which
brings us back to the KeY prover interface.

Now, the Tasks pane records the tasks we have loaded (currently one) and the
main window Current Goal shows the proof obligation. It looks quite daunting and
we use the rest of this section to explain what you see there. The construction
of the actual proof is covered in the next section. Ignoring the leading ==>, the
proof obligation is of the form shown in Fig. 3.

Java Card DL. Fig. 3 shows a formula of Dynamic Logic (DL), more pre-
cisely Java Card DL, see Section 2. The reader might recognise typical fea-
tures of first-order logic: the propositional connectives (e.g., -> and &), predi-
cates (e.g., inReachableState, a predicate of arity 0), equality, constant sym-
bols (e.g., self), unary function symbols (e.g., size), and quantifiers (e.g.,
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\exists jint i;). The function symbol size is the logical counterpart of the
attribute of the same name. Note also that Java Card DL uses dot-notation for
function application, for example, self.size instead of size(self) on line 23.
What makes Java Card DL a proper extension of first-order logic are modal
operators. In the above example the diamond operator

\<{... self.insert(_iv)@intervals.IntervalSeq; ...}\>

occurs on line 17 (note that in KeY the modal operators <> and [] are written
with leading backslashes). In general, if prog is any sequence of legal Java Card
statements and F is a Java Card DL formula, then \<prog\>F is a Java Card DL
formula too. As already explained in Section 2, the formula \<prog\>F is true in
a state s1 if there is a state s2 such that prog terminates in s2 when started in s1
and F is true in s2. The box operator \[. . .\] has the same semantics except
that it does not require termination.

In theoretical treatments of Dynamic Logic there is only one kind of variable.
In Java Card DL we find it more convenient to separate logical variables (e.g., i in
the above example), from program variables (e.g. self). Program variables are
considered as (non-rigid) constant symbols in Java Card DL and may thus not
be quantified over. Logical variables on the other hand are not allowed to occur
within modal operators, because they cannot occur as part of Java programs.

Exceptions. The abrupt termination of a Java statement due to the occurrence
of an exception (e.g., because a reference with value null was dereferenced) is
in Java Card DL considered as non-termination. This implies that \<prog\>F is
false if prog raises an exception, while the corresponding box-formula is true,
which is often the intended meaning when writing DL formulae. If a more
fine-grained specification of the termination behaviour of a program prog is re-
quired (e.g., to allow only certain kinds of exceptions), prog can be enclosed in a
try ... 
at
h statement, as it is the case in Fig. 3. The resulting program as
a whole will never raise an exception, but by asserting properties involving the
variable exc in the post-condition F it is possible to observe how the program
terminated.

State Updates. We are certainly not able to touch on all central points of
Java Card DL in this quick introduction, but there is one item we cannot drop,
namely updates. The expression in line 13–16 in Fig. 3 is an example of an up-
date, which consists of a sequence of assignments like _iv:=iv. The left-hand
side of such an assignment (a function update) has to be a non-rigid term like
a program variable, as _iv in this example, or an array or field access. The
right-hand side can be an arbitrary Java Card DL term, which of course must
be compatible with the type of the left-hand expression. Constructs like i:=j++

where the right-hand side would have side-effects are not allowed in updates.
If lhs:=rhs is a function update and F is a formula, then {lhs:=rhs}F is a
Java Card DL formula. The formula {lhs:=rhs}F is true in state s1 if F is true
in state s2 where s2 is obtained from s1 by performing the update. For example,
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the state s2 obtained from s1 by performing the update _iv:=iv (only) differs
in the value of _iv, which is in s2 the value that iv has in s1.

The assignments in line 13–16 are combined using the parallel composition
operator “||” that carries out the individual assignments simultaneously: none
of the assignments can observe the effects of the other assignments. Swapping
two variables, for instance, can be performed using the update x:=y || y:=x. A
second update connective that occurs in line 14–16 is the quantification operator
\for, which carries out an assignment simultaneously for all values of one or
multiple bound variables. Quantification is in Fig. 3 used to store the pre-state
values of the fields contents and size as well as the contents of Interval-
arrays, which can then be referred to in the post-state (as in line 23). The
introduction of these updates is triggered by the usage of the \old construct in
a specification, like in the following JML ensures clause:

JML

@ ensures size == \old(size) + 1;

JML

One difference between updates and Java assignment statements is that
logical variables such as i may occur on the right-hand side of updates. In
Java Card DL it is not possible to quantify over program variables. This is made
up for by the possibility of quantifying over logical variables, whose values can
then be assigned to program variables by an update. Finally, the most important
role of updates is that of delayed substitutions. During symbolic execution (per-
formed by the prover using the Java Card DL calculus) the effects of a program
are removed from the modality \<. . .\> and turned into updates, where they are
simplified and parallelised. Only when the modality has been eliminated, updates
are substituted into the post-state. For a more thorough discussion, we refer to
the KeY book [1, Chapt. 3] and to [17] (page 115).

Kripke Semantics. A state s ∈ S contains all information necessary to describe
the complete snapshot of a computation: the existing instances of all types, the
values of instance fields and local program variables etc. Modal logic expressions
are not evaluated relative to one state model but relative to a collection of
those, called a Kripke Structure. There are rigid symbols that evaluate to the
same meaning in all states of a Kripke Structure. The type int (see e.g., line 15
in Fig. 3) in all states evaluates to the (infinite) set of integers, also addition + on
int are always evaluated as the usual mathematical addition. Logical variables
also count among the rigid symbols, no program may change their value. On the
other hand there are non-rigid symbols like self, _iv, contents, or at(i).

Proof Obligations. We have to add more details on Java Card DL as we go
along but we are now well prepared to talk about proof obligations. We are still
looking at Fig. 3 containing the proof obligation in the Current Goal pane that was
generated by selecting the normal behavior specification case. Line 11 contains
the (implicit) pre-condition that iv is a valid reference, while the conjunction of
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all JML invariants for class IntervalSeq appears in line 2–8. Since in the JML
semantics normal behavior includes the termination requirement, the diamond
modality is used. Starting with line 23, the first line within the scope of the
modal operator, follows the conjunction of the ensures clauses in the JML
method specification.

Looking again at Fig. 3, we notice in line 10 additional restrictions on the im-
plicitly universally quantified parameter iv. To understand what we see here, it is
necessary to explain how Java Card DL handles object creation. Java Card DL
adopts what is called the constant domain assumption in modal logic theory.
According to this assumption all states share the same objects for all occurring
types. In addition there is an implicit field <created> that is defined in the class
java.lang.Object (to emphasise that this is not a normal field, it is set within
angled brackets). Initially we have o.<created> = FALSE for all objects o. If
a new operation is performed we look for the next object o to be created and
change the value of o.<created> from FALSE to TRUE, which now is nothing
more than any other function update.

A symbol that remained unexplained so far is the function javaAddInt in
line 23, which is puzzling considering that also an ordinary + is available in
Java Card DL. The reason for not using + directly is that KeY allows different
integer semantics both for Java and for JML, and depending on the seman-
tics a JML-+ can be interpreted as the mathematical + or as the addition in
modular 32-bit arithmetic [1, Chapt. 12]. The symbol javaAddInt always refers
to the addition of the active integer semantics; similar function symbols exist
for the other arithmetic operations. The mode to be used can be chosen under
Options → Default Taclet Options ....

Proper Java States. It still remains to comment on the precondition that we
skipped on first reading, inReachableState. In KeY a method contract is proved
by showing that the method terminates in a state satisfying the postcondition
when started in any state s1 satisfying the preconditions and the invariants.
This may also include states s1 that cannot be reached from the main method.
But, usually the preconditions and invariants narrow down this possibility and
in the end it does not hurt much to prove a bit more than is needed. But, there
is another problem here: the implicit fields. A state with object o and field a

such that o.<created> = TRUE, o.a != null, and o.a.<created> = FALSE is
not possible in Java, but could be produced via updates. It is the precondition
inReachableState that excludes this kind of anomalies.

Capturing JML Specifications in Java Card DL. Let us go back to the proof obli-
gation browser and select RespectsModifies for the insert method. When proving,
e.g., the normal behavior clause of a method contract, we also take advantage
of the JML assignable clause. The current proof obligation now checks if the
assignable clauses are indeed correct: a call to the insert method only assigns
to those fields of the called object that are mentioned in the assignable clause,
all other fields remain unchanged.



98 First Walk-through: Verifying Insertion into Interval Sequences

Now, let us select the last proof obligation in the proof obligation browser,
which is named PreservesInv. Its purpose is to make sure that, for any state s1
that satisfies all invariants of the IntervalSeq class and the preconditions of
insert(iv), the invariants are again true in the end state s2 of this method.
Note that here the modal box-operator is used. Termination of the method was
already part of its method contract, so we need not prove it again here. The proof
obligation requires the invariants to also hold when the methods terminates via
an exception. This is the reason why insert(iv) is enclosed in a try-catch
block.

4.3 Verification

In this section, we demonstrate how the KeY prover is used to verify a proof
obligation resulting from our example. It is important to note, however, that a
systematic introduction into the usage of the prover is beyond the scope of this
paper. Such an introduction can be found in Chapter 10 of the KeY book [1].
On the other hand, the examples in that chapter are of toy size as compared to
the more realistic proof obligations we consider in this paper.

This section is meant to be read with the KeY prover up and running, to
perform the described steps with the system right away. The exposition aims
at giving an impression only, on how verification of more realistic examples is
performed, while we cannot explain in detail why we are doing what we are
doing. Again, please refer to [1, Chapt. 10] instead.

We will now verify that the implementation of the method insert() in class
SortedIntervalSeq (not in IntervalSeq) respects the contract that it inherits
from IntervalSeq. Before starting the proof, we remind ourselves of the code
we are going to verify: the implementation of insert() was given in listing (1.6)
in Sect. 4.1, and it calls the inherited method incSize(), see listing (1.1). Both
these methods contain one while loop, which we advise the reader to look at,
as we have to recognise them at some point during the verification.

We first let KeY generate the corresponding proof obligation, by following
the same steps as described at the beginning of Sect. 4.2 (from File → Load . . .

onwards), but with the difference that we select SortedIntervalSeq instead
of IntervalSeq the Classes and Operations pane. We choose again the method
insert(Interval iv) and the specification case EnsuresPost.

In the next dialogue, the Contract Configurator, we need to add further invari-
ants to be assumed for the verification: by default, only the invariants of the
class SortedIntervalSeq are included, which are not sufficient as important
properties are also asserted in the superclass IntervalSeq. To add these invari-
ants, change to the Assumed Invariants tab, click on the class IntervalSeq in the
Classes pane, and then select all of the offered invariants in the Invariants pane
(to select multiple invariants, use the left mouse key together with the Control

or the Shift key).

Afterwards, the Current Goal pane contains a proof obligation that is very
similar to the one discussed in Sect. 4.2, just that now the (translated) class
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invariant of SortedIntervalSeq, see listing (1.4), serves as an additional as-
sumption.

This now is a good time to comment on the the leading “==>” symbol in the
Current Goal pane. As described in Sect. 2, the KeY prover builds proofs based
on a sequent calculus. Sequents are of the form φ1, . . . , φn =⇒ φ′

1
, . . . , φ′

m
, where

φ1, . . . , φn and φ′
1
, . . . , φ′

m
are two (possibly empty) comma-separated lists of

formulae, separated by the sequent arrow =⇒ (that is written as “ ==> ” in the
KeY system). The intuitive meaning of a sequent is: if we assume all formulae
φ1, . . . , φn to hold, then at least one of the formulae φ′

1
, . . . , φ′

m
holds. We refer

to “φ1, . . . , φn” and “φ′
1
, . . . , φ′

m
” as the “left-hand side” (or “antecedent”) and

“right-hand side” (or “succedent”) of the sequent, respectively.
The particular sequent we see now in the Current Goal pane has only one

formula on the right-hand side, and no formulae on the left-hand side, which
is the typical shape for generated proof obligations, prior to application of any
calculus rule. It is the purpose of the sequent calculus to, step by step, take
such formulae apart, while collecting assumptions on the left-hand side, and
alternatives on the right-hand side, until the sheer shape of a sequent makes it
trivially true. Meanwhile, certain rules make the proof branch.

We prove this goal with the highest possible degree of automation. However,
we first apply one rule interactively, just to show how that is done. In general,
interactive rule application is supported by the system offering only those rules
which are applicable to the highlighted formula, resp. term (or, more precisely,
to its top-level operator). If we now click on the leading “->” of the right-hand
side formula, a context menu for rule selection appears. It offers several rules
applicable to “->”, among them impRight, which in textbook notation looks like
this:

impRight
Γ, φ =⇒ ψ,∆

Γ =⇒ φ −> ψ,∆

A tool-tip shows the corresponding taclet. Clicking on impRight will apply the
rule in our proof, and the Current Goal pane displays the new goal. Moreover,
the Proof tab in the lower left corner displays the structure of the (unfinished)
proof. The nodes are labelled either by the name of the rule which was applied
to that node, or by “OPEN GOAL” in case of a goal. (In case of several goals, the
one currently in focus is highlighted in blue.) We can see that impRight has been
applied interactively (indicated by a hand symbol).

The proof we are constructing will be several thousand steps big, so we
better switch to automated proof construction now. For that, we select the
Proof Search Strategy tab in the lower left corner, and configure the proof strategy
as follows:

– Max. rule applications: 5000 (or just any big number)
– Java DL (the strategy for proving in Java Card DL)
– Logical splitting: Normal (do not delay proof splitting)
– Loop treatment: None (we want symbolic execution to stop in front of loops)
– Method treatment: Expand (methods are inlined during symbolic execution)
– Query treatment: Expand (queries in specifications are inlined)
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– Arithmetic treatment: Basic (simple automatic handling of linear arithmetic)
– Quantifier treatment: No Splits

(use heuristics for automatic quantifier handling, but do not perform instan-
tiations that might cause proof splitting)

– User-specific taclets: all off

(we do not make use of user-defined proof rules in this paper)

We run the strategy by clicking the button (either in the Proof Search Strategy

tab or in the tool bar). The strategy will stop after about 1000 rule appli-
cations once the symbolic execution arrives at loops in the program (due to
Loop treatment: None). We open the Goals tab, where we can see that there are
currently five goals left to be proven.

We can view each of these goals in the Current Goal pane, by selecting one
after the other in the Goals tab. In four of the five goals, the modality (preceded
by a parallel update) starts with:

KeY (1.9)

\<{method-frame(. . .): {

while ( i>0 && ivBoundary<getBoundary(contents[i-1]) ) {

. . .

KeY

In those four proof branches, symbolic execution is just about to “enter” the
while loop in the method insert(). In the remaining fifth branch, the same holds
for the while loop in the method incSize(). For the loop in insert(), we get
four cases due to the two existing implementations of the interface Interval and
the two concrete subclasses of the abstract class SortedIntervalSeq. All four
cases can be handled in the same way and by performing the same interactions,
to be described in the following.

In each case, we first have to process the while loop at the beginning of the
modality. It is well known that loops cannot be handled in a similarly automated
fashion as most other constructs.

Loop Invariants. Generally, for programs containing loops we have to choose
a suitable loop invariant8 (a formula) in order to prove that the loop has the
desired effect and a loop variant (an integer term) for proving that the loop
terminates. We also have to specify the assignable memory locations that can be
altered during execution of the loop. All this information can be entered as part
of an interactive proof step in KeY. However, the prover also supports the JML
feature of annotating loops with invariants, variants, and assignable locations.

Invariants typically express that the loop counter is in a valid range, and
give a closed description of the effect of the first n iterations. For the loop in the
method insert(), it is necessary to state in the invariant that:

– the loop counter i never leaves the interval [0, size),

8 As an alternative to using invariants, KeY offers induction, see [1, Chapt. 11].



Verifying Object-Oriented Programs with KeY: A Tutorial 101

– the interval is not inserted too far left in the array, and
– the original contents of the sequence are properly shifted to the right.

The last component of the invariant is very similar to the post-condition of the
whole insert() method (see listing (1.3)): it has to be stated that all array
components that have already been visited by the loop are shifted to the right,
whereas a prefix of the array remains unchanged. This can be achieved using the
JML \old operator, which in a loop invariant (like in a post-condition) refers to
the pre-state of the enclosing method.

Stating the termination of the loop is simple, because the variable i is always
non-negative and decreased in each iteration. Further, we specify that the only
modifiable memory locations are the loop counter and the elements of the array
contents. Altogether, this yields the following specification:

Java + JML

/*@ loop_invariant 0 <= i && i < size &&

@ (i+1 < size ==>

@ ivBoundary < getBoundary( contents[i+1] )) &&

@ (\forall int k; 0 <= k && k < i;

@ contents[k] == \old(contents[k])) &&

@ (\forall int k; i < k && k < size;

@ contents[k] == \old(contents[k-1]));

@ de
reases i;

@ assignable contents[*], i;

@*/

while ( i > 0 && ivBoundary < getBoundary( contents[i-1] ) ) {

contents[i] = contents[i - 1];

--i;

}

Java + JML

Verification Using Invariants. We continue our proof on one of the four similar
goals, all of which containing the modality of the form (1.9), such that processing
the loop in insert() is the next step. Because all these four goals can be handled
in the same way, we can pick an arbitrary one of them, by selecting it in the
Goals tab. Before proceeding, we switch to the Proof tab, to better see the effect
of the upcoming proof step.

Before we apply the actual invariant rule, we perform one further interac-
tive proof step that will simplify the rest of the proof. The sequent contains a
quantified formula stating that the elements of the contents array are not null:

KeY

\forall intervals.IntervalSeq i_0; \forall jint i;

(i <= -1 | i_0 = null | !i_0.<created> = TRUE | i_0.size <= i

| !i_0.contents[i] = null)

KeY
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We will frequently need instances of this invariant, but in some cases the heuris-
tics built into KeY are not able to derive these instances automatically. KeY
can be helped in such case by manually instantiating the formula with the
required terms, which at this point is the variable self denoting the object
of the class SortedIntervalSeq at hand. To perform this instantiation, use
the mouse to drag any occurrence of self in the sequent to the quantifier
\forall intervals.IntervalSeq i and choose the rule allLeft in the appearing
menu.9

We then apply an invariant rule which automatically extracts the JML an-
notation of our loop from the source code. For that, we click on any of the
“:=” symbols in the parallel update preceding the modality \<. . .\>, and select
loopInvariant (with variant) from the rules offered. Depending on the settings, a
Choose Taclet Instantiation window can pop up, where we just press Apply.

Afterwards, the Proof tab tells us (possibly after scrolling down a bit) that
the application of this invariant rule has resulted in four proof branches:

– Invariant Initially Valid: It has to be shown that the chosen invariant holds when
entering the loop.

– Body Preserves Invariant: Under the assumption that the invariant and the loop
condition hold, after one loop iteration the invariant still has to be true.

– Termination: Under the assumption that the invariant and the loop condition
hold, the chosen variant has to be decreased by the loop body, but has to
stay non-negative.

– Use Case: The remaining program has to be verified now using the fact that
after the loop terminates, the invariant is true and the loop condition is false.

The four cases can be proven as follows. Generally, for a complex proof like
this, it is best to handle the proof goals one by one and to start the automatic
application of rules only locally for a particular branch. This is done by clicking
on a sequent arrow ==> and choosing Apply rules automatically here, or by shift-
clicking on a sequent arrow, or by right-clicking on a node in the proof tree
display and selecting Apply Strategy from the context menu. (Clicking on , in
contrast, will apply rules to all remaining proof goals, which is too coarse-grained
if different search strategy settings have to be used for different parts of the
proof.)

Also, please note that a proof branch beginning with a green folder symbol
is closed. Therefore, this symbol is a success criteria in each of the following
four cases. Moreover, branches in the Proof tab can be expanded/collapsed by
clicking on / . To keep a better overview, we advise the reader to collapse the
branches of the following four cases once they are closed.

Invariant Initially Valid. The proof obligation can easily be handled automati-
cally by KeY and requires about 100 rule applications.

9 In case the option Options → DnD Direction Sensitive is enabled, KeY will perform
the instantiation without showing a menu.
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Body Preserves Invariant. This is the goal that requires the biggest (sub-)proof
with about 11000 rule applications. In the Proof Search Strategy pane, choose a
maximum number of rule applications of 20000 and run the prover in auto-mode
on the goal as described above. This will, after a while, close the “Body Preserves
Invariant” branch.

Termination. Proceed as for the case Body Preserves Invariant (possibly after ex-
panding the branch and selecting its OPEN GOAL). This case will be closed after
about 6000 steps.

Use Case. Proceed similarly as for the case Body Preserves Invariant. At first,
calling the automated strategy will perform about 5000 rule applications. In
contrast to the other three cases, for this last branch it is also necessary to
manually provide witnesses for certain existentially quantified formulae (in the
succedent) that can neither be found by KeY, nor by the external prover Sim-
plify [12], automatically. These formulae correspond to the post-condition of the
method insert(), where a point has to be “guessed” at which a further element
has been added to the sequence. The form of the formulae is:

\exists jint i; \forall jint j; F

Fortunately, for this problem, it is easy to read off the witness i that allows to
prove the formulae: the body F always contains equations of the form i = t,
where t is the desired witness. To perform the instantiation of the formula, drag
the term t to the quantifier \exists jint i and choose the rule exRightHide

in the appearing menu. After this instantiation step, locally call the automated
strategy. In this way, handle all branches with formulae of the above form, until
the “Use Case” has a green folder at its beginning, meaning this case is closed.

5 Second Walk-through:

Specifying and Verifying Timeframe Displays

In this section, we practise specification and verification a second time, now
with higher speed, coarser granularity, and with more focus on the direct usage
of dynamic logic (without JML). The example is the method add() of the class
TimeFrameDisplay.

5.1 Formal Specification and Implementation

Within the Class TimeFrameDisplay. The class TimeFrameDisplay is a con-
crete application of the calendar view TimeFrameCalendarView, and could be
(the skeleton of) a dialogue displaying a certain time period in a calendar.
On the following pages, we demonstrate how we can give a more behavioural
specification for some aspects of such a dialogue. The investigated method is
TimeFrameDisplay::add, which simply delegates the addition of a new entry to
the underlying Calendar object:
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Java + JML (1.10)

publi
 
lass TimeFrameDisplay implements CalendarListener {

...

/*@ publi
 normal_behavior

@ requires entry != null;

@ requires overlapping ( timeFrame, entry );

@ ensures lastEntryAdded == entry;

@*/

publi
 void add(CalendarEntry entry) {

cal.add ( entry );

}

...

private CalendarEntry lastEntryAdded = null;

publi
 void addedEntry(CalendarEntry e) {

lastEntryAdded = e;

}

Java + JML

In this context, we would like to specify that calling add actually results in
a new calendar entry being displayed on the screen. In order to simulate this
effect, we introduce an attribute lastEntryAdded that is assigned in the method
addedEntry. The post-condition of method add, lastEntryAdded == entry,
consequently states that calling add eventually raises the signal addedEntry

with the right argument (see Fig. 4 for an illustration).

5.2 Proof Obligations and Verification

This time, we demonstrate the use of a hand-written Java Card DL proof obliga-
tion instead of importing a JML specification into KeY. Formulating a problem
directly in DL is more flexible and gives us full control over which assumptions
we want to make, but it is also more low-level, more intricate, and requires
more knowledge about the logic and the prover (for a larger case study of spec-
ification in Java Card DL see [18]). Figure 5 shows the main parts of the file
timeFrameDisplayAdd.key containing the proof obligation. A full account on
the syntax used in KeY input files is given in [1, Appendix B]. As before, we can
load timeFrameDisplayAdd.key by selecting File → Load . . . (or in the tool
bar) and choosing the file in the appearing dialogue.

The KeY input file in Fig. 5 starts with the path to the Java sources un-
der investigation, and with a part that declares a number of program variables
(lines 2–4) used in the specification. The main part of the file describes one
particular scenario that we want to simulate:

– In lines 7–8, we assume that self and entry refer to proper objects of
classes TimeFrameDisplay resp. CalendarEntry. The calendar entry is also
supposed to overlap with the attribute self.timeFrame (line 9), which is
the pre-condition of the method TimeFrameDisplay::add.
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KeY

1 \javaSour
e "calendar-sources/";

2 \programVariables {

3 calendar.CalendarEntry entry; calendar.CalendarEntry old_entry;

4 TimeFrameDisplay self; }

5 \problem {

6 inReachableState

7 & self != null & self.<created> = TRUE

8 & entry != null & entry.<created> = TRUE

9 & TimeFrameDisplay.overlapping(self.timeFrame, entry) = TRUE

10

11 & self.cal!=null & self.timeFrame!=null & self.timeFrameView!=null
12 & self.timeFrameView.listenersNum = 1 & self.cal.listenersNum = 2

13 & self.timeFrameView.listeners[0] = self

14 & self.cal.listeners[0] = self.cal.completeView

15 & self.cal.listeners[1] = self.timeFrameView

16 & self.timeFrameView.timeFrame = self.timeFrame

17

18 & \forall calendar.CalendarModificationServer serv;

19 ( serv != null & serv.<created> = TRUE

20 -> serv.listeners != null
21 & 0 <= serv.listenersNum & 1 <= serv.listeners.length

22 & serv.listenersNum <= serv.listeners.length)

23 & \forall observerPattern.Subject subj;

24 ( subj != null & subj.<created> = TRUE

25 -> subj.observers != null
26 & 0 <= subj.observersNum & 1 <= subj.observers.length

27 & subj.observersNum <= subj.observers.length)

28 & \forall calendar.CalendarEntrySeq entry;

29 ( entry != null & entry.<created> = TRUE

30 -> entry.contents != null
31 & 0 <= entry.size & 1 <= entry.contents.length

32 & entry.size <= entry.contents.length)

33 & \forall calendar.Calendar cal;

34 ( cal != null & cal.<created> = TRUE

35 -> cal.entries != null & cal.completeView != null)
36 & \forall calendar.TimeFrameCalendarView view;

37 ( view != null & view.<created> = TRUE

38 -> view.completeView != null & view.timeFrame != null
39 & view.cal != null)
40 & \forall calendar.SortedCalendarView view;

41 (view != null & view.<created> = TRUE -> view.entryTree != null)
42

43 -> {old_entry := entry} \<{ self.add(entry)@TimeFrameDisplay; }\>
44 self.lastEntryAdded = old_entry }

KeY

Fig. 5. The hand-written proof obligation for Sect. 5
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– The TimeFrameDisplay object self has been properly set up and connected
to a Calendar and to a TimeFrameCalendarView (lines 11, 16). The freshly
created TimeFrameCalendarView has exactly one listener attached, namely
the object self (lines 12, 13). Likewise, the calendar self.cal does not
have any listeners registered apart from its SortedCalendarView and the
TimeFrameCalendarView (lines 12, 14, 15).

– In order to perform the verification, we need to assume a number of invari-
ants. Lines 18–32 contain three very similar class invariants for the classes
CalendarModificationServer, Subject, and CalendarEntrySeq, mostly
expressing that the arrays for storing listeners and calendar entries are
sufficiently large. In lines 33–41, we state somewhat simpler invariants for
Calendar, TimeFrameCalendarView, and SortedCalendarView that ensure
that attributes are non-null.

In this setting, we want to show that an invocation of the method self.add with
parameter entry has the effect of raising a signal addedEntry. This property is
stated in lines 43–44 using a diamond modal operator.

Loop Handling. Apart from sequential code that can simply be executed sym-
bolically, there are three loops in the system that require our attention in this
setting. The loops in the methods Subject::registerObserver (➀ in Fig. 4)
and CalendarEntrySeq::incSize (➁ in Fig. 4) are similar in shape and are
necessary for handling the dynamically growing arrays of entries and listeners:

Java + JML

publi
 void registerObserver(Observer obs) {

++observersNum;

if ( observersNum > observers.length ) {

final Observer[] oldAr = observers;

observers = new Observer[observers.length * 2];

int i = 0;

while ( i < oldAr.length ) {observers[i] = oldAr[i]; ++i;}

}

observers[observersNum - 1] = obs;

}

...

prote
ted void incSize() {

++size;

if ( size > contents.length ) {

final CalendarEntry[] oldAr = contents;

contents = new CalendarEntry[contents.length * 2];

int i = 0;

while ( i < oldAr.length ) {contents[i] = oldAr[i]; ++i;}

}

}

Java + JML
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We can handle both loops in the same way (and with the same or similar in-
variants) as in Sect. 4.3. As before, it is enough to annotate the loops with JML
invariants and variants, which can be read and extracted by KeY during the
verification.

The third occurrence of a loop is in the class CalendarModificationServer
in package calendar (➂ and ➅ in Fig. 4):

KeY

prote
ted void fireAddedEntry(CalendarEntry entry) {

int i = 0;

while ( i != listenersNum ) {

listeners[i].addedEntry ( entry ); ++i;}

}

KeY

This loop is executed after adding a new entry to the calendar and is respon-
sible for informing all attached listeners about the new entry. In our particular
scenario, there are exactly two listeners (the objects self.cal.completeView

and self.timeFrameView), and therefore we can handle this loop by unwinding
it twice.

The Actual Verification, Step by Step. After loading the problem file shown in
Fig. 5, we select proof search options as in Sect. 4.3:

– Logical splitting: Normal
– Loop treatment: None
– Method treatment: Expand
– Query treatment: None

(we do not inline queries immediately, because we want to keep the expression
TimeFrameDisplay.overlapping(self.timeFrame,entry) that occurs in
Fig. 5 for later)

– Arithmetic treatment: Basic
– Quantifier treatment: No Splits
– User-specific taclets: all off

Running the prover with these options and about 1000 rule applications gets
us to the point where we have to handle the loops of the verification problem.
There are three goals left, corresponding to the points ➀, ➁ and ➂ in Fig. 4,
one for each of the loops that are described in the previous paragraph. This is
due to the fact that the loops in the methods incSize and registerObserver

are only executed if it is necessary to increase the size of the arrays involved.
Consequently, the proof constructed so far contains two case distinctions and
three possible cases. As the loops in incSize and registerObserver can be
eliminated using invariants (exactly as in the previous section), we concentrate
on the third loop in method fireAddedEntry that is met at point ➂ in Fig. 4.

In order to unwind the loop of fireAddedEntry once, click on the program
block containing the method body and choose the rule unwindWhile. This dupli-
cates the loop body and guards it with a conditional statement. That is, the
loop “while(b){prog}” is replaced by “if(b){prog;while(b){prog}}”.
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After unwinding the loop, we have to deal with the first object listening for
changes in the calendar, which is a SortedCalendarView. To continue, select
Method treatment: None and run the prover in automode. The prover will stop at
the invocation SortedCalendarView::addedEntry (➃ in Fig. 4), which we can
unfold using the rule methodBodyExpand. After that, continue in automode.

Method Contracts. The method SortedCalendarView::addedEntry inserts the
new CalendarEntry into an interval tree to enable subsequent efficient lookups.
Consequently, the next point where the prover stops is an invocation of the
method IntervalTree::insert. The exact behaviour of this insertion is not
important for the present verification problem, however, so we get rid of it using
a method contract that only specifies which parts of the program state could
possibly be affected by the insertion operation. Such a contract can be writ-
ten based on Dynamic Logic and is shown in Fig. 6 (it is contained in the file
timeFrameDisplayAdd.key). We specify that the pre-condition of the method
IntervalTree::insert is ivt != null & iv != null, that arbitrary things
can hold after execution of the method (the post-condition is true), but that
only certain attributes of classes in the intervals package can be modified (the
attributes listed behind the keyword \modifies).

In order to apply the method contract, we click on the program and select
the item Use Operation Contract in the context menu. In the appearing dialogue,
we have to select the right contract intervalTreeInsert. Besides, we deselect
all assumed or ensured invariants: we change to the tabs Assumed Invariants and
Ensured Invariants where we press Unselect all.

Applying the contract leads to three new proof goals: one in which the pre-
condition of the contract has to be proven, one where the post-condition is
assumed and the remaining program has to be handled, and one where the pos-
sible abrupt termination of the method has to be taken care of. By continuing
in automode, the first and the third goal can easily be closed, and in the sec-
ond goal the prover will again stop at point ➂ in front of the loop of method
fireAddedEntry (the second iteration of the loop).

Coming Back to TimeFrameDisplay. The next and last callback that needs to be
handled is the invocation of TimeFrameCalendarView::addedEntry at point ➄.
This method checks whether the calendar entry at hand overlaps with the time
period TimeFrameCalendarView::timeFrame, and in this case it will forward
the entry to the TimeFrameDisplay:

Java + JML

publi
 void addedEntry(CalendarEntry e) {

if ( overlapping ( timeFrame, e ) ) fireAddedEntry ( e );

}

Java + JML

The property overlapping(timeFrame, e) is given as a pre-condition of the
method TimeFrameDisplay::add and now occurs as an assumption in the an-
tecedent of the goal:
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KeY\
ontra
ts {

intervalTreeInsert {\programVariables {

intervals.IntervalTree ivt; intervals.Interval iv;

}

ivt != null & iv != null
-> \<{ ivt.insert(iv)@intervals.IntervalTree; }\>true\modifies { ivt.root,\for intervals.IntervalTreeNode n; n.cutPoint,\for intervals.IntervalTreeNode n; n.left,\for intervals.IntervalTreeNode n; n.right,\for intervals.IntervalTreeNode n; n.sortedByStart,\for intervals.IntervalTreeNode n; n.sortedByEnd,\for intervals.IntervalTreeNode n; n.sortedByStart.size,\for intervals.IntervalTreeNode n; n.sortedByStart.contents,\for (intervals.IntervalTreeNode n; int i)

n.sortedByStart.contents[i],\for intervals.IntervalTreeNode n; n.sortedByEnd.size,\for intervals.IntervalTreeNode n; n.sortedByEnd.contents,\for (intervals.IntervalTreeNode n; int i)

n.sortedByEnd.contents[i] }

};

}

KeY

Fig. 6. Java Card DL contract for the method CalendarEntry::insert

TimeFrameDisplay.overlapping(self.timeFrame, entry) = TRUE

We can simply continue with symbolic execution on the proof branch. Be-
cause we want the prover to take all available information into account and not
to stop in front of loops and methods anymore, select Loop treatment: Expand,
Method treatment: Expand, and Query treatment: Expand. Choose a maximum num-
ber of rule applications of about 5000. Then, click on the sequent arrow ==> and
select Apply rules automatically here. This eventually closes the goal.

6 Conclusion

In this paper we walked step-by-step through two main verification tasks of a
non-trivial case study using the KeY prover. Many of the problems encountered
here—for example, the frame problem, what to include into invariants, how to
modularise proofs—are discussed elsewhere in the research literature, however,
typical research papers cannot provide the level of detail that would one enable
to actually trace the details. We do not claim that all problems encountered are
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yet optimally solved in the KeY system, after all, several are the target of active
research [19]. What we intended to show is that realistic Java programs actually
can be specified and verified in a modern verification system and, moreover, all
crucial aspects can be explained within the bounds of a paper while the verifi-
cation process is to a very large degree automatic. After studying this tutorial,
the ambitious reader can complete the remaining verification tasks in the case
study.

As for “future work,” our ambition is to be able to write this tutorial without
technical explanations on how the verification is done while covering at least as
many verification tasks. We would like to treat modularisation and invariant
selection neatly on the level of JML, and the selection of proof obligations in
the GUI. It should not be necessary anymore to mention Java Card DL in any
detail. From failed proof attempts, counter examples should be generated and
animated without the necessity to inspect Java Card DL proof trees. There is
still some way to go to mature formal software verification into a technology
usable in the mainstream of software development.
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Abstract. We present a datastructure for storing memory contents of
imperative programs during symbolic execution—a technique frequently
used for program verification and testing. The concept, called updates,
can be integrated in dynamic logic as runtime infrastructure and mod-
els both stack and heap. Here, updates are systematically developed as
an imperative programming language that provides the following con-
structs: assignments, guards, sequential composition and bounded as well
as unbounded parallel composition. The language is equipped both with
a denotational semantics and a correct rewriting system for execution,
whereby the latter is a generalisation of the syntactic application of sub-
stitutions. The normalisation of updates is discussed. All results and the
complete theory of updates have been formalised and proven using the
Isabelle/HOL proof assistant.

1 Introduction

First-Order Dynamic Logic [1] is a program logic that makes it possible to reason
about the relation between the initial and final states of imperative programs.
One way to build calculi for dynamic logic is to follow the symbolic execution
paradigm and to execute programs (symbolically) in forward direction. This
requires infrastructure for storing the memory contents of the program, for up-
dating the contents when assignments occur and for accessing information when-
ever the program reads from memory. Sequent calculi for dynamic logic often
represent memory using formulae and handle state changes by renaming vari-
ables and by relating pre- and post-states with equations. All information about
the considered program states is stored in the side-formulae Γ , ∆ of a sequent
Γ ⊢ 〈α 〉 φ,∆, like in inequalities 0

.
< x and equations x′

.
= x + 1.

As an alternative, this paper presents a datastructure called Updates, which
are a generalisation of substitutions designed for storing symbolic memory con-
tents. When using updates, typical sequents during symbolic execution have the
shape Γ ⊢ {u} 〈α 〉 φ,∆. The program α is preceded by an update u that deter-
mines parts of the program state, for instance the update x := x + 1. Compared
with side-formulae, updates (i) attach information about the program state di-
rectly to the program, (ii) avoid the introduction of new symbols, (iii) can be
simplified and avoid the storage of obsolete information, like of assignments that
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have been overridden by other assignments, (iv) represent accesses to variables,
array cells or instance attributes (in object-oriented languages) in a uniform way,
(v) delay case-distinctions that can become necessary due to aliasing, (vi) can
be eliminated mechanically once a program has been worked off completely.

Historically, updates have evolved over years as a central component of the
KeY system [2], a system for deductive verification of Java programs. They are
used both for interactive and automated verification. In the present paper, we
define updates as a formal language (independently of particular program log-
ics) and give them a denotational semantics based on model-theoretic semantics
of first-order predicate logic. The language is proposed as an intermediate lan-
guage to which sequential parts of more complicated languages (like Java) can
stepwise be translated. In order to mechanically compute the effect of updates,
we give a rewriting system that allows to simplify, execute or eliminate updates.
Further rewriting rules and identities cover simplification and normalisation.
The main contributions of the paper are new update constructs (in particular
quantification), the development of a complete meta-theory of updates and its
formalisation1 using the Isabelle/HOL proof assistant [3], including proofs of all
lemmas about updates that are given in the present paper.

The paper is organised as follows: Sect. 2 gives an example for the applica-
tion of updates as a runtime infrastructure. Sect. 3 and 4 introduce syntax and
semantics of a basic version of updates in the context of a minimalist first-order
logic. Sect. 5 and 6 contain the rewriting system for executing updates. Sect. 7
adds an operator for sequential composition to the update language. Sect. 8
states soundness and completeness of the rewriting system for update applica-
tion. Sect. 9 shows how stack and heap structures can be modelled and modified
using updates, which is applied in Sect. 10 about symbolic execution. Sect. 11
discusses laws for simplification of updates, and Sect. 12 sketches a method for
normalisation of updates.

2 Updates for Symbolic Execution in Dynamic Logic

We give an example for symbolic execution using updates in dynamic logic.
Notation and constructs used here are later introduced in detail. The program
fragment max is written in a Java-like language and is executed in the context
of a class/record List representing doubly-linked lists with attributes next , prev
and val for the successor, predecessor and value of list nodes:

max = if (a.val
.
< a.next .val) g = a.next .val ; else g = a.val ;

where a and g are program variables pointing to list nodes. The initial state of
program execution is specified in an imperative way using an update:

init = a.prev := nil | b.next := nil | a.next := b | b.prev := a |

a.val := c | b.val := d

1 http://www.cse.chalmers.se/~philipp/updates.thy, ≈ 3500 lines of Isabelle/Isar
code
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init can be read as a program that is executing a number of assignments in
parallel and that is setting up a list with nodes a and b. In case a

.
= b—which is

possible because we do not specify the opposite—the two nodes will collapse to
the single node of a cyclic list and will carry value d: assignments that literally
occur later (b.val := d) can override earlier assignments (a.val := c). This means
that parallel composition in updates also has a sequential component: while the
left- and right-hand sides of the assignments are all evaluated in parallel, the
actual writing to locations is carried out sequentially from left to right.

When adding updates to a dynamic logic, they can be placed in front of modal
operators for programs, like in {init} 〈max 〉 φ. The diamond formula 〈max 〉 φ
alone expresses that a given formula φ holds in at least one final state of max .
Putting the update init in front means that first init and then the program max
is supposed to be executed—init sets up the pre-state of max .

We execute max symbolically by working off the statements in forward di-
rection. Effects of the program are either appended to the update init or are
translated to first-order connectives. We denote execution steps of max by  
and write ≡ for an update simplification step. init is used as an abbreviation.

{init} 〈 if (a.val
.
< a.next .val) g = a.next .val ; else g = a.val ;〉 φ

A conditional statement can be translated to propositional connectives. The
branch condition is co = (a.val

.
< a.next .val).

 {init}
(

(co ∧ 〈 g = a.next .val ;〉 φ) ∨ (¬co ∧ 〈 g = a.val ;〉 φ)
)

The application of init distributes through propositional connectives. Applying
init to co yields the condition co′ = ({init} co) ≡ ((if a

.
= b then d else c)

.
< d).

≡ (co′ ∧ {init} 〈 g = a.next .val ;〉 φ ∨ (¬co′ ∧ {init} 〈 g = a.val ;〉 φ)

The program assignments are turned into update assignments that are sequen-
tially ( ; ) connected with init .

 (co′ ∧ {init ; g := a.next .val} φ) ∨ (¬co′ ∧ {init ; g := a.val} φ)

The updates are simplified by turning sequential composition ; into parallel
composition | . The update init has to be applied to the right-hand sides, which
become ({init} a.next .val) ≡ d and ({init} a.val) ≡ (if a

.
= b then d else c).

≡ (co′ ∧ {init | g := d} φ) ∨ (¬co′ ∧ {init | g := (if a
.
= b then d else c)} φ)

The last formula is logically equivalent to the original formula {init} 〈max 〉 φ
and can further be simplified by applying the updates to φ. In all points of the
proof, updates in front of programs specify the memory contents. An implemen-
tation like in KeY can, of course, easily carry out all shown steps automatically.

3 Syntax of Terms, Formulae, and Updates

The present paper is a self-contained account on updates. To this end, we ab-
stract from concrete program logics and define syntax and semantics of a (min-
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imalist)2 first-order logic that is equipped with updates. Updates can, however,
be integrated in virtually any predicate logic, e.g., in dynamic logic.

We first define a basic version of our logic that contains the most common
constructors for terms and formulae (see e.g. [4]), the equality predicate

.
= and

a strict order relation
.
<, as well as operators for minimum and conditional

terms. The two latter are not strictly necessary, but allow a simpler definition
of laws and rewriting rules. In this section, updates are only equipped with the
connectives for parallelism, guards and quantification, sequential composition is
added later in Sect. 7.

In order to define the syntax of the logic, we need (i) a vocabulary (Σ,α) of
function symbols, where α : Σ → N defines the arity of each symbol, and (ii) an
infinite set Var of variables.

Definition 1. The sets Ter, For and Upd of terms, formulae and updates are
defined by the following grammar, in which x ∈ Var ranges over variables and
f ∈ Σ over functions:

Ter ::= x || f(Ter , . . . ,Ter) || if For then Ter else Ter || min x.For || {Upd} Ter

For ::= true || false ||For ∧ For ||For ∨ For || ¬For || ∀x.For || ∃x.For ||

Ter
.
= Ter ||Ter

.
< Ter || {Upd} For

Upd ::= skip || f(Ter , . . . ,Ter) := Ter ||Upd |Upd || if For {Upd} || for x {Upd}

The update constructors represent the empty update skip, assignments to func-
tion terms f(s1, . . . , sn) := t, parallel updates u1 | u2, guarded updates if φ {u},
and quantified updates for x {u}. The possibility of having function terms as
left-hand sides of assignments is crucial for modelling heaps. In Sect. 2, expres-
sions like a.prev are really function terms prev(a), but we use the more common
notation from programming languages. More details are given in Sect. 9. There
are also constructors for applying updates to terms and to formulae (like {u} φ).

We mostly use vector notation for the arguments t̄ of functions. Operations
on terms are extended canonically or in an obvious way to vectors, for in-
stance f({u} t̄) = f({u} t1, . . . , {u} tn), valS,β(t̄) = (valS,β(t1), . . . , valS,β(tn)),
fv(t̄) =

⋃

i fv(ti), (t̄
.
= s̄) = (t1

.
= s1 ∧ · · · ∧ tn

.
= sn).

4 Semantics of Terms, Formulae, and Updates

The meaning of terms and formulae is defined using classical model-theoretic
semantics. We consider interpretations as mappings from locations to individuals
of a universe U (the predicates

.
= and

.
< are handled separately):

Definition 2. Given a vocabulary (Σ,α) of function symbols and an arbitrary
set U , we define the set Loc(Σ,α),U of locations over (Σ,α) and U by

Loc(Σ,α),U := {〈f, (a1, . . . , an)〉 | f ∈ Σ, α(f) = n, a1, . . . , an ∈ U} .

2 We do not include many common features like arbitrary predicate symbols, in order
to keep the presentation concise. Adding such concepts is straightforward.
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If the indexes are clear from the context, we just write Loc instead of Loc(Σ,α),U .

The following definition of structures/algebras deviates from common defini-
tions in the addition of a strict well-ordering on the universe.3 The well-ordering
is used for resolving clashes that can occur in quantified updates (see Example 1
and Sect. 10).

Definition 3. Suppose that a vocabulary (Σ,α) of function symbols is given. A
well-ordered algebra over (Σ,α) is a tuple S = (U,<, I), where

– U is an arbitrary non-empty set (the universe),

– < is a strict well-ordering on U , i.e., a binary relation with the properties4

• Irreflexivity: a 6< a for all a ∈ U ,
• Transitivity: a1 < a2, a2 < a3 entails a1 < a3 (a1, a2, a3 ∈ U),
• Well-orderedness: Every non-empty set A ⊆ U contains a least element

min< A ∈ A such that min< A < a for all a ∈ A\{min< A},
– I is a (total) mapping Loc(Σ,α),U → U (the interpretation).

A partial interpretation is a partial function Loc(Σ,α),U ⇀ U .

A (partial) function f : M ⇀ N is here considered as a subset of the Carte-
sian product M × N . For combining and modifying interpretations, we fre-
quently make use of the overriding operator ⊕, which can be found in Z [6] and
other specification languages. For two (partial or total) functions f, g : M ⇀ N
we define

f ⊕ g := {(a 7→ b) ∈ f | for all c: (a 7→ c) 6∈ g} ∪ g ,

i.e., g overrides f but leaves f unchanged at points where g is not defined. For
S = (U,<, I), we also write S ⊕ A := (U,<, I ⊕ A) as a shorthand notation.

Definition 4. A variable assignment over a set Var of variables and a well-
ordered algebra (U,<, I) is a mapping β : Var → U .

Given a variable assignment β, we denote the assignment that is altered in
exactly one point as is common:

βa
x(y) :=

{

a for x = y

β(y) otherwise

From now on, we consider the vocabulary (Σ,α) and Var as fixed.

3 As every set can be well-ordered (based on Zermelo-Fraenkel set theory [5]) this
does not restrict the range of considered universes. Because the well-ordering is also
accessible through the predicate

.
<, however, the expressiveness of the logic goes

beyond pure first-order predicate logic. One can, for instance, axiomatise natural
numbers up to isomorphism with a finite set of formulae. In our experience, this is
not a problem for the application of updates, because quantification in updates will
in practice only be used for variables representing integers, objects or similar types.
On such domains, appropriate well-orderings are readily available and have to be
handled anyway.

4 Note, that well-orderings are linear, i.e., a < b, a = b, or b < a for arbitrary a, b ∈ U .
Further, well-orderings are well-founded—there are no infinite descending chains—
which enables us to use well-founded recursion when defining update evaluation.
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Table 1. Evaluation of Terms, Formulae, and Updates

For terms:

valS,β(x) = β(x) (x ∈ Var)

valS,β(f(t̄)) = I〈f, valS,β(t̄)〉 (S = (U, <, I))

valS,β(if φ then t1 else t2) =

(

valS,β(t1) for valS,β(φ) = tt

valS,β(t2) otherwise

valS,β(min x. φ) =

(

min< A for A 6= ∅

min< U otherwise

where S = (U, <, I) and A = {a ∈ U | valS,βa
x
(φ) = tt}

For formulae:

valS,β(true) = tt , valS,β(false) = ff

valS,β(φ1 ∧ φ2) = tt iff ff 6∈ {valS,β(φ1), valS,β(φ2)}

valS,β(φ1 ∨ φ2) = tt iff tt ∈ {valS,β(φ1), valS,β(φ2)}

valS,β(¬φ) = tt iff valS,β(φ) = ff

valS,β(∀x. φ) = tt iff ff 6∈ {valS,βa
x
(φ) | a ∈ U}

valS,β(∃x. φ) = tt iff tt ∈ {valS,βa
x
(φ) | a ∈ U}

valS,β(t1
.
= t2) = tt iff valS,β(t1) = valS,β(t2)

valS,β(t1
.
< t2) = tt iff valS,β(t1) < valS,β(t2) (S = (U, <, I))

For updates:

valS,β(skip) = ∅

valS,β(f(s̄) := t) = {〈f, valS,β(s̄)〉 7→ valS,β(t)}

valS,β(u1 | u2) = valS,β(u1) ⊕ valS,β(u2)

valS,β(if φ {u}) =

(

valS,β(u) for valS,β(φ) = tt

∅ otherwise

valS,β(for x {u}) =
[

{A(a) | a ∈ U}

where A : U → (Loc ⇀ U) is defined by well-founded recursion on (U, <) and the equa-
tion A(a) = valS,βa

x
(u) ⊕

S

{A(b) | b ∈ U, b < a}

Application of updates: (S′ = S ⊕ valS,β(u) and α ∈ Ter ∪ For)

valS,β({u} α) = valS′,β(α)
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Definition 5. Given a well-ordered algebra S = (U,<, I) and a variable assign-
ment β, we define the evaluation of terms, formulae and updates through the
equations of Table 1 as the (overloaded) mapping

valS,β : Ter → U, valS,β : For → {tt , ff }, valS,β : Upd → (Loc ⇀ U),

i.e., in particular updates are evaluated to partial interpretations.

The most involved part of the update evaluation concerns quantified expres-
sions for x {u}, whose value is defined by well-founded recursion on (U,<). The
definition shows that quantification is a generalisation of parallel composition:
informally, for a well-ordered universe U = {a < b < c < · · · } we have

valS,β(for x {u}) = · · · ⊕ valS,βc
x
(u) ⊕ valS,βb

x
(u) ⊕ valS,βa

x
(u) .

For a general definition (see Table 1) of the partial interpretation on the right-
hand side, we need a union operator on partial functions:5

(

⋃

M
)

(x) =

{

f(x) if there is f ∈ M with f(x) 6= ⊥

⊥ otherwise
,

where we write f(x) = ⊥ if a partial function f is not defined at point x.

Example 1. The following examples refer to the well-ordered algebra (N, <, I),
where < is the standard order on N. We assume that the vocabulary contains
literals and operations +, ·, and that these symbols are interpreted as usual forN.

valS,β(a := 2) = {〈a〉 7→ 2}

In parallel composition, the effect of the left update is invisible to the right one:

valS,β(a := 2 | f(a) := 3) = {〈a〉 7→ 2, 〈f, (valS,β(a))〉 7→ 3}

The right update in parallel composition overrides the left update when clashes
occur. Here, this happens for valS,β(a) = 1:

valS,β(f(a) := 1 | f(1) := 2) = {〈f, (1)〉 7→ 2}

In contrast, for valS,β(a) 6= 1 both assignments have an effect:

valS,β(f(a) := 1 | f(1) := 2) = {〈f, (valS,β(a))〉 7→ 1, 〈f, (1)〉 7→ 2}

Quantified updates make it possible to define whole functions:

valS,β({for x {f(x) := 2 · x + 1}} f(5)) = 11

When clashes occur in quantified updates, smaller valuations of the quantified
variable will dominate. The smallest individual of (N, <) is 0:

valS,β(for x {a := x}) = {〈a〉 7→ 0}

5 The operator
S

is obviously not uniquely defined by the given equation, but because
of A(a) ⊆ A(b) for a < b its result is unique when defining the evaluation function.
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Update constructors can be nested arbitrarily, like in quantified parallel updates:

valS,β(for x {(f(x + 3) := x | f(2 · x) := x + 1)}) =

{〈f, (3)〉 7→ 0, 〈f, (4)〉 7→ 1, 〈f, (5)〉 7→ 2, 〈f, (6)〉 7→ 3, 〈f, (7)〉 7→ 4, . . . ,
〈f, (0)〉 7→ 1, 〈f, (2)〉 7→ 2, 〈f, (4)〉 7→ 3, 〈f, (6)〉 7→ 4, 〈f, (8)〉 7→ 5, . . . }

In the last example, both kinds of clashes occur: (i) the pair 〈f, (6)〉 7→ 3 stems
from f(x + 3) := x and is overridden by 〈f, (6)〉 7→ 4 (from f(2 · x) := x + 1),
because updates on the right side of parallel composition dominate updates on
the left side (“last-win semantics”). (ii) the pair 〈f, (4)〉 7→ 3 stems from the
valuation x 7→ 2 and is overridden by 〈f, (4)〉 7→ 1 (from x 7→ 1), because small
valuations of variables dominate larger valuations (“well-ordered semantics”).

We formalise the behaviour of updates for the latter kind of clashes:

Lemma 1. Small valuations of variables in updates override larger ones:

valS,β(for x {u})(loc) = valS,βm
x

(u)(loc)

where m =

{

min< A for A 6= ∅

arbitrary otherwise
and A = {a | valS,βa

x
(u)(loc) 6= ⊥}

We can now also introduce the equivalence symbol ≡ used in Sect. 2:

Definition 6. We call two terms, formulae or updates α1, α2∈Ter ∪ For ∪ Upd
equivalent and write α1 ≡ α2 if they are necessarily evaluated to the same value:
for all well-ordered algebras S and all variable assignments β over S,

valS,β(α1) = valS,β(α2) .

≡ is a congruence relation for all constructors given in Def. 1 (see Lem. 2).

5 Application of Updates by Rewriting

Updates do in principle not increase the expressiveness of terms or formulae:
given an arbitrary term, formula or update α, there will always be an equivalent
expression α′ ≡ α that does not contain the update application operator.6 We
obtain this result by giving a rewriting system that eliminates updates using
altogether 44 rules like {u} (t1 ∗ t2) → {u} t1 ∗ {u} t2 (with ∗ ∈ {

.
=,

.
<}).

For space reasons, we refrain from giving an introduction to the rewriting
concept and instead refer to literature, see for instance [7]. Some of our rules
have side-conditions concerning free variables, like x 6∈ fv(u), in order to avoid
variable capture. We will not dwell on details about bound renaming or give a
precise definition of the set fv(u) of free variables of an expression (see, e.g., [4]),
but assume that bound renaming is implicitly applied whenever necessary.

6 As we have not formally proven that our rewriting system that turns α into α′ is
terminating (but consider it as obvious), we do not state this as a theorem.
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Table 2. Rewriting Rules for the Application of Updates

{u} x → x (x ∈ Var) (R1)

{u} f(t̄) → non-rec(u, f, {u} t̄) (R2)

{u}
if φ then t1

else t2
→

if {u} φ then {u} t1
else {u} t2

(R3)

{u} min x. φ → min x. {u} φ (x 6∈ fv(u)) (R4)

{u} lit → lit (lit ∈ {true, false})
(R5)

{u} (φ1 ∗ φ2) → {u} φ1 ∗ {u} φ2 (∗ ∈ {∧,∨}) (R6)

{u} ¬φ → ¬{u} φ (R7)

{u} Q x. φ → Q x. {u} φ (Q ∈ {∀, ∃}, x 6∈ fv(u))
(R8)

{u} (t1 ∗ t2) → {u} t1 ∗ {u} t2 (∗ ∈ {
.
=,

.
<}) (R9)

non-rec(skip, f, t̄) → f(t̄) (R10)

non-rec(f(s̄) := r, f, t̄) → if t̄
.
= s̄ then r else f(t̄) (R11)

non-rec(g(s̄) := r, f, t̄) → f(t̄) (f 6= g) (R12)

non-rec(u1 | u2, f, t̄) →
if in-dom(f, t̄, u2)
then non-rec(u2, f, t̄)
else non-rec(u1, f, t̄)

(R13)

non-rec(if φ {u}, f, t̄) →
if φ
then non-rec(u, f, t̄)
else f(t̄)

(R14)

For x 6∈ fv(t̄) and r = min x. in-dom(f, t̄, u):

non-rec(for x {u}, f, t̄) → non-rec({x/r} u, f, t̄) (R15)

in-dom(f, t̄, skip) → false (R16)

in-dom(f, t̄, f(s̄) := r) → t̄
.
= s̄ (R17)

in-dom(f, t̄, g(s̄) := r) → false (f 6= g) (R18)

in-dom(f, t̄, u1 | u2) →
in-dom(f, t̄, u1)
∨ in-dom(f, t̄, u2)

(R19)

in-dom(f, t̄, if φ {u}) → φ ∧ in-dom(f, t̄, u) (R20)

in-dom(f, t̄, for x {u}) → ∃x. in-dom(f, t̄, u) (x 6∈ fv(t̄)) (R21)

reject(skip, u) → skip (R22)

reject(f(s̄) := t, u) → if ¬in-dom(f, s̄, u) {f(s̄) := t} (R23)

reject(u1 | u2, u) → reject(u1, u) | reject(u2, u) (R24)

reject(if φ {u1}, u) → if φ {reject(u1, u)} (R25)

reject(for x {u1}, u) → for x {reject(u1, u)} (x 6∈ fv(u)) (R26)
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Syntactic application of updates to terms or formulae, i.e., simplification of
expressions {u} α, is carried out in two phases: first, the update is propagated
to subterms or subformulae. In the second phase, when the update has reached
a function application, it is analysed whether the update assigns the represented
location. This separation of propagation and evaluation is achieved by introduc-
ing (amongst others) a non-recursive update application operator non-rec. We
also add ordinary substitution of variables as an independent operator, which is
necessary for handling quantified updates. Substitutions are discussed in Sect. 6.

In order to introduce the further operators, we extend the syntax given Def. 1
as well as the semantics of Def. 5. Practical application is realised by rewriting
rules that stepwise eliminate the operators.7

Definition 7. We define the sets TerA, ForA and UpdA of terms, formulae and
updates as in Def. 1, but with further constructors (x ∈ Var ranges over variables
and f ∈ Σ over functions):

TerA ::= · · · || {x/TerA} TerA ||non-rec(UpdA, f, (TerA, . . . ,TerA))

ForA ::= · · · || {x/TerA} ForA || in-dom(f, (TerA, . . . ,TerA),UpdA)

UpdA ::= · · · || {x/TerA} UpdA ||reject(UpdA,UpdA)

The constructors represent the explicit application of substitutions to terms, for-
mulae, and to updates (like {x/s} t), the non-recursive application of an update u
to function terms f(t̄) (like non-rec(u, f, t̄)), the test whether an update u as-
signs to the location denoted by f(t̄) (like in-dom(f, t̄, u)), and filtered updates
reject(u1, u2) (which are described in Sect. 11). We also extend the evaluation
function valS,β on TerA, ForA and UpdA by adding the following clauses:

valS,β({x/s} α) = valS,β′(α) ,

where β′ = β
valS,β(s)
x and α ∈ TerA ∪ ForA ∪ UpdA,

valS,β(non-rec(u, f, t̄)) = I ′〈f, valS,β(t̄)〉 ,

where S = (U,<, I) and I ′ = I ⊕ valS,β(u),

valS,β(in-dom(f, t̄, u)) = tt iff valS,β(u)〈f, valS,β(t̄)〉 6= ⊥

valS,β(reject(u1, u2)) = {(loc 7→ a) ∈ valS,β(u1) | valS,β(u2)(loc) = ⊥}

The difference between non-recursive application non-rec(u, f, t̄) and ordi-
nary application {u} f(t̄) is that the subterms t̄ are in the first case evaluated
in the unmodified algebra, whereas in the latter case the algebra is first updated
by u. Formally, we have {u} f(t̄) ≡ non-rec(u, f, {u} t̄). The non-recursive op-
erator enables us to separate the syntactic propagation of updates to subterms
and subformulae from the syntactic evaluation of updates.

The actual syntactic application of updates is described by the rewriting
rules in Table 2. Soundness and completeness of the rules is stated in Sect. 8.

7 Alternatively, one could also give a purely syntactic characterisation in terms of
recursively defined functions. For reasoning about correctness and for gaining an
intuition of what is happening, however, we believe that a separation of syntax and
semantics is beneficial.
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6 Application of Substitutions by Rewriting

Table 3 contains rewriting rules that apply substitutions syntactically, which
follows the idea of explicit substitutions [8]. The system essentially performs
pattern matching and distinguishes the different constructors that can occur
after a substitution. No rules exist for the cases substitution and update appli-
cation. Permuting substitutions with update application is not directly possible,
which can be seen for

{x/f(a)} {f(a) := b} x ,

in which an update modifies the meaning of terms that turn up in the sub-
stitution. This problem is related to variable capture (when passing binders),
but because updates can also assign non-nullary function symbols, avoidance of
capture by means of renaming is more intricate. Instead, in the case above we
delay the application of the substitution until the update has been eliminated
by rewriting.

When using updates in a logic like dynamic logic, it is common that updates
cannot be eliminated completely, e.g. updates in front of programs (see Sect. 2).
This implies that also substitutions cannot be eliminated in certain cases. Then,
the substitution either has to be kept, or has to be realised by other means like
equations.

7 Sequentiality and Application of Updates to Updates

We extend the basic version of updates from Sect. 3 a second time and intro-
duce sequential composition. Sequentiality already occurs when applications of
updates are nested, for instance in an expression {u1} {u2} α. It seems natural
to make an operator for sequential composition compatible with the nesting of
updates: {u1} {u2} α ≡ {u1 ; u2} α. Sequential composition of this kind can be
reduced to parallel composition by extending the update application operator to
updates themselves, i.e., by considering updates {u1} u2.

Definition 8. We define the sets TerAS, ForAS and UpdAS of terms, formulae
and updates as in Def. 7, but with two further constructors:

UpdAS ::= · · · ||UpdAS ; UpdAS || {UpdAS} UpdAS

Again, the evaluation function is extended to TerAS , ForAS and UpdAS by adding
two clauses (in both cases S′ = S ⊕ valS,β(u1)):

valS,β(u1 ; u2) = valS,β(u1) ⊕ valS′,β(u2), valS,β({u1} u2) = valS′,β(u2)

The second clause resembles the semantics of update application to terms and
formulae. The first clause is very similar to the evaluation of parallel updates,
with the only difference that the right update u2 is evaluated in the structure S′

updated by u1. Intuitively, with parallel composition the effect of u1 is invisible
to u2 (and vice versa), whereas sequential composition carries out u1 before
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Table 3. Rewriting Rules for the Application of Substitutions

{x/s} x → s (R27)

{x/s} y → y (x 6= y, y ∈ Var) (R28)

{x/s} f(t̄) → f({x/s} t̄) (R29)

{x/s}
if φ then t1

else t2
→

if {x/s} φ then {x/s} t1
else {x/s} t2

(R30)

{x/s} min x. φ → min x. φ (R31)

{x/s} min y. φ → min y. {x/s} φ (x 6= y, y 6∈ fv(s)) (R32)

{x/s} lit → lit (lit ∈ {true, false}) (R33)

{x/s} (φ1 ∗ φ2) → {x/s} φ1 ∗ {x/s} φ2 (∗ ∈ {∧,∨}) (R34)

{x/s} ¬φ → ¬{x/s} φ (R35)

{x/s} Q x. φ → Q x. φ (Q ∈ {∀, ∃}) (R36)

{x/s} Q y. φ → Q y. {x/s} φ (Q ∈ {∀, ∃}, x 6= y, y 6∈ fv(s))
(R37)

{x/s} (t1 ∗ t2) → {x/s} t1 ∗ {x/s} t2 (∗ ∈ {
.
=,

.
<}) (R38)

{x/s} skip → skip (R39)

{x/s} (f(r̄) := t) → f({x/s} r̄) := {x/s} t (R40)

{x/s} (u1 | u2) → {x/s} u1 | {x/s} u2 (R41)

{x/s} if φ {u} → if {x/s} φ {{x/s} u} (R42)

{x/s} for x {u} → for x {u} (R43)

{x/s} for y {u} → for y {{x/s} u} (x 6= y, y 6∈ fv(s)) (R44)

Table 4. Rewriting Rules for Sequential Composition

u1 ; u2 → u1 | {u1} u2 (R45)

{u} skip → skip (R46)

{u} (f(s̄) := t) → f({u} s̄) := {u} t (R47)

{u} (u1 | u2) → {u} u1 | {u} u2 (R48)

{u}
`

if φ {u1}
´

→ if {u} φ {{u} u1} (R49)

{u} (for x {u1}) → for x {{u} u1} (x 6∈ fv(u)) (R50)
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u2. This directly leads to the equivalence u1 ; u2 ≡ u1 | {u1} u2 that makes it
possible to eliminate sequentiality. The complete system of rewriting rules is
given in Table 4.

The relation ≡ from Def. 6 can be extended to TerAS , ForAS and UpdAS :

Lemma 2. Equivalence ≡ of terms, formulae and updates is a congruence re-
lation for all constructors given in Def. 1, 7 and 8.

Example 2. We continue Example 1 and assume the same vocabulary/algebra.

a := 1 ; f(a) := 2 ≡ a := 1 | f(1) := 2

valS,β(a := 1 ; f(a) := 2) = {〈a〉 7→ 1, 〈f, (1)〉 7→ 2}

valS,β(a := 1 ; (a := 3 | f(a) := 2)) = {〈a〉 7→ 3, 〈f, (1)〉 7→ 2}

We normalise the update in the second line using the given rewriting rules:

a := 1 ; (a := 3 | f(a) := 2)

(R45) → a := 1 | {a := 1} (a := 3 | f(a) := 2)

(R48) → a := 1 | ({a := 1} a := 3 | {a := 1} f(a) := 2)

∗(R47) → a := 1 | (a := {a := 1} 3 | f({a := 1} a) := {a := 1} 2)

∗(R2), ∗(R12) → a := 1 | (a := 3 | f(non-rec(a := 1, a, ())) := 2)

(R11) → a := 1 | (a := 3 | f(if true then 1 else a) := 2)

The last expression can be simplified further using rules for conditional terms,
which are, however, beyond the scope of this paper. Further, using (R54) in
Table 5, it is possible to eliminate the assignment a := 1, which is overridden by
a := 3.

8 Soundness and Completeness of Update Application

The following two lemmas state that the rewriting rules from Sect. 5, 6 and 7
are sound and complete. Both lemmas have been proven using the Isabelle/HOL
tool. The first and more important result is that rewriting does not change
the value of terms, formulae or updates, i.e., that rewriting is an equivalence
transformation:

Lemma 3. The rules of Tables 2, 3 and 4 are sound: if α → α′ then α ≡ α′.

The second lemma characterises the form of terms, formulae or updates to
which no further rewriting rules are applicable. Knowing that some rule is ap-
plicable as long as the update application operator, substitutions, any of the
“helper” constructors non-rec, in-dom, reject, or the sequential composition
operator occur in an expression ensures that no cases have been left out:

Lemma 4. If an expression α ∈ TerAS ∪ ForAS ∪ UpdAS is irreducible (up to
bound renaming) concerning the rules of Tables 2, 3 and 4, then α will not
contain the operators non-rec, in-dom or reject or sequentially composed
updates, i.e., α ∈ Ter ∪ For ∪ Upd. Further, α does not contain any update ap-
plications or substitution applications.
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9 Modelling Stack and Heap Structures

The memory of imperative and object-oriented programs can be modelled as a
well-ordered algebra by choosing appropriate vocabularies Σ. By updating the
values of function symbols, the memory contents can be modified symbolically.
Compared to a more explicit encoding of program states as individuals (for
instance, elements of a datatype), directly representing memory using a first-
order vocabulary leads to very readable formulae that are in particular suited
for interactive proof systems. The downside of this representation is that the
possibilities of meta-reasoning about the semantics of a language are limited.

In the whole section, we assume that the universe for evaluating updates are
the natural numbers N, and that the standard well-ordering < is used (as in
Example 1). A more realistic application would, of course, require a typed logic
and to model the datatypes of programming languages properly. For this section,
it shall suffice to treat both data and addresses/pointers as natural numbers.

Variables: The simplest way to store data in programs is the usage of global
variables, which can be seen as constants g, h, i, . . . ∈ Σ when representing pro-
gram memory using well-ordered algebras (α(g) = α(h) = · · · = 0). Assignments
are naturally performed through updates g := t. Expanding a sequential update
into a parallel update yields a representation of the post-state by describing the
post-values of all modified variables in terms of the pre-values:8

gswap = i := g ; g := h ; h := i ≡ g := h | h := g | i := g

Local Variables: Although it is never necessary to use temporary or local vari-
ables in updates, the visibility of assignments in updates can be restricted. When
an update is expanded into its parallel representation, such “local variables” will
no longer turn up as left-hand sides of assignments. The helper variable i that is
used in the definition of gswap, for instance, becomes unnecessary in the parallel
representation: here, the assignment i := g could be removed without changing
the effect of the update on the remaining variables g, h. More generally, we can
use the operation reject (from Def. 7 in Sect. 11), which can be carried out by
purely syntactic means, for hiding variables.

i := 3 ; reject(gswap, i := 0) ≡ i := 3 ; (g := h | h := g)

≡ g := h | h := g | i := 3

i := 3 ; reject(gswap, i := 0 | g := 0) ≡ h := g | i := 3

Effectively, the application of reject turns i or i, g into local variables of gswap.
The right-hand side of the assignments i := 0 and g := 0 used in the expressions
does not matter.

8 We leave out parentheses because both parallel and sequential composition are as-
sociative, see (R52) and (R53) in Table 5.
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Explicit Stack: We can also model local variables l,m, n . . . ∈ Σ more explicitly
by introducing a stack. Therefore, we represent the variables as unary functions
(α(l) = α(m) = · · · = 1) and give them a stack address (a natural number) as
argument. We also need a stack pointer sp ∈ Σ that, in turn, is a constant
(α(sp) = 0) that is increased when entering a “procedure” and decreased when
exiting:9

swap(g, h) = sp := sp + 1 ; l(sp) := g ; g := h ; h := l(sp) ; sp := sp − 1

≡N g := h | h := g | l(sp + 1) := g

Again, we might want to restrict the visibility of assignments to local variables:

reject(swap(g, h), for x {if sp
.
< x {l(x) := 0}}) ≡N g := h | h := g

The following formula characterises swap. Simply applying the updates will ren-
der the formula trivially valid:

∀x.∀y. {g := x | h := y} {swap(g, h)} (g
.
= y ∧ h

.
= x)

≡ ∀x.∀y. (y
.
= y ∧ x

.
= x) ≡ true

Classes and Attributes: Also the individual objects of a class can be distin-
guished using addresses (natural numbers). Instance attributes of a class C are
then unary functions aC , bC . . . ∈ Σ (with α(aC) = α(bC) = · · · = 1) that take
an address as argument. As an example, we consider again the class List repre-
senting doubly-linked lists from Sect. 2 (with attributes next , prev , val ∈ Σ). The
following two updates describe the setup of singleton lists (that hold a value v)
and the concatenation of two lists (where one list ends with the object e and the
second one begins with the object b):

setup(o, v) = o.prev := nil | o.val := v | o.next := nil

cat(e, b) = e.next := b | b.prev := e

(we assume that nil ∈ Σ denotes invalid addresses and the beginning and end
of lists). The update init from Sect. 2 and a list containing the numbers 0, . . . , n
can then be set up as follows:

init ≡ setup(a, c) ; setup(b, 2) ; cat(a, b) ; a.next .val := d

≡ a.prev := nil | b.next := nil | a.next := b | b.prev := a |

a.val := c | b.val := d

seq = for x {if x
.
< n + 1 {setup(x, x)}} ; for x {if x

.
< n {cat(x, x + 1)}}

≡N 0.prev := nil | n.next := nil | for x {if x
.
< n + 1 {x.val := x}} |

for x {if x
.
< n {x.next := x + 1}} |

for x {if x
.
< n {(x + 1).prev := x}}

9 In this section, we write u1 ≡N u2 for updates that have the same value over algebras
(N, <, I), provided that I interprets the functions +, − and literals as is common.
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Properties about the lists can again be proven by applying the updates and
performing first-order reasoning:

∀x. (¬x
.
< n ∨ {seq} x.next .prev

.
= x) ≡N ∀x. (¬x

.
< n ∨ x

.
= x) ≡ true

Object Allocation: Updates cannot add or remove individuals from a universe
(constant-domain semantics). In modal logic, the usual way to simulate changing
universes is to introduce a predicate that distinguishes between existing and non-
existing individuals. Likewise, for our heap model “implicit” attributes createdC

can be defined that, for instance, have value 1 for existing and 0 for non-existing
objects of a class C. An initial state in which no objects are allocated can be
reached through the update for x {x.createdC := 0}. We write an allocator for
list nodes as follows:10

alloc(o, v) = o := min i. (i.createdList

.
= 0) ;

(

o.createdList := 1 | setup(o, v)
)

Note, that allocating objects in parallel using this method will produce clashes,
because parallel updates cannot observe each other’s effects. When running in
parallel, alloc(a, 1) and alloc(b, 2) will deterministically allocate the same object:

alloc(a, 1) | alloc(b, 2) ≡ alloc(b, 2) ; a := b 6≡ alloc(a, 1) ; alloc(b, 2)

Arrays: Arrays in a Java-like language behave much like objects of classes,
with the difference that arrays provide numbered cells instead of attributes.
We can model arrays be introducing a binary access function ar ∈ Σ and a
unary function len ∈ Σ telling the length of arrays (α(ar) = 2 and α(len) = 1).
Array allocation can be treated just like allocation of objects through an implicit
attribute createdar . Given this vocabulary, we can allocate an array of length n
and fill it with numbers 0, . . . , n − 1: (we write o[x] instead of ar(o, x))

allocar (o, n) = o := min i. (i.createdar

.
= 0) ;

(

o.createdar := 1 | o.len := n
)

seqar = allocar (o, n) ; for x {if x
.
< o.len {o[x] := x}}

10 Symbolic Execution in Dynamic Logic Revisited

As shown in Sect. 2, during symbolic execution, updates can represent a certain
prefix (or path) of a program, whereas the suffix that remains to be executed is
given in the original language. In order to use updates for symbolic execution,
first of all a suitable representation of the program states using a first-order
vocabulary and algebras (along the lines of Sect. 9) has to be chosen. Rewriting
rules then define the semantics of program features in terms of updates and

10 For practical purposes, it is reasonable to have more book-keeping about allocated
objects than shown here. The approach that is followed in KeY is to introduce
variables nextToCreateC and to allocate objects sequentially.
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of connectives of first-order logic. This approach has been used to implement
symbolic execution for the “real-world” language JavaCard [9]. Examples for
the rewriting rules are:11

〈 〉 φ  φ, 〈 s = t; α 〉 φ  {s := t} 〈α 〉 φ

〈 if (b) β1; else β2; α 〉 φ  (b ∧ 〈β1; α 〉 φ) ∨ (¬b ∧ 〈β2; α 〉 φ)

It is important to note that updates are not intended as an intermediate repre-
sentation for complete programs: the focus is on handling the sequential parts.
For reasoning about general loops or recursion, techniques like induction or in-
variants are still necessary. It is, nevertheless, possible to translate certain loops
directly to an update [10]. An example are many array operations in Java with
unbounded runtime:12

〈 System.arrayCopy(ar1, o1, ar2, o2, n) 〉 φ

 {for x {if ¬x
.
< o2 ∧ x

.
< o2 + n {ar2[x] := ar1[x − o2 + o1]}}} φ

Compared to a declarative specification of arrayCopy using a post-condition
that contains a universally quantified formula, the imperative update can be
applied to formulae or terms like a substitution. We consider updates as advan-
tageous both for interactive and automated reasoning: the program structure is
preserved, and unnecessary non-determinism in a derivation is avoided.

A characteristic of imperative programs is that memory locations can be
assigned to/overwritten multiple times. After elimination of sequential composi-
tion, overwritten locations occur as clashes in updates. An example is the update
init from Sect. 2 and 9, which contains potential clashes because of aliasing: for
a

.
= b, the expressions a.val and b.val denote the same location. Due to last-win

semantics, it is not necessary to distinguish the possible cases when turning se-
quential composition into parallel composition. Only when applying the update,
as in the expression co′ in Sect. 2, the case a

.
= b has to be handled explicitly.

Well-ordered semantics allows an implicit handling of output dependencies
in loops (different iterations assign to the same locations) in a similar way [10].
A simple example is: (e(i) is a side-effect free, possibly non-injective expression)

〈 while (¬i
.
= 0) {i = i − 1; a[e(i)] = i;} 〉 φ

 {i := 0 | for x {if x
.
< i {a[e(x)] := x}}} φ

11 Laws for Update Simplification

Sect. 9 demonstrates how updates can be simplified and written as parallel com-
position of assignments. More formally, we can extend Sect. 5 and state that,

11 s, t, b have to be free of side-effects. It general, it will also be necessary to define a
translation of side-effect free program expressions into terms.

12 For sake of clarity, the example ignores the diverse errors that can occur when calling
arrayCopy, for instance for ar1

.
= ar2.



132 Laws for Update Simplification

Table 5. Laws for Commuting and Distributing Update Connectives

For α ∈ TerAS ∪ ForAS ∪ UpdAS :

{u1} {u2} α ≡ {u1 ; u2} α (R51)

u1 | (u2 | u3) ≡ (u1 | u2) | u3 (R52)

u1 ; (u2 ; u3) ≡ (u1 ; u2) ; u3 (R53)

u1 | u2 ≡ reject(u1, u2) | u2 (R54)

u1 | u2 ≡ u2 | reject(u1, u2) (R55)

u ≡ u | if φ {u} (φ arbitrary) (R56)

u1 ≡ u1 | reject(u1, u2) (u2 arbitrary) (R57)

if φ {u1 | u2} ≡ if φ {u1} | if φ {u2} (R58)

if φ1 {if φ2 {u}} ≡ if φ1 ∧ φ2 {u} (R59)

for x {if φ {u}} ≡ if φ {for x {u}} (x 6∈ fv(φ)) (R60)

for x {if φ {u}} ≡ if ∃x. φ {u} (x 6∈ fv(u)) (R61)

for x {u1 | u2} ≡ for x {u1} | u2 (x 6∈ fv(u2)) (R62)

For u = for z {if z
.
< x {{x/z} u1}} and z 6= x, z 6∈ fv(u1):

for x {u1} ≡ for x {reject(u1, u)} (R63)

for x {u1 | u2} ≡ for x {u1} | for x {reject(u2, u)} (R64)

For u = for z {if z
.
< x {{x/z} for y {u1}}} and |{x, y, z}| = 3, z 6∈ fv(u1):

for x {for y {u1}} ≡ for y {for x {reject(u1, u)}} (R65)

given an arbitrary update u, there will always be an equivalent update u′ ≡ u
of the following shape: (in which φi, si, ti do not contain further updates)

for x1,1 {for x1,2 {for · · · {if φ1 {s1 := t1}}}}
| · · ·
| for xk,1 {for xk,2 {for · · · {if φk {sk := tk}}}}

(1)

It is usually advantageous to establish this shape: (i) Obvious clashes, like in the
update g := 1 | g := 2, can easily be eliminated. (ii) The update can easily be
read and directly tells about the values of variables or heap contents. (iii) When
applying updates syntactically using the rewriting system of Sect. 5, this form
is more efficient than most other shapes, because it supports the search for
matching assignments. (iv) It is possible to define more specialised and efficient
rewriting rules for update application (than the ones given in Sect. 5). This has
been done for the implementation of updates in KeY.

Table 5 gives, besides others, identities that make it possible to establish form
(1) by turning sequential composition into parallel composition, distributing if

and for through parallel composition and commuting if and for. Another im-
portant application of the identities is the optimisation of parallel composition,
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Table 6. Simplification Rules for Updates based on Neutral and Extremal Elements

if φ {skip} → skip (R66)

if false {u} → skip (R67)

if true {u} → u (R68)

for x {skip} → skip (R69)

for x {u} → u (x 6∈ fv(u)) (R70)

skip | u → u (R71)

u | skip → u (R72)

skip ; u → u (R73)

u ; skip → u (R74)

which involves ordering updates ((R52), (R55)) and removing updates that are
overridden by other updates ((R54), see Sect. 2). Table 6 contains a set of rewrit-
ing rules for eliminating neutral or extremal elements. The soundness of all rules
and identities, based on the semantics of Sect. 4, has been proven using the
Isabelle/HOL proof assistant.

Lemma 5. The rules of Table 6 are correct: if α → α′ then α ≡ α′.

For formulating the transformation rules, we need a further operator from
Def. 7: the expression reject(u1, u2) denotes an update that carries out exactly
those assignments of u1 that do not define locations that are also assigned to
by u2. This enables us to make updates disjoint, i.e., to prevent updates from
assigning to the same locations, which is often a premise for permuting updates.
Disjointness is relevant for parallel composition (R55) and for quantification
(R64), (R65), where permutation can change the order of assignments.

12 Normalisation and Equivalence Modulo Definedness

The identities given in Sect. 11 are sufficient for turning updates into shape (1).
In the implementation of updates in KeY, this kind of rewriting13 is performed
immediately whenever updates occur, and updates are stored or shown only in
shape (1). Often, this is already enough for making equivalent updates syntac-
tically equal. One of the counterexamples are the following equivalent updates
that are not rewritten to the same expression:

for x {if a
.
< x {u}} | for x {if ¬a

.
< x {u}} ≡ for x {u}

Because updates can contain arbitrary terms and formulae, we cannot hope for
a general procedure that decides the equivalence of two updates or that estab-
lishes a real normal form. On the other hand, reasoning about the equivalence
of updates is not more difficult than reasoning about the equivalence of terms
without updates (which can contain formulae, however, because of the construc-
tors min x. φ and if φ then t1 else t2). We describe a procedure that turns every

13 Application of (R51), (R52), (R58), (R59), (R60), (R64) from left to right, Table 6
as well as ordering sequences of parallel updates.
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update u into an equivalent update

for x1,1 {for x1,2 {for · · · {f1(x1,1, x1,2, . . .) := t1}}}
| · · ·
| for xk,1 {for xk,2 {for · · · {fk(xk,1, xk,2, . . .) := tk}}}

(2)

where the set {f1, . . . , fk} contains all function symbols that are assigned to by
u (but possibly more symbols). Establishing a normal form is then reduced to
normalising the terms t1, . . . , tk. We need a bit of equipment:

Assignments vs. Modifications: Given a well-ordered algebra S = (U,<, I),
there are three ways in which a partial interpretation J (for instance, the value
of an update) can behave at a location loc = 〈f, ā〉: (i) J can be undefined at
point loc (i.e., J(loc) = ⊥), (ii) J can agree with the interpretation I at point loc
(i.e., J(loc) = I(loc) 6= ⊥), which means that it assigns to the location without
changing the stored value, or (iii) J can assign a value to loc that is different from
the value assigned by the interpretation I (i.e., ⊥ 6= J(loc) 6= I(loc)). Although
the behaviours (i) and (ii) mostly cannot be distinguished when working with
updates, the relation ≡ is fine enough for separating the two cases. For arbitrary
terms, formulae or updates α, we have:

{a := a} α ≡ {skip} α but a := a 6≡ skip

We define a coarser equivalence relation that identifies the cases (i) and (ii):

Definition 9. Two updates u1, u2 ∈ UpdAS are called equivalent modulo de-
finedness, u1 ≡md u2, if for all well-ordered algebras S = (U,<, I) and all vari-
able assignments β over S

I ⊕ valS,β(u1) = I ⊕ valS,β(u2) .

Two examples for updates that are equivalent modulo definedness are:

a := a ≡md skip, (for x {f(x) := f(x)} | f(a) := b) ≡md f(a) := b

It has to be stressed, however, that ≡md is not a congruence relation for all of
the update constructors. The critical constructors are parallel composition and
quantification:

a := a ≡md skip but a := b | a := a 6≡md a := b | skip

More generally, Table 7 contains a number of implications by which equivalence
modulo definedness can be derived syntactically.

Normalisation of Updates: Surprisingly, the notion of equivalence modulo
definedness allows to perform normalisation of updates u. By Table 7, we have:

v = for x1 {for x2 {for · · · {f(x1, x2, . . .) := f(x1, x2, . . .)}}} ≡md skip
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Table 7. Compatibilities between ≡md and Update Operators

f(t̄) := f(t̄) ≡md skip (R75)

u1 ≡md u′

1 implies u1 | u2 ≡md u′

1 | u2 (R76)

u1 ≡md u′

1, u2 ≡md u′

2 implies u1 ; u2 ≡md u′

1 ; u′

2 (R77)

u ≡md u′ implies if φ {u} ≡md if φ {u′} (R78)

u ≡md skip implies for x {u} ≡md skip (R79)

For α ∈ TerAS ∪ ForAS ∪ UpdAS :

u ≡md u′ implies {u} α ≡ {u′} α (R80)

for arbitrary function symbols f . Because equivalence modulo definedness is a
congruence relation for sequential composition, assignments to f in the update u
can then be “split off”:

u

(R74) ≡ u ; skip

(R77) ≡md u ; v

(R45) ≡ u | {u} v

(R54) ≡ reject(u, {u} v) | {u} v

Simplifying the update {u} v by applying rewriting rules will turn the right-hand
side of the assignment in v into an explicit representation of the values that u
assigns to f . In contrast, simplifying reject(u, {u} v) eliminates all assignments
to the symbol f from the update u. By iterating the splitting procedure (or by
choosing an update v that contains more assignments) the normal form (2) will
eventually be established. The resulting update u′ is equivalent to the original
update u modulo definedness, which means that u and u′ have the same effect
when being applied to terms, formulae or updates (R80).

13 Related Work

Symbolic execution of programs is introduced in [11] in form of a symbolic in-
terpreter for imperative, deterministic programs. The considered programming
language only provides integer variables, although arrays are shortly mentioned.
Execution states of the interpreter consist of a symbolic variable assignment (a
mapping from program variables to polynomials over the initial variable con-
tents) and a path condition (a quantifier-free formula over the initial variable
contents).

There are different approaches to extend symbolic execution to heap struc-
tures and arrays, two of them are: in [12], an explicit model of the heap is main-
tained during execution of the program, which is extended each time a variable
or attribute is accessed the first time. Eager case distinctions are performed in
order to cover different initial shapes of the heap. A more implicit representation
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is achieved by describing the state of the heap as a formula, which, for instance,
is done in [13] for separation logic. Because updates describe heap modifications,
i.e., not necessarily the complete heap state, they can be seen as an orthogonal
approach and could be combined with both methods.

A theory that is very similar to updates are abstract state machines (ASMs)
[14]. While there are different versions of ASMs, all update constructors of this
paper can in similar form also be found in [15]. The main difference is the notion
of “consistent updates” that exists for ASMs and that demands clash-freeness. In
contrast, the present paper describes a semantics in which clashes are resolved by
a last-win strategy or a well-ordering strategy, which we consider as better suited
for representing imperative programs. This topic is discussed in Sect. 10 (and
also in [16]): intuitively, clashes in updates are caused by multiple assignments to
the same location in an imperative program. Because it is generally not decidable
whether clashes occur—due to aliasing—case distinctions can be postponed by
resolving clashes deterministically.

Substitutions in B [17] have character similar to updates. Like ASMs, they
are used for modelling systems and are a complete programming language that
also provides loops and non-determinism. Updates are deliberately kept less
expressive, focussing on automated simplification and application.

The guarded command language [18] is used as intermediate language in the
verification systems ESC/Java2 [19] and Spec# [20] (the intermediate language
BoogiePL of Spec# is inspired by guarded commands). In contrast to updates,
guarded commands are used to represent complete object-oriented programs—
which requires concepts like loops or non-determinism—and are eliminated using
wp-calculus.

Many proof assistants, for instance Isabelle/HOL [3] or PVS [21], provide
notations for function updates. The main differences to the updates in the present
paper is that function updates are directly attached to functions, and, thus,
do not have a substitution-like character. At the same time, function updates
usually provide fewer constructors and are less expressive.

Explicit substitutions [8], i.e., substitutions that are applied in multiple steps
and in a delayed manner, are a refinement of λ-calculi. Explicit substitutions are
a basis for programming language features like closures, but are also relevant
when studying logics. The step-wise application of explicit substitution is similar
to the application of updates and substitutions in the present paper. Updates go
beyond explicit substitutions concerning the provided constructors, and are given
an independent semantics in the style of an imperative programming language.
A further difference is that updates are designed as a component of first-order
logic, whereas the style in which explicit substitutions can be used to define or
to modify functions appears more natural in higher-order logics.

In the context of the KeY system, updates turn up in [9] for the first time,
where the only update constructor are assignments. Parallel updates are de-
scribed in [16, 22] for the first time, and have the same last-win semantics as in
this paper.
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14 Conclusions and Future Work

The update language described in this paper has been implemented in the KeY
prover. Quantified updates, added most recently, have mostly improved the abil-
ity of the prover to handle arrays, as operations like arrayCopy (Sect. 10) can
now be specified and symbolically executed very efficiently. Compared to the
rules in Sect. 5 and 11 (which are more general), KeY also contains further
optimisations for applying updates that have been found to be important in
practice.

In the future, an interesting step would be the combination of ordinary sub-
stitutions and updates. This would require developing a concept of bound re-
naming for updates. Another appealing improvement would be the possibility
of non-deterministic updates, which would allow to handle object creation (or,
generally, under-specification of language features) more naturally.

Acknowledgements
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Abstract. The KeY system is a development of the ongoing KeY proj-
ect, whose aim is to integrate formal specification and deductive veri-
fication into the industrial software engineering processes. The deduc-
tive component of the KeY system is a novel interactive/automated
prover for first-order Dynamic Logic for Java. The KeY prover features
a user-friendly graphical interface, a backtracking-free free-variable se-
quent calculus, a simple and powerful theory formalisation language
called “taclets,” solution procedures for linear and non-linear integer
arithmetic, external theorem prover integration, and facilities for proof
reuse, among other aspects. The system is publicly available.

Introduction. The KeY system is the main software product of the KeY
project, a joint effort between the University of Karlsruhe, Chalmers Univer-
sity of Technology in Göteborg, and the University of Koblenz. The KeY system
is a formal software development tool that aims to integrate design, implemen-
tation, formal specification, and formal verification of object-oriented software
as seamlessly as possible. At the core of the system is a deductive verification
component, which also can be used as a stand-alone prover. It employs a free-
variable sequent calculus for first-order Dynamic Logic for JAVA. The calculus is
proof-confluent, i.e., no backtracking is necessary during proof search.

While we constantly strive to increase the degree of automation, user inter-
action remains indispensable in deductive program verification. The main design
goal of the KeY prover is thus a seamless integration of automated and interac-
tive proving. Efficiency must be measured in terms of user plus prover, not just
prover alone. Therefore, a combination of a good user interface for proof state
presentation and rule application, a high level of automation, extensibility of the
rule base, and a calculus without backtracking is the strong point of KeY.

In this paper we concentrate on the description of the KeY prover and the
reasoning techniques it employs. The prover consists of ca. 124,000 lines1 of
JAVA code. The standard rule base consists of 1,725 rules that are written in
about 15,000 lines of KeY’s “taclet” rule description language. About 1,300 of
these formalise the semantics of the JAVA programming language. The system
has been created by 14 implementors since 1999, who spent a total of about

1 Not counting comments. These numbers are based on our estimates and the results
of the SLOCCount tool (www.dwheeler.com/sloccount).
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30 person years. Recently, version 1.0 of the KeY system has been released in
connection with the KeY book [1]. The KeY tool is available under GPL and can
be downloaded from www.key-project.org.

The KeY Program Verification System. KeY supports several languages for
specifying properties of object-oriented models. Many people working with UML
or model-driven development have familiarity with the specification language
OCL (Object Constraint Language), a part of UML 2.0. Another supported
specification language, which enjoys popularity among JAVA developers, is JML
(Java Modelling Language). KeY can also translate OCL expressions to natural
language (English and German).

The target programming language for verification in KeY is JAVA CARD 2.2.1.
KeY is the only publicly available verification tool that supports the full JAVA

CARD standard including the persistent/transient memory model of the card de-
vices and the atomic transactions. Rich specifications of the JAVA CARD API are
available both in OCL and JML. JAVA 1.4 programs that respect the limitations
of JAVA CARD (no floats, no reflection, no dynamic class loading) can be verified
as well. A first prototype for verifying (restricted) multi-threaded programs is
also available.

The system is not a classical verification condition generator (VCG), but
a theorem prover for program logic that combines a variety of automated rea-
soning techniques. The KeY prover is distinguished from most other deductive
verification systems in that symbolic execution of programs, first-order reason-
ing, arithmetic simplification, external decision procedures, and symbolic state
simplification are interleaved. For loop- and recursion-free programs, symbolic
execution typically is performed in a fully automated manner. Optional plugins
to the popular Eclipse IDE and to the Borland Together CASE tool suite have
been developed to lower the entry hurdle for users with no or little training in
formal methods.

Syntax and Semantics of the KeY Logic. The foundation of the KeY logic
is a typed first-order predicate logic with subtyping. This foundation is extended
with parameterized modal operators 〈p〉 and [p], where p can be any sequence of
legal JAVA CARD statements. The resulting multi-modal program logic is called
JAVA CARD Dynamic Logic or, for short, JAVA CARD DL [1, Chapt. 3].

As is typical for dynamic logic, JAVA CARD DL integrates programs and
formulae within a single language. The modal operators refer to the final state of
program p and can be placed in front of any formula. The formula 〈p〉φ expresses
that the program p terminates in a state in which φ holds, while [p]φ does not
demand termination and expresses that if p terminates, then φ holds in the final
state. For example, “when started in a state where x is zero, x++; terminates in
a state where x is one” can be expressed as x

.
= 0 −> 〈x++;〉(x

.
= 1). The states

used to interpret formulae are first-order structures sharing a common universe.
The type system of the KeY logic is designed to match the JAVA type system

but can be used for other purposes as well. The logic includes type casts (changing
the static type of a term) and type predicates (checking the dynamic type of a
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Fig. 1. Screenshot of the KeY prover user interface

term) in order to reason about inheritance and polymorphism [1, Chapter 2].
The type hierarchy contains the types such as boolean, the root reference type
Object, and the type Null, which is a subtype of all reference types. It contains a
set of user-defined types, which are usually used to represent the interfaces and
classes of a given JAVA CARD program. Finally, it contains several integer types,
including both the range-limited types of JAVA and the infinite integer type Z.

Beside built-in symbols (such as type-cast functions, equality, and operations
on integers), user-defined functions and predicates can be added to the signa-
ture. They can be either rigid or non-rigid. Intuitively, rigid symbols have the
same meaning in all program states (e.g., the addition on integers), whereas the
meaning of non-rigid symbols may differ from state to state.

Finally, there is another kind of modal operators called updates (see [2] on
page 115). They can be seen as a language for describing program transitions.
There are simple function updates corresponding to assignments in an imperative
programming language, which in turn can be composed sequentially and used
to form parallel or quantified updates. Updates play a central role in KeY: the
verification calculus transforms JAVA CARD programs into updates. KeY contains
a powerful and efficient mechanism for simplifying updates and applying them
to formulae.

Rule Formalisation and Application. The user can easily interleave the
automated proof search implemented in KeY and interactive rule application.
For interactive rule application, the KeY prover has an easy to use graphical user
interface that is built around the idea of direct manipulation (Fig. 1). To apply a
rule, the user first selects a focus of application by highlighting a (sub-)formula
or a (sub-)term in the goal sequent. The prover then offers a choice of rules
applicable at this focus. This choice remains manageable even for very large rule
bases. Rule schema variable instantiations are mostly inferred by matching.
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Another simple way to apply rules and give instantiations is by drag and
drop. If the user drags an equation onto a term the system will try to rewrite
the term with the equation. If the user drags a term onto a quantifier the system
will try to instantiate the quantifier with this term.

The interaction style is closely related to the way rules are formalised in the
KeY prover. There are no hard-coded rules; all rules are defined in the taclet
language instead. Besides the conventional declarative semantics, taclets have a
clear operational semantics, as the following example shows—a “modus ponens”
rule in textbook notation (left) and as a taclet (right):

φ, ψ, Γ ⊢ ∆
φ, φ→ ψ, Γ ⊢ ∆

\find (p −> q ==>) // implication in antecedent
\assumes (p ==>) // side condition
\replacewith(q ==>) // action on found focus
\heuristics(simplify) // strategy information

The find clause specifies the potential application focus. The taclet will be
offered to the user on selecting a matching focus and if the formula mentioned
in the assumes clause is present in the sequent. The action clauses replacewith
and add allow modifying (or deleting) the formula in focus, as well as adding
additional formulae (not present here). The heuristics clause provides priority
information to the parameterised automated proof search strategy.

The taclet language is quickly mastered and makes the rule base easy to
maintain and extend. Taclets can be proven correct against a set of base taclets.
A full account of the taclet language is given in [1].

Confluent Calculus. In order to simplify the proof construction, which is typ-
ically partly automated and partly interactive, we have developed and employ
a proof confluent sequent calculus. This means that automated proof search
does not require backtracking over rule applications, which is advantageous for
analysing failed proof attempts. The automated search for quantifier instan-
tiations uses rigid free variables (called meta variables) like in a free-variable
tableau calculus. Instead of backtracking over meta-variable instantiations, in-
stantiations are postponed to the point where the whole proof can be closed, and
an incremental global closure check is used. To minimise the confusion of novice
users, meta variables are not visible in normal interactive use, if the user provides
all required instantiations. Rule applications requiring particular instantiations
(unifications) of meta variables are handled by attaching unification constraints
to the resulting formulae [1, Sects. 4.3 and 10.2.2]. Equations are handled by
ordered rewriting (currently in an incomplete way, which we have not, however,
found to be a limiting factor so far).

The taclet language is designed in such a way that the user can only write
rules with local effects on sequents, and the handling of meta variables, skolemi-
sation, constraints, etc. is (mostly) taken care of automatically, to reduce the
risk of inadvertently introducing rules that are unsound or damage confluence.

Handling Arithmetics. As the theory of integer arithmetic is omnipresent
in program verification, KeY directly provides a number of automatic solution
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and simplification procedures for different fragments of arithmetic (see [3] on
page 149). All procedures are formulated in terms of taclets, which have been
verified against a small set of base axioms. The implemented methods target
both proving (showing that equations are unsolvable) and construction of coun-
terexamples (finding solutions of equations) for ground integer formulae.

The most basic method is a sequent calculus formulation of integer Gaus-
sian elimination, which is a complete method for solving linear equations. As a
prerequisite of the procedure, integer expressions are always fully expanded and
sorted. Linear inequalities are handled by Fourier-Motzkin variable elimination,
which we combine with systematic case distinctions in order to obtain a complete
procedure over the integers.

Reasoning in non-linear integer arithmetic is mainly carried out by heuristic
cross-multiplication of inequalities, similar to the approach of the ACL2 prover.
In order to reduce expressions as far as possible and handle non-linear equations
more efficiently, KeY also computes Gröbner bases over the integers.

The KeY system also features a component for easy integration of exter-
nal automated theorem provers and (semi-)decision procedures. Proof goals are
translated into the standardised input format SMT-LIB and discharged by call-
ing any tool that understands this format, such as Yices or CVC Lite. A similar
connector for the theorem prover Simplify is also available. The user benefits
from the particular abilities of these tools to decide fragments of arithmetics,
heuristically instantiate quantifiers, etc.

Applications. The main application of the KeY prover is to support program
verification in the KeY system. Among the major achievements in this field so
far are the treatment of the Demoney case study (an electronic purse application
provided by Trusted Logic S.A.) and the verification of a JAVA implementation of
the Schorr-Waite graph marking algorithm. This algorithm, originally developed
for garbage collectors, has recently become a popular benchmark for program
verification tools. Chapters 14 and 15 of the KeY book [1] are devoted to a
detailed description of these case studies. A case study [4] performed within the
HIJA project has verified with KeY the lateral module of the flight management
system, a part of the on-board control software from Thales Avionics.

Lately we have applied the KeY system also to issues of security analysis [5],
and in the area of model-based test case generation [6, 7] where, in particular,
the prover is used to compute path conditions and to identify infeasible paths.
The flexibility of KeY w.r.t. the used logic and calculus further manifests itself
in the fact that the prover has been chosen as a reasoning engine for a vari-
ety of other purposes. These include the mechanisation of a logic for Abstract
State Machines [8] and the implementation of a calculus for simplifying OCL
constraints [9].

KeY is also very useful for teaching logic, deduction, and formal methods.
Its graphical user interface makes KeY easy to use for students. They can step
through proofs with different degrees of automation (using the full verification
calculus or just the first-order core rules). The authors have been successfully
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teaching courses for several years using the KeY system. An overview and course
materials are available at www.key-project.org/teaching.
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5. Darvas, A., Hähnle, R., Sands, D.: A theorem proving approach to analysis of
secure information flow. In Hutter, D., Ullmann, M., eds.: Proceedings, Second In-
ternational Conference on Security in Pervasive Computing. Volume 3450 of LNCS,
Springer (2005) 193–209

6. Beckert, B., Gladisch, C.: White-box testing by combining deduction-based spec-
ification extraction and black-box testing. In Gurevich, Y., Meyer, B., eds.: Pro-
ceedings, First International Conference on Tests and Proofs, Zurich, Switzerland.
Volume 4454 of LNCS, Springer (2007) 207–216
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Abstract. We introduce a calculus for handling integer arithmetic in
first-order logic. The method is tailored to Java program verification
and meant to be used both as a supporting procedure and simplifier
during interactive verification and as an automated tool for discharging
(ground) proof obligations. There are four main components: a complete
procedure for linear equations, a complete procedure for linear inequali-
ties, an incomplete procedure for nonlinear (polynomial) equations, and
an incomplete procedure for nonlinear inequalities. The calculus is com-
plete for the generation of counterexamples for invalid ground formula
in integer arithmetic. All parts described here have been implemented as
part of the KeY verification system.

1 Introduction

We introduce a Gentzen-style sequent calculus for integer arithmetic that is
tailored to integrated automated and interactive Java software verification. The
calculus was developed for dynamic logic for the Java language [1, Chapter 3] (a
classical first-order logic) and integrates well-known as well as new algorithms,
with the goal to provide the following features:

– Simplification of arithmetic expressions or formulae so that proof goals are
kept small and readable. A calculus for this purpose should always terminate
and should not cause proof splitting; completeness is secondary.

– Transparency and the ability to create human-readable proofs and sequences
of simplification steps, otherwise it is difficult for a user to resume interac-
tive proving after a number of automated proof steps. The fastest way to
understand a proof goal is often to look at the history that led to the goal.

– Handling of nonlinear arithmetic guided by the user, which is necessary for
programs that happen to contain multiplication or division operations.

– Generation of counterexamples for invalid formulae, which is useful during
specification and when proving with induction and invariants.

– Handling of the actual modular Java integers, which are in our system mod-
elled by a mapping to the mathematical integers [1, Chapter 12]. Reasoning
in this setting requires good support for simplifying expressions, for instance
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by (implicitly) proving the absence of overflows. The methods that we de-
veloped to this end are beyond the scope of the paper, but are based on the
presented calculus.

– Simplicity, as interactive usage with a little expertise as possible is an im-
portant aspect of the KeY system.

Only some of these points can be solved using external procedures and the-
orem provers (which are, nevertheless, extremely useful for dealing with many
proof obligations). As a complementary approach, we have developed a novel cal-
culus for integer arithmetic that is directly implemented in our theorem prover
KeY [1] in form of derived proof rules (i.e., the rules have been proven correct
against a set of base rules). The rules are deliberately kept as elementary as
possible and are here presented in sequent calculus notation. The calculus is
driven by a proof strategy that controls the rule application and realises the
following components: (i) a simplification procedure that works on single terms
and formulae and is responsible for normalisation of polynomials (Sect. 2), (ii) a
complete procedure for systems of linear equations, based on Gaussian elimina-
tion and the Euclidian algorithm (Sect. 3), (iii) a complete procedure for systems
of linear inequalities, based on Fourier-Motzkin variable elimination (Sect. 4),
(iv) an incomplete procedure for nonlinear (polynomial) equations, based on
Gröbner bases (Sect. 5), (v) an incomplete procedure for nonlinear inequalities
using cross-multiplication of inequalities and systematic case analysis (Sect. 6).

The development of the method was mostly an engineering process with the
goal of handling cases that practically occur in Java program verification. It was
successful in the sense that many proofs that before only were possible with the
help of external provers can now be handled by KeY alone (e.g., the case study
[2]), and that many proofs that before were impossible have become feasible.

We do not consider quantifiers or uninterpreted functions in this paper. The
calculus is proof confluent (cf. [3]) and can basically be used in two different
modes: (i) for simplification, which disables the handling of nonlinear inequali-
ties, prevents case splits and guarantees termination (Procedure 12 in Sect. 5),
and (ii) for proving and countermodel construction, which enables all parts (Pro-
cedure 14 in Sect. 6).

Introductory example. We start with an example and show how the following
statement can be proven within our calculus (in the “full” mode):1

11a + 7b
.
= 1 ⊢ 〈 b=a*c-1; if (c>=a) a=a/b; 〉 true (1)

In Java dynamic logic, this sequent expresses that the program in angle brack-
ets terminates normally, i.e., in particular does not raise exceptions, given the
assumption 11a + 7b

.
= 1. A proof is conducted by rewriting the program follow-

ing the symbolic execution paradigm [4], whereby the calculus presented in this
paper is permanently applied on the path condition (in (1), 11a + 7b

.
= 1) and

the symbolic variable assignment (in (1), the identity).

1 On an Intel Pentium M processor with 1.6 GHz, the KeY implementation of the
procedure needs about 460 inference steps and 2 seconds to find this proof.
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The complete proof is shown in Fig. 1. As first step, all formulae are nor-
malised: we choose an arbitrary well-ordering <r on the variables in the problem
(a <r b <r c) and move big variables to the left and small variables to the right

of the relations
.
=,

.
≤,

.
≥, resulting in (2). We then concentrate on the equation in

(2), in order to (eventually) turn the leading coefficient 7 into a 1, by means of
the extended Euclidian algorithm [5]). A basis transformation is performed that
replaces b with a fresh variable d (such that a <r b <r c <r d). One can min-
imise the coefficient of 11a by choosing b

.
= −2a + d and replace the occurrence

of b in the original equation with −2a + d (afterwards, the equation is again
normalised, sequent (3)). Because the leading coefficient of the first equation is
still not 1, a second basis transformation a → 2d + e is performed (with d <r e).
This turns the leading coefficients of all equations into 1 (sequent (4)).

We can now leave out the equation d
.
= 3e + 1, because d does not occur in

the sequent anymore. No further inferences are possible in the path condition and
the first statement of the program is executed, which means that the variable
assignment has to be updated accordingly (for simplicity, we assume that no
overflows are possible). The assignment b := 7ce + 2c − 1 is written in front of
the program in (5) and is rewritten and simplified using the equations in (6).

The next program statement causes the proof to split on the condition c
.
≥ a.

One branch (c
.
< a) can immediately be closed because the program contains no

further statements. On the other branch (7), we obtain a new assumption c
.
≥ a

that can be simplified.
The execution of the last assignment yields a new proof obligation (8) in

order to prevent division by zero. We prove by contradiction and normalise the
new equation in (9) (and also leave out the first two equations, which are no
longer needed for the proof). Because all other possibilities fail in the resulting
situation, a case split on the sign of one of the “independent” variables c or e

is performed. Here, we will choose c and consider the cases c
.
≤ −1, c

.
= 0, and

c
.
≥ 1. The case c

.
= 0 contradicts 7ce

.
= −2c + 1, and the other two cases can be

handled in essentially the same way, so we show only the first one in (10).

By transitivity, from the two inequalities in (10) the inequality 7e + 2
.
≤ −1

can be derived, which is rounded to e
.
≤ −1 in (11). No further linear inference

steps are possible, but we can at this point deduce properties of product ce

by cross-multiplying the inequalities e
.
≤ −1 and c

.
≤ −1, which yields the new

inequality 0
.
≤ (−c − 1) · (−e − 1) in (12). After multiplying this inequality with

7, it can in (13) be rewritten using the equation 7ce
.
= −2c + 1 and turned into

−2c + 1
.
≥ 7 · (−c − e − 1) ⇔ 5c

.
≥ −7e − 8.

Now, a contradiction can be derived by reasoning about linear inequalities.
From 5c

.
≥ −7e − 8 and c

.
≤ −1 we derive 7e

.
≥ −3, which is rounded to e

.
≥ 0

and a contradiction to e
.
≤ −1.

2 Normalisation of Arithmetic Expressions

Before starting a derivation and permanently during a proof, our calculus nor-
malises (atomic) formulae. This was already demonstrated in the introductory
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example, and in a proof tree we denote such simplification steps with simp.
We always fully expand polynomial expressions and represent them as a sum
of monomials α1 · m1 + · · · + αn · mn, in which α1, . . . , αn are non-zero integer
literals and m1, . . . , mn are pairwise distinct products of variables (possibly 1
as the empty product, and possibly 0 as the empty sum). Full expansion is in
general obviously a bad idea, but we found that it is a reasonable approach in
interactive Java program verification that in the vast majority of cases improves
the readability of formulae.

Sorting Terms. We put polynomial expressions into a canonical form by ordering
the factors in a monomial and the monomials in a polynomial. The ordering <r

that is used in both cases is a strict monomial ordering [6, 7]:

– We assume that a graded monomial ordering <r [6, 7] on products of vari-
ables is given, i.e., a well-ordering (a total, well-founded ordering) with the
properties: (i) deg m < deg m′ implies m <r m′, and (ii) m <r m′ implies
x · m <r x · m′ for all variables x. In practice, we define <r as a graded
lexicographic ordering: we assume that a well-ordering <r on variables2 is
given and then define c1 · · · cn <r d1 · · · dk if and only if n < k or n = k and
{{c1, . . . , cn}} <r {{d1, . . . , dk}} (in the multiset extension of <r [9]).

– We extend <r by constructing a well-ordering on integer literals: 0 <r 1 <r

−1 <r 2 <r −2 <r 3 <r · · · .

– We extend <r on monomials by α · m <r α′ · m′ if and only if m <r m′ or
m = m′ (modulo associativity and commutativity of ·) and α <r α′.

– We extend <r on polynomials by α1m1 + · · ·+αnmn <r α′

1
m′

1
+ · · ·+α′

km′

k

if and only if {{α1m1, . . . , αnmn}} <r {{α′

1
m′

1
, . . . , α′

nm′

n}} (again using the
multiset extension of <r).

For sake of brevity, we will also compare arbitrary terms with <r and im-
plicitly assume that the terms are first normalised.

Normalisation of Formulae. Atomic formulae are always written in the form
αs ∗ t with ∗ ∈ {

.
≤,

.
=,

.
≥}, employing equivalences like s

.
< t ⇔ s + 1

.
≤ t, and

transformed so that the left-hand side αs is the <r-greatest monomial of the
polynomial αs − t and α > 0. Furthermore, all inequalities are moved to the
antecedent, and in case αs − t is a constant polynomial an equation or inequality
is directly replaced with true or false.

We always demand that the coefficients of non-constant terms in an equation
or inequality are coprime (do not have non-trivial factors in common), and oth-
erwise divide all coefficients by the greatest common divisor. This also detects
that equations like 2y

.
= 1 − 6c are unsolvable and equivalent to false, and that

an inequality like 2y
.
≤ 1 − 6c can be simplified and rounded to y

.
≤ −3c thanks

to the discreteness of the integers.

2 In reality, instead of variables we have to deal with arbitrary terms whose head-
symbol is not + or ·, which are compared with a lexicographic path ordering [8].
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Finally, we add a simple subsumption check for inequalities that eliminates
an inequality s

.
≤ t from the antecedent in case there is a second inequality

s
.
≤ t − β with β ≥ 0 (correspondingly for

.
≥).

3 Equation Handling: Gaussian Variable Elimination

In contrast to many decision procedures or SMT provers, we define a calculus for
handling linear equations that works independently from the inequality reason-
ing. The initial reason for this was that we believe that a reduction of equations
to inequalities is not an option for interactive proving. Much later we became
aware that we also can design more efficient, elegant and practical calculi for
linear integer equations than for inequalities, which afterwards justifies the de-
cision. We believe that this is also an important insight when working with the
modular Java arithmetic, where the handling of such equations is essential. The
sequent calculus described in this section is based on Gaussian elimination and
the Euclidian algorithm.3 It is complete, does not involve proof splitting, and is
fast for all problems and benchmarks that we so far have looked at.

Row Operations. The primary rule of the calculus reduces an expression with
the help of an equation in the antecedent. The application of the rule is only
allowed if s′ is not a subterm of s

.
= t (u is an arbitrary term):4

Γ, s
.
= t ⊢ φ[s′ + u · (s − t)],∆

Γ, s
.
= t ⊢ φ[s′],∆

red
if s′ + u · (s − t) <r s′

Example 1. We show how the rules red and simp are used to solve a system of
linear equations (with the ordering x <r y):

∗
x

.
= −5, y

.
= −1 ⊢ x

.
= −5

3y
.
= x + 2, y

.
= −1 ⊢ x

.
= −5

red, simp

3y
.
= x + 2, 5y − (3y − x − 2)

.
= x ⊢ x

.
= −5

simp

3y
.
= x + 2, 5y

.
= x ⊢ x

.
= −5

red

Column Operations. It is well-known that the rule red alone is not a com-
plete calculus for integer equations. An example is the formula 11a + 7b

.
= 1

in the introductory example, for which no reduction steps are possible. To ob-
tain a complete calculus, we also perform column operations—referring to the
usual matrix representation of the Gaussian elimination method. Assuming that
no more applications of red are possible in a sequent, and given an equation

3 The calculus is in parts inspired by [5, Chapter 4.5.2], but in contrast to [5] we
perform both row and column operations.

4 In the rule, we write φ[s′] in the succedent to denote that the term s′ can occur in
an arbitrary position in the sequent, in particular also in the antecedent.
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αx
.
= s of the antecedent, we introduce a fresh unknown x′ and perform a basis

transformation x → u + x′:

Γ, α · (u + x′)
.
= s, x

.
= u + x′ ⊢ ∆

Γ,αx
.
= s ⊢ ∆

col-red

if: x a variable, α > 1, (s − αu) = min<r
{s − αu′ | u′ a term},

x′ a fresh variable, <r-smaller than all previous symbols

The term u is chosen such that the difference s − αu becomes <r-minimal. One
subsequent application of simp will thus turn the new equation α(u + x′)

.
= s

into a formula βy
.
= t with β <r α. Likewise, βy is <r-smaller than the left-

hand sides of other equations β′y = t′, because red was applied exhaustively
prior to col-red. This ensures the overall termination of the procedure (Lem. 3
below) and allows to continue with reduction steps as long as linear equations
are present whose left-hand side has a non-unit-coefficient.

We do not apply the rule col-red to nonlinear equations, due to the expe-
rience that the basis transformations performed by col-red cause more harm
than good in the nonlinear setting. This is because the usage of a good monomial
ordering <r becomes far more important than in the linear setting (col-red

effectively alters the ordering by introducing a new smallest variable, possibly
in a harmful way). We further discuss this issue in Sect. 5.

Procedure 2. Apply simp with the highest priority, red with second-highest
priority, and col-red with the lowest priority.

Lemma 3. Procedure 2 terminates (for sequents containing arbitrary equations Proof on
page 166and inequalities). For sequents that only contain linear equations, it is complete

and proof confluent.

Example 4. If a proof branch does not get closed by this procedure, the remain-
ing equations are an explicit description of all solutions (counterexamples) of the
equations:

x0

.
= 125x′′

3
− 4, x1

.
= 25x′′

3
− 1, x2

.
= 20x′′

3
− 1, x3

.
= 16x′′

3
− 1,

x′

0

.
= 16x′′

3
, x′

3

.
= −3x′′

3

⊢

....
x0

.
= 5x1 + 1, 4x1

.
= 5x2 + 1, 4x2

.
= 5x3 + 1 ⊢

The equations that define x′

0
and x′

3
can be removed afterwards, because these

symbols do not occur in the original problem and have no impact on its valid-
ity. A concrete counterexample is obtained by assigning arbitrary values to the
variables that only occur in the right-hand sides of equations (x′′

3
).

4 Handling of Linear Inequalities:
Fourier-Motzkin Variable Elimination and Case Splits

Although Fourier-Motzkin variable elimination [10] generally has a high com-
plexity, it is one of the most popular methods to handle linear inequalities and
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used in proof assistants like PVS [11], Coq [12], Isabelle [13] or ACL2 [14, 15]
and in the SMT-solver CVCLite [16]. We found Fourier-Motzkin to be a suitable
base method both for linear and nonlinear inequality handling: most reasoning
during verification is rather shallow and most inequalities only share symbols
with a small number of other inequalities (sparse constraints), which is a situa-
tion where Fourier-Motzkin works well. At the same time, the Fourier-Motzkin
elimination rule is suited for interactive proving due to its simplicity and the
fact that it directly works on integers, in contrast to more efficient linear pro-
gramming techniques. The full procedure given in this section is complete over
the integers, but it involves proof splitting and does usually not terminate for
invalid sequents, which means that it cannot (directly) be used as a simplifier
for interactive proving. We therefore also identify a subset of the method that
does not cause splitting and always terminates, but which is no longer complete
(which hardly ever matters in practice). An example for a program that can
be verified using the incomplete procedure (together with axioms for division,
modulo and Java arithmetic) is shown in Fig. 2.

The Incomplete Procedure. As equations have already been handled in the previ-
ous section, we can implement Fourier-Motzkin with a single rule for “cancelling”
two inequalities:

Γ, αs
.
≥ t, βs

.
≤ t′, βt

.
≤ αt′ ⊢ ∆

Γ,αs
.
≥ t, βs

.
≤ t′ ⊢ ∆

fm-elim

if α > 0, β > 0

The resulting inequality βt
.
≤ αt′ does no longer contain the monomial s and is

therefore <r-smaller than both previous inequalities (after a subsequent appli-
cation of simp). To ensure termination, the rule must never be applied twice on
a proof branch to the same pair of inequalities.

The performance of Fourier-Motzkin can be improved by adding a rule that
turns two inequalities into an equation, based on the law of anti-symmetry:

Γ, s
.
= t ⊢ ∆

Γ, s
.
≤ t, s

.
≥ t ⊢ ∆

anti-symm

Procedure 5. Apply Procedure 2 (linear equations) with the highest priority,
the rule anti-symm with second highest priority and the rule fm-elim with
lowest priority.

Lemma 6. The procedure obtained in this way terminates when applied to aProof on
page 166 sequent containing arbitrary equations and inequalities.

The Complete Procedure. Fourier-Motzkin is complete for rationals, but incom-
plete for integers. Our calculus is already more complete than pure Fourier-
Motzkin due to the normalisation from Sect. 2 (rounding of inequalities) and the
different equation handling of Procedure 2, which are enough to handle many
cases that occur in practice (e.g., to show the inconsistency of 4x

.
≥ 5 ∧ 4x

.
≤ 7).
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Making the calculus actually complete has therefore not been of great impor-
tance for us. The following approach to this end is rather simplistic, but it has
a counterexample generation property that is practically more relevant.

Our calculus becomes complete by performing a systematic case analysis,
i.e., by doing proof splitting, in a way similar to Gomory’s cutting-planes [10].
This is realised by the following rule for investigating the borderline case of an
inequality:

Γ, s
.
< t ⊢ ∆ Γ, s

.
= t ⊢ ∆

Γ, s
.
≤ t ⊢ ∆

strengthen

There is a corresponding rule for
.
≥. The application of these rules does obviously

not terminate in general, but it does for valid sequents (of linear inequalities),
provided that a fair application strategy5 is used and the rule is combined with
Procedure 5. For an invalid sequent, a fair strategy eventually produces goals in
which all inequalities have been replaced with equations and where Procedure 2
can take over and produce a counterexample.

Case distinctions are also necessary to handle equations in the succedent:

Γ ⊢ s
.
≤ t,∆ Γ ⊢ s

.
≥ t,∆

Γ ⊢ s
.
= t,∆

split-eq

Procedure 7. Apply Procedure 5 (the incomplete method) with the highest pri-
ority, the rule split-eq with second highest priority, and the rule strengthen

with lowest priority and in a fair manner.

Lemma 8. This procedure is complete and proof confluent, and it eventually Proof on
page 167produces a counterexample for an invalid sequent.

Example 9. Consider the following example taken from [18]: Because Proce-

dure 5 is not able to derive a contraction, we apply strengthen to x
.
≤ 2 and

obtain two cases x
.
= 1, x

.
= 2 (thanks to anti-symm), the second of which leads

to a counterexample:

∗

y
.
≥ 1, y

.
≤ 0, x

.
= 1 ⊢

fm-elim

....
4y

.
≥ x + 1, 4y

.
≤ x + 2, x

.
= 1 ⊢

y
.
= 1, x

.
= 2 ⊢

y
.
≥ 1, y

.
≤ 1, x

.
= 2 ⊢

anti-symm

....
4y

.
≥ x + 1, 4y

.
≤ x + 2, x

.
= 2 ⊢

....

4y
.
≥ x + 1, 4y

.
≤ x + 2, x

.
≤ 2, x

.
≥ 1 ⊢

strengthen

5 In the presence of subsumption checks (Sect. 2), we consider a strategy as fair if
strengthen is eventually applied to each inequality or to any subsuming inequality.
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Java + JML

/*@

@ normal_behavior
@ requires -Decimal.PRECISION < f && f < Decimal.PRECISION

@ && e + intPart < 32767 && -32768 < e + intPart;

@ requires -Decimal.PRECISION < decPart && decPart < Decimal.PRECISION;

@ modifiable intPart, decPart;

@ ensures intPart * Decimal.PRECISION + decPart ==

@ (\old(intPart) + e) * Decimal.PRECISION + \old(decPart) + f;

@ ensures -Decimal.PRECISION < decPart && decPart < Decimal.PRECISION;

@*/publi
 void add(short e, short f) {

intPart += e;if ( intPart > 0 && decPart < 0 ) {

intPart--; decPart = (short)( decPart + PRECISION );

} else if ( intPart < 0 && decPart > 0 ) {

intPart++; decPart = (short)( decPart - PRECISION ); }

decPart += f;if ( intPart > 0 && decPart < 0 ) {

intPart--; decPart = (short)( decPart + PRECISION );

} else if ( intPart < 0 && decPart > 0 ) {

intPart++; decPart = (short)( decPart - PRECISION );

} else {short retenue = 0; short signe = 1;if ( decPart < 0 ) {

signe = -1; decPart = (short)( -decPart ); }

retenue = (short)( decPart / PRECISION );

decPart = (short)( decPart % PRECISION );

retenue *= signe; decPart *= signe; intPart += retenue;

} }

Java + JML

Fig. 2. Addition method of class Decimal taken from [17], where it was verified using
the Loop tool and PVS [11]. This method is part of a JavaCard Purse applet by
Gemplus (http://www.gemplus.com). Using the KeY implementation of our calculus,
it takes about 45 seconds and 23000 rule applications to automatically verify that the
method adheres to its specification, reasoning about the modular arithmetic of Java
(on an Intel Core 2 Duo CPU at 2.50GHz).
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5 Handling of Nonlinear Polynomial Equations:
Pseudo-Reduction and Gröbner Bases

The valid systems of integer equations or inequalities over arbitrary (possibly
nonlinear) polynomials are known not to be recursively enumerable [19]. This
means that all rules and procedures that we give from now on can never be com-
plete and have been employed or developed with the aim of handling the common
cases: when verifying programs, a large amount of the occurring nonlinear proof
obligations can and should be taken care of automatically by incomplete cal-
culi. The most important step to this end is to normalise nonlinear expressions
(Sect. 2). We describe a comparatively cheap extension—that does not cause
any proof splitting and is suited for interactive proving—of Procedure 2 to deal
with nonlinear equation.

Pseudo-Reduction. As in Sect. 3, the primary rule for rewriting with (non-
linear) equations is red. Because we do not apply the rule col-red to non-
linear equations, however, there are cases where equations αs

.
= t with α > 1

remain in the antecedent that cannot be simplified further. In the sequent
x

.
≥ 1, y

.
≥ 1, 2z2 .

= y ⊢ xz2
.
≤ xy, for instance, none of the rules so far can

be applied. In order to handle such cases, we introduce a further reduction rule
that is based on pseudo-division and works by first multiplying the target expres-
sion with a constant [5]. The rule must only be applied if αs

.
= t and u · t

.
= αt′

are different equations:

Γ, αs
.
= t ⊢ φ[u · t

.
= αt′],∆

Γ, αs
.
= t ⊢ φ[s′

.
= t′],∆

pseudo-red
if deg s > 1, α > 1, s′ = u · s

There are similar rules for inequalities s′
.
≤ t′, s′

.
≥ t′. We apply pseudo-red

only if the left-hand side of the equation αs
.
= t is nonlinear and α > 1. Other-

wise, the normal reduction rule red can be used, possibly after turning α into
1 with help of col-red.

Gröbner Bases. Rewriting with nonlinear equations using the rules red and
pseudo-red is not confluent and is not able to decide ideal membership in a ring
of polynomials. Ideal membership is an approximation of semantic entailment
of (nonlinear) equations that we can practically decide: we complete the set of
antecedent equations by computing a Gröbner basis [6].

Example 10. When starting with a wrong application of pseudo-red in the
following example, a dead end is reached and no further reductions are possible:

2xy
.
= a, 2yz

.
= b, az

.
= 2 ⊢ xyz

.
= 1

The simplest way to generate a Gröbner basis is to saturate the antecedent
with “S-polynomial”-equations by considering all critical pairs of existing integer
equations—the Buchberger algorithm [6]. Our calculus produces a non-reduced
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Gröbner basis over the field of rational numbers that only consists of polyno-
mial equations with integer coefficients, which are easier to compute and almost
as useful for reduction as actual Gröbner bases over the integers. Given two
equations with overlapping left-hand sides, S-polynomials are added as follows:

Γ, s
.
= t, s′

.
= t′, s′r · t

.
= sr · t

′ ⊢ ∆

Γ, s
.
= t, s′

.
= t′ ⊢ ∆

s-poly

s = gcd(s, s′) · sr,

s′ = gcd(s, s′) · s′r,
0 < deg sr < deg s,

0 < deg s′r < deg s′

Similarly to the Fourier-Motzkin elimination rule, this rule must not be applied
repeatedly for the same pair of equations to ensure termination. The performance
of this naive implementation of Buchberger’s algorithm is not comparable with
more advanced methods, of course. We have yet to find, however, a verification
problem where this would be a problem.

Example 11. We can solve Ex. 10 as follows. After the second application of
s-poly, the antecedent equations form a Gröbner basis:

∗
2xy

.
= a, 2yz

.
= b, az

.
= 2, bx

.
= 2, ab

.
= 4y ⊢ bx

.
= 2

2xy
.
= a, 2yz

.
= b, az

.
= 2, bx

.
= 2, ab

.
= 4y ⊢ xyz

.
= 1

pseudo-red

2xy
.
= a, 2yz

.
= b, az

.
= 2, bx

.
= 2 ⊢ xyz

.
= 1

s-poly

2xy
.
= a, 2yz

.
= b, az

.
= 2, az

.
= bx ⊢ xyz

.
= 1

red, simp

2xy
.
= a, 2yz

.
= b, az

.
= 2 ⊢ xyz

.
= 1

s-poly

Procedure 12. Apply Procedure 2 (linear equations) with highest priority, the
rule pseudo-red with second highest priority, the rule s-poly with third highest
priority, and Procedure 5 (linear inequalities) with lowest priority.

Lemma 13. Procedure 12 terminates when applied to a sequent containing ar-Proof on
page 169 bitrary equations and inequalities.

6 Handling of Nonlinear Polynomial Inequalities:
Cross-Multiplication and Case Splits

The handling of nonlinear polynomial inequalities is realised as an extension of
the linear inequality handling (Sect. 4). In order to apply linear reasoning to non-
linear arithmetic, we generate linear approximations of products and incremen-
tally strengthen the precision of the approximations through case distinctions.
Likewise, case splits are used to ensure the existence of linear approximations.
Our method has been developed as a heuristic, and we do not have an exact
description of the fragment of nonlinear arithmetic that it can handle. The main
application areas where the method has proven to be extremely useful are cor-
rectness proofs for lemma rules that can be loaded by the prover KeY [1], and
the verification of programs with the actual modular integer semantics of Java.
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Similarly to the approach in ACL2 [15, 20] (and using their terminology), the
primary rule to handle nonlinear inequalities is cross-multiplication:

Γ, s
.
≤ t, s′

.
≤ t′, 0

.
≤ (t − s) · (t′ − s′) ⊢ ∆

Γ, s
.
≤ t, s′

.
≤ t′ ⊢ ∆

cross-mult

There are corresponding rules for
.
≥ and for mixed pairs of inequalities. As usual

in order to ensure termination, cross-mult must not be applied repeatedly to
the same pair of inequalities.

We can give a geometric interpretation of cross-multiplication: for two linear
inequalities x

.
≤ α, y

.
≤ β, cross-multiplication introduces a linear approximation

of the product (the bilinear term) xy. In this particular case, the right-hand side

of the new inequality xy
.
≥ βx + αy − αβ is the greatest plane that bounds the

expression xy from below (under the assumptions x
.
≤ α, y

.
≤ β). More generally,

the result of cross-multiplication is a bound on the value of a monomial in
terms of <r-smaller monomials. Deriving such bounds is, in practical cases, often
sufficient to prove statements in nonlinear arithmetic.

Restricting Cross-Multiplication. An unrestricted application of the rule cross-

mult can produce arbitrarily many inequalities and does not terminate. As a
heuristic, we only use cross-mult if the product s · s′ already occurs as a factor
within a left-hand side of an equation or inequality (ignoring the coefficient of
s · s′). Although this is not strong enough to ensure termination, it guarantees
that the total degree of occurring monomials is bounded. We found this heuristic
to work reasonably well for most cases (a counterexample is Ex. 16 below).

Case Splits. For two reasons, it is crucial to combine cross-multiplication with
case distinctions: (i) nonlinear monomials over the complete set of integers do
in general not have linear bounds (observe, for instance, that the term xy is not
bounded from above or below by any linear expression in x and y). (ii) case
distinctions are in general the only way to strengthen linear bounds (again,

consider the term xy under the assumptions x
.
≤ α, y

.
≤ β, for which no more

precise linear lower bound exists than βx + αy − αβ).
To account for (i), we introduce a rule that splits over the sign of the value

of a term. We apply this rule for variables x that occur in the left-hand side of
equations or inequalities:

Γ, x
.
< 0 ⊢ ∆ Γ, x

.
= 0 ⊢ ∆ Γ, x

.
> 0 ⊢ ∆

Γ ⊢ ∆
sign-cases

Ternary splits are motivated by the observation that the case x
.
= 0 usually

is easy to handle (significantly easier than the original problem), while at the
same time a strict inequality x

.
> 0 appears to be of much greater use in cross-

multiplication than x
.
≥ 0 (and correspondingly for x

.
< 0). In our experience,

the rule sign-cases outperforms binary cuts.
Point (ii) is accommodated by using the rule strengthen from Sect. 4,

which we apply to linear inequalities in order to incrementally restrict the domain
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of a variable. For the example above, after strengthening the inequality x
.
≤ α

to x
.
≤ α − 1, we can also derive a better bound βx + (α − 1)y − αβ + β for the

value of xy.

Procedure 14. Apply Procedure 12 (equations handling and the incomplete
procedure for linear inequalities) with the highest priority, the rule split-eq with
second highest priority, and the rules cross-mult, sign-cases and strengthen

with the lowest priority and in a fair manner.

Example 15. We give three further examples that can be proven using Proce-
dure 14 (the last two ones are taken from [15, 20]). In practice, it can often be
observed that Procedure 14 is able to solve nonlinear equational problems that
cannot be proven using Procedure 12 (only using Gröbner bases).

xy
.
= 0 ⊢ x

.
= 0, y

.
= 0 x2 .

= 2 ⊢ 0
.
< ab, 0

.
< cd, 0

.
< ac ⊢ 0

.
< bd

Example 16. A valid sequent that is not provable due to the restriction on the
application of cross-mult is ac

.
≤ bd − 1, de

.
≤ a, c

.
≥ 1, ce

.
= b ⊢ . The prob-

lem can be solved by cross-multiplying de
.
≤ a and c

.
≥ 1.

Lemma 17. When applied to an invalid sequent (containing arbitrary equationsProof on
page 169 and inequalities), Procedure 14 will eventually produce a counterexample.

7 Related Work

Most similar to our approach is the arithmetic handling in ACL2 [14, 15], which
also employs Fourier-Motzkin for linear and cross-multiplication for nonlinear
arithmetic. Concerning differences, ACL2 runs arithmetic handling as a purely
automated procedure, supports also rationals, does not have separate procedures
for equations and does not seem to perform a systematic case analysis.

An method for handling linear equations and inequalities similar to our ap-
proach (but lacking counterexample generation) is described in [18] and imple-
mented in the Tecton tool. Related is also [21] about the extension of linear
reasoning to nonlinear reasoning.

Higher-order proof assistants usually support integer arithmetic and are so
general that arbitrary procedures can be implemented on top of them, often
targeting mathematical proofs. In comparison, we tried to develop a simple cal-
culus/procedure specifically for Java verification that works “out of the box” and
requires little expertise. The PVS proof assistant [11] can handle linear integer
arithmetic and can simplify nonlinear expressions (involving multiplication and
division) to some degree, but does (apparently) not go as far as our approach
or ACL2. The Coq system [12] implements an incomplete version of the Omega
method for deciding Presburger arithmetic (linear integer arithmetic with quan-
tifiers) that essentially boils down to Fourier-Motzkin. Coq can also simplify
ring expressions like polynomials. For HOL light [22], a number of tactics and
decision procedures for arithmetic have been implemented, including Cooper’s
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method for deciding Presburger arithmetic, handling of congruences and simpli-
fication of polynomial expressions. Similarly, a variety of procedures for linear
integer arithmetic are available in Isabelle/HOL [13, 23], as well as procedures for
rings that can be instantiated to the integers. Cooper’s method and the Omega
test for deciding Presburger arithmetic have also been implemented for the HOL
system [24].

Linear arithmetic is one of the most important theories supported by SMT
solvers (which generally provide incomparably better performance for linear
arithmetic than our implementation based on a general theorem prover frame-
work), see [25] for a list. To the best of our knowledge, no SMT solver offers
support for nonlinear arithmetic similar to our approach or ACL2. SMT solvers
typically use linear programming techniques like Simplex, combined with meth-
ods like branch-and-bound or Gomory’s cutting planes to realise completeness
on the integers.

8 Conclusions and Future Work

We have presented the main components of a proof procedure for linear and
nonlinear integer arithmetic, represented as sequent calculus rules together with
application strategies. The procedure is completely implemented, and the sound-
ness of the implementation is verified in the prover KeY itself. In addition to the
calculus shown here, KeY also supports division and modulo operations and pro-
vides further methods like polynomial division. Based on this, we have formalised
the Java semantics of integer operations.

For the future, we are considering a more efficient stand-alone implemen-
tation of the calculus, possibly based on the DPLL(T) framework. As a more
conceptual extension, we plan to combine the calculus with free-variable reason-
ing for handling quantifiers. The general approach for this is described in [26],
but needs to be investigated more carefully. Finally, we would like to add support
for bit-wise operations (as they can be found in Java).

Acknowledgements

I want to thank Wolfgang Ahrendt and Richard Bubel for many inspiring dis-
cussions and comments on this paper. Thanks are also due to the anonymous
referees for helpful comments.

References
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A Proof Outlines

Lemma 3 (Properties of Gaussian Elimination)

Termination. The termination of simp and red is immediate. We call the left-
hand sides x of equations x

.
= s (x a variable) in the antecedent “defined vari-

ables,” and all other variables “independent variables.” When applying red

exhaustively, each defined variable will eventually occur in exactly one place in
the sequent (namely, in the defining equation).

For proving termination when col-red is added, we show that the leading
coefficients α > 1 of equations αx

.
= s constantly get smaller. We introduce a

well-founded ordering on the set of multisets over N ∪ {∞} by lexicographic
comparison: for a1 ≤ · · · ≤ an, b1 ≤ · · · ≤ bm, we define:

{{a1, . . . , an}} <m {{b1, . . . , bm}} iff

n < m or (n = m and (a1, . . . , an) <lex (b1, . . . , bm))

For a sequent and an independent variable x, we then consider the divisors
gcd(α1, . . . , αn) ∈ N ∪ {∞}, where α1, . . . , αn are all coefficients of equations
αix

.
= si in the antecedent (we define gcd() = ∞). The multiset of such gcds for

all independent variables gets <m-smaller for each application of col-red, and
it gets <m-smaller or stays the same when red is applied (each time potentially
followed by an application of simp). This proves termination.

Completeness and proof confluence. Assume that no further rules can be applied,
but the proof branch at hand is not closed. This implies that the coefficient of the
left-hand side of all equations is 1 (otherwise, simp or col-red can be applied),
and that no left-hand side term occurs in two places in the sequent (otherwise,
red can be applied). Due to the fact that 0 is the only polynomial whose value
is constantly 0 (and correspondingly for tuples of polynomials), there is a coun-
termodel for the equations in the succedent (a valuation of the independent
variables). We extend this valuation on the defined variables according to the
equations in the antecedent. When investigating red and col-red, it can be
seen that this countermodel also is a countermodel of the original sequent.

Lemma 6 (Termination of Fourier-Motzkin Elimination)

To see that the application of fm-elim terminates, consider the multiset of pairs
of inequalities in the antecedent to which fm-elim can but has not yet been
applied. Pairs of inequalities can be compared lexicographically using <r, and
multisets of pairs can be compared using the multiset extension of this ordering.
As the multiset gets smaller in this well-founded ordering each time fm-elim is
applied, termination is guaranteed.

The rule anti-symm can introduce new equations. Such a new equation does
not contain any left-hand sides of existing equations in the antecedent (because
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red has been applied exhaustively), and it therefore reduces the number of
independent variables by one. In the last case, Fourier-Motzkin basically has to
start over once Procedure 2 has done its job, but this can only happen a finite
number of times.

Lemma 8 (Properties of Inequality Procedure)

Completeness. We show completeness referring to the main theorem of the
Omega test [27], which is the following (we use the same notation as [24]):

Theorem 18 (Pugh, 1992). Suppose L(x) =
∧

i ai ≤ αix is a conjunction of
lower bounds and U(x) =

∧

j βjx ≤ bi is a conjunction of upper bounds, in which
all αi and βj are positive integers and ai, bj are arbitrary terms that do not
contain x. Then:

∃x.L(x) ∧ U(x) ⇐⇒
∧

i,j(αi − 1)(βj − 1) ≤ αibj − aiβj

∨
∨

i

∨mi

k=0
∃x.

(

αix = ai + k ∧ L(x) ∧ U(x)
)

The constants m and mi are defined as follows (in case there are no upper
bounds, we define m = mi = −1):

m = max
j

βj , mi =

⌊

mαi − αi − m

m

⌋

We also introduce a somewhat modified version of this theorem:

Lemma 19.

∃x.L(x) ∧ U(x) ⇐⇒
∧

i,j(mi + 1)βj ≤ αibj − aiβj

∨
∨

i

∨mi

k=0
∃x.

(

αix = ai + k ∧ L(x) ∧ U(x)
)

Proof. Theorem 18 has the form E ⇔ D1 ∨ D2, Lem. 19 the form E ⇔ D′

1
∨ D2.

To prove the latter equivalence, we show the two implications D′

1
⇒ D1 and

E ∧ ¬D′

1
⇒ D2.

– D′

1
⇒ D1: For all i and j the following inequality holds:

(mi + 1)βj =

⌊

mαi − αi − m

m

⌋

βj + βj

≥

⌊

βjαi − αi − βj

βj

⌋

βj + βj

≥ (βjαi − αi − βj) − βj + 1 + βj

= (αi − 1)(βj − 1)
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– E ∧ ¬D′

1
⇒ D2: Assume L(x0) ∧ U(x0) and that D′

1
is violated because of:

(mi0 + 1)βj0 > αi0bj0 − ai0βj0

From U(x0) we can conclude βj0x0 ≤ bj0 , i.e., αi0βj0x0 ≤ αi0bj0 , and there-
fore:

αi0βj0x0 ≤ αi0bj0 < (mi0 + 1)βj0 + ai0βj0

=⇒ βj0(αi0x0 − ai0) ≤ (mi0 + 1)βj0 − 1

=⇒ αi0x0 − ai0 ≤ mi0 + 1 − β−1

j0

=⇒ αi0x0 − ai0 ≤ mi0

As we also know ai0 ≤ αi0x0 because of L(x0), one of the disjuncts of D2

(for i = i0 and k = αi0x0 − ai0) has to be true.

We prove the completeness of Procedure 7 by contradiction: assume that
the procedure has been applied to a valid formula φ (involving equations and
inequalities), and it did not construct a closed proof. If this proof attempt is
finite, then none of its goals contains inequalities (because otherwise the rule
strengthen would be applicable). By Lem. 3, this means that a countermodel
exists for at least one goal, and then φ is not valid either because all involved
rules are equivalence transformations (contradiction).

We can, thus, assume that the proof attempt has an infinite branch. All but
finitely many steps on this branch have to be done using the rules fm-elim,
strengthen, and simp: Procedure 5 terminates, the rule split-eq can only be
applied finitely often because each application eliminates one equations in the
succedent, and each time anti-symm is applied the number of independent con-
stants is decreased by one. By the same argument, when strengthen is applied
on the branch, then in all but finitely many cases the branch passes through the
left premiss of the rule (i.e., s

.
≤ t is strengthened to s

.
< t ⇔ s

.
≤ t − 1). From

now on, we only consider the infinite part of the branch that consists of appli-
cations of fm-elim, strengthen, and simp, and where always the left premiss
of strengthen is considered. Again, because all involved rules are equivalence
transformations and because left-hand sides of equations do not occur in in-
equalities, the conjunction of inequalities in each antecedent on the branch is
unsatisfiable.

Pick an arbitrary sequent on the branch:

Γ, {αix
.
≥ ai}i, {βjx

.
≤ bi}j ⊢

where Γ contains equations and further inequalities, and where x is the <r-
largest left-hand side variable x of all inequalities. Lem. 19 tells how a proof
for this sequent can be constructed: we apply strengthen repeatedly so that
each inequality αix

.
≥ ai is strengthened to αix

.
≥ ai + mi + 1. Subsequent ap-

plications of fm-elim generates the same inequalities as in the right-hand side
of Lem. 19:

{(mi + 1)βj ≤ αibj − aiβj}i,j
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The same process can be repeated for the second-<r-largest left-hand side vari-
able, etc., which eventually has to yield a contradiction due to the equivalence
stated in Lem. 19.

The same contradiction must have occurred on the infinite branch at hand:
once all Fourier-Motzkin inferences have been generated by fm-elim, the ef-
fect of strengthen (followed by further applications of fm-elim and simp)
is that one or multiple inequalities s

.
≤ t − α (resp., s

.
≥ t + α) are turned into

s
.
≤ t − (α + β) (resp., s

.
≥ t + (α + β)) for some β > 0. Because strengthen

is applied in a fair manner, this implies that whenever an inequality s
.
≤ t − α

(resp., s
.
≥ t + α) occurs somewhere on the branch, then for each β > 0 there is

a γ ≥ 0 such that the inequality s
.
≤ t − (α + β + γ) (resp., s

.
≥ t + (α + β + γ))

occurs on the branch (upper and lower bounds of terms are strengthened in-
finitely often).

Counterexamples. The rule strengthen leads to a systematic enumeration of
all solutions of inequalities in the antecedent.

Lemma 13 (Termination of Gröbner Basis Computation)

Procedures 2 and 5 terminate by previous lemmas, and the rules pseudo-red

and s-poly form the standard Buchberger algorithm that itself is also known
to terminate. Buchberger’s algorithm and Procedure 5 can have an influence on
procedures with a higher priority by introducing new equations. If Buchberger’s
algorithm or Procedure 5 produce a new linear equation, the same reasoning as
in the proof of Lem. 6 applies. Likewise, if Procedure 5 (the rule anti-symm)
produces a new nonlinear equation, Buchberger’s algorithm has to recompute
the Gröbner basis. Such an equation has to be outside of the ideal generated
by the existing equations (because the rules red and pseudo-red can also be
applied to inequalities). Because rational polynomials over a finite number of
variables form a Noetherian ring, this can only happen finitely often.

Lemma 17 (Counterexample Generation)

All parts of the procedure that have a higher priority than then rules sign-

cases and strengthen terminate. Applied in a fair manner, sign-cases and
strengthen enumerate all possible valuations of the variables that a problem
contains. If the sequent is invalid, this eventually has to find a countermodel.
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Abstract. First-order logic modulo the theory of integer arithmetic is
the basis for reasoning in many areas, including deductive software ver-
ification and software model checking. While satisfiability checking for
ground formulae in this logic is well understood, it is still an open ques-
tion how the general case of quantified formulae can be handled in an
efficient and systematic way. As a possible answer, we introduce a sequent
calculus that combines ideas from free-variable constraint tableaux with
the Omega quantifier elimination procedure. The calculus is complete for
theorems of first-order logic (without functions, but with arbitrary unin-
terpreted predicates), can decide Presburger arithmetic, and is complete
for a substantial fragment of the combination of both.

1 Introduction

One of the main challenges in automated theorem proving is to combine rea-
soning about full first-order logic (FOL), including quantifiers, with reasoning
about theories like the integers. At the time, there are efficient provers for han-
dling formulae in first-order logic, as well as SMT-solvers that can efficiently
handle ground problems modulo many theories, but the support for the combi-
nation of both is typically weak. In this paper, we develop a novel calculus for
reasoning about first-order logic modulo linear integer arithmetic that is com-
plete for both the first-order part and the theory part, and that can handle a
substantial fragment of the combination of both. Because the calculus is close
to the DPLL(T) architecture, techniques and optimisations used in SMT-solvers
are readily applicable when working on ground problems, but can be combined
with free-variable techniques to treat quantifiers more systematically.

We start from two existing approaches: free-variable tableaux with incremen-
tal closure, following the work by Martin Giese [1], and the Omega quantifier
elimination procedure [2] for deciding Presburger arithmetic (PA) [3]. From the
former method, our calculus inherits the concept of generating constraints that
describe valuations of free variables for which a formula is satisfied. The lat-
ter method provides the basic rules for dealing with linear integer arithmetic,
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and the concept of recursive application of a calculus in order to handle nested
and alternating quantifiers. The resulting calculus accepts arbitrary formulae
of PA enriched with arbitrary uninterpreted predicates as input. Uninterpreted
functions are not directly supported, but can be treated by a translation to
uninterpreted predicates and functionality and totality axioms.

Our calculus operates on constrained sequents Γ ⊢ ∆ ⇓ C, which consist of
two sets Γ ,∆ of formulae (the antecedent and the succedent) and one further for-
mula C (the constraint). In this paper, C will always be a formula of PA. The se-
mantics of a constrained sequent is the same as of the implication C ⇒ (Γ ⊢ ∆),
i.e., we call the sequent valid if the constraint C implies the ordinary sequent
Γ ⊢ ∆ (and the ordinary sequent holds iff the formula

∧
Γ →

∨
∆ holds). In

this sense, we can say that the constraint C is an approximation of the sequent
Γ ⊢ ∆. The sequent ∀x.(x

.
≥ 0 → p(x)) ⊢ p(c) ⇓ c

.
≥ 0 is valid, for instance,

as are the sequents ∀x.(x
.
≥ 0 → p(x)) ⊢ p(c) ⇓ c

.
= 3 and Γ ⊢ ∆ ⇓ false.

In practice, the constraints of sequents will be unknown during the construc-
tion of a proof. Reasoning about constrained sequents thus consists of two or
more phases: starting with a problem Γ ⊢ ∆ ⇓ ? with unknown constraint, a
proof procedure will first apply analytic rules to the antecedent and succedent
and build a proof tree, similarly as in a normal Gentzen-style sequent calcu-
lus. At some point when it seems appropriate, the procedure will start to close
branches by synthesising sufficient constraints, which are subsequently propa-
gated downwards from the leaves to the root of the tree. If the constraint that
reaches the root is found to be valid, the validity of the input problem Γ ⊢ ∆
has been shown; otherwise, the procedure will continue to expand the proof tree
and later update the resulting constraints.

analytic reasoning
about input formula

x





∗....

Γ ′′ ⊢ ∆′′ ⇓ C

Γ ′ ⊢ ∆′ ⇓ C ′

· · ·





y

propagation
of constraints

If the input problem Γ ⊢ ∆ does not contain uninterpreted predicates (i.e.,
corresponds to a PA formula), it is always possible to find proofs such that the
resulting constraint is equivalent to Γ ⊢ ∆ (we will call such proofs exhaustive).
This allows us to use the calculus as a quantifier elimination procedure for PA.

Our main contributions are: the introduction of the calculus, completeness
results for a number of fragments (including FOL and PA), a complete and
terminating proof strategy for the PA fragment, and the result that fair proof
construction is complete for formulae that are provable at all. We describe two
important refinements of the calculus.

The paper is organised as follows: After giving basic definitions in Sect. 2, we
introduce our calculus in three steps: Sect. 3 gives a version for pure first-order
logic, Sect. 4 a minimalist version for first-order logic modulo integer arithmetic,
together with completeness results, and Sect. 5 an equivalent but more refined
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calculus. Sect. 6 contains the result that fair proof strategies are complete. Two
optimisations for the calculus are described in Sect. 7 and 8. Information about
the prototypical implementation of the calculus and initial experimental results
are given in Sect. 9. Finally, Sect. 10 summarises related work and Sect. 11
concludes.

2 Preliminaries

We assume that the reader is familiar with classical first-order logic and Gentzen-
style sequent calculi, see [4] for an introduction. Assuming that x ∈ X ranges
over an infinite set of variables, c ∈ A over an infinite set of constants, p ∈ P
over a set of uninterpreted predicates with fixed arity, and α ∈ Z over integers,
the syntactic categories of terms t and formulae φ are defined by:

t ::= α || x || c || αt+ · · · + αt

φ ::= φ ∧ φ || φ ∨ φ || ¬φ || ∀x.φ || ∃x.φ || t
.
= 0 || t

.
≥ 0 || t

.
≤ 0 || α | t || p(t, . . . , t)

For reasons of simplicity, we only allow 0 as right-hand side of equations and
inequalities, although we deviate from this convention in some places for sake of
clarity. The explicit divisibility operator α | t is added for presentation purposes
only and does not add any expressiveness (divisibility can also be expressed
with an existentially quantified equation). Further, we use the abbreviations
true, false for the equations 0

.
= 0, 1

.
= 0 and φ→ ψ as abbreviation for ¬φ∨ψ.

Simultaneous substitution of terms t1, . . . , tn for variables x1, . . . , xn is de-
noted by [x1/t1, . . . , xn/tn]φ, whereby we assume that variable capture is avoided
by renaming bound variables when necessary. As short-hand notations, we some-
times also substitute terms for constants (as in [c/t]φ), quantify over constants
(as in ∀c.φ), or quantify over sets of constants (as in ∀U.φ).

Semantics. The only universe considered for evaluation are the integers Z (an
exception is Sect. 3, where we treat normal first-order logic). A variable as-
signment β : X → Z is a mapping from variables to integers, a constant as-
signment δ : A → Z a mapping from constants to integers, and an interpre-
tation I : P → P(Z∗) a mapping from predicates to sets of Z-tuples. The
evaluation function valI,β,δ for terms and formulae is then defined as is common
and gives the arithmetic operations their normal meaning, for instance:

valI,β,δ(α1t1 + · · ·αntn) =

n∑

i=1

αi · valI,β,δ(ti)

valI,β,δ(t
.
= 0) = tt iff valI,β,δ(t) = 0

valI,β,δ(α | t) = tt iff there is a ∈ Z with α · a = valI,β,δ(t)

valI,β,δ(p(t1, . . . , tn)) = tt iff (valI,β,δ(t1), . . . , valI,β,δ(tn)) ∈ I(p)

We call a formula φ valid if valI,β,δ(φ) is true for all I, β, δ.
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Sequents. If Γ ,∆ are finite sets of formulae and C is a formula, all of which do not
contain free variables, then Γ ⊢ ∆ is an (ordinary) sequent and Γ ⊢ ∆ ⇓ C
is a (constrained) sequent. We sometimes identify sequents with the formulae
∧
Γ →

∨
∆ (resp.,

∧
Γ ∧ C →

∨
∆). A calculus rule is a binary relation between

finite sets of constrained sequents (the premisses) and constrained sequents (the
conclusion). A sequent calculus rule is called sound, iff, for all instances

Γ1 ⊢ ∆1 ⇓ C1 · · · Γn ⊢ ∆n ⇓ Cn
Γ ⊢ ∆ ⇓ C

it holds that: if all premisses Γ1 ⊢ ∆1 ⇓ C1, . . . , Γn ⊢ ∆n ⇓ Cn are valid,
then Γ ⊢ ∆ ⇓ C is valid. Proof trees are defined as is common as trees growing
upwards in which each node is labelled with a constrained sequent, and in which
each node that is not a leaf is related with the nodes directly above through an
instance of a calculus rule. A proof is closed if it is finite, and if all leaves are
justified by a rule instance without premisses.

Simplification. We denote elementary simplification steps on terms and atomic
formulae in a proof with simp, without showing more details about the applied
transformation (in an implementation, simp might be a part of the datastruc-
tures for formulae). simp normalises terms to the form α1t1 + · · · + αntn, in
which α1, . . . , αn are non-zero integers and t1, . . . , tn are pairwise distinct vari-
ables, constants, or 1 (possibly 0 as the empty sum). Further, terms are put into
a canonical form by sorting summands according to a well-founded ordering <r:

– on variables, constants and integers, <r is an arbitrary well-ordering such
that variables are bigger than constants, constants are bigger than integers,
and: 0 <r 1 <r −1 <r 2 <r −2 <r 3 <r · · · .

– on terms with coefficients, <r is defined by αt <r α
′t′ if and only if t <r t

′

or t = t′ and α <r α
′.

– on linear combinations, α1t1 + · · · + αntn <r α
′
1t

′
1 + · · · + α′

kt
′
k holds if and

only if {{α1t1, . . . , αntn}} <r {{α
′
1t

′
1, . . . , α

′
nt

′
n}} in the multiset extension of

<r [5].
– for arbitrary terms t, t′, let α1t1 + · · · + αntn and α′

1t
′
1 + · · · + α′

kt
′
k denote

equivalent linear combinations (as above, t1, . . . , tn and t′1, . . . , t
′
k are pair-

wise distinct variables, constants, or 1). The relationship t <r t
′ holds if and

only if α1t1 + · · · + αntn <r α
′
1t

′
1 + · · · + α′

kt
′
k.

Atomic formulae t
.
= 0, t

.
≥ 0, t

.
≤ 0 are normalised by simp such that the coef-

ficients of non-constant terms in t are coprime (do not have non-trivial factors
in common), and such that the leading coefficient is non-negative. This also de-
tects that equations like 2y − 6c+ 1

.
= 0 are unsolvable and equivalent to false,

and that an inequality like 2y − 6c+ 1
.
≤ 0 can be simplified and rounded to

y − 3c+ 1
.
≤ 0 thanks to the discreteness of the integers. All inequalities in the

succedent are moved to the antecedent. A divisibility judgement α | t is nor-
malised like an equation αx+ t

.
= 0, and it is ensured that α and the leading

coefficient of t are positive.
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Γ ⊢ φ,∆ ⇓ C Γ ⊢ ψ,∆ ⇓ D

Γ ⊢ φ ∧ ψ,∆ ⇓ C ∧D
and-right

Γ, φ ⊢ ∆ ⇓ C Γ,ψ ⊢ ∆ ⇓ D

Γ, φ ∨ ψ ⊢ ∆ ⇓ C ∧D
or-left

Γ, φ, ψ ⊢ ∆ ⇓ C

Γ, φ ∧ ψ ⊢ ∆ ⇓ C
and-left

Γ ⊢ φ, ψ,∆ ⇓ C

Γ ⊢ φ ∨ ψ,∆ ⇓ C
or-right

Γ ⊢ φ,∆ ⇓ C

Γ,¬φ ⊢ ∆ ⇓ C
not-left

Γ, φ ⊢ ∆ ⇓ C

Γ ⊢ ¬φ,∆ ⇓ C
not-right

Γ ⊢ [x/c]φ, ∃x.φ,∆ ⇓ [x/c]C

Γ ⊢ ∃x.φ,∆ ⇓ ∃x.C
ex-right

Γ, [x/c]φ, ∀x.φ ⊢ ∆ ⇓ [x/c]C

Γ, ∀x.φ ⊢ ∆ ⇓ ∃x.C
all-left

Γ ⊢ [x/c]φ,∆ ⇓ [x/c]C

Γ ⊢ ∀x.φ,∆ ⇓ ∀x.C
all-right

Γ, [x/c]φ ⊢ ∆ ⇓ [x/c]C

Γ, ∃x.φ ⊢ ∆ ⇓ ∀x.C
ex-left

Fig. 1. The rules for first-order predicate logic (without equality). In all rules, c is
a constant that does not occur in the conclusion: in contrast to the usage of Skolem
functions and free variables in tableaux, the same kinds of symbols (constants) are
used to handle both existential and universal quantifiers. Arbitrary renaming of bound
variables is allowed in the constraints when necessary to avoid variable capture.

3 A Constraint Sequent Calculus for First-Order Logic

We first introduce a very restricted calculus for pure first-order logic, in order to
illustrate how the framework of constrained sequents is related to normal free-
variable tableau calculi. This section is exceptional in that we do not assume
evaluation of formulae over the universe Z of integers, and that we allow equa-
tions s

.
= t whose right-hand side is not 0. The rules from Fig. 1, together with

the following closure rule, form the calculus PredC :

∗
Γ, p(s1, . . . , sn) ⊢ p(t1, . . . , tn),∆ ⇓

∧

i si
.
= ti

pred-close

Instead of unifying complementary literals, a conjunction of equations about the
predicate arguments is generated and propagated as a constraint.

Example 1. We show a proof for the sequent ∀x.∃y.p(x, y) ⊢ ∃z.p(a, z):

∗
. . . , p(c, d) ⊢ . . . , p(a, e) ⇓ c

.
= a ∧ d

.
= e

pred-close

. . . , p(c, d) ⊢ ∃z.p(a, z) ⇓ ∃z.(c
.
= a ∧ d

.
= z)

ex-right

. . . ,∃y.p(c, y) ⊢ ∃z.p(a, z) ⇓ ∀y.∃z.(c
.
= a ∧ y

.
= z)

ex-left

∀x.∃y.p(x, y) ⊢ ∃z.p(a, z) ⇓ ∃x.∀y.∃z.(x
.
= a ∧ y

.
= z)

all-left

In order to instantiate existential and universal quantifiers, fresh constants c, d, e
are introduced. The constraints on the right-hand side are practically filled in
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after applying pred-close. Because ∃x.∀y.∃z.(x
.
= a ∧ y

.
= z) is valid, also the

validity of the original problem is proven.

It is easy to see that a constraint C produced by a proof can only consist of
equations over variables and constants, conjunctions, and quantifiers (because
these are the only constructs that are introduced in constraints by the rules
of PredC). The validity of constraints/formulae of this kind is decidable and
corresponds to simultaneous unification, which makes the calculus effective.

Lemma 2 (Soundness). If a sequent Γ ⊢ ∆ ⇓ C is provable in PredC , thenProof on
page 198 it is valid (holds in all first-order structures).

Lemma 3 (Completeness). Suppose φ is closed, valid (holds in all first-orderProof on
page 198 structures), and does not contain constants. Then there is a valid constraint C

such that ⊢ φ ⇓ C is provable in PredC .

It can be observed that PredC is also proof confluent, which strengthens
Lem. 3. In order to continue (“complement”) a partial proof, it can be both
necessary to expand branches further and to update constraints anywhere in the
proof:

Lemma 4 (Proof confluence). Suppose that φ is valid. Any (partial) PredC-Proof on
page 203 proof with root ⊢ φ ⇓ ? that does not contain applications of pred-close

can be complemented to a closed proof tree with root ⊢ φ ⇓ C for some valid
constraint C.

4 Adding Integer Arithmetic

Relatively few changes to the calculus PredC from the previous section are
necessary to reason about problems in integer arithmetic. In this section, we
describe a minimalist approach in which all integer reasoning happens during
the constraint solving and investigate fragments on which the resulting method
is complete. Later in the paper, the calculus is refined and optimised. From now
on and in contrast to the previous section, assume that formulae and terms are
evaluated over first-order structures with the universe Z as described in Sect. 2.

In contrast to the previous section, to handle integer arithmetic disjunctive
constraints also need to be considered. We thus split the rule pred-close into
two new rules, one of which (pred-unify) generates unification conditions for
complementary pairs, while the other one (close) allows to synthesise a con-
straint from arbitrary formulae in a sequent:

Γ, p(s1, . . . , sn) ⊢ p(t1, . . . , tn),
∧

i si − ti
.
= 0,∆ ⇓ C

Γ, p(s1, . . . , sn) ⊢ p(t1, . . . , tn),∆ ⇓ C
pred-unify

∗
Γ, φ1, . . . , φn ⊢ ψ1, . . . , ψm,∆ ⇓ ¬φ1 ∨ · · · ∨ ¬φn ∨ ψ1 ∨ · · · ∨ ψm

close

(φ1, . . . , φn, ψ1, . . . , ψm do not contain uninterpreted predicates)
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∗

. . . ⊢ . . . , 2d− c− 10
.
= 0, c− 2e− 1

.
= 0 ⇓ C1

close

p(2d), . . . , p(c) ⊢ p(c+ 10), p(2e+ 1) ⇓ C1

pred-unify × 2

. . . , p(2d), ∀x.¬p(2x+ 1), p(c) ⊢ p(c+ 10) ⇓ C2

all-left,not-left

∀x.p(2x), ∀x.¬p(2x+ 1), p(c) ⊢ p(c+ 10) ⇓ C3

all-left

∀x.p(2x), ∀x.¬p(2x+ 1) ⊢ ¬p(c) ∨ p(c+ 10) ⇓ C3

or-right,not-right

∀x.p(2x), ∀x.¬p(2x+ 1) ⊢ ∀y.(p(y) → p(y + 10)) ⇓ C4

all-right

The constraints resulting from the proof are:

C1 = 2d− c− 10
.
= 0 ∨ c− 2e− 1

.
= 0

C2 = ∃y.[e/y]C1 = ∃y.(2d− c− 10
.
= 0 ∨ c− 2y − 1

.
= 0)

C3 = ∃x.[d/x]C2 = ∃x.∃y.(2x− c− 10
.
= 0 ∨ c− 2y − 1

.
= 0)

≡ 2 | (c+ 10) ∨ 2 | (c− 1)
C4 = ∀x.[c/x]C3 = ∀x.(2 | (x+ 10) ∨ 2 | (x− 1))

≡ true

Fig. 2. An example proof in the calculus PresPred C
S .

Besides these two rules, PresPredCS contains all rules given in Fig. 1. It is obvious
that any proof in PredC can be translated to a proof in PresPredCS by replac-
ing applications of pred-close with applications of pred-unify, followed by
close, which means that PresPredCS is complete for first-order logic.

Because uninterpreted predicates are excluded in close, the constraint re-
sulting from a proof is always a formula in Presburger arithmetic and can in
principle be handled using any decision procedure for PA (e.g. [6, 2], also see
Sect. 5.3). We come back to this issue later in the paper and assume for the time
being that some procedure is available for deciding the validity of constraints.

As an implication of a more general result (Lem. 17), it can be observed
that PresPredCS is proof-confluent: if φ is provable, then every partial proof of
⊢ φ ⇓ ? can be extended to a closed proof of a sequent ⊢ φ ⇓ C with valid

constraint C.

Example 5. We show a proof for the following sequent (Fig. 2):

∀x.p(2x),∀x.¬p(2x+ 1) ⊢ ∀y.(p(y) → p(y + 10))

The sequent is proven by first building the “main proof” (upwards) to a point
where close can be applied. The constraints C1, . . . , C4 are then filled in and
propagated downwards. Because C4 is valid, we have proven the validity of the
original formula. The constraint simplification is explained in more detail later.

Completeness on fragments. Two fragments on which PresPredCS is complete
are the classes of purely universal and of purely existential formulae. We call
positions in the antecedent/succedent of a sequent positive if they are underneath
an odd/even number of negations. All other positions are called negative.
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Lemma 6. If Γ ⊢ ∆ is a valid sequent in which ∃ only occurs in negative andProof on
page 203 ∀ only in positive positions, then there is a valid PA constraint C such that

Γ ⊢ ∆ ⇓ C has a proof in the calculus PresPredCS .

Lemma 7. If Γ ⊢ ∆ is a valid sequent (without constants) in which ∃ onlyProof on
page 204 occurs in positive and ∀ only in negative positions, then there is a valid PA

constraint C such that Γ ⊢ ∆ ⇓ C has a proof in the calculus PresPredCS .

Comparison with ME(LIA). We can also show that the calculus PresPredCS is
complete on the fragment of first-order logic modulo linear integer arithmetic
that can be handled by Model Evolution modulo linear integer arithmetic [7].
Ignoring minor syntactic issues and the fact that ME(LIA) works on clauses,
ME(LIA) is a sound and complete calculus for proving the unsatisfiability of
formulae of the shape ∃ā.(φ ∧ ψ), where:

– ā = (a1, . . . , am) is a vector of existentially quantified variables,

– φ is a PA formula over ā that only has finitely many solutions, and

– ψ is an arbitrary formula over ā in which ∃ only occurs in negative and ∀
only in positive positions.

Lemma 8. If ∃ā.(φ∧ψ) as above is an unsatisfiable formula that does not con-Proof on
page 205 tain constants or free variables, then there is a valid constraint C such that the

sequent ∃ā.(φ ∧ ψ) ⊢ ⇓ C has a proof in PresPredCS .

5 Built-In Handling of Presburger Arithmetic

Although the calculus from the previous section is in principle usable, it prac-
tically has a number of shortcomings: the handling of arithmetic in constraints
provides little guidance for the construction of proofs, so that large constraints
are produced in a very indeterministic manner that cannot be solved efficiently.
Moreover, constraints are even needed to handle ground problems, for which
branch-local reasoning should be sufficient. The main goal when refining the
calculus is, therefore, to reduce the usage of constraints as far as possible.

In this section, we define built-in rules for handling linear integer arithmetic
that can be interleaved with the rules from the previous section. The rules make
it possible to handle ground problems branch-locally: proof trees for ground
problems can be constructed depth-first (non-iteratively), similarly to the way
in which SMT-solvers work. Together with the refinement in Sect. 7, it can be
achieved that the only constraints that can result from a subproof in case of
ground problems are true or false. Branch-local reasoning is also possible for
innermost ∀-quantifiers in positive and ∃ in negative positions. The arithmetic
rules also yield a decision procedure for PA that can be used to decide constraints
(Sect. 5.3).
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Γ ⊢ [x/c]φ,∆ ⇓ [x/c]C

Γ ⊢ ∃x.φ,∆ ⇓ ∃x.C
ex-right-d

Γ, [x/c]φ ⊢ ∆ ⇓ [x/c]C

Γ, ∀x.φ ⊢ ∆ ⇓ ∃x.C
all-left-d

(c a constant that does not occur in the conclusion,
φ does not contain uninterpreted predicates)

Γ, t
.
= 0 ⊢ φ[s+ α · t], ∆ ⇓ C

Γ, t
.
= 0 ⊢ φ[s], ∆ ⇓ C

red

(α a literal, or t a literal and α an arbitrary term)

Γ, α(u+ c′) + t
.
= 0, c− u− c′

.
= 0 ⊢ ∆ ⇓ [x/c′]C

Γ,αc+ t
.
= 0 ⊢ ∆ ⇓ ∀x.C

col-red

(c′ a constant that does not occur in the conclusion or in u)

Γ, α(u+ c′) + t
.
= 0, c− u− c′

.
= 0 ⊢ ∆ ⇓ [x/c′]C

Γ, αc+ t
.
= 0 ⊢ ∆ ⇓ [x/c− u]C

col-red-subst

(c′ a constant that does not occur in the conclusion or in u)

Γ, ∃x.αx+ t
.
= 0 ⊢ ∆ ⇓ C

Γ, α | t ⊢ ∆ ⇓ C
div-left

(x an arbitrary variable)

Γ, (α | t+ 1) ∨ · · · ∨ (α | t+ α− 1) ⊢ ∆ ⇓ C

Γ ⊢ α | t,∆ ⇓ C
div-right

(α > 0)

Γ, αc− t
.
= 0 ⊢ ∆ ⇓ C

Γ, αc− t
.
= 0 ⊢ ∆ ⇓ [x/t]C′ ∨ α ∤ t

div-close

(c does not occur in t or in C′, C′ a PA formula such that C ⇔ [x/αc]C′)

Γ ⊢ t
.
≤ 0, ∆ ⇓ C Γ ⊢ t

.
≥ 0, ∆ ⇓ D

Γ ⊢ t
.
= 0, ∆ ⇓ C ∧D

split-eq

Γ, t
.
= 0 ⊢ ∆ ⇓ C

Γ, t
.
≤ 0, t

.
≥ 0 ⊢ ∆ ⇓ C

anti-symm

Γ, αc+ s
.
≥ 0, βc+ t

.
≤ 0, βs− αt

.
≥ 0 ⊢ ∆ ⇓ C

Γ, αc+ s
.
≥ 0, βc+ t

.
≤ 0 ⊢ ∆ ⇓ C

fm-elim

(α > 0, β > 0)

Γ,

V

i,j
αibj − aiβj − (αi − 1)(βj − 1)

.
≥ 0

∨
W

i

Wmi

k=0

„

αic− ai − k
.
= 0 ∧

V

i
αic− ai

.
≥ 0 ∧

V

j
βjc− bj

.
≤ 0

« ⊢ ∆ ⇓ C

Γ, {αic− ai

.
≥ 0}i, {βjc− bj

.
≤ 0}j ⊢ ∆ ⇓ C

omega-elim

(αi > 0, βj > 0)

Fig. 3. Rules for equations, inequalities, and divisibility judgements. In red, we write
φ[s] in the succedent to denote that s occurs in an arbitrary formula in the sequent,
which can in particular also be in the antecedent. mi in omega-elim as on page 182.
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The rules in detail. The calculus PresPredC consists of the rules given in Fig. 3,
together with all rules from the calculus PresPredCS and the simplification rule
simp. We introduce new rules ex-right-d, all-left-d that instantiate quanti-
fied formulae destructively, because formulae that do not contain uninterpreted
predicates never have to be instantiated twice (also see Lem. 17 below).

The equality handling follows the calculus given in [8] and can solve arbitrary
equations in the antecedent, in the sense that the equations are rewritten until
the leading coefficients are all 1 and the leading terms of equations occur in
exactly one place. Speaking in terms of matrices, red is the rule for performing
row operations, while col-red(-subst) is responsible for column operations.
We define a suitable strategy for guiding the rules below.

The rules div-right and div-left translate divisibility statements to equa-
tions, while div-close synthesises divisibility statements from equations. The
formula C ′ in div-close can be found through pseudo-division (multiplying
equations, inequalities or divisibility statements in C with non-zero factors). For
C = (c+ d

.
= 0) and α = 3, for instance, we would choose C ′ = (x+ 3d

.
= 0).

Inequalities are handled based on the Omega test [2], which is an extension of
the Fourier-Motzkin variable elimination method [9] for integer problems. The
central rule is omega-elim for replacing a conjunction of inequalities with a
disjunction over simpler cases. The literal mi in the rule is defined by:

m = max
j
βj , mi =

⌊
mαi − αi −m

m

⌋

In case there are no upper bounds, we define m = mi = −1. omega-elim is
directly based on the main theorem [2] underlying the Omega test, which is the
following (we use the notation from [10] where also a proof is provided).

Theorem 9 (Pugh, 1992). Suppose L(x) =
∧

i ai ≤ αix is a conjunction of
lower bounds and U(x) =

∧

j βjx ≤ bi is a conjunction of upper bounds, in which
all αi and βj are positive integers and ai, bj are arbitrary terms that do not
contain x. Then:

∃x.L(x) ∧ U(x) ⇐⇒
∧

i,j(αi − 1)(βj − 1) ≤ αibj − aiβj
∨

∨

i

∨mi

k=0 ∃x.
(
αix = ai + k ∧ L(x) ∧ U(x)

)

Appealing to a geometric interpretation, the first disjunct on the right-hand side
is called the “dark shadow,” whereas the existentially quantified disjuncts are
called “splinters.” In case all of the αis or all of the βjs are 1, the equivalence
boils down to the normal Fourier-Motzkin rule:

∃x.L(x) ∧ U(x) ⇐⇒
∧

i,j

aiβj ≤ αibj

The application of omega-elim is only meaningful if c does not occur in formu-
lae other than inequalities. Note, that if there are no lower or no upper bounds,
the rule will replace all inequalities whose leading term is c with true.
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Because we avoid the application of omega-elim in certain common situa-
tions (for instance, whenever the constant c occurs as argument of uninterpreted
predicates), we also introduce a rule fm-elim for normal Fourier-Motzkin elim-
ination. fm-elim can be applied with higher priority than omega-elim and is
often able to close proofs faster than omega-elim, reducing the need to resort
to the more complex rule. Further, we define two rules to convert between equa-
tions and inequalities. While the rule split-eq is strictly necessary for certain
problems, anti-symm is introduced only for reasons of efficiency.

Lemma 10 (Soundness). If a sequent Γ ⊢ ∆ ⇓ C is provable in PresPredC , Proof on
page 209then it is valid.

5.1 Exhaustive Proofs

The existence of a closed proof for a sequent Γ ⊢ ∆ ⇓ C guarantees that the
implication C ⇒ (Γ ⊢ ∆) holds (this is the soundness of the calculus, Lem. 10).
In the special case that the sequent Γ ⊢ ∆ does not contain uninterpreted pred-
icates, it is possible to distinguish particular closed proofs that also guarantee
the opposite implication (Γ ⊢ ∆) ⇒ C, and thus (Γ ⊢ ∆) ⇔ C. While this can
be achieved in a trivial way by always applying close such that all formulae
in a sequent are selected, it is sufficient to impose a weaker condition on proof
trees that leads to smaller constraints and also makes it possible to eliminate
quantifiers (Sect. 5.3). To this end, it is necessary to remember whether a con-
stant was introduced by an existential rule (like ex-right) or a universal rule
(like all-right), and whether other existential rules were applied in between.
A generalisation of the condition that allows to select even fewer formulae is
described in Sect. 8.

Assume that a PresPredC-proof is given. We annotate the sequents in the
proof with sets U of “universal” constants that the calculus attempts to elim-
inate. More formally, the proof is called exhaustive iff there is a mapping from
proof nodes (constrained sequents) to sets U of constants subject to the following
conditions:

1. The rules and-*, or-*, not-*, pred-unify, red, div-*, split-eq, anti-
symm, fm-elim, and simp keep or reduce the set: if the conclusion is anno-
tated with U , the premisses are annotated with arbitrary subsets of U .

2. The rules ex-right(-d), all-left(-d) erase the set: the premiss is anno-
tated with ∅.

3. The rules ex-left and all-right may add the introduced constant c to
the set: if the conclusion is annotated with U , then the premiss is annotated
with a subset of U ∪ {c}.

4. The rule col-red is only applied if the conclusion is annotated with U such
that c ∈ U . In this case, the premiss is annotated with a subset of U ∪ {c′}.

5. The rule col-red-subst is only applied if the conclusion is annotated with
U such that c 6∈ U , and if u does not contain any constants from U . In this
case, the premiss is annotated with a subset of U .
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6. The rule omega-elim is only applied if the conclusion is annotated with U
such that c ∈ U and if c does not occur in Γ or ∆. In this case, the premiss
is annotated with an arbitrary subset of U .

7. The rule div-close is only applied if the conclusion is annotated with U
such that c ∈ U . In this case, the premiss is annotated with a subset of U .

8. The rule close is always applied such that all formulae without uninter-
preted predicates are selected, apart from (possibly) those equations in the
succedent that contain constants from U that exclusively occur in equations
in the succedent.

Lemma 11 (Constraint completeness). Suppose that a PresPredC-proof isProof on
page 210 closed and exhaustive. For each sequent Γ ⊢ ∆ ⇓ C in the tree that is annotated

with a set U , let Γp, ∆p denote the subsets of PA formulae in Γ , ∆. The following
implication holds for each sequent:

∀U. (Γp ⊢ ∆p) ⇒ ∀U. C (1)

Example 12. The formula ¬∃x.∃y.(2x− c− 10
.
= 0 ∨ 2y − c+ 1

.
= 0) from Ex-

ample 5 can be simplified to 2 ∤ (c+ 10) ∧ 2 ∤ (c− 1) by constructing an ex-
haustive proof (Fig. 4).

Example 13. The constraint ∀x.(2 | (x+ 10) ∨ 2 | (x− 1)) from Example 5 is
simplified to true by constructing the following proof:

∗
c+ 2d′ + 1

.
= 0, d− d′ + 5

.
= 0, false ⊢ ⇓ true

close

c+ 2d′ + 1
.
= 0, d− d′ + 5

.
= 0,∃y.false ⊢ ⇓ true

ex-left

c+ 2d′ + 1
.
= 0, d− d′ + 5

.
= 0,∃y.2y − 2d′ − 1

.
= 0 ⊢ ⇓ true

simp

c+ 2d′ + 1
.
= 0, d− d′ + 5

.
= 0,∃y.2y + c

.
= 0 ⊢ ⇓ true

red

2(−5 + d′) + c+ 11
.
= 0, d− (−5) − d′

.
= 0,∃y.2y + c

.
= 0 ⊢ ⇓ true

simp × 2

2d+ c+ 11
.
= 0,∃y.2y + c

.
= 0 ⊢ ⇓ true

col-red

∃x.2x+ c+ 11
.
= 0,∃y.2y + c

.
= 0 ⊢ ⇓ true

ex-left

2 | (c+ 11), 2 | c ⊢ ⇓ true
div-left × 2

⊢ 2 | (c+ 10), 2 | (c− 1) ⇓ true
div-right × 2, simp

⊢ ∀x.(2 | (x+ 10) ∨ 2 | (x− 1)) ⇓ true
all-right,or-right

5.2 The Construction of Exhaustive Proofs for PA Problems

We define a strategy to apply the PresPredC-rules to a sequent Γ ⊢ ∆ ⇓ ?
that only contains PA formulae. The strategy is guaranteed to terminate and to
produce a closed and exhaustive proof, and it is deterministic in the sense that
no search is required, every ordering of rule applications (that is consistent with
given priorities) leads to an exhaustive proof. In order to guide the proof con-
struction, the strategy maintains a set U of constants (which is initially empty)
and a term ordering <r (as in Sect. 2) that are updated when new constants
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∗

2d− c− 10
.
= 0 ⊢ ⇓ D1

close

2d− c− 10
.
= 0 ⊢ ⇓ D2

div-close

∗

2e− c+ 1
.
= 0 ⊢ ⇓ D3

close

2e− c+ 1
.
= 0 ⊢ ⇓ D4

div-close

2d− c− 10
.
= 0 ∨ 2e− c+ 1

.
= 0 ⊢ ⇓ D2 ∧D4

or-left

∃x.∃y.(2x− c− 10
.
= 0 ∨ 2y − c+ 1

.
= 0) ⊢ ⇓ D5

ex-left × 2

The constraints resulting from the proof are:

D1 = 2d− c− 10 6
.
= 0

D2 = [2d/c+ 10]D1 ∨ 2 ∤ (c+ 10) = (c+ 10) − c− 10 6
.
= 0 ∨ 2 ∤ (c+ 10)

≡ 2 ∤ (c+ 10)
D3 = 2e− c+ 1 6

.
= 0

D4 = [2e/c− 1]D3 ∨ 2 ∤ (c− 1) = (c− 1) − c+ 1 6
.
= 0 ∨ 2 ∤ (c− 1)

≡ 2 ∤ (c− 1)
D5 = ∃x.[d/x]∃y.[e/y](D2 ∧D4) = ∃x.∃y.(2 ∤ (c+ 10) ∧ 2 ∤ (c− 1))

≡ 2 ∤ (c+ 10) ∧ 2 ∤ (c− 1)

Fig. 4. Simplification of the formula ¬∃x.∃y.(2x− c− 10
.
= 0 ∨ 2y − c+ 1

.
= 0) from

Example 5 by constructing a proof. To see that the proof is exhaustive, the sequent
with constraint D5 is annotated with ∅, the sequent with D1 with {e}, the sequent with
D3 with {d}, and all other sequents with the set {d, e}. This implies that the original
formula is equivalent to D5.

are introduced or existing constants need to be reordered. The ordering <r is
always chosen such that the constants in U are bigger than all constants that
are not in U . Both U and <r are branch-local: different branches in a proof tree
can be built using different Us and <rs.

We list the rules that the strategy applies to a proof goal with descending
priority: step 2 will only be carried out if step 1 is impossible, etc.

1. apply simp (if possible).
2. apply red if an α exists such that s+ α · t <r s

(and if s 6= t or φ[s] is not an equation in the antecedent).
3. if the antecedent contains an equation αc+ t

.
= 0 with α > 1, then:

– if c 6∈ U , apply col-red-subst. The fresh constant c′ is inserted in the
term ordering <r such that it becomes minimal, and u is chosen such
that (αu+ t) = min<r

{αu′ + t | u′ a term}.
– if c ∈ U and t contains at least one further constant from U whose

coefficient is not a multiple of α, apply col-red. The fresh constant c′

is added to U and is inserted in the term ordering<r such that it becomes
smaller than all other constants in U , but bigger than all constants not
in U . u is again chosen such that (αu+ t) = min<r

{αu′+ t | u′ a term}.
4. if the antecedent contains an equation αc+ t

.
= 0 with c ∈ U , apply div-

close, remove c from U , and update <r such that c becomes minimal.
(This is also possible for α = 1)

5. if possible, apply any of the following rules:
– anti-symm.
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– fm-elim, if the result is not subsumed by an inequality in the antecedent.
– any of the rules and-*, or-*, not-*.

6. if possible, apply any of the following rules:
– split-eq: if an equation can be split that contains a constant c ∈ U that

also occurs as leading term of an inequality in the antecedent.
– omega-elim: if inequalities {αic− ai

.
≥ 0}i, {βjc− bj

.
≤ 0}j occur in

the antecedent and c ∈ U , and if c does not occur in any other formula.
– all-right, ex-left: add the fresh constant c to U and insert it into <r

such that it becomes maximal.
– ex-right-d, all-left-d: set U to ∅ and insert c arbitrarily into <r.
– div-left, div-right.

7. apply close and select exactly those formulae that do not contain constants
from U or uninterpreted predicates.

The steps 1–4 of the strategy work by eliminating all U -constants that occur
in equations in the antecedent. Similarly as in [8], in the antecedent only equa-
tions will be left whose leading coefficient is 1 and whose leading term does not
occur in other places in the sequent anymore. The steps 5–6 handle inequalities
by first applying the Fourier-Motzkin rule exhaustively, and by eliminating con-
stants using the Omega rule whenever possible. Also quantifiers, propositional
connectives and divisibility judgements are treated in step 5–6. A proof that is
constructed using this procedure is shown in Example 12.

Lemma 14 (Termination and exhaustiveness). If a sequent Γ ⊢ ∆ ⇓ ?Proof on
page 211 does not contain uninterpreted predicates, the strategy from above terminates

and produces a closed exhaustive proof.

5.3 Deciding Presburger Arithmetic by Recursive Proving

The anticipated way to decide constraints in proofs is to eliminate quantifiers
already during the constraint propagation, i.e., at the points where the rules ex-
right(-d), all-left(-d), all-right, ex-left or col-red are applied and
cause quantifiers to occur in constraints. By eliminating such quantifiers right
away, each subproof of the proof can be annotated with a constraint that is
a quantifier-free PA formula. When building proofs incrementally, this makes
it possible to easily distinguish between unsatisfiable subproofs (i.e., subproofs
with an unsatisfiable constraint) that need to be expanded further, and satisfiable
subproofs whose expansion can be postponed. Besides, due to Lem. 14 and as
only quantifier-free constraints occur, the resulting procedure decides PA.

. The calculus PresPredC itself can be used to eliminate quantifiers. This is
possible because we can observe that the strategy from the previous section is
always able to eliminate one level of universal quantifiers:

Lemma 15 (Quantifier elimination). Suppose a formula φ does not containProof on
page 215 uninterpreted predicates and ∀ occurs in φ only in positive positions and ∃ only

in negative positions. The strategy from the previous section produces a proof
with root ⊢ φ ⇓ C in which C does not contain quantifiers (more precisely, if
C contains a quantified subformula Qx.ψ, then x does not occur in ψ).
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This means that, in order to eliminate universal quantifiers from a formula φ,
we can construct an exhaustive proof with root ⊢ φ ⇓ C and extract the con-
straint C. Similarly, existential quantifiers can be eliminated by constructing a
proof for φ ⊢ ⇓ C (also see Example 12).

6 Fair Construction of Proofs

We now compare the calculus PresPredC with the more restricted calculus
PresPredCS from Sect. 4. Because the former calculus is a superset of the latter,
it is a trivial observation that any sequent provable in PresPredCS is also provable
in PresPredC . It can also be shown that PresPredC cannot prove more sequents
than PresPredCS , which means that the two calculi are equivalent.

Lemma 16. Suppose that a PresPredC-proof for the sequent Γ ⊢ ∆ ⇓ C ex- Proof on
page 216ists. For some constraint D with C ⇒ D, there is a PresPredCS -proof of the

sequent Γ ⊢ ∆ ⇓ D.

Proofs in PresPredC can be found by a backtracking-free fair application
strategy. Rules that are specific to integer arithmetic (Fig. 3) are mostly irrele-
vant for this result: such rules do not hinder the construction of proofs, but their
application is not necessary either. Practically, the rules can help to find shorter
proofs and reduce the size of constraints involved, however.

To define the notion “fair” formally, it has to be observed that formulae in a
PresPredC-proof can be rewritten by applying red or simp. When this happens,
it is possible to identify a unique successor of the modified formula in the premiss
of the rule application (vice versa, a formula can have multiple predecessors
because distinct formulae could become equal when applying a rule).

A fair PresPredC-proof for a sequent Γ ⊢ ∆ ⇓ ? is a possibly infinite proof
in PresPredC in which all constraints are ? and all branches have the properties:

– Fair treatment of formulae with uninterpreted predicates: whenever at some
point on the branch one of the rules in Fig. 1 is applicable to a formula that
contains uninterpreted predicates, the rule is applied to the formula or to
a successor of the formula at some later point on the branch. (This implies
that all-left and ex-right are applied infinitely often to each universally
quantified formula with uninterpreted predicates).

– Fair unification of complementary literals: if there is a sequent on the branch
of the shape Γ, p(t̄) ⊢ p(s̄),∆ ⇓ ?, the rule pred-unify is applied at least
once on the branch to the pair p(t̄), p(s̄) or to successors of these formulae.

– Exhaustiveness: all proof nodes can be annotated with sets U as in Sect. 5.1.

We say that a constraint C is generated by a fair proof of Γ ⊢ ∆ ⇓ ? if a (finite)
proof for Γ ⊢ ∆ ⇓ C can be obtained by chopping off all branches of the fair
proof at some point, applying close in some way to the leaves and propagating
the resulting constraints through the proof.

Lemma 17 (Fair construction). Suppose that a PresPredCS -proof for the se- Proof on
page 219quent Γ ⊢ ∆ ⇓ C exists. Every fair PresPredC-proof of Γ ⊢ ∆ ⇓ ? whose root

is annotated with the set U generates a constraint D with ∀U.C ⇒ ∀U.D.
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Intuitively, this means that every fair proof Q of a provable sequent Γ ⊢ ∆ ⇓ ?
contains a finite proof Q′ of the sequent Γ ⊢ ∆ ⇓ C for some valid constraint C
(applications of close have be added to close Q′, of course). Moreover, because
of Lem. 11, it can be observed that every closed exhaustive proof of Γ ⊢ ∆ ⇓ ?
that contains Q′ as an initial part has a valid constraint. This implies the com-
pleteness of proof construction with fair rule, formula, and branch selection.

7 Weakening to Eliminate Irrelevant Formulae

The calculus PresPredC allows to ignore unneeded formulae when the rule close
is applied, which is used in Sect. 5.1 and 5.2 by selecting only those formulae that
do not contain U -constants. Leaving out the formulae that contain U -constants
is important for two reasons: it is required for the quantifier elimination lemma
(Lem. 15), but it also helps to keep constraints as small as possible. Concerning
the latter argument, the precision of the U -criterion can be improved by elimi-
nating irrelevant formulae as early as possible instead of waiting until close is
applied. Since the conditions for exhaustive proofs in Sect. 5.1 require that the
set U is reset to ∅ whenever the rules ex-right(-d) and all-left(-d) occur,
it can otherwise happen that formulae that were at some point identified as
unnecessary can later in the proof again be considered relevant.

The classical weakening rule for a sequent calculus can directly be carried
over to constrained sequents and is sound:

Γ ⊢ ∆ ⇓ C

Γ, Γ ′ ⊢ ∆′,∆ ⇓ C
weaken

The application of this rule has to be restricted, however, so that Lem. 11 (con-
straint completeness) and Lem. 17 (fair proof construction) are preserved. In the
style of the conditions given in Sect. 5.1, we can assume that the conclusion and
the premiss of an application of weaken are both annotated with a set U of
constants (in principle, one could also choose different sets for the premiss and
the conclusion, but this would not lead to any interesting generalisations at this
point). A sufficient condition to preserve Lem. 11 is:

∀U. (Γp, Γ
′
p ⊢ ∆′

p,∆p) ⇒ ∀U. (Γp ⊢ ∆p)

Concerning Lem. 17, the critical point is to ensure that repeated application of
pred-unify to the same complementary literals is not necessary (see the proof
of the lemma on page 219).

Two possible criteria that preserve the lemmas are:

– Elimination of antecedent equations: Γ ′ = {c+ t
.
= 0},∆′ = ∅, where c ∈ U

is a constant that does not occur in Γ , ∆.
– Elimination of a group of satisfiable literals: in certain cases, a group of

inequalities, inequations and divisibility judgements can simultaneously be
eliminated:

Γ ′ = {ti
.
≥ 0}i ∪ {t′j

.
≤ 0}j , ∆′ = {sk

.
= 0}k ∪ {αl | ul}l
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This is possible if the invalidity of the literals is ensured through a con-
stant c ∈ U such that:
• no formula in Γ , ∆ contains c;
• Γ ′ contains only lower or only upper bounds on c, i.e., c occurs in each
ti with a positive coefficient and in each t′j with a negative coefficient,
or vice versa;

• c occurs in each sk with a non-zero coefficient;
• c occurs in each ul of a divisibility judgement αl | ul with the non-zero

coefficient βl, and:
∑

l

| gcd(αl, βl)|

|αl|
< 1 (2)

To understand the last requirement, note that the integers (values of c) that
satisfy a judgement α | (βc+ t), provided that there are any, are periodical
with the following period:

| lcm(α, β)|

|β|
=

|α|

| gcd(α, β)|

The inequality (2) ensures that there are values for c such that none of the
divisibility judgements holds (equivalently, there are infinitely many such
values).

In both cases, the constant c ∈ U that justifies the weakening must not oc-
cur in any formula in Γ , ∆, i.e., neither in PA formulae nor in formulae that
contain uninterpreted predicates. This ensures that Lem. 17 is preserved: unifi-
cation conditions that can be generated by pred-unify cannot contain c and
are therefore independent of the formulae that are removed by weaken.

8 Refined Constraint Propagation

All calculi that we have defined so far have a severe disadvantage compared to
normal FOL calculi: there is no notion of “non-unifiability,” because the rule
pred-unify can be applied in a very unrestricted manner to arbitrary pairs of
literals that start with the same predicate symbol. This can lead to constraints
that contain redundant information and to unnecessary proof splitting. For in-
stance, in the following proof the rule pred-unify is applicable and introduces
a conjunction that can lead to a splitting of the branch:

p(c, c) ⊢ c− d
.
= 0 ∧ c− e

.
= 0, p(d, e) ⇓ ?

p(c, c) ⊢ p(d, e) ⇓ ?
pred-unify

∃x.p(x, x) ⊢ ∀x, y.p(x, y) ⇓ ?
ex-left,all-right

· · ·

The conjunction c− d
.
= 0 ∧ c− e

.
= 0 describes a special case, however, and can

be falsified by choosing suitable values for the universally quantified symbols c,
d, e. It is therefore not helpful to select this formula when applying close.
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It is not possible to exclude equations involving (only) constants that stem
from universal quantifiers altogether. This is because constraints can also contain
negated equations or inequalities, so that the validity problem for constraints
resembles semantic unification modulo assumptions. Moreover, as the following
example shows, it is not possible to decide locally for a proof goal whether an
equation is irrelevant or not.

Example 18. A proof in which also seemingly “non-unifiable” equations are es-
sential is the following:

⊢ a
.
= 0, b

.
= 0 ⇓ ?

⊢ a
.
= 0 ∨ b

.
= 0 ⇓ ?

⊢ a
.
= 0 ∧ b− 1

.
= 0, a 6

.
= 0 ∧ b

.
= 0 ⇓ ?

⊢ a
.
= 0 ∧ b− 1

.
= 0 ∨ a 6

.
= 0 ∧ b

.
= 0 ⇓ ?

⊢ (a
.
= 0 ∨ b

.
= 0) ∧ (a

.
= 0 ∧ b− 1

.
= 0 ∨ a 6

.
= 0 ∧ b

.
= 0) ⇓ ?

⊢ ∃y.(a
.
= 0 ∨ y

.
= 0) ∧ (a

.
= 0 ∧ y − 1

.
= 0 ∨ a 6

.
= 0 ∧ y

.
= 0) ⇓ ?

⊢ ∀x.∃y.(x
.
= 0 ∨ y

.
= 0) ∧ (x

.
= 0 ∧ y − 1

.
= 0 ∨ x 6

.
= 0 ∧ y

.
= 0) ⇓ ?

It can be observed that the formula in the root of the proof is valid. Although the
constant a comes from the universal quantifier ∀x, none of the formulae a

.
= 0

and a
.
= 0 ∧ b

.
= 0 can be left out when applying close without invalidating the

constraint resulting from the proof.

In this section, we define a global criterion that tells which formulae can be
ignored when applying close. This is done by distinguishing those constants in
a proof that are introduced by universal quantifiers and that do not occur in
illegal positions (we will call such constants free). Because there is no necessity
to apply rules other than close to PA formulae (according to the notion of a
fair proof in Sect. 6), the application of the rule pred-unify can be skipped as
well if it can be predicted that the generated conjunction is irrelevant.

As a prerequisite, we need to replace the rule div-close with a modified
version div-close’ that enables us to order the constants in a proof in a more
fine-grained way:

Γ, αc′ − t
.
= 0, c− c′

.
= 0 ⊢ ∆ ⇓ C

Γ,αc− t
.
= 0 ⊢ ∆ ⇓ [x/t]C ′ ∨ α ∤ t

div-close’

where c′ does not occur in the conclusion and C ′ is a PA formula such that
C ⇔ [x/αc′]C ′. The rule can essentially be used in the same way as div-close
and is not in conflict with any other part of the article. The rule has not been
introduced earlier mainly because it would have made the previous sections
unnecessarily complicated (but it is, in fact, the rule that is used in the imple-
mentation of the calculus, see Sect. 9).

Everywhere in this section, assume that P is an open PresPredC-proof in
which close is never applied. For reasons of presentation, we further assume
that the constants that are introduced in P by the rules all-left, all-right,
etc. are all pairwise distinct (and also different from “global” constants that are
not explicitly introduced by any rule), which can be achieved by renaming.
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The proof P induces a strict partial order ≺P on the set of all constants
occurring in P , based on the order of introduction: we define c ≺P d to hold iff
c is a global constant and d is not, or if the rule application that introduces c
is on the path from the root of P to the rule application that introduces d (d is
introduced “after” c).

Given ≺P , we say that a formula φ is shielded by a constant c if φ is equivalent
to a formula αc+ t

.
= 0 ∧ ψ such that α 6= 0 and d ≺P c for all constants d that

occur in t. We say that φ is shielded by a set of constants M if φ is shielded
by some constant c ∈M . This definition is chosen such that the formula ∀c.ψ is
equivalent to false if ψ is a finite disjunction of formulae that are shielded by c,
and similarly for sets M . The maximality condition ensures that shieldedness is
preserved by quantification over bigger constants.

We say that Q is a set of free constants for the proof P if there is a super-
set Qc ⊇ Q of constants such that the following conditions are satisfied:

– all constants in Q are universal in P , i.e., are introduced by the rules all-
right, ex-left, or col-red;

– whenever col-red-subst is applied and the term c− u contains a constant
from Qc, then also c′ ∈ Qc;

– whenever div-close’ is applied, the term t does not contain any constants
from Qc.

Given such sets Q, Qc, we now consider two ways to close the proof P by
applying close to each of the goals. The resulting closed proofs are called P1,
P2, and we demand that they have the following property: whenever close is
applied in P1, then (i) the disjunction C of selected PA formulae does not contain
any constants from Qc, and (ii) the disjunction of PA formulae selected in P2 by
the corresponding application of close is equivalent to C ∨

∨n
i=1 φi such that

each formula φi is shielded by Q and only contains constants that occur in the
considered proof goal.

Lemma 19 (Shielded Constraints). Let C1 be the constraint of any proof Proof on
page 224node in P1 and C2 the constraint of the corresponding node in P2. Then (i) C1

does not contain any constants from Qc, and (ii) C2 is equivalent to C1 ∨
∨n
i=1 φi

where each formula φi is closed, shielded by Q, and only contains constants that
are global or introduced on the path from the proof root to the location of C2.

It is an implication of the lemma that the constraints that arrive at the roots
of P1 and P2 are equivalent. This means that the additional formulae that are
selected in P2 when applying close, compared to P1, did not contribute to the
constraint and could have been left out right away. In case close is applied in
P2 in the most liberal way (in each goal, all PA formulae are selected), this tells
which of the formulae are irrelevant for the proof.
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Example 20. We show how the criterion rules out non-unifiable pairs of literals:

f(a, 2), f(b, 3) ⊢ f(b, c), . . . ⇓ ? f(a, 2), f(b, 3) ⊢ c
.
≥ 0, . . . ⇓ ?

f(a, 2), f(b, 3) ⊢ f(b, c) ∧ c
.
≥ 0, . . . ⇓ ?

and-right

f(a, 2), f(b, 3) ⊢ ∃z.(f(b, z) ∧ z
.
≥ 0) ⇓ ?

ex-right

f(a, 2) ∧ f(b, 3) ⊢ ∃z.(f(b, z) ∧ z
.
≥ 0) ⇓ ?

and-left

⊢ f(a, 2) ∧ f(b, 3) → ∃z.(f(b, z) ∧ z
.
≥ 0) ⇓ ?

or-right,not-right

⊢ ∀x, y.(f(x, 2) ∧ f(y, 3) → ∃z.(f(y, z) ∧ z
.
≥ 0) ⇓ ?

all-right × 2

In the left goal, the rule pred-unify can be applied to the pairs f(a, 2), f(b, c)
and f(b, 3), f(b, c). Because the constants Q = Qc = {a, b} are free, the first pair
can be ignored as it would generate the formula b− a

.
= 0 ∧ c− 2

.
= 0 that is

shielded by b in the first equation.
In the proof in Example 18, the formula a 6

.
= 0 ∧ b

.
= 0 is only shielded by

the constant b that comes from an existential quantifier. This means that if the
formula is to be selected for close, neither can a be a free constant, and thus
none of the formulae a

.
= 0 and a

.
= 0 ∧ b

.
= 0 is shielded either.

There are several ways to generalise the approach described in this section:

– It is possible to vary the definition of “shielded formulae,” e.g., to also con-
sider formulae that are shielded through inequalities.

– The ordering ≺P on constants can be defined less total, again liberalising
the notion of shielded formulae: if a sequence of quantifiers of the same
kind is instantiated, there is no need to order the introduced constants. In
Example 20, this would apply to the constants a, b.

– Sets Q of free constants can be localised, it is not necessary to use the same
sets for a whole proof. It can be the case that the conditions for freeness
are generally true in a proof, but are violated in a small subproof. In this
situation, it might be possible to use a smaller set Q for this particular
subproof. In the right subproof of the next example, for instance, c is not
free because it occurs in the unshielded formula d− c

.
= 0. Because c does

not occur in the constraint true of the subproof as a whole anymore, however,
this is irrelevant for the rest of the proof. Consequently, it might be possible
to avoid the unification of p(c) and p(e) in the left subproof.

p(c) ⊢ p(e) ⇓ ?

∗
p(c) ⊢ d− c

.
= 0, p(d),∃x.p(x) ⇓ d− c

.
= 0

p(c) ⊢ p(d),∃x.p(x) ⇓ d− c
.
= 0

p(c) ⊢ ∃x.p(x) ⇓ true
· · ·

9 Implementation and Initial Experimental Results

We have implemented the calculus defined in this paper (essentially in the ver-
sion of Sect. 5) in the theorem prover Princess, which is available for download.1

1 http://www.cse.chalmers.se/~philipp/princess
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QF LIA

Directory solved/total Directory solved/total

Averest 10/ 19 nec-smt/small 17/ 35
CIRC 33/ 51 nec-smt/med 3/ 364
RTCL 2/ 2 nec-smt/large 0/2381
check 5/ 5 rings 53/ 293
mathsat 55/121 wisa 4/ 5

QF IDL

Averest 195/252 planning 5/ 45
cellar 0/ 14 qlock 0/ 72
check 3/ 3 queens bench 53/ 297
diamonds 18/ 36 RTCL 30/ 33
DTP 0/ 60 sal 27/ 50
mathsat 96/146 sep 17/ 17
parity 34/248

Fig. 5. Princess statistics for the categories QF LIA and QF IDL of the SMT library [14]
(Dual Core AMD Opteron 270 with 2GHz, 1.5GB of heapspace, timeout of 1000s).
Detailed results are available at http://www.cse.chalmers.se/~philipp/princess.

At the time of writing this section, all features introduced in the paper are im-
plemented, apart from the optimisation of Sect. 8. In certain situations, Princess
additionally uses analytic cuts [11] and formula simplification [12] to avoid re-
dundancy in proofs. Constraints are simplified using the approach of Sect. 5.3,
which means that no separate decision procedure for Presburger arithmetic is
necessary. Princess is written in the Scala programming language [13] and runs
on a Java virtual machine.

Most available benchmarks for SMT-solvers require uninterpreted functions
or further theories like arrays that have to be handled using appropriate encod-
ings in our calculus. Although we plan to add preprocessors for these theories
to Princess, implementations of such encodings are not available yet (and also
require further research in some cases). Our experimental results up to now are,
therefore, restricted to the categories QF LIA (quantifier-free linear integer arith-
metic) and QF IDL (quantifier-free integer difference logic) of the SMT library
[14], see Fig. 5.

Although Princess is not primarily designed for the problems in the tested
categories (in contrast to SMT-solvers), the results are reasonably good. Unsur-
prisingly, Princess performs better for problems that focus on arithmetic (like
CIRC) than for problems that are essentially combinatoric (like queens bench),
for which more advanced techniques developed for SAT- and SMT-solvers are
necessary. This fact might also explain the poor results for the nec-smt directo-
ries. In the SMT competition in 2007,2 Princess would have solved 109 out of 203
selected problems in QF LIA and 85 out of 203 problems in QF IDL. For 2008, the
result drops to only 10 out of 205 problems in QF LIA and 5 out of 203 in QF IDL,

2 http://www.smtcomp.org/
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presumably because of the poor performance for combinatoric problems and the
lack of lemma learning (QF LIA is in 2008 dominated by nec-smt problems).

10 Related Work

Model evolution modulo linear integer arithmetic [7] is a recently proposed vari-
ant of the Model Evolution calculus that is similar to our calculus in that it
supports PA enhanced with uninterpreted predicates (and without functions) as
input language, and that its architecture resembles tableau calculi. Model Evo-
lution does not use rigid free variables that are shared among different branches
in the way tableaux do, however, which means that also constraints can be
kept branch-local. Further differences are that ME(LIA) works on clauses, only
supports a restricted form of existential quantification, and has a more explicit
representation of candidate models.

SMT-solvers based on the DPLL(T) architecture [15] can handle ground
problems modulo integer arithmetic (and many other theories) efficiently, but
only offer heuristic quantifier handling. Because of the similarity between DPLL
and sequent calculi, the work presented in this paper can be seen as an alternative
approach to handling quantifiers that should also be applicable to DPLL(T).

Our approach has similarities with the framework in [16] for integrating the-
ories into tableau calculi by distinguishing between a foreground reasoner (han-
dling FOL) and a background reasoner (handling the theory). According to
this nomenclature, the rules in Fig. 3 implement the (partial) background rea-
soner. Because our theory rules operate destructively on sequents, we integrate
background and foreground reasoning more closely than proposed in [16]. The
biggest difference between our approach and [16] is that no theory unification is
performed in our calculus, it is only necessary to check the validity of constraints.

The simplification of formulae by the rules in Fig. 3 is roughly comparable
with deduction modulo [17]. The concept is here integrated in a setting that
resembles free-variable tableaux to treat quantifiers more efficiently.

An approach to embed algebraic constraints in tableau calculi is described
in [18], where quantifier elimination tasks in real arithmetic (possibly involving
more than one proof goal) are carried out by an external procedure, in a manner
comparable to the simultaneous solving of constraints from multiple proof goals
described here. Uninterpreted functions or predicates are not handled.

There are a number of approaches to include theories into resolution-based
calculi. [19] works with constraints that are solved in a theory, but requires to
enumerate the solutions of constraints (whereas it is enough to check the validity
of constraints in our work). In [20], while it is enough to check satisfiability of
constraints, no uninterpreted functions or predicates are supported. A recent
calculus to handle rational arithmetic is given in [21], and is similar to our work
in that it has built-in rules to solve systems of equations and inequalities (based
on Fourier-Motzkin). The calculus is complete under restrictions that effectively
prevent quantification over rationals. It remains to be investigated how this
fragment is related to the fragments discussed here.
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Constraint (logic) programming [22] combines constraint solving (in arith-
metic or other theories) with ordinary programming and can solve problems in
the fragment that is considered in Lem. 7 (formulae in which ∃ only occurs in pos-
itive and ∀ only in negative positions). While the lemma shows that our calculus
is complete for a certain class of constraint programs, the calculus is applicable
to a more general set of formulae containing, e.g., arbitrary quantifiers.

11 Conclusions and Future Work

We have presented a novel calculus to reason about problems in first-order
logic modulo linear integer arithmetic. The calculus is complete for function-free
first-order logic (on such problems, proofs in the calculus resemble free-variable
tableaux with incremental closure [1]) and can decide Presburger arithmetic (in
a manner that is similar to the Omega test [2]). As further results, we have
shown that the calculus is at least as complete as the calculus ME(LIA), and
allows the fair construction of proofs. We have also described refinements of the
calculus and given experimental results.

Apart from continuing the implementation and further benchmarks, there are
a number of concepts that require more research, among others: the encoding
and handling of functions and further theories; the integration of lemma learning;
the integration of connectivity conditions to make proof search more directed;
the elimination of cuts in proofs; an analysis of the complexity of the calculus
as a decision procedure for PA. We also plan to extend our calculus to support
nonlinear arithmetic (following the work in [8]), and possibly rational arithmetic.
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A Proofs

Lemma 2 (Soundness of PredC)

All rules of the calculus PredC are sound in the sense introduced in Sect. 2
(but considering evaluation over arbitrary first-order structures (U, I) with an
arbitrary non-empty universe U). Some of the cases are:

– and-right: Assume Γ ⊢ φ ∧ ψ,∆ ⇓ C ∧D is invalid, i.e., for some struc-
ture (U, I) and some constant assignment δ we have val (U,I),δ(C ∧D) = tt
but val (U,I),δ(Γ ⊢ φ ∧ ψ,∆) = ff . This implies:
• val (U,I),δ(C) = tt and val (U,I),δ(D) = tt ,
• val (U,I),δ(φ) = ff or val (U,I),δ(ψ) = ff .

Then val (U,I),δ(Γ ⊢ φ,∆ ⇓ C) = ff or val (U,I),δ(Γ ⊢ ψ,∆ ⇓ D) = ff and
one of the premisses has to be invalid.

– or-right: Assume that Γ ⊢ φ ∨ ψ,∆ ⇓ C is invalid, i.e., for some struc-
ture (U, I) and some constant assignment δ we have val (U,I),δ(C) = tt but
val (U,I),δ(Γ ⊢ φ ∨ ψ,∆) = ff . This implies:
• val (U,I),δ(φ) = ff and val (U,I),δ(ψ) = ff .

Then also val (U,I),δ(Γ ⊢ φ, ψ,∆ ⇓ C) = ff and the premiss is invalid.
– all-right: Assume that Γ ⊢ ∀x.φ,∆ ⇓ ∀x.C is invalid, i.e., for some struc-

ture (U, I) and some constant assignment δ we have val (U,I),δ(∀x.C) = tt but
val (U,I),δ(Γ ⊢ ∀x.φ,∆) = ff . Because c is a fresh constant, this implies that
there is an assignment δ′ that agrees with δ on all constants but c such
that val (U,I),δ′([x/c]φ) = ff . For this δ′, also val (U,I),δ′([x/c]C) = tt holds.
Then val (U,I),δ′(Γ ⊢ [x/c]φ,∆ ⇓ [x/c]C) = ff and therefore the premiss is
invalid.

– ex-right: Assume that Γ ⊢ ∃x.φ,∆ ⇓ ∃x.C is invalid, i.e., for some struc-
ture (U, I) and some constant assignment δ we have val (U,I),δ(∃x.C) = tt
but val (U,I),δ(Γ ⊢ ∃x.φ,∆) = ff . Because c is a fresh constant, this im-
plies that there is an assignment δ′ that agrees with δ on all constants
but c such that val (U,I),δ′([x/c]C) = tt and val (U,I),δ′([x/c]φ) = ff . Then
val (U,I),δ′(Γ ⊢ [x/c]φ,∃x.φ,∆ ⇓ [x/c]C) = ff and the premiss is invalid.

The conjecture follows by a simple induction on the size of proofs.

Lemma 3 (Completeness of PredC)

We assume that ⊢ φ ⇓ C is unprovable for all valid formulae C and deduce
that φ is not valid. The main difficulty with the approach is to use the knowledge

“All constraints that can be derived during a proof attempt are invalid”

to identify a saturated proof branch from which a countermodel can be con-
structed using the normal Hintikka-construction [4]. We bridge this gap by in-
troducing a notion of “most general constraints” (mgc), which are basically
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constraints that are the disjunction of all closing constraints that can be derived
from a proof. Because saturated proofs are usually infinite, also mgc can be in-
finitary. Importantly, we can show that the mgc is valid iff there is a valid closing
constraint. From the fact that the mgc is invalid (if a formula is unprovable), we
can derive a saturated proof branch that we turn into a countermodel.

To derive most general constraints, we modify the closure rules of PredC and
allow to introduce constraints with disjunctions. The calculus PredCJ consists of
the same rules as PredC apart from pred-close, which is replaced with the
two following rules:

Γ, p(s1, . . . , sn) ⊢ p(t1, . . . , tn),∆ ⇓ C

Γ, p(s1, . . . , sn) ⊢ p(t1, . . . , tn),∆ ⇓ C ∨
∧

i si
.
= ti

disj-close

∗
Γ ⊢ ∆ ⇓ false

false-close

We call a (possibly infinite) proof tree in PredCJ fair if

– all structural/propositional rules and skolemisation are eventually applied
whenever they are applicable,

– the rule disj-close is applied infinitely often to each complementary pair
on each branch,

– the rule all-left/ex-right is applied infinitely often to every univer-
sally/existentially quantified formula in the antecedent/succedent on each
branch,

– the rule false-close is only applied if no other rule is applicable.

The constraints generated by fair proof trees are called most general con-
straints. Such constraints can be infinitary and contain infinitely many quanti-
fiers, disjunctions (due to infinite branches in a proof tree) or conjunctions (due
to infinitely many branches in a proof tree). We consider infinitary formulae as
infinite trees, in which conjunctions and disjunctions are always seen as binary
connectives. Because no function symbols are involved, terms are always single
variables or constants, and literals occurring in the formulae are always finite. We
use game semantics (see [23] for an introduction) to give meaning to infinitary
formulae.

Infinitary Formulae

Starting with a fixed non-empty domain U , initial variable/constant assign-
ments β, δ and at the root of a formula, two players (the verifier and the falsifier)
play against each other:

– the verifier tries to show that the formula is true. When arriving at ∨ or ∃x,
the verifier has to choose the subformula to continue with, or the value that
x is to be given.

– the falsifier tries to show that the formula is false. When arriving at ∧ or ∀x,
the falsifier has to choose the subformula to continue with, or the the value
that x is to be given.
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The verifier wins if the game ends and arrives at a literal that evaluates to tt .
The falsifier wins if the game does not terminate,3 or if it ends at a literal that
evaluates to ff . A formula is true (in a certain structure) if the verifier has a
(deterministic) winning strategy, i.e., the verifier can win whatever the falsifier
does, and false otherwise. By the theorem of Gale-Stewart [24], in the second
case the falsifier has a (deterministic) winning strategy. A formula is valid if the
verifier has winning strategies for each domain U and assignments β, δ.

It is well-known that the above game semantics coincides with Tarski seman-
tics for finite formulae.

Properties of Most-General Constraints

The important property of the most-general constraint obtained from a fair
PredCJ -proof is that it subsumes all constraints that the original calculus PredC

could possibly have generated. By possibly generated constraints we mean all
constraints that can be obtained from the PredCJ -proof by turning the proof into
a PredC-proof:

– remove all applications of false-close and disj-close,
– chop off all infinite branches at some point to make the proof tree finite, and
– apply pred-close in some way to all open branches.

The constraint C that arrives at the root Γ ⊢ ∆ ⇓ C of the resulting proof is
called possible generated.

Lemma 21. The most-general constraint of a fair PredCJ -proof is valid iff the
proof possibly generates a valid constraint.

Assume that all possibly generated constraints of a fair PredCJ -proof are invalid.
By the lemma, this means that the mgc of this proof is invalid: for some particular
domain, the falsifier has a winning strategy for the mgc. We can then discover
the right branch in the proof tree and simultaneously construct a countermodel
based on the above domain by playing a game (that the falsifier wins).

Proof (Lem. 21).
“⇐=:” Assume that a fair PredCJ -proof possibly generates a valid constraint.

We fix a domain U , variable/constant assignments β, δ, and a winning strat-
egy S1 for the verifier for this valid constraint (note, that S1 is only responsible
for nodes ∃x). We can derive a winning strategy S2 for the verifier for the mgc:

– Initially, S1 and S2 behave in the same way when arriving at a node ∃x.
When arriving at ∨ in the mgc, which has to be introduced by disj-close,
S2 chooses the left branch (and not the conjunction

∧

i si
.
= ti).

– Once the game has reached a point where the rule pred-close was applied
to produce a conjunction φ in the possibly generated constraint, S2 changes
its behaviour:

3 Note, that this implies that true∧ true∧· · · is false, which is the intended semantics.
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• when arriving at a node ∃x, the value of x is chosen arbitrarily;
• when arriving at ∨, which has to be introduced by disj-close, S2

chooses the left branch if it leads to the conjunction φ, otherwise the
right branch.

Because of fairness, disj-close is eventually applied to every complementary
pair on every branch, so that S2 is guaranteed to win after a finite number of
steps.

“=⇒:” Assume that the mgc is valid. Further, assume that all variables that
are bound in the mgc are pairwise distinct, and that for each variable x the
symbol fx denotes a function symbol whose arity equals the number of variables
that are bound above the location where x is bound. Finally, let U be the domain
of the free term algebra over the vocabulary consisting of the functions fx (we
possibly have to add further functions that do not belong to any variables to
ensure that U is non-empty).

We fix U as the domain of evaluation (and arbitrary assignments β, δ) as
well as a winning verifier strategy S. For each branch b in the proof tree, we
construct a falsifier strategy Tb:

– When arriving at a quantifier ∀x, the falsifier chooses fx(β(y1), . . . , β(yk))
as the value of x, where β(y1), . . . , β(yk) are the values given to variables
bound above ∀x.

– When arriving at ∧ that was introduced by and-right or or-left, the
falsifier follows the branch b.

– When arriving at other ∧, the falsifier chooses an arbitrary branch.

Because S is a winning strategy, the verifier wins against each of the strategies Tb
in a finite number of steps, which means that S picks one particular application of
disj-close on each branch. Because S is deterministic and the strategies Tb only
differ in the treatment of ∧, no two selected disj-close applications are located
on the same branch. This implies that the selected disj-close applications can
be replaced with pred-close to turn the fair PredCJ -proof into a PredC-proof
(removing all other applications of disj-close and false-close).

The constraint of the resulting PredC-proof is valid: because U is the domain
of a term algebra, the values chosen by the verifier for the existentially quantified
variables describe a simultaneous unifier of the equations produced by pred-
close.

Selection of the right branch

We will now show how the reasoning of the previous pages can be used to detect
the right saturated branch in a proof tree and to construct a countermodel of
the formulae on this branch. To this end, assume that all possibly generated
constraints of a fair PredCJ -proof are invalid. By Lem. 21, this means that the
mgc of this proof is invalid: for some particular domain, the falsifier has a win-
ning strategy for the mgc (note, that the mgc only contains equations between
variables as atoms). Wlog, we may assume that the domain is countable and
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consists of the elements a1, a2, . . . (this follows by the same argument as in the
proof of Lem. 21: if no such countable domain would exist, we could construct a
countable term algebra for which the verifier has a winning strategy and conclude
the validity of the mgc).

Assume that the constants that the rules ex-right, all-left introduce in
the PredCJ -proof are all pairwise distinct. We now discover the right branch in
the proof tree and simultaneously construct a countermodel based on the above
domain by playing a game. The falsifier will use its winning strategy, whereas
we assume that the verifier behaves as follows:

– When arriving at ∨ in the mgc, which has to be introduced by disj-close,
the verifier chooses the left branch (and not the conjunction

∧

i si
.
= ti);

– when arriving at quantifiers ∃x in the mgc, i.e., at a quantified formula ∃x.φ
(succedent) or ∀x.φ (antecedent) in the proof that is instantiated by ex-
right or all-left, the verifier chooses a domain element ai as value of
x. The value ai is taken when the formula ∃x.φ or ∀x.φ is visited the i-
time in the game, which means that all domain elements are systematically
enumerated for each formula ∃x.φ or ∀x.φ.

The path chosen by the game corresponds to one branch S0, S1, . . . (a se-
quence of sequents) in the proof tree.

Countermodel Construction. In order to construct a countermodel, we first define
the notion of persistent formulae on the selected branch. By

Lit(φ1, . . . , φn ⊢ ψ1, . . . , ψm ⇓ ?) := {¬φ1, . . . ,¬φn, ψ1, . . . , ψm}

we denote the set of literals represented by a sequent. The set of persistent
formulae of a sequence of sequents is then defined as

PF := PF (S0, S1, . . .) :=
⋃

i

⋂

j≥i

Lit(Sj)

For predicate calculus, there are two kinds of formulae that can be persistent:
existentially quantified formulae (which have to be instantiated multiple times
and never disappear from a branch) and literals (to which no further rules apart
from closure rules can be applied).

It is now simple to find a countermodel of all persistent atoms:

– We choose the same domain as for the game that was played in the previous
section.

– We interpret constants with the values that were chosen by the verifier and
the falsifier during the game. Because we assumed that the constants that
are introduced by ex-right, all-left are pairwise distinct, this yields a
consistent valuation.

– We evaluate all persistent literals p(t̄) with ff and all persistent literals ¬p(t̄)
with ff as well (i.e., p(t̄) with tt). This is consistent, because whenever pos-
sibly conflicting literals p(t̄) and ¬p(s̄) are both persistent, we know that
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disj-close has been applied to the pair and that the formula
∧

i si
.
= ti

evaluates to ff for the chosen valuation of constants (otherwise, the verifier
could have won the game, which contradicts the assumption that the falsifier
has a winning strategy).

To show that the chosen structure is a countermodel of all formulae on
the proof branch, we perform the usual Hintikka-style induction on the size
of formulae. The quantifier cases are the most interesting ones:

– ∀x.φ in the succedent: we know that all-right has been applied to the
formula, and that [x/c]φ evaluates to ff for some constant c. Then also the
quantified formula evaluates to ff .

– ∃x.φ in the succedent: ex-right has been applied infinitely often to the
formula, and by the choice of the verifier the values of the introduced con-
stants c1, c2, . . . enumerate all domain elements. Because all formulae [x/c1]φ,
[x/c2]φ, . . . are known to evaluate to ff , also ∃x.φ evaluates to ff .

If we have found a countermodel for all sequents on a proof branch, then also
the root of the proof tree is invalid:

Lemma 22. If all possibly generated constraints of a fair PredCJ -proof for the
sequent Γ ⊢ ∆ ⇓ ? are invalid, then the root Γ ⊢ ∆ of the proof is invalid.

This implies Lem. 3.
To see that also Lem. 4 holds, observe that every partial proof of ⊢ φ ⇓ ?

(as described in the lemma) can be extended to a fair PredCJ -proof. By Lem. 22
and because φ is valid, this implies that some possibly generated constraint is
valid as well. Because atoms are always persistent in PredCJ , this constraint is
also generated by a finite extension of the original PredC-proof.

Lemma 6 (Universal Completeness of PresPredC

S
)

Exhaustive application of all rules apart from all-left, ex-right and close
terminates. Subsequently, apply close on each goal as liberally as possible,
selecting all PA formulae in the goal (the literals containing uninterpreted predi-
cates have to be left out). If the resulting constraint C (for the whole proof tree)
is not valid, a countermodel can be constructed as follows:

– Because C is not valid, there has to be an assignment δ of the constants
introduced when applying ex-left, all-right such that the constraint
extracted from one of the proof goals evaluates to ff . Denote this proof goal
by Γ ′ ⊢ ∆′ ⇓ D.

– Because pred-unify has been applied exhaustively in the proof, for any
complementary pair p(t̄) ∈ Γ ′, p(s̄) ∈ ∆′ the argument vectors evaluate to
different integer vectors given the constant assignment δ. This means that
a consistent interpretation I of the predicates can be constructed from
Γ ′ ⊢ ∆′ ⇓ D.

– Using the normal Hintikka construction, it can be shown that I is a coun-
termodel of the original sequent Γ ⊢ ∆.
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Lemma 7 (Existential Completeness of PresPredC

S
)

To prove this, we first need a further lemma:

Lemma 23 (Constant Substitution in Proofs). Suppose Γ ⊢ ∆ is a se-
quent, σ = [c1/α1, . . . , cn/αn] a substitution that replaces constants with integer
literals, and C a constraint, such that σ(Γ ) ⊢ σ(∆) ⇓ C has a proof in the cal-
culus PresPredCS . Then there is a constraint D such that (i) Γ ⊢ ∆ ⇓ D has a
proof in PresPredCS , and (ii) the implication C ⇒ σ(D) holds.

Proof. By induction on the size of the proof of σ(Γ ) ⊢ σ(∆) ⇓ C. We can first
observe that the existence of a proof for Γ ⊢ ∆ ⇓ C implies the existence of
proofs for Γ, Γ ′ ⊢ ∆′,∆ ⇓ C. Some of the cases are then:

– The last rule applied in the proof is close:

∗
σ(Γ, φ1, . . . , φn) ⊢ σ(ψ1, . . . , ψm,∆) ⇓ σ(¬φ1∨· · ·∨¬φn ∨ ψ1∨· · ·∨ψm)

c.

The non-ground proof can then simply be constructed as:

∗
Γ, φ1, . . . , φn ⊢ ψ1, . . . , ψm,∆ ⇓ ¬φ1 ∨ · · · ∨ ¬φn ∨ ψ1 ∨ · · · ∨ ψm

close

– The last rule applied in the proof is not-right:
....

σ(Γ ), σ(φ) ⊢ σ(∆\σ−1({σ(¬φ)})) ⇓ C

σ(Γ ) ⊢ σ(¬φ), σ(∆) ⇓ C
not-right

Using the induction hypothesis, for a suitable constraint D there is a proof of
Γ, φ ⊢ ∆\σ−1({σ(¬φ)}) ⇓ D, therefore also of Γ, φ ⊢ ∆ ⇓ D, which can
be continued as follows:

....
Γ, φ ⊢ ∆ ⇓ D

Γ ⊢ ¬φ,∆ ⇓ D
not-right

– The last rule applied in the proof is ex-right:
....

σ(Γ ) ⊢ σ([x/c]φ), σ(∃x.φ), σ(∆) ⇓ [x/c]C

σ(Γ ) ⊢ σ(∃x.φ), σ(∆) ⇓ ∃x.C
ex-right

Again, for some constraint D such that [x/c]C ⇒ σ(D) there is a proof of
Γ ⊢ [x/c]φ,∃x.φ,∆ ⇓ D, and by renaming we can establish c 6∈ {c1, . . . , cn}.
The proof can be continued as

....
Γ ⊢ [x/c]φ,∃x.φ,∆ ⇓ D

Γ ⊢ ∃x.φ,∆ ⇓ ∃x.[c/x]D
ex-right

and the implication ∃x.C ⇒ ∃x.[c/x]σ(D) ⇔ σ(∃x.[c/x]D) holds.
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Proof (Lem. 7). As the first step, we consider a calculus PresPredCG that co-
incides with PresPredCS , only that the rules all-left, ex-right are replaced
with “ground versions” (α ranges over integer literals):

Γ ⊢ [x/α]φ,∃x.φ,∆ ⇓ C

Γ ⊢ ∃x.φ,∆ ⇓ C
ex-right-g

Γ, [x/α]φ,∀x.φ ⊢ ∆ ⇓ C

Γ,∀x.φ ⊢ ∆ ⇓ C
all-left-g

The valid sequent Γ ⊢ ∆ from the lemma has a proof with valid constraint in
PresPredCG: otherwise, construct a (possibly infinite) proof tree in which every
quantified formulae on every branch has been instantiated with every integer
literal. Using the normal Hintikka construction, a countermodel of Γ ⊢ ∆ can
be found.

By induction on the size of the PresPredCG-proof, we can transform the proof
into a PresPredCS -proof. Most steps in the proof are left untouched, the only
changes are applied to ex-right-g, all-left-g. For the first case (the latter
case is similar), suppose the ground proof ends with:

Γ ⊢ [x/α]φ,∃x.φ,∆ ⇓ C

Γ ⊢ ∃x.φ,∆ ⇓ C
ex-right-g

where C is valid. We replace the application of ex-right-g with ex-right:

Γ ⊢ [x/c]φ,∃x.φ,∆ ⇓ ?

Γ ⊢ ∃x.φ,∆ ⇓ ?
ex-right

Because Γ ⊢ [x/α]φ,∃x.φ,∆ ⇓ C has a proof in PresPredCS , by Lem. 23 there
is a proof of Γ ⊢ [x/c]φ,∃x.φ,∆ ⇓ D for a suitable D such that C ⇒ [c/α]D,
i.e., [c/α]D is valid. This means that also ∃x.[c/x]D is valid and the translated
proof is:

Γ ⊢ [x/c]φ,∃x.φ,∆ ⇓ D

Γ ⊢ ∃x.φ,∆ ⇓ ∃x.[c/x]D
ex-right

Lemma 8 (Completeness on the ME(LIA) fragment)

By constructing a PresPredCS -proof for each solution of φ (with the help of
Lem. 7), which can then be combined into a single proof. We first need a further
lemma that allows us to restructure proofs:

Lemma 24. Suppose a PresPredCS -proof exists for the sequent Γ ⊢ ∆ ⇓ C,
and Γ ⊢ ∆ contains a formula φ to which one of the rules and-*, or-*,
not-*, ex-left, all-right is applicable. For some D with C ⇒ D there is a
PresPredCS -proof of Γ ⊢ ∆ ⇓ D in which the first rule application is performed
on φ. The depth of the new proof (the length of the longest branch) is at most 1
bigger than the depth of the original proof, and the first rule application of the
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original proof is the first or the second rule application on all branches in the
new proof. Further, if the original proof does not contain any rule applications
to PA formulae apart from close, then the new proof does not contain any such
applications apart from (possibly) the first rule application and close.

Proof. Call the original proof P . The main difficulty in the proof of the lemma
comes from the fact that sequents consist of sets of formulae (not of multisets),
which means that multiple occurrences of a formula are implicitly contracted to
only one occurrence. We therefore prove the lemma in two steps: we first show
it under the assumption that antecedents and succedents in fact are multisets;
as second step, it is then shown that a proof with multiset sequents can be
transformed to a proof with ordinary constrained sequents.

Step 1 (proofs with multiset sequents). If P does not contain any rule application
to φ, we simply add one as first rule application in the new proof and are finished
(note, that the constraint of the proof stays equivalent). Otherwise, we show that
applications of and-*, or-*, not-*, ex-left, all-right to φ can be shifted
towards the root in P . By an inductive argument on the size of P , assume that
the second rule application on all branches of P is an application to φ, whereas
the first rule application is done to a different formula. Note, that whenever the
constraint of an inner proof node is weakened, also the constraint of the whole
proof becomes weaker or does not change. The cases to be considered are:

– φ starts with ¬, with ∧ and is in the antecedent, or with ∨ and is in the
succedent. In all cases, we can simply permute the first and the second rule
application in P . Because the rules that can be applied to φ do not affect
the constraint, the overall constraint stays the same.

– φ starts with ∨ and is in the antecedent, or with ∧ and is in the succedent.
Again, we can permute the first and the second rule application in P , but
have to argue that the constraint stays equivalent or becomes weaker. The
most interesting situation is the one where the first rule application in P is
all-left or ex-right, e.g.:

Γ ⊢ . . . , φ1,∆ ⇓ [x/c]C Γ ⊢ . . . , φ2,∆ ⇓ [x/c]D

Γ ⊢ ∃x.ψ, [x/c]ψ, φ1 ∧ φ2,∆ ⇓ [x/c](C ∧D)
and-right

Γ ⊢ ∃x.ψ, φ1 ∧ φ2,∆ ⇓ ∃x.(C ∧D)
ex-right

is transformed into:

Γ ⊢ . . . , [x/c]ψ,∆ ⇓ [x/c]C

Γ ⊢ ∃x.ψ, φ1,∆ ⇓ ∃x.C
ex-r.

Γ ⊢ . . . , [x/c]ψ,∆ ⇓ [x/c]D

Γ ⊢ ∃x.ψ, φ2,∆ ⇓ ∃x.D
ex-r.

Γ ⊢ ∃x.ψ, φ1 ∧ φ2,∆ ⇓ ∃x.C ∧ ∃x.D
and-r.

Because of ∃x.(C ∧D) ⇒ ∃x.C ∧ ∃x.D, the resulting constraint does not
becomes stronger.

– φ starts with ∃ and is in the antecedent, or with ∀ and is in the succedent.
Again, we can permute the first and the second rule application in P . The
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most interesting situation is the one where the first rule application in P is
all-left or ex-right, e.g.:

Γ ⊢ ∃x.ψ, [x/c]ψ, [y/d]φ′,∆ ⇓ [y/d][x/c]C

Γ ⊢ ∃x.ψ, [x/c]ψ,∀y.φ′,∆ ⇓ ∀y.[x/c]C
all-right

Γ ⊢ ∃x.ψ,∀y.φ′,∆ ⇓ ∃x.∀y.C
ex-right

is transformed into:

Γ ⊢ ∃x.ψ, [x/c]ψ, [y/d]φ′,∆ ⇓ [y/d][x/c]C

Γ ⊢ ∃x.ψ, [y/d]φ′,∆ ⇓ ∃x.[y/d]C
ex-right

Γ ⊢ ∃x.ψ,∀y.φ′,∆ ⇓ ∀y.∃x.C
all-right

Because of ∃x.∀y.C ⇒ ∀y.∃x.C, the resulting constraint does not become
stronger.

Step 2 (elimination of multiple occurrences of a formula). By induction on the
size of a proof Q of a multiset sequent Γ ⊢ φ, φ,∆ ⇓ C with two (or more)
occurrences of a formula φ in the succedent (or, analogously, in the antecedent),
we show that: there is a proof Q′ of the sequent Γ ⊢ φ,∆ ⇓ D that is not
bigger that Q, such that C ⇒ D. If Q does not contain any rule applications to
PA formulae apart from close, then neither does Q′.

Wlog., we can assume that the first rule application in Q is done to one of
the occurrences of φ (otherwise, consider the maximal subtrees of Q with this
property, which are strictly smaller than Q and can be handled by the induction
hypothesis. Outside of the maximal subtrees, no rules are applied to φ and the
two occurrences can be replaced with only one occurrence right away). There
are the following cases:

– φ starts with ¬, with ∧ and is in the antecedent, or with ∨ and is in the
succedent. By Step 1, we can transform Q into a proof Q2 in which the
second rule application on all branches is done to the second occurrence of
φ (the depth of Q2 is at most 1 bigger than that of Q). E.g.:

Γ ⊢ φ1, φ2, φ1, φ2,∆ ⇓ C

Γ ⊢ φ1, φ2, φ1 ∨ φ2,∆ ⇓ C
or-right

Γ ⊢ φ1 ∨ φ2, φ1 ∨ φ2,∆ ⇓ C
or-right

The induction hypothesis allows to replace the subproof for the sequent
Γ ⊢ φ1, φ2, φ1, φ2,∆ ⇓ C with a proof of Γ ⊢ φ1, φ2,∆ ⇓ D with C ⇒ D
that is not bigger. Simultaneously, one of the formulae φ1∨φ2 and one of the
or-right applications can be eliminated. (Similarly for the other cases.)

– φ starts with ∨ and is in the antecedent, or with ∧ and is in the succedent.
By Step 1, we can transform Q into a proof Q2 in which the second rule
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application on all branches is done to the second occurrence of φ. E.g.:

A B
Γ ⊢ φ1 ∧ φ2, φ1 ∧ φ2,∆ ⇓ C ∧D ∧ E ∧ F

Γ ⊢ φ1, φ1,∆ ⇓ C Γ ⊢ φ1, φ2,∆ ⇓ D

Γ ⊢ φ1, φ1 ∧ φ2,∆ ⇓ C ∧D

A

Γ ⊢ φ2, φ1,∆ ⇓ E Γ ⊢ φ2, φ2,∆ ⇓ F

Γ ⊢ φ2, φ1 ∧ φ2,∆ ⇓ E ∧ F

B

As before, the subproofs for Γ ⊢ φ1, φ1,∆ ⇓ C and Γ ⊢ φ2, φ2,∆ ⇓ F
can be replaced with proofs of Γ ⊢ φ1,∆ ⇓ C ′ and Γ ⊢ φ2,∆ ⇓ F ′ with
C ⇒ C ′ and F ⇒ F ′. Simultaneously, one of the formulae φ1∧φ2 and one of
the and-right applications can be eliminated. The resulting constraint is
C ′ ∧ F ′ and has the property C ∧D ∧ E ∧ F ⇒ C ′ ∧ F ′. (Similarly for the
other case.)

– φ starts with ∃ and is in the antecedent, or with ∀ and is in the succedent.
By Step 1, we can transform Q into a proof Q2 in which the second rule
application on all branches is done to the second occurrence of φ. E.g.:

Γ ⊢ [x/c]φ′, [x/d]φ′,∆ ⇓ [y/d][x/c]C

Γ ⊢ [x/c]φ′,∀x.φ′,∆ ⇓ ∀y.[x/c]C
all-right

Γ ⊢ ∀x.φ′,∀x.φ′,∆ ⇓ ∀x.∀y.C
all-right

We can transform the subproof of Γ ⊢ [x/c]φ′, [x/d]φ′,∆ ⇓ [y/d][x/c]C into
a proof of Γ ⊢ [x/c]φ′, [x/c]φ′,∆ ⇓ [y/c][x/c]C by replacing d everywhere in
the proof with c. Subsequently, the subproof can be transformed into a proof
of Γ ⊢ [x/c]φ′,∆ ⇓ D with [y/c][x/c]C ⇒ D by the induction hypothesis.
Simultaneously, one of the formulae ∀x.φ′ and one of the all-right appli-
cations can be eliminated. Finally, it can be observed that the implication
∀x.∀y.C ⇒ ∀x.[y/x]C ⇒ ∀c.D holds.

– φ starts with ∀ and is in the antecedent, or with ∃ and is in the succedent, or is
an equation, an inequality, a divisibility judgement or an atom p(t̄). Because
such formulae are not eliminated by any rule application, the two occurrences
of φ can directly be replaced with only one occurrence everywhere in the
proof.

Proof (Lem. 8). Suppose ā = (a1, . . . , an) are the quantified variables, c1, . . . , cn
are fresh constants and σ = [a1/c1, . . . , an/cn]. Let σ1, . . . , σm be substitutions
of c1, . . . , cn with integer literals that describe all solutions of σ(φ). By Lem. 7,
there are PresPredCS -proofs of the sequents (σi(σ(ψ)) ⊢ ⇓ Ci)i=1..m for
appropriate valid constraints C1, . . . , Cm. By Lem. 23, this implies that there
are also m proofs of (σ(ψ) ⊢ ⇓ Di)i=1..m such that σi(Di) is valid for each i.

Then there is also a single PresPredCS -proof σ(ψ) ⊢ ⇓ D such that σi(D) is
valid for each i: with the help of Lem. 24, we can first normalise each PresPredCS -
proof (σ(ψ) ⊢ ⇓ Di)i=1..m to a proof where the first steps are applications of
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and-*, or-*, not-*:

Γ1 ⊢ ∆1 ⇓ Di,1 · · · Γk ⊢ ∆k ⇓ Di,k

....
σ(ψ) ⊢ ⇓ D′

i

such that all formulae in Γ1, . . . , Γk are atoms or start with ∀, all formulae
in ∆1, . . . ,∆k are atoms or start with ∃, and Di ⇒ D′

i for all i = 1, . . . ,m.
Thus, we can assume that each of the proofs (σ(ψ) ⊢ ⇓ D′

i)i=1..m contains a
subproof for each sequent (Γj ⊢ ∆j)j=1..k, and that D′

i = Di,1 ∧ · · · ∧ Di,k

(recall that σ(ψ) contains ∃ only in negative and ∀ only in positive positions).
These subproofs can be combined to create one general proof for each of the
sequents (Γj ⊢ ∆j)j=1..k, because every goal of a PresPredCS -proof of Γj ⊢ ∆j

contains Γj ⊢ ∆j as a sub-sequent: the proofs are put together by starting with
one proof, copying the second proof to all goals of the first proof, etc. If close
is applied such that as many formulae as possible are selected in every goal,
then for the constraint Ej of the big proof for Γj ⊢ ∆j ⇓ Ej the implication
D1,j ∨ · · · ∨Dm,j ⇒ Ej holds. Finally, the big proofs can be assembled further
to obtain the anticipated proof of σ(ψ) ⊢ ⇓ D:

....
Γ1 ⊢ ∆1 ⇓ E1 · · ·

....
Γk ⊢ ∆k ⇓ Ek

....
σ(ψ) ⊢ ⇓ E1 ∧ · · · ∧Ek

Because σi(D
′
i) is valid for each i, each of the constraints σi(Di,1), . . . , σi(Di,k)

is. This implies that σi(Ej) is valid for all i, j, and thus also the formulae
σi(D) = σi(E1 ∧ · · · ∧Ek) are valid.

Finally, we can prove ∃ā.(φ ∧ ψ) as follows:

∗....
σ(φ), σ(ψ) ⊢ ⇓ ¬σ(φ) ∨D

σ(φ ∧ ψ) ⊢ ⇓ ¬σ(φ) ∨D
or-left

∃ā.(φ ∧ ψ) ⊢ ⇓ ∃ā.(¬φ ∨ [c1/a1, . . . , cn/an]D)
ex-left∗

This proves the lemma, because ∃ā.(¬φ∨ [c1/a1, . . . , cn/an]D) is a valid formula
in Presburger Arithmetic.

Lemma 10 (Soundness of PresPredC)

It is enough to check that all rules of the calculus are sound, which is trivial for
most of the rules (also see Lem. 2). The interesting case is the rule omega-elim.
Assume that the lower sequent does not hold, i.e., C holds and the sequent

Γ, {αic− ai
.
≥ 0}i, {βjc− bj

.
≤ 0}j ⊢ ∆
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is violated. This implies that the inequalities {αic − ai
.
≥ 0}i, {βjc − bj

.
≤ 0}j

hold. From the proof for Thm. 9 that is given in [10] we can conclude that
then either the dark shadow conjunction

∧

i,j αibj − aiβj − (αi − 1)(βj − 1)
.
≥ 0

holds, or otherwise one of the splinters

αic− ai − k
.
= 0 ∧

∧

i

αic− ai
.
≥ 0 ∧

∧

j

βjc− bj
.
≤ 0

has to be satisfied (note, that this is more than what is guaranteed by the actual
Thm. 9, where the splinters are existentially quantified).

Lemma 11 (Constraint completeness in exhaustive proofs)

The conditions on page 183 ensure that (1) is preserved by all rule applications:
if (1) holds for all premisses of a rule application, then it also holds for the
conclusion. With the help of a simple induction, this entails that (1) holds for
all proof nodes. In detail:

1. It is easy to see that and-*, or-*, not-*, pred-unify, red, div-left,
div-right, and simp preserve (1). Observe that if U ′ ⊆ U , then:

∀U ′. (Γp ⊢ ∆p) ⇒ ∀U ′. C entails ∀U. (Γp ⊢ ∆p) ⇒ ∀U. C

2. We only show the proof for ex-right-d. Let U be the annotation of the
conclusion, φ a PA formula and assume (Γp ⊢ [x/c]φ,∆p) ⇒ [x/c]C. This
implies:

∀U. (Γp ⊢ ∃x.φ,∆p) ⇔ ∀U. ∃x. (Γp ⊢ φ,∆p) ⇒ ∀U. ∃x.C

3. We show the proof for all-right. If φ is a PA formula, then:

∀U. (Γp ⊢ ∀x.φ,∆p) ⇔ ∀(U ∪ {c}). (Γp ⊢ [x/c]φ,∆p)

⇒ ∀(U ∪ {c}). [x/c]C ⇔ ∀U. ∀x.C

Similarly, if φ contains uninterpreted predicates:

∀U. (Γp ⊢ ∆p) ⇔ ∀(U ∪ {c}). (Γp ⊢ ∆p)

⇒ ∀(U ∪ {c}). [x/c]C ⇔ ∀U. ∀x.C

4. For col-red:

∀U.
(
Γp, αc+ t

.
= 0 ⊢ ∆p

)

⇔ ∀U.
(
Γp,∃c

′.(α(u+ c′) + t
.
= 0 ∧ c− u− c′

.
= 0) ⊢ ∆p

)

⇔ ∀(U ∪ {c′}).
(
Γp, α(u+ c′) + t

.
= 0, c− u− c′

.
= 0 ⊢ ∆p

)

⇒ ∀(U ∪ {c′}). [x/c′]C

⇔ ∀U. ∀x.C
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5. Let U be the annotation of the conclusion and assume:

∀U. (Γp, α(u+ c′) + t
.
= 0, c− u− c′

.
= 0 ⊢ ∆p) ⇒ ∀U. [x/c′]C

Because c′ 6∈ U and c − u does not contain any constants from U , we can
substitute c− u for c′:

∀U. (Γp, α(u+ (c− u)) + t
.
= 0, c− u− (c− u)

.
= 0 ⊢ ∆p) ⇒

∀U. [x/c− u]C

which entails:

∀U. (Γp, αc+ t
.
= 0 ⊢ ∆p) ⇒ ∀U. [x/c− u]C

6. Follows directly from Thm. 9 and the fact that c ∈ U does not occur in Γ
and ∆.

7. Let U be the annotation of the conclusion (c ∈ U) and assume:

∀U. (Γp, αc− t
.
= 0 ⊢ ∆p) ⇒ ∀U. C,

∀U. (Γp, αc− t
.
= 0 ⊢ ∆p)

which directly entails (because c ∈ U does not occur in C ′ and C ⇔ [x/αc]C ′

holds):
∀U. [x/αc]C ′ ⇔ ∀U. ∀x. (C ′ ∨ α ∤ x)

The last formula also holds if t is substituted for x:

∀U. ([x/t]C ′ ∨ α ∤ t)

8. Assume valI,δ(∀U. ¬φ1 ∨ · · · ∨ ¬φn ∨ ψ1 ∨ · · · ∨ ψm) = ff for some inter-
pretation I and constant assignment δ. Let U2 ⊆ U be those U -constants
that only occur in equations of the succedent ψ1, . . . , ψm,∆. We modify δ
to falsify all such equations, resulting in the assignment δ′: this is possible
because U2-equations describe hyperplanes in Z|U2|, and the intersection of
the complements of (finitely many) hyperplanes is non-empty.
Then it is the case that valI,δ′(Γp, φ1, . . . , φn ⊢ ψ1, . . . , ψm,∆p) = ff : for-
mulae that do not contain U2-constants evaluate to tt (antecedent) or ff
(succedent) by assumption, and equations with U2-constants by construc-
tion.

Lemma 14 (Termination and exhaustiveness)

Termination has to be proven on different levels:

Loop 1–2. Terminates because <r is well-founded.
As a special case, note that if any rule application derives the formula false

(which is abbreviation for 1
.
= 0) in the antecedent, subsequent applications of

red will immediately replace all terms in the sequent with 0 and thereby cause
the algorithm to terminate.



212 Proofs

Loop 1–4. We prove termination similarly as in the appendix of [8], by consid-
ering the following mapping of sequents to triples (cU , cE , |U |) of two multisets
over N ∪ {∞} and one natural number. We call a constant c dependent if it
occurs as the leading term of an equation c+ t

.
= 0 in the antecedent, and inde-

pendent otherwise. Once a constant c is dependent, the exhaustive application
of red will eliminate all occurrences of c in a sequent but the one in the defining
equation c+ t

.
= 0.

– cU is the multiset of greatest common divisors of leading coefficients for
independent U -constants:













gcd(α1, . . . , αn) ∈ N ∪ {∞}

∣
∣
∣
∣
∣
∣
∣
∣

c ∈ U an independent constant,
α1c+ t1

.
= 0, . . . , αnc+ tn

.
= 0

all equations in the antecedent
whose leading term is c













in which we define gcd() = ∞.
– cE is the corresponding multiset for non-U -constants:













gcd(α1, . . . , αn) ∈ N ∪ {∞}

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

c 6∈ U an independent constant
in the sequent,

α1c+ t1
.
= 0, . . . , αnc+ tn

.
= 0

all equations in the antecedent
whose leading term is c













– |U | is the number of U -constants.

Such triples (cU , cE , |U |) are compared lexicographically. Multisets overN ∪ {∞}
are compared using the well-founded ordering <m: for elements a1 ≤ · · · ≤ an,
b1 ≤ · · · ≤ bm, we define:

{{a1, . . . , an}} <m {{b1, . . . , bm}} iff

n < m or (n = m and (a1, . . . , an) <lex (b1, . . . , bm))

We prove termination of the loop 1–4 by showing that the triple (cU , cE , |U |)
for a sequent becomes strictly smaller each time step 3 or 4 is carried out, and
does not become bigger if step 2 occurs. We only consider sequents in which the
rule simp has been fully applied to all formulae (in other words, trailing applica-
tions of simp are conceptually considered as part of the other rule applications).

– red (step 2): U does not change in this step.
If the target formula is not an equation in the antecedent, the only relevant
effect might be that constants disappear from a sequent, which does not
increase the measure.
Thus, assume that the application turns the left-hand side of an antecedent
equation s

.
= 0 into s+ α · t <r s; after a possibly following application of

simp, the new equation is s′
.
= 0:
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• if s′ = 0, then it must be the case that s = t, which contradicts the
assumption that φ[s] is not an equation in the antecedent.

• if s′ = 1, false has been derived and the strategy terminates abruptly.
• otherwise, if s and s′ have the same leading term c and leading coeffi-

cients β, β′, then β′ = β or β′ <r β. This implies that neither cU nor cE
have become <m-bigger.

• otherwise, if s and s′ have different leading terms c, c′ and leading coef-
ficients β, β′, then c′ <r c and t

.
= 0 has the form γc+ w

.
= 0, where β

is a multiple of γ.
This implies that the cU - or cE-element for c has not changed (if c is
dependent, there is no element at all). The cU - or cE-element for c′ has
at least not become bigger (again, it is possible that c′ is dependent and
there is not element).

– col-red-subst (step 3): first, note that t contains constants (otherwise,
simp would be applicable), but does not contain U -constants (because c 6∈ U
and U -constants are <r-maximal). Because no U -constants are involved, cU
stays the same. Further, the leading term of the equation α(u+ c′) + t

.
= 0,

after a potential application of simp, is not c′: this could only be the case if
all coefficients in t were multiples of α, which means that simp would have
been applicable to αc+ t

.
= 0.

If the leading coefficient of the new equation α(u+ c′) + t
.
= 0 is 1, then the

cardinality of cE decreases (because an independent constant disappears)
and cE becomes <m-smaller.
Otherwise, there are three changes affecting cE :
• The constant c is independent before the rule application and dependent

afterwards, which means that one element of cE disappears. Because
red has been applied exhaustively before step 3, αc+ t

.
= 0 is the only

equation in the antecedent whose leading term is c and the removed
element is α.

• The new constant c′ is independent and does not occur as leading term
of any equation, which means that ∞ is added as a new element to cE .

• The cE-element belonging to the leading term d of the new equation
α(u+ c′) + t

.
= 0 (which was an independent constant before applying

col-red-subst because red was applied exhaustively) changes: suppose
γ is the cE-element belonging to d before the application of col-red-
subst. Because u is chosen such that:

(αu+ t) = min
<r

{αu′ + t | u′ a term}

the leading coefficient γ′ of α(u+ c′) + t
.
= 0, after a potential applica-

tion of simp, has to be greater than 1 (by assumption) but strictly smaller
than α. Besides, γ′ is also strictly smaller than γ, because red was ap-
plied exhaustively: if γ <∞, there has to be an equation γd+ w

.
= 0 in

the antecedent that can be applied to reduce t.
Altogether, the new value of cE is:

c′E = cE\{{α, γ}} ∪ {{∞, γ′}}
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and c′E <m cE because of 0 < γ′ < α and 0 < γ′ < γ.
– col-red (step 3): shown in the same way as for col-red-subst, with the

difference that cU is considered instead of cE . The condition that t contains
further U -constants whose coefficient is not a multiple of α is needed to
ensure that c′ is not the leading term of the new equation α(u+ c′) + t

.
= 0.

– div-close (step 4):

• If α > 1, then c was a independent U -constant before applying div-
close, i.e., the cardinality of cU becomes smaller because c is removed
from U .

• If α = 1 and t contains further constants, then after an application of
simp to the equation αc+ t

.
= 0 the constant c is no longer the leading

term. Call the new leading term c′ and its coefficient α′. The constant c′

was independent before applying div-close. Because red was applied
exhaustively, the old cU - or cE-element for c′ is bigger than α′. This
implies that either cU becomes <m-smaller, or cU stays the same and cE
becomes <m-smaller.

• If α = 1 and t does not contain further constants, then neither cU nor
cE changes, but the cardinality of U decreases.

Loop 1–5. It can first be observed that there is little interaction between the rule
fm-elim and the rules of step 1–4 that treat equalities: step 5 is only reached
once the leading coefficient of all equations in the antecedent is 1, and once no
leading term of such an equation occurs in more than place in the sequent. This
implies that an application of fm-elim never enables further applications of the
rules in step 1–4. The application of fm-elim alone has to terminate because
for any finite set of inequalities there is only a finite number of Fourier-Motzkin-
inferences (respecting the ordering <r).

In order to show that the application of anti-symm, and-*, or-*, not-*
terminates, we use a pair of natural numbers as a measure for the complexity of
a sequent. Two such pairs are compared lexicographically:

– The number of propositional connectives ∧, ∨, ¬ in the sequent.
– The dimension d of the smallest affine space in RC that contains all (inte-

ger) solutions of the equations in the antecedent, where C is the set of all
constants occurring in a sequent.

Both fm-elim and the rules in step 1–4 do not apply to propositional connec-
tives and preserve the dimension d, while the other rules of step 5 decrease the
measure:

– anti-symm (step 5): again, this rule is only applied once the leading coeffi-
cient of all equations in the antecedent is 1, and once no leading term of such
an equation occurs in more than place in the sequent (in particular not in the
equation that is added by anti-symm). This implies that the dimension d
is decreased by 1 by the new equation.

– and-*, or-*, not-* (step 5): eliminates one propositional connective.



A Constraint Sequent Calculus for FOL with Linear Integer Arithmetic 215

Loop 1–6. Again, we use vectors of natural numbers that are compared lexico-
graphically as a measure for sequents:

– The number of divisibility judgements α | t in positive positions.

– The number of divisibility judgements α | t in negative positions.

– The number of quantifiers ∀, ∃ in the sequent.

– The dimension d of the smallest affine space in RC that contains all (inte-
ger) solutions of the equations in the antecedent, where C is the set of all
constants occurring in a sequent.

– The number of equations in positive positions.

None of the rules in step 1–5 increase any of these features (but possibly decrease
some of them), while the other rules of step 6 decrease the measure:

– split-eq (step 6): eliminates an equation in a positive position.

– omega-elim (step 6): an application of this rule will at first not have any
influence on the complexity of a sequent (but it introduces new propositional
connectives). The next rules applicable after omega-elim, however, are the
rules and-*, or-*, not-* of step 5 that split the introduced formula into
its disjuncts. For each of the disjuncts, the dimension d is reduced by 1:
the first of the disjuncts does no longer contain the constant c at all (the
set C becomes smaller), while the other disjuncts introduce a new equation
in a negative position so that the same argument as for the rule anti-symm
applies.

– all-*, ex-* (step 6): eliminates one quantifier.

– div-right (step 6): eliminates a divisibility judgement in a positive position
(and introduces new judgements in negative positions).

– div-left (step 6): eliminates a divisibility judgement in a negative position.

Exhaustiveness. To prove that the resulting proof is exhaustive, annotate the
proof tree with the sets U that are maintained by the strategy. The most involved
point is to see that close is applied in the right way. To this end, observe that
if close must not be applied according to the conditions in Sect. 5.1, then some
other rule with higher priority can be applied.

Lemma 15 (Quantifier elimination)

By induction on the size of a proof, show that if a sequent Γ ⊢ ∆ ⇓ C of the
resulting exhaustive proof is annotated with U , then C does not contain any
U -constants. Note, in particular, that divisibility judgements α | t (which can
equivalently be expressed using existentially quantified equations) never reduce
the set U . Because the introduced constant is added to U when the rules all-
right, ex-left or col-red are applied, this proves the lemma.
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Lemma 16 (PresPredC

S
subsumes PresPredC)

We first need two further lemmas:

Lemma 25. Suppose a PresPredCS -proof exists for the sequent Γ ⊢ ∆ ⇓ C.
For some D with C ⇒ D there is a proof of the sequent Γ ⊢ ∆ ⇓ D in which
no rule apart from close is applied to formulae that do not contain uninterpreted
predicates (i.e., to PA formulae).

Proof. The proof is done by induction on the size of the original proof P of
Γ ⊢ ∆ ⇓ C. We can assume that the first rule application in P is different from
close and is performed on a PA formula φ, and that no other rule application
in P (apart from close) involves PA formulae. There are the following cases:

– φ starts with ¬, with ∧ and is in the antecedent, or with ∨ and is in the
succedent. Because no rules apart from close are applied to the formulae
resulting from the first rule application in P , the application can simply be
left out without changing the overall constraint.

– φ starts with ∨ and is in the antecedent, or with ∧ and is in the succedent,
i.e., the first rule application splits P into two subproofs. E.g.:

....
Γ ⊢ φ1,∆ ⇓ C

....
Γ ⊢ φ2,∆ ⇓ D

Γ ⊢ φ1 ∧ φ2,∆ ⇓ C ∧D
and-right

By Lem. 24 and as in the proof of Lem. 8, we can assume that uninterpreted
predicates occur in Γ , ∆ only in formulae in the antecedent that start with ∀,
in formulae in the succedent that start with ∃, or in literals p(t̄): otherwise,
we can turn P into a proof in which the first rule application is performed
on a formula with uninterpreted predicates of different shape and consider
the direct subproofs of this proof.
Because no further rules (apart from close) are applied to φ1 and φ2 (or
to any PA formulae), this means that there are proofs of Γ ⊢ ∆ ⇓ C ′ and
Γ ⊢ ∆ ⇓ D′ such that C ⇒ C ′ ∨ φ1 and D ⇒ D′ ∨ φ2. Further, because
of the assumption about the formulae in Γ , ∆, we know that Γ ⊢ ∆ is
a subsequent of each goal in both proofs. This means that we can copy
the second proof to each goal of the first proof (possibly renaming con-
stants so that no name clashes occur). If close is in each goal applied
as liberally as possible, the constraint of the resulting proof is at least
as weak as C ′ ∨D′. Finally, by adding φ1 ∧ φ2 to all succedents in the
proof, the constraint can be made as weak as C ′ ∨D′ ∨ φ1 ∧ φ2. Because
of C ∧D ⇒ (C ′ ∨ φ1) ∧ (D′ ∨ φ2) ⇒ C ′ ∨D′ ∨ φ1 ∧ φ2, this concludes the
case.

– φ starts with ∃ and is in the antecedent, or with ∀ and is in the succedent.
E.g.:

....
Γ ⊢ [x/c]φ′,∆ ⇓ [x/c]C

Γ ⊢ ∀x.φ′,∆ ⇓ ∀x.C
all-right
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As before, this means that there is a proof of a sequent Γ ⊢ ∆ ⇓ D such
that [x/c]C ⇒ D ∨ [x/c]φ′, whereby we can assume that c does not occur
in D. By adding ∀x.φ′ to all succedents of this proof, we obtain a proof of
Γ ⊢ ∀x.φ′,∆ ⇓ E such that D ∨ ∀x.φ′ ⇒ E. Altogether, this means that
∀x.C ⇒ ∀x.(D ∨ φ′) ⇒ D ∨ ∀x.φ′ ⇒ E.

– φ starts with ∀ and is in the antecedent, or with ∃ and is in the succedent.
E.g.

....
Γ ⊢ [x/c]φ′,∃x.φ′,∆ ⇓ [x/c]C

Γ ⊢ ∃x.φ′,∆ ⇓ ∃x.C
ex-right

By leaving out [x/c]φ′ everywhere, we obtain a proof of Γ ⊢ ∃x.φ′,∆ ⇓ D
such that [x/c]C ⇒ D ∨ [x/c]φ′, whereby we can assume that c does not
occur in D. If close is applied as liberally as possible in each goal, the
implication ∃x.φ′ ⇒ D holds, i.e., D ⇔ D ∨ ∃x.φ′. Altogether, this means
∃x.C ⇒ ∃x.(D ∨ φ′) ⇒ D ∨ ∃x.φ′ ⇒ D.

The following lemma will be used to justify application of the rules red and
simp:

Lemma 26. Suppose that Γp, ∆p are sets of PA formulae and s1, s2 are two
terms or two PA atoms (equations, inequalities, or divisibility judgements) such
that:

∧

Γp →
∨

∆p ⇒ s1 − s2
.
= 0 (in case of terms)

∧

Γp →
∨

∆p ⇒ (s1 ∧ s2) ∨ (¬s1 ∧ ¬s2) (in case of atoms)

Further, suppose a PresPredCS -proof exists for Γ, Γp ⊢ φ[s1],∆p,∆ ⇓ C (we
write φ[s1] in the succedent to denote that the term or atom s1 can occur in an
arbitrary position in the sequent, in particular also in the antecedent) in which no
rule apart from close is applied to formulae that do not contain uninterpreted
predicates. For some D with C ⇒ D there is a proof of Γ, Γp ⊢ φ[s2],∆p,∆ ⇓ D
that has the same depth as the original proof and that starts with the same rule
application, and in which no rule apart from close is applied to formulae that
do not contain uninterpreted predicates.

Proof. The proof is done by induction on the size of the original proof P of
Γ, Γp ⊢ φ[s1],∆p,∆ ⇓ C. As in the proof of Lem. 24, we first show the main
conjecture using proof trees with multiset sequents, and then refer to Step 2 of
the proof of Lem. 24 to carry over the result to proofs with normal sequents.
Observe that none of the following transformation steps increases the depth of
a proof or introduces new rule applications (other than close) to PA formulae.

We can assume that the first rule application in P involves the formula φ[s1].
Otherwise, consider the maximal subproofs of P with this property. Outside of
the subproofs, φ[s1] can simply be replaced with φ[s2] and is unaffected by other
rule applications due to the usage of multiset sequents.
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If the first (and only) rule application in P is close and includes φ[s1], the
formula cannot contain uninterpreted predicates, and then neither does φ[s2].
This means that φ[s1] can be replaced with φ[s2] in this goal. close can be
applied such that both φ[s2] and the formulae Γp, ∆p are included. Because of
φ[s1] ⇒ (

∧
Γp →

∨
∆p) → φ[s2], the resulting constraint does not get stronger.

If the first application in P is done with a rule other than close, it is always
possible to do this application to φ[s2] instead of φ[s1] and to handle the direct
subproofs using the induction hypothesis (note, that φ[s1] and φ[s2] have the
same structure).

Proof (Lem. 16). By an induction on the size of the PresPredC-proof P . In
each step, it can be assumed that the first rule application in P is done using
a rule that is not present in PresPredCS , and that all other rules applied in P
are PresPredCS -rules. By Lem. 25, we can furthermore assume that no inner rule
application (other than close) is done on PA formulae. The following cases are
possible, depending on the first rule applied:

– all-left-d, ex-right-d: replace the application with all-left or ex-
right, which does not make the resulting constraint stronger.

– red, simp: the rule application can be left out with the help of Lem. 26.
– div-left, div-right, anti-symm, fm-elim: because these rules replace PA

formulae with equivalent formulae, they can directly be left out without
strengthening constraints.

– col-red, e.g.:

....
Γ, α(u+ c′) + t

.
= 0, c− u− c′

.
= 0 ⊢ ∆ ⇓ [x/c′]C ′

Γ, αc+ t
.
= 0 ⊢ ∆ ⇓ ∀x.C ′ col-red

By leaving out the two equations in the antecedent, we can create a proof of
a sequent Γ ⊢ ∆ ⇓ C ′′ with:

[x/c′]C ′ ⇒ C ′′ ∨ α(u+ c′) + t 6
.
= 0 ∨ c− u− c′ 6

.
= 0

whereby it can be assumed that c′ does not occur in C ′′. Then, by adding
αc+ t

.
= 0 to all antecedents, a proof of Γ, αc+ t

.
= 0 ⊢ ∆ ⇓ D can be de-

rived such that C ′′ ∨ αc+ t 6
.
= 0 ⇒ D. Altogether, this means:

∀x.C ′ ⇒ ∀c′.[x/c′]C ′ ⇒ ∀c′.(C ′′ ∨ α(u+ c′) + t 6
.
= 0∨ c− u− c′ 6

.
= 0)

⇒ C ′′ ∨ αc+ t 6
.
= 0 ⇒ D

– col-red-subst: analogously.
– div-close, e.g.:

....
Γ, αc− t

.
= 0 ⊢ ∆ ⇓ C ′

Γ, αc− t
.
= 0 ⊢ ∆ ⇓ [x/t]C ′′ ∨ α ∤ t

div-close
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If close is in the proof always applied as liberally as possible, such that also
the equation αc− t

.
= 0 is selected, then αc− t 6

.
= 0 ⇒ C ′, i.e., the equiva-

lence C ′ ⇔ C ′ ∨ αc− t 6
.
= 0 holds. Because of C ′ ⇔ [x/αc]C ′′, this means

C ′ ⇔ [x/t]C ′′ ∨ αc− t 6
.
= 0. Finally, because of αc− t

.
= 0 ⇒ α | t:

[x/t]C ′′ ∨ α ∤ t ⇒ [x/t]C ′′ ∨ αc− t 6
.
= 0 ⇒ C ′

This means that the constraint of the proof does not become stronger if the
application of div-close is left out.

– split-eq, e.g.:

....
Γ ⊢ t

.
≤ 0,∆ ⇓ C ′

....
Γ ⊢ t

.
≥ 0,∆ ⇓ D′

Γ ⊢ t
.
= 0,∆ ⇓ C ′ ∧D′

split-eq

We can modify the proof to get a similar one without the application of
split-eq:

....
Γ ⊢ t

.
≤ 0,∆ ⇓ C ′

....
Γ ⊢ t

.
≥ 0,∆ ⇓ D′

Γ ⊢ t
.
≤ 0 ∧ t

.
≥ 0,∆ ⇓ C ′ ∧D′

and-right

By Lem. 25, this can be turned into a proof of Γ ⊢ t
.
≤ 0 ∧ t

.
≥ 0,∆ ⇓ E in

which no rules other than close are applied to PA formulae, such that the
implication C ′ ∧D′ ⇒ E holds. Finally, t

.
≤ 0 ∧ t

.
≥ 0 can be replaced with

the (equivalent) equation t
.
= 0 everywhere in the proof, which leads to a

proof of Γ ⊢ t
.
= 0,∆ ⇓ E′ with E′ ⇔ E.

– omega-elim, e.g.:

....
Γ, φ(c) ⊢ ∆ ⇓ C

Γ, {αic− ai
.
≥ 0}i, {βjc− bj

.
≤ 0}j ⊢ ∆ ⇓ C

omega-elim

The rule application can simply be left out because of:

∧

i

αic− ai
.
≥ 0 ∧

∧

j

βjc− bj
.
≤ 0 ⇒ φ(c)

This implication follows from the proof for Thm. 9 that is given in [10] (note,
that this is more than what is guaranteed by the actual Thm. 9, where the
splinters are existentially quantified).

Lemma 17 (Fair proof construction)

We call the PresPredCS -proof P and the fair PresPredC-proof Q. By Lem. 25,
we can assume that the only rule that is applied to PA formulae in P is close.
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For the following induction, we also make the assumption that the rule pred-
unify is in Q applied in the same fair manner as the rules in Fig. 1, i.e., it is
eventually applied infinitely often to all complementary predicate literals (or
their successors). Given any fair PresPredC-proof, it is possible to insert fur-
ther applications of pred-unify to achieve this property without changing the
constraints generated by the proof (the constraints stay equivalent). Namely,
assume that pred-unify is applied at some point in the proof:

....
Γ, p(s1, . . . , sn) ⊢ p(t1, . . . , tn),

∧

i si − ti
.
= 0,∆ ⇓ C

Γ, p(s1, . . . , sn) ⊢ p(t1, . . . , tn),∆ ⇓ C
pred-unify

Let Γp ⊆ Γ and ∆p ⊆ ∆ ∪ {
∧

i si − ti
.
= 0} be the sets of PA formulae in the

premiss that do not contain ∃ in positive positions or ∀ in negative positions.
It is obviously the case that an immediate second application of pred-unify is
unnecessary because of:

∧

i

si − ti
.
= 0 ⇒

∧

Γp →
∨

∆p (3)

i.e., the conjunction introduced by a second application is subsumed by the
formulae already present in the sequent. By a simple induction on the size of a
PresPredC-proof, it can be shown that property (3) is preserved when applying
arbitrary PresPredC-rules (including red or simp to the complementary literals
p(s1, . . . , sn), p(t1, . . . , tn)).

We perform Noetherian induction on the set of all possible pairs (P,Q),
where P is a PresPredCS -proof for the sequent Γ ⊢ ∆ ⇓ C in which the only
rule that is applied to PA formulae is close, and Q is a fair PresPredC-proof
of Γ ⊢ ∆ ⇓ ? (fair also concerning pred-unify in the way described above).
The ordering is the lexicographic order on the pair (dP , n), where

– dP is the length of the longest branch in P (the depth of P ), and
– n is the maximum number of rule applications that happen on a branch

of Q before the first rule application in P is done on the branch. Because
of fairness, the first rule application in P is eventually performed on all
Q-branches, although possibly on successors of the involved formulae. By
König’s lemma, the maximum number of other rule applications before this
happens is finite. In case the first rule application in P is close, we define
n = 0.

The induction formula is:

Suppose that the root of Q is annotated with U . Then Q generates a
constraint D with ∀U.C ⇒ ∀U.D.

There are a number of induction step cases. In all of them, we assume that
the constants introduced by ex-*, all-* are renamed when necessary to avoid
collisions. Further, we make use of the fact that also all subproofs of Q are fair
proofs (also concerning pred-unify).
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– The first rule application in P is close. We can then simply prune Q and
apply close to the same formulae as in P . In all of the following cases, it is
therefore assumed that P does not start with close (which implies, because
of fairness, that also Q does not start with close).

– P and Q start with the same rule application to the same formula(e). In case
the rule is ex-* or all-*, we can ensure through renaming that the same
constant is introduced. Then, we can apply the induction hypothesis to the
direct subtrees of P and Q. There are the following cases, depending on the
first rule applied:

• and-left, or-right, not-*, pred-unify: by the induction hypothesis,
we know ∀U ′.C ⇒ ∀U ′.D for the constraints C, D and annotation U ′ of
the subtree roots. Because of U ′ ⊆ U , this entails ∀U. C ⇒ ∀U. D.

• and-right, or-left: by the induction hypothesis, ∀U ′.C ′ ⇒ ∀U ′.D′

and ∀U ′′.C ′′ ⇒ ∀U ′′.D′′ for the constraints and annotations of the sub-
tree roots. Because of U ′ ⊆ U and U ′′ ⊆ U , this entails:

∀U. (C ′ ∧ C ′′) ⇒ ∀U. (D′ ∧D′′)

• all-left, ex-right: by the induction hypothesis, [x/c]C ′ ⇒ [x/c]D′ for
the constraints of the subtrees (which are annotated with the empty set),
which entails ∀U.∃x. C ′ ⇒ ∀U.∃x. D′.

• all-right, ex-left: we know that ∀U ′.[x/c]C ′ ⇒ ∀U ′.[x/c]D′ for the
constraints and annotations of the subtrees. Because of U ′ ⊆ U ∪ {c},
this entails: ∀U.∀x. C ′ ⇒ ∀U.∀x. D′.

In all of the following cases, we therefore assume that P and Q start with
different rule applications.

– The first rule application in Q is and-*, or-*, not-*, ex-left, all-right
to a formula φ. By Lem. 24, we can transform P into a proof P ′ of some
sequent Γ ⊢ ∆ ⇓ D with C ⇒ D that starts with the same rule application
as Q. The depth of P ′ is at most one bigger than the depth of P , and the
first rule application of P is the second rule application on all branches in
P ′. Furthermore, the only rule in P ′ that is applied to PA formulae is close,
possibly apart from the first rule application in P ′. We can then apply the
induction hypothesis to the direct subtrees of P ′ and Q.

– The first rule application in Q is pred-unify, all-left, or ex-right. This
rule application can be inserted as first rule application in P , adding the
resulting formula to all sequents, which leads to a proof P ′ whose depth is
one bigger than that of P and that has the same or a weaker constraint as
P . The first rule application of P is the second rule application in P ′. Then,
the induction hypothesis can be applied to the direct subtrees of P ′ and Q.

– The first rule application in Q is ex-right-d or all-left-d. E.g.:

....
Γ ⊢ [x/c]φ,∆ ⇓ ?

Γ ⊢ ∃x.φ,∆ ⇓ ?
ex-right-d
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Because the proof P (of the sequent Γ ⊢ ∃x.φ,∆ ⇓ C) does not contain
any rule applications to ∃x.φ apart from close (the formula does not con-
tain uninterpreted predicates), this means that ∃x.φ can be left out every-
where in P , leading to a similar proof P ′ of a sequent Γ ⊢ ∆ ⇓ C ′ with
C ⇒ C ′ ∨ ∃x.φ (as in the proof of Lem. 25). It is then possible to add the
formula [x/c]φ to all succedents in P ′, resulting in a proof P ′′ of a sequent
Γ ⊢ [x/c]φ,∆ ⇓ C ′′ (if necessary, one has to ensure by renaming that c
does not occur in P ′). If close is applied as liberally as possible in P ′′, the
implication C ′ ∨ [x/c]φ⇒ C ′′ holds. Finally, a proof P ′′′ can be obtained
from P ′′ by inserting ex-right-d as first rule application:

....
Γ ⊢ [x/c]φ,∆ ⇓ C ′′

Γ ⊢ ∃x.φ,∆ ⇓ ∃c.C ′′ ex-right-d

The depth of P ′′′ is one bigger than the depth of P , and the first rule
application in P is the second rule application in P ′′′. Thus, applying the
induction hypothesis to the direct subproofs of P ′′′ and Q, we know that
C ′′ ⇒ D′ (the annotation of the root of the direct subproof of Q is the
empty set). This entails that:

C ⇒ C ′∨∃x.φ ⇒ ∃x.(C ′∨φ) ⇒ ∃c.(C ′∨[x/c]φ) ⇒ ∃c.C ′′ ⇒ ∃c.D′

and therefore ∀U.C ⇒ ∀U.∃c.D′.
– If the first rule application in Q is col-red, div-left, div-right, split-

eq, anti-symm, or fm-elim, the same technique as in the previous case can
be used.

– If the first rule application in Q is red or simp, we can insert the same
application as first step in P with the help of Lem. 26. Then, the induction
hypothesis can be applied to the direct subproofs of the proofs.

– If the first rule application in Q is col-red-subst, we can first turn P
into a proof P ′ of a sequent Γ, α(u+ c′) + t

.
= 0, c− u− c′

.
= 0 ⊢ ∆ ⇓ C ′

by replacing the original equation αc+ t
.
= 0 (if necessary, it has to be en-

sured by bound renaming that c′ does not occur in P ). If close is ap-
plied as liberally as possible in P ′, it holds that C ⇒ C ′ ∨ αc+ t 6

.
= 0 and

α(u+ c′) + t 6
.
= 0 ∨ c− u− c′ 6

.
= 0 ⇒ C ′. We can then obtain a proof P ′′ of

Γ, αc+ t
.
= 0 ⊢ ∆ ⇓ [c′/c− u]C ′ by adding col-red as first rule applica-

tion in P ′. Considering the constraints, we have:

[c′/c− u](α(u+ c′) + t 6
.
= 0 ∨ c− u− c′ 6

.
= 0) ⇔ αc+ t 6

.
= 0

⇒ [c′/c− u]C ′

Because C and t do not contain c′, this altogether means that the implica-
tion C ⇒ [c′/c− u](C ′ ∨ αc+ t 6

.
= 0) ⇒ [c′/c− u]C ′ holds. Furthermore, ap-

plying the induction hypothesis to the direct subproofs of P ′′ and Q, we
know that ∀U ′.C ′ ⇒ ∀U ′.D′ holds for the constraints and annotations of
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the subproofs. Because c, c′ 6∈ U ′ and u does not contain any constants from
U , then also:

∀U ′. [c′/c− u]C ′ ⇒ ∀U ′. [c′/c− u]D′

Finally, because of U ′ ⊆ U :

∀U.C ⇒ ∀U. [c′/c− u]C ′ ⇒ ∀U. [c′/c− u]D′

– If the first rule application in Q is div-close, it is the case that c ∈ U
and we can simple insert div-close as first rule application in P , resulting
in a proof P ′. By the induction hypothesis, ∀U ′.C ⇒ ∀U ′.D for the con-
straints and annotation of the direct subproofs, and because of U ′ ⊆ U also
∀U.C ⇒ ∀U.D. Let D′ be a formula with D ⇔ [x/αc]D′ that does not con-
tain c. Then:

∀U.C ⇒ ∀U.D ⇒ ∀U.[x/αc]D′ ⇒ ∀U.∀x.(D′ ∨ α ∤ x)

⇒ ∀U.([x/t]D′ ∨ α ∤ t)

– The first rule application in Q is omega-elim, which means that c ∈ U :
....

Γ, φ(c) ⊢ ∆ ⇓ C

Γ, {αic− ai
.
≥ 0}i, {βjc− bj

.
≤ 0}j ⊢ ∆ ⇓ C

omega-elim

Because P does not contain any rule applications to the eliminated inequal-
ities (other than close), these formulae can be left out everywhere, leading
to a proof P ′ of the sequent Γ ⊢ ∆ ⇓ C ′ with:

C ⇒ C ′ ∨ ¬
(∧

i

αic− ai
.
≥ 0 ∧

∧

j

βjc− bj
.
≤ 0
)

Because Γ , ∆ do not contain c, we can also assume that c does not occur
in C ′. Next, we can add the formula φ(c) to all antecedents, which yields a
proof P ′′ of Γ, φ(c) ⊢ ∆ ⇓ C ′′. If close is applied as liberally as possible
in P ′′, the implication C ′ ∨ ¬φ(c) ⇒ C ′′ holds. Finally, omega-elim can be
inserted as first rule application in P ′′, which results in the proof P ′′′. The
induction hypothesis can be applied to the direct subproofs of P ′′′ and Q,
which means that ∀U ′.C ′′ ⇒ ∀U ′.D for the constraints and annotation of
the subproofs. Because of U ′ ⊆ U , then also ∀U.C ′′ ⇒ ∀U.D. Furthermore:

∀c.C ⇒ ∀c.
(

C ′ ∨ ¬
(∧

i

αic− ai
.
≥ 0 ∧

∧

j

βjc− bj
.
≤ 0
))

⇒ C ′ ∨ ¬∃c.
(∧

i

αic− ai
.
≥ 0 ∧

∧

j

βjc− bj
.
≤ 0
)

(∗)
⇒ C ′ ∨ ¬∃c.φ(c)

⇒ ∀c.(C ′ ∨ ¬φ(c))

⇒ ∀c.C ′′
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where (∗) makes use of Thm. 9. Altogether, this entails ∀U.C ⇒ ∀U.D.

Lemma 19 (Shielded Constraints)

We first need a further lemma:

Lemma 27. If x is a variable, φ1, . . . , φm are formulae in which x does not
occur, and ψ0[x], . . . , ψm[x] are arbitrary formulae, then the following equivalence
holds:

∀x.
(

ψ0[x] ∨
m∨

i=1

(ψi[x] ∧ φi)
)

⇔
∨

S⊆{1,...,m}

( ∧

i∈S

φi ∧ ∀x.
(

ψ0[x] ∨
∨

i∈S

ψi[x]
))

Proof. By induction onm. The case m = 0 is clear, and the step case m→ m+ 1
as follows:

∀x.
(

ψ0[x] ∨
m+1∨

i=1

(ψi[x] ∧ φi)
)

⇔ ∀x.
(

(ψ0[x] ∨ ψm+1[x] ∧ φm+1) ∨
m∨

i=1

(ψi[x] ∧ φi)
)

(IH)
⇔

∨

S⊆{1,...,m}

( ∧

i∈S

φi ∧ ∀x.
(

ψ0[x] ∨ ψm+1[x] ∧ φm+1 ∨
∨

i∈S

ψi[x]
))

⇔
∨

S⊆{1,...,m}

(
∧

i∈S

φi ∧

(
∀x.(ψ0[x] ∨ ψm+1[x] ∨

∨

i∈S ψi[x])
∧ ∀x.(ψ0[x] ∨ φm+1 ∨

∨

i∈S ψi[x])

))

(∗)
⇔

∨

S⊆{1,...,m}

(
∧

i∈S

φi ∧

(
φm+1 ∧ ∀x.(ψ0[x] ∨ ψm+1[x] ∨

∨

i∈S ψi[x])
∨ ∀x.(ψ0[x] ∨

∨

i∈S ψi[x])

))

⇔
∨

S⊆{1,...,m+1}

( ∧

i∈S

φi ∧ ∀x.
(

ψ0[x] ∨
∨

i∈S

ψi[x]
))

(*) holds because of:

∀x.(a[x] ∨ b[x]) ∧ ∀x.(a[x] ∨ c)

⇔ ∀x.(a[x] ∨ b[x]) ∧ (c ∨ ∀x.a[x])

⇔ (∀x.(a[x] ∨ b[x]) ∧ c) ∨ (∀x.(a[x] ∨ b[x]) ∧ ∀x.a[x])

⇔ (∀x.(a[x] ∨ b[x]) ∧ c) ∨ ∀x.a[x]

Proof (Lem. 19). We show the conjecture by an induction over the subtrees
of P . In the proof leaves, the conjecture coincides with the assumption how
close is applied in P1, P2. Otherwise, pick a subproof R (and the correspond-
ing subproofs R1, R2 of P1, P2) and assume that the conjecture holds for the
direct subproofs of R. There are the following cases, depending on the constraint
transformation that is performed by the rule applied in the root of R:
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– The constraint is not changed (rules and-left, etc.): trivial
– Conjunction of constraints (rules and-right, etc.): Let D1, D2 be the con-

straints of the direct subproofs of R1. The constraints of the direct subproofs
of R2 are equivalent to D1 ∨

∨n1

i=1 φ
1
i and D2 ∨

∨n2

i=1 φ
2
i , where each φ1

i , φ
2
i

is shielded by Q. Then the constraint of R1 is D1 ∧D2 and the constraint
of R2 is equivalent to:

(
D1 ∨

n1∨

i=1

φ1
i

)
∧
(
D2 ∨

n2∨

i=1

φ2
i

)

⇔ (D1 ∧D2) ∨
n1∨

i=1

(φ1
i ∧D

2) ∨
n2∨

i=1

(φ2
i ∧D

1) ∨
n1∨

i=1

n2∨

j=1

(φ1
i ∧ φ

2
j )

– The rule col-red-subst applies a substitution to a constraint: let [x/c′]D1

be the constraint of the direct subproof of R1 and [x/c− u]D1 the constraint
of R1. The constraint [x/c′]D2 of the direct subproof of R2 is then equivalent
to [x/c′]D1 ∨

∨n
i=1 φi, where each φi is shielded by Q, and the constraint of

R2 is equivalent to [x/c− u]D1 ∨
∨n
i=1[c

′/c− u]φi.

(i) [x/c′]D1 does not contain Qc-constants. If [x/c− u]D1 contains Qc-
constants, then also c− u does and x occurs free in D1. Because of
the definition of free constant sets, then also c′ ∈ Qc and then [x/c′]D1

contains Qc-constants, which is a contradiction.
(ii) We can assume that each φi has the form βiei + ti

.
= 0 ∧ ψi with ei ∈ Q,

such that d ≺P ei for all constants d in ti. Due to the definition of ≺P
we have ei ≺P c

′ and thus ei 6= c′ and c′ does not occur in ti. This
implies that [c′/c− u]φi is shielded by Q:

[c′/c− u]φi ⇔ βiei + ti
.
= 0 ∧ [c′/c− u]ψi

– The rule div-close’ is applied: let D1 ⇔ [x/αc′]D′
1 be the constraint of the

direct subproof of R1 and [x/t]D′
1 ∨ α ∤ t the constraint of R1. Because D1

does not contain any Qc-constants, we can assume that D′
1 does neither. The

constraint of the direct subproof of R2 is equivalent to [x/αc′]D′
1 ∨
∨n
i=1 φi,

where each φi is shielded by Q.
(i) Because t does not contain Qc-constants, neither does [x/t]D′

1 ∨ α ∤ t.
(ii) We can assume that each φi has the form βiei + ti

.
= 0 ∧ ψi with ei ∈ Q.

As for col-red-subst, it follows that c′ does not occur in βiei + ti.
Assume that ψi ⇔ [x/αc′]ψ′

i, then the formula βiei + ti
.
= 0 ∧ [x/t]ψ′

i

is shielded by Q. Altogether, the constraint of R2 is equivalent to:

[x/t]D′
1 ∨ α ∤ t ∨

n∨

i=1

(βiei + ti
.
= 0 ∧ [x/t]ψ′

i)

– Existential quantification of constraints (rules ex-right, etc.): let [x/c]D1

be the constraint of the direct subproof of R1 and ∃x.D1 the constraint of R1.
The constraint of the direct subproof ofR2 is equivalent to [x/c]D1 ∨

∨n
i=1 φi,

where each φi is shielded by Q.
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(i) Because [x/c]D1 does not contain Qc-constants, neither does ∃x.D1.

(ii) The constraint of R2 is equivalent to:

∃x.
(

D1 ∨
n∨

i=1

[c/x]φi

)

⇔ ∃x.D1 ∨
n∨

i=1

∃c.φi

We can assume that each φi has the form βiei + ti
.
= 0 ∧ ψi with ei ∈ Q.

As for col-red-subst, it follows that c does not occur in βiei + ti, and
thus ∃c.φi ⇔ βiei + ti

.
= 0 ∧ ∃c.ψi is shielded by Q. By renaming it can

be achieved that no illegal constants occur in ∃c.ψi.

– Universal quantification of constraints (rules all-right, etc.): let [x/c]D1

be the constraint of the direct subproof of R1 and ∀x.D1 the constraint of R1.
The constraint of the direct subproof ofR2 is equivalent to [x/c]D1 ∨

∨n
i=1 φi,

where each φi is shielded by Q.

(i) As for existential quantification.

(ii) We can assume that each φi has the form ti
.
= 0 ∧ ψi, where ti

.
= 0

is the shielding equation. Wlog., assume that t1, . . . , tk are the terms
that contain c with a non-zero coefficient, while c does not occur in
tk+1, . . . , tn. This implies that c shields the formulae φ1, . . . , φk.

• If c 6∈ Q, it has to be the case that k = 0, as for col-red-subst.
With the help of Lem. 27, we can rewrite the constraint of R2 as
follows:

∀c.
(

[x/c]D1 ∨
n∨

i=1

(ti
.
= 0 ∧ ψi)

)

⇔
∨

S⊆{1,...,n}

( ∧

i∈S

ti
.
= 0 ∧ ∀c.

(

[x/c]D1 ∨
∨

i∈S

ψu

))

⇔ ∀x.D1 ∨
∨

S⊆{1,...,n}
S 6=∅

( ∧

i∈S

ti
.
= 0 ∧ ∀c.

(

[x/c]D1 ∨
∨

i∈S

ψu

))

• If c ∈ Q, then D1 does not contain x by the induction hypothesis.
We can again use Lem. 27 as follows:

∀c.
(

D1 ∨
k∨

i=1

(ti
.
= 0 ∧ ψi)

︸ ︷︷ ︸

ψ0[c]

∨
n∨

i=k+1

(ti
.
= 0 ∧ ψi)

)

⇔
∨

S⊆{k+1,...,n}

( ∧

i∈S

ti
.
= 0 ∧ ∀c.

(

ψ0[c] ∨
∨

i∈S

ψu

))

⇔ ∀c.ψ0[c] ∨
∨

S⊆{k+1,...,n}
S 6=∅

( ∧

i∈S

ti
.
= 0 ∧ ∀c.

(

ψ0[c] ∨
∨

i∈S

ψu

))
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The formula ∀c.ψ0[c] can be simplified because all but the first
disjunct are shielded by c:

∀c.
(

D1 ∨
k∨

i=1

(ti
.
= 0 ∧ ψi)

)

⇔ D1 ∨ ∀c.
k∨

i=1

(ti
.
= 0 ∧ ψi)

⇔ D1 ⇔ ∀x.D1

In both cases, renaming can be used afterwards to eliminate c.


