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Abstract. Since the seminal work of Cousot and Halbwachs, the domain of convex polyhedra has been employed
in several systems for the analysis and verification of hardware and software components. Although most imple-
mentations of the polyhedral operations assume that the polyhedra are topologically closed (i.e., all the constraints
defining them are non-strict), several analyzers and verifiers need to compute on a domain of convex polyhedra
that are not necessarily closed (NNC). The usual approach to implementing NNC polyhedra is to embed them
into closed polyhedra in a higher dimensional vector space and reuse the tools and techniques already available
for closed polyhedra. In this work we highlight and discuss the issues underlying such an embedding for those
implementations that are based on the double description method, where a polyhedron may be described by a
system of linear constraints or by a system of generating rays and points. Two major achievements are the defini-
tion of a theoretically clean, high-level user interface and the specification of an efficient procedure for removing
redundancies from the descriptions of NNC polyhedra.
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1. Introduction

Convex polyhedra are regions of some n-dimensional space that are bounded by a finite set of hyperplanes. A
convex polyhedron in R

n describes a relation between n real-valued quantities. The class of all such relations
turns out to be useful for the representation of the abstract properties of various kinds of complex systems.

The seminal work of Cousot and Halbwachs [CH78] introduced the use of convex polyhedra as a domain
of descriptions to solve, by abstract interpretation [CC77], a number of important data-flow analysis problems
such as array bound checking, compile-time overflow detection, loop invariant computations and loop induction
variables. Convex polyhedra are also used, among many other applications, for the analysis and verification of
synchronous languages [BJT99, Hal93] and of linear hybrid automata (an extension of finite-state machines that
models time requirements) [HHWT97, HPR94], for the computer-aided formal verification of concurrent and
reactive systems based on temporal specifications [MBB+99], for inferring argument size relationships in logic
languages [BK97], and for the automatic parallelization of imperative programs [Fea91, Pug92]. Since the work
of Cousot and Halbwachs, convex polyhedra have thus played an important role in the formal methods commu-
nity and new uses continue to emerge (see, e.g., [CS01, DRS01]). As a consequence, several critical tasks, such
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as checking the correctness of synchronization protocols or verifying the absence of run-time errors of systems
whose failure can cause serious damage, rely on the software implementations of convex polyhedra.

Traditionally, convex polyhedra are assumed to be topologically closed. With the double description (DD)
method [MRTT53], a closed convex polyhedron can be specified in two ways, using a constraint system or a
generator system: the constraint system contains a finite set of linear non-strict inequality constraints; the gen-
erator system contains two finite sets of vectors, collectively called generators, which are rays and points of the
polyhedron.

However, some applications of static analysis and verification, including recent proposals such as [CS01],
need to compute on the domain of not necessarily closed (NNC) convex polyhedra.2 By definition, any NNC
polyhedron can be represented by a so-called mixed constraint system, that is, a constraint system where a further
finite set of linear strict inequality constraints is allowed to occur. No similar generalization of the concept of
generator system is available, so that the DD method cannot be directly applied to the domain of NNC polyhedra.
In contrast, the usual approach for implementing NNC polyhedra is to embed them into closed polyhedra in
a vector space with one extra dimension. While this idea, originally proposed in [HPR94] and also described
in [HPR97], proved to be quite effective, its direct application in the development of software libraries for the
manipulation of convex polyhedra results in a low-level user interface, where most of the geometric intuition of
the DD method gets lost under the “implementation details.” This has a direct, negative impact on the usability
of the resulting software (on this subject, see the discussion in Sect. 7, which also includes quotations taken from
[HKP95, Sect. 4.5, pp. 10–11] and [Jea02, Sect. 1.1.4, p. 10]).

In this paper, we propose a much cleaner approach, where the concept of generator of an NNC polyhe-
dron is extended to also account for the closure points of the polyhedron. In particular, we show that any NNC
polyhedron can be defined directly by means of an extended generator system, namely, a triple of finite sets
containing rays, points and closure points of the polyhedron. By combining the mixed constraint systems with
these extended generator systems for describing NNC polyhedra we can obtain a two-fold improvement over the
proposal in [HPR94, HPR97]: easier generalizations and a natural, implementation-independent interface.

Easier generalizations: Several operators, whose definition is in terms of the rays and points of the standard
generator systems for closed polyhedra, need to be generalized to NNC polyhedra. Examples are given by the
time-elapse operator of [HPR94, HPR97], the extrapolation operator ‘∝’ defined in [HH95], the generator-based
extrapolation operators sketched in [BJT99], and the new widening operator proposed in [BHRZ03, BHRZ05].
The notion of extended generator system proves to be very effective in the definition and justification of these
generalizations. As a remarkable example, in Sect. 4.2 it will be shown how the usual implementation of the
inclusion test for closed polyhedra can be easily adapted to the case of NNC polyhedra. The elegance of this
generalization is better appreciated by comparing it with the specification of the inclusion test for the low-level
implementation of [HPR94], which appears to be much more tricky and obscure. The reason is that in [HPR94]
the reader has no high-level interpretation of the generators occurring in the low-level encoding.

A natural, implementation-independent interface: The combination of mixed constraint systems and extended
generator systems offers another improvement over the proposal in [HPR94, HPR97]: a high-level user interface
that is completely separate from the implementation. On the one hand, an NNC polyhedron can be presented to
the client application directly in terms of its defining strict and non-strict constraints or its generating rays, points
and closure points; there is no need for the client to be aware of the use of an additional space dimension in the
implementation and all issues related to its correct handling, such as the side constraints on this space dimension.
On the other hand, by relying on the high-level specification only, the client application will be unaffected by the
wider adoption of lazy and incremental computation techniques in the procedures implementing the operators
on convex polyhedra. Moreover, if all the functionalities and invariants of the interface are maintained, it is then
possible to change the low-level data structures without affecting the application.

In this paper we will also exploit the latter possibility by introducing two alternative classes of closed polyhedra
for implementing the NNC polyhedra, both instances of the same basic class. The basis of this representation is a
simple generalization of the class of polyhedra used in [HPR94, HPR97]. The new class continues to employ an
additional dimension to encode whether or not each affine half-space defining the NNC polyhedron is closed and
relies on the same semantic function for extracting the NNC polyhedron it embeds. We describe two alternative
specializations of this class for representing the NNC polyhedra. One of these, shown to be biased for the use of

2 NNC polyhedra have also been called copolyhedra, where “co” stands for closed/open[Kan92].
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the constraint representation, corresponds to the embedding defined in [HPR94] while the other, which is biased
for the use of the generator representation, is new to this paper.

The Parma Polyhedra Library,3 a modern C++ library for the manipulation of convex polyhedra, has been
extended so as to implement both approaches. One interesting and potentially useful consequence of having the
option of these alternative encodings is that an improved implementation may choose to dynamically switch
between them, depending on the particular descriptions needed to perform a given operation; for instance, the
constraint-biased encodings may be used when computing intersections of polyhedra, whereas the generator-
biased encodings would be preferred when computing convex polyhedral hulls.

Minimization procedures for the descriptions of NNC polyhedra: Another major contribution of this paper will
be the identification of an important issue related to the above mentioned embedding of an NNC polyhedron
into a closed polyhedron. It will be shown that the usual procedures for minimizing the constraint and generator
descriptions of the topologically closed representation of an NNC polyhedron are not enough to obtain a non-
redundant description of the NNC polyhedron itself. We will propose a solution for this problem, which affects
both the constraint-biased and the generator-biased representations of NNC polyhedra, by providing procedures
that are able to efficiently identify the semantically redundant constraints and generators, therefore allowing for
the computation of truly minimal descriptions. A preliminary experimental evaluation will show how the use
of the new minimization procedures may have a great impact on the efficiency of some of the most important
operators on the domain of NNC polyhedra.

The paper is structured as follows: Section 2 recalls the required concepts and notations; Section 3 briefly
presents the theoretical framework underlying the double description method for the representation and manip-
ulation of closed convex polyhedra; Section 4 provides a generalization of this framework to also allow for the
manipulation of convex polyhedra that are not necessarily closed; Section 5 presents a general class and two
special subclasses of the set of closed polyhedra that are appropriate for the representation of NNC polyhedra;
Section 6 identifies a problem related to the minimization of these NNC polyhedra representations and proposes
a solution based on the notion of ε-minimal forms; Section 7 presents an implementation of the ideas contained
in this paper, providing an informal comparison with other libraries offering some support for NNC polyhedra
and discussing a preliminary experimental evaluation we have conducted. Section 8 concludes. The Appendix
contains proofs of the formal results stated in the main part of the paper.

This paper is a combined, extended and improved version of [BHZ03] and [BRZH02a].

2. Preliminaries

The set of non-negative reals is denoted by R+. In the paper, all topological arguments refer to the Euclid-
ean topological space R

n, for any positive integer n. If S ⊆ R
n, then the topological closure of S is defined as

C(S) def� ⋂{ C ⊆ R
n | S ⊆ C and C is closed }.

For each i ∈ {1, . . . , n}, vi denotes the i-th component of the (column) vector v ∈ R
n. We denote by 0 the

vector of R
n having all components equal to zero. A vector v ∈ R

n can also be interpreted as a matrix in R
n×1 and

manipulated accordingly with the usual definitions for addition, multiplication (both by a scalar and by another
matrix), and transposition, which is denoted by vT. The scalar product of v, w ∈ R

n, denoted 〈v, w〉, is the real
number vTw � ∑n

i�1 viwi .
For any relational operator �� ∈ {�, �, �, <, >}, we write v �� w to denote the conjunctive proposition∧n

i�1(vi �� wi). Moreover, v �� w will denote the proposition ¬(v � w). We will sometimes use the convenient
notation a ��1 b ��2 c to denote the conjunction a ��1 b ∧ b ��2 c and we will not distinguish conjunctions of
propositions from sets of propositions.

Let S ⊆ R
n be a set of vectors. The orthogonal of S is S⊥ def� {

w ∈ R
n

∣
∣ ∀v ∈ S : 〈v, w〉 � 0

}
. If S ⊆ R

n has
finite cardinality m, then matrix(S) ⊆ R

n×m denotes the set of all matrices having S as the set of their columns. In
the following, we will abuse notation by letting S also denote a fixed arbitrary element of matrix(S). The context
makes it clear when the symbol denotes a set or a matrix.

We assume some familiarity with the basic notions of lattice theory [Bir67].

3 Freely available at URI http://www.cs.unipr.it/ppl/.



Not necessarily closed convex polyhedra and the double description method 225

3. The double description method

For each vector a ∈ R
n and scalar b ∈ R, where a �� 0, the linear non-strict inequality constraint β � (〈a, x〉 � b

)

defines a topologically closed affine half-space of R
n. The linear equality constraint 〈a, x〉 � b defines an affine

hyperplane. A topologically closed convex polyhedron is usually described as a finite system of linear equality
and non-strict inequality constraints. Theoretically speaking, it is simpler to express each equality constraint as
the intersection of the two half-spaces β+ � (〈a, x〉 � b

)
and β− � (〈−a, x〉 � −b

)
; in such a case, we say

that β+ and β− are singular constraints for polyhedron P and write {β+, β−} ⊆ eq(P). We do not distinguish
between syntactically different constraints defining the same affine half-space so that, e.g., x � 2 and 2x � 4 are
considered to be the same constraint.

Definition 3.1 (Closed polyhedron). The set P ⊆ R
n is a closed polyhedron if and only if P can be expressed as the

intersection of a finite number of closed affine half-spaces of R
n.

We write con(C) to denote the polyhedron P ⊆ R
n described by the finite constraint system C. Formally, we

define

con(C) def�
{

p ∈ R
n

∣
∣
∣ ∀β � (〈a, x〉 � b

) ∈ C : 〈a, p〉 � b
}

.

The function ‘con’ enjoys an anti-monotonicity property, meaning that C1 ⊆ C2 implies con(C1) ⊇ con(C2).
Alternatively, the definition of a topologically closed convex polyhedron can be based on some of its geometric

features. A vector r ∈ R
n such that r �� 0 is a ray (or direction of infinity) of a non-empty polyhedron P ⊆ R

n

if, for every point p ∈ P and every non-negative scalar ρ ∈ R+, it holds p + ρr ∈ P ; the set of all the rays of
a polyhedron P is denoted by rays(P). A vector l ∈ R

n is a line of P if both l and −l are rays of P ; in such a
case, we say that l and −l are singular rays for polyhedron P and write {l, −l} ⊆ lines(P). The empty polyhedron
has no rays and no lines. As was the case for equality constraints, the theory can dispense with the use of lines
by using the corresponding pair of singular rays. Moreover, when vectors are used to denote rays, no distinction
will be made between different vectors having the same direction so that, e.g., r1 � (1, 3)T and r2 � (2, 6)T are
considered to be the same ray in R

2. The following theorem is a simple consequence of well-known theorems by
Minkowski and Weyl [SW70].

Theorem 3.2 The set P ⊆ R
n is a closed polyhedron if and only if there exist finite sets R, P ⊆ R

n of cardinality
r and p, respectively, such that 0 /∈ R and

P � gen
(
(R, P )

) def�
{

Rρ + Pπ ∈ R
n

∣
∣
∣
∣
∣
ρ ∈ R

r
+, π ∈ R

p
+ ,

p∑

i�1

πi � 1

}

.

When P �� ∅, we say that P is described by the generator system G � (R, P ). In particular, the vectors of R and
P are rays and points of P , respectively. Thus, each point of the generated polyhedron is obtained by adding a
non-negative combination of the rays in R and a convex combination of the points in P . Informally speaking, if
no “supporting point” is provided then an empty polyhedron is obtained; formally, P � ∅ if and only if P � ∅.
By convention, the empty system (i.e., the system with R � ∅ and P � ∅) is the only generator system for the
empty polyhedron. We define a partial order relation ‘�’ on generator systems, which is the component-wise
extension of set inclusion. Namely, for any generator systems G1 � (R1, P1) and G2 � (R2, P2), we have G1 � G2
if and only if R1 ⊆ R2 and P1 ⊆ P2; if, in addition, G1 �� G2, we write G1 � G2. The function ‘gen’ enjoys a
monotonicity property, as G1 � G2 implies gen(G1) ⊆ gen(G2).

The vector v ∈ P is an extreme point (or vertex) of the polyhedron P if it cannot be expressed as a convex
combination of some other points of P . Similarly, r ∈ rays(P) is an extreme ray of P if it cannot be expressed as
a non-negative combination of some other rays of P . It is worth stressing that, in general, the vectors in R and
P are not the extreme rays and the vertices of the polyhedron: for instance, any half-space of R

2 has two extreme
rays and no vertices, but any generator system describing it will contain at least three rays and one point.

The combination of the two approaches outlined above is the basis of the double description method due
to Motzkin et al. [MRTT53], which exploits the duality principle to compute each representation starting from
the other one, possibly minimizing both descriptions. Clever implementations of this conversion procedure, such
as those based on the extension by Le Verge [Le 92] of Chernikova’s algorithms [Che64, Che65, Che68], are the
starting point for the development of software libraries based on the DD method. While being characterized by
a worst case computational cost which is exponential in the size of the input, these algorithms turn out to be
practically useful for the purposes of many applications in the context of static analysis.
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Definition 3.3 (DD pair and minimal forms). If con(C) � gen(G) � P , then (C, G) is said to be a DD pair for P ,
and we write (C, G) ≡ P . We say that

• C is in minimal form if there does not exist C ′ ⊂ C such that con(C ′) � P ;
• G is in minimal form if there does not exist G ′ � G such that gen(G ′) � P ;
• The DD pair (C, G) is in minimal form if C and G are both in minimal form.

A polyhedron may be described by different constraint systems (respectively, generator systems) in minimal
form. As a matter of fact, since we are expressing the equality constraints (respectively, lines) by using non-strict
inequality constraints (respectively, rays), these equivalent descriptions in minimal form may also have a different
number of constraints (resp., rays). For instance, the polyhedron P � {0} ⊆ R

n can be described by the constraint
systems C1 � {0 � x � 0, 0 � y � 0} and C2 � {x + y � 0, x − y � 0, x � 0}, which are both in minimal form
and have different cardinalities.

Stronger characterizations for the descriptions of a polyhedron may be obtained by specifying further prop-
erties, besides the above minimality requirement. For any constraint β � (〈a, x〉 � b

)
, the slope of β is defined

as slope(β) � a; for a constraint system C, let slope(C) def� {
slope(β)

∣
∣ β ∈ C }

.

Definition 3.4 (Orthogonal forms). Let (C, G) ≡ P �� ∅ be a DD pair for the non-empty polyhedron P . We say
that

• C is in orthogonal form if I ⊆ E⊥, where I
def� slope

(C \ eq(P)
)

and E
def� slope

(C ∩ eq(P)
)
;

• G � (R, P ) is in orthogonal form if (R \ L) ∪ P ⊆ L⊥, where L
def� R ∩ lines(P).

For a topologically closed polyhedron, all descriptions in minimal form that are also in orthogonal form have
the same set of non-singular inequality constraints, the same set of non-singular rays and the same set of points,
whereas the sets of singular constraints and singular rays may still differ. Orthogonal forms can be computed by
applying a simple variant of the well-known Gram-Shmidt orthogonalization procedure [Sch99] to a description
such that, if the original description was in minimal form, then the derived orthogonal description is still in
minimal form.

In the following, minimal forms and orthogonality are not assumed unless explicitly stated.

3.1. Operations on closed polyhedra

In this section we show that the ability to switch from a constraint description to a generator description, or vice
versa, can be usefully exploited to provide simple implementations for the basic operations on the domain of
closed polyhedra.

The set of all closed polyhedra on the vector space R
n, denoted CPn, can be partially ordered by set-inclusion

to form a lattice having the empty set and R
n as the bottom and top element, respectively. The binary meet

operation, returning the greatest closed polyhedron smaller than or equal to the two arguments, is easily seen to
correspond to set-intersection. The binary join operation, returning the least closed polyhedron greater than or
equal to the two arguments, is denoted ‘�’ and called convex polyhedral hull (poly-hull, for short); note that, in
general, the poly-hull of two polyhedra is different from their convex hull [SW70].

With the double description method, set-intersection is easily implemented by taking the union of the con-
straint systems representing the two arguments, whereas the poly-hull is implemented by taking the component-
wise union of the generator systems representing the two arguments; as said above, the test for emptiness can be
implemented by checking whether the generator system contains no points at all.

The elegance of this formalization is probably most appreciated in the implementation of the lattice partial
order relation, i.e., subset inclusion. We say that point p ∈ R

n satisfies the constraint β � (〈a, x〉 � b
)

if p
belongs to the closed affine half-space defined by β, i.e., if 〈a, p〉 � b holds. Similarly, a ray r ∈ R

n satisfies β if
the corresponding direction of infinity is included in the half-space defined by β, i.e., if 〈a, r〉 � 0 holds. Now, if
P1 � gen(G1) and P2 � con(C2), the inclusion P1 ⊆ P2 holds if and only if each generator in G1 satisfies all the
constraints in C2.

Static analysis and verification applications adopting the domain of convex polyhedra need to provide cor-
rect approximations to other concrete semantics operators, besides the lattice theory operators mentioned above.
For instance, in the context of imperative languages, one of the most frequent operations is the assignment
of an expression to a variable. Suppose that the set of all possible current values of the program variables is
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approximated by a convex polyhedron; then, if the considered assignment expression is a linear function of the
variables’ values, its effect will be correctly modeled by computing the image of the polyhedron under the affine
transformation corresponding to the considered assignment expression. With the double description method,
the result of such an affine image operator will be the polyhedron described by the generator system obtained by
applying the affine transformation to the generators of the argument polyhedron. A similar approach, but using
the constraint description of the polyhedron, allows for the computation of the affine pre-image of a polyhedron;
this is of particular interest for a backward semantic construction, where the initial values of program variables
are approximated starting from their final values.

4. Not necessarily closed polyhedra

For each vector a ∈ R
n and scalar b ∈ R, where a �� 0, the linear strict inequality constraint 〈a, x〉 > b defines an

open affine half-space. By allowing strict inequalities to occur in the system of constraints, it is possible to define
convex polyhedra that are not necessarily closed (NNC polyhedra, for short).

Definition 4.1 (NNC polyhedron). The set P ⊆ R
n is an NNC polyhedron if and only if P can be expressed as the

intersection of a finite number of (not necessarily closed) affine half-spaces of R
n.

Formally, we overload the function ‘con’ so that, for any mixed constraint system C, that is, a constraint system
possibly containing both strict and non-strict inequality constraints, we have

con(C) def�
{

p ∈ R
n

∣
∣
∣ ∀β � (〈a, x〉 �� b

) ∈ C : 〈a, p〉 �� b
}

,

where �� ∈ {�, >}. Note that ‘con’ still satisfies the anti-monotonicity property.

4.1. The generators of NNC polyhedra

One of the fundamental features of the double description method, and the very reason for its name, is the
possibility of representing a closed polyhedron using a system of constraints or a system of generators. As we
have already explained in Sect. 3.1, there are contexts where each of these equivalent descriptions is the most
appropriate.

Any NNC polyhedron can be easily described by using mixed constraint systems, but a similar generalization
of the concept of generator system seems to be missing. Since by using lines, rays and points we can only represent
closed polyhedra, the key step for the parametric description of NNC polyhedra is the introduction of a new
kind of generator.

Definition 4.2 (Closure point). A vector c ∈ R
n is a closure point of S ⊆ R

n if and only if c ∈ C(S).

For NNC polyhedra, closure points can be characterized by the following property.

Proposition 4.3 A vector c ∈ R
n is a closure point of the NNC polyhedron P ⊆ R

n if and only if P �� ∅ and
σp + (1 − σ )c ∈ P for every point p ∈ P and every σ ∈ R such that 0 < σ < 1.

In the above proposition, it should be observed that not all of the possible convex combinations of p and c are
considered. In particular, by neglecting the case when σ � 0 we do not force c to belong to P . The case when
σ � 1 would be harmless, but it is left out for the sake of symmetry.

We are now able to provide a parametric description for any NNC polyhedron.

Theorem 4.4 The set P ⊆ R
n is an NNC polyhedron if and only if there exist finite sets R, P, C ⊆ R

n of cardinality
r, p and c, respectively, such that 0 /∈ R and

P � gen
(
(R, P, C)

) def�
{

Rρ + Pπ + Cγ ∈ R
n

∣
∣
∣
∣
ρ ∈ R

r
+, π ∈ R

p
+ , π �� 0, γ ∈ R

c
+∑p

i�1 πi +
∑c

i�1 γi � 1

}

.

When P �� ∅, we say that P is described by the extended generator system G � (R, P, C). As was the case for
closed polyhedra, the vectors in R and P are rays and points of P , respectively. The condition π �� 0 ensures
that at least one of the points of P plays an active role in any convex combination of the vectors of P and C.
It follows from Proposition 4.3 that the vectors of C are closure points of P . Since both rays and closure points



228 R. Bagnara et al.

Fig. 1. Using closure points to define NNC polyhedra on R
2

need a supporting point, we have P � ∅ if and only if P � ∅. The partial order relation ‘�’ on generator
systems is easily extended to also take into account the closure points component, so that the overloading of the
function ‘gen’ still satisfies the monotonicity property. It is also worth stressing that, once we consider both mixed
constraint systems and extended generator systems, then the notions of DD pair and minimal forms, exactly as
stated in Definition 3.3, also apply to the representations of NNC polyhedra. The same observation holds for the
notion of orthogonal form stated in Definition 3.4; however, in the case of an NNC polyhedron, the orthogonality
requirement is less useful, as it will soon become clear that minimal orthogonal forms are insufficient to uniquely
identify the non-singular components of a description.

In Fig. 1, we provide a few examples of the use of extended generator systems for the description of NNC
polyhedra in R

2: (closure) points are represented by small (un-)filled circles, whereas rays are represented by
vectors that, for notational convenience, are applied to points. The NNC polyhedron P1 is an open rectangle and
is described by the closure points A, B, C, D and the point E. Note that all the four closure points have to be
included in any generator system for P1, whereas E could have been replaced by any other point of P1; moreover,
since P1 has no rays, all generator systems for P1 in minimal form are also in orthogonal form, so that, as said
above, minimality with orthogonality are not enough to uniquely identify the points in a generator system for
P1. The NNC polyhedron P2 is another rectangle that is neither closed nor open: since F is a point, the open
segments ]F, G[ and ]F, I [ are included in P2; similarly, the open segment ]G, H [ is included in P2 because J is
a point of the generator system (note that J is needed, since both G and H are not in P2, but it could have been
replaced by any other point lying on this open segment); in contrast, the closed segment [H, I ] is disjoint from
P2, because neither H nor I are points of P2. Finally, the NNC polyhedron P3 can be regarded as the translation
by K of the open positive orthant. Thus the generator system includes the closure point K, the rays r1 and r2 and
the point L; again, the latter could have been replaced by any other point of P3.

4.2. Operations on NNC polyhedra

We denote by Pn the set of all NNC polyhedra on the vector space R
n. As was the case for the domain CPn, when

partially ordered by set-inclusion, Pn is a lattice having the empty set and R
n as the bottom and top element,

respectively; the set-intersection and poly-hull operators are the binary meet and join of the lattice, respectively.
Obviously, we have CPn ⊆ Pn and, in particular, CPn is a sublattice of Pn.

With the double description method as generalized above for NNC polyhedra, all the lattice operations on Pn

can be implemented by following the same approach adopted for the domain CPn. Thus, a mixed constraint system
representing the set-intersection of two NNC polyhedra is obtained by taking the union of the mixed constraint
systems representing the two arguments; an extended generator system representing the poly-hull of two NNC
polyhedra is obtained by taking the component-wise union of the extended generator systems representing the
two arguments; the emptiness test is implemented, as before, by checking whether the extended generator system
has no points at all (disregarding the closure points).

Even the implementation of the inclusion test P1 ⊆ P2 is still based on checking that each generator in
an extended generator system for P1 satisfies all the constraints in a mixed constraint system for P2. Clearly,
a suitable extension is needed for these satisfaction tests, covering the new combinations provided by the addi-
tional constraint and generator types, i.e., strict inequalities and closure points. All the possible cases are shown in
Table 4.2. It can be seen that such an extension is fairly intuitive. With non-strict inequalities closure points behave
the same as points. In contrast, only the points of the polyhedron are required to respect the strict inequalities;
both closure points and rays just have to satisfy the corresponding non-strict inequalities. This is because closure
points are limit points of the polyhedron, and do not necessarily belong to it.
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Table 1. Testing if the constraint 〈a, x〉 �� b is satisfied by the generator g

Generator type
Constraint type Ray Point Closure point

Non-strict inequality 〈a, g〉 � 0 〈a, g〉 � b 〈a, g〉 � b

Strict inequality 〈a, g〉 � 0 〈a, g〉 > b 〈a, g〉 � b

Similar generalizations are easily obtained for all the usual semantic operators. For instance, an extended
generator system representing the affine image of an NNC polyhedron can be computed by applying the affine
transformation to all the elements of the extended generator system representing the argument.

4.3. Alternative approaches

The one we are following is not the only possible approach to the description and manipulation of NNC poly-
hedra. As an alternative, one could use the classical DD method to describe the topological closure of the NNC
polyhedron together with a description of all the missing faces.4 This would amount to replacing some metric
information (the strict inequalities or some of the generating points) by combinatorial information (for each
missing face, the subset of constraints or generators describing it). Even though such an approach is feasible from
a theoretical point of view, to the best of our knowledge it has never been properly formalized or implemented. As
a consequence, it is unclear whether it would lead to a specification of the required semantic operators which is as
clean as the one outlined in the previous section. It is moreover our opinion that the use of strict inequalities and
closure points results in a much more elegant and user-friendly interface. Such a claim is supported, as far as strict
inequalities are concerned, by the similar choice made in the user interfaces of several constraint programming
systems. The use of closure points in generator systems is going to be as intuitive as the use of strict inequalities
in constraint systems, because these two notions are dual.

5. Implementing NNC polyhedra using closed polyhedra

In the previous section, we have shown how the representation of closed polyhedra in terms of constraint and
generator systems can be suitably generalized to also allow for the case of NNC polyhedra. Moreover, we have
shown that the availability of these representations naturally leads to corresponding generalizations of the oper-
ations defined on the domain of polyhedra. However, in our path from the original problem toward the solution,
an intermediate, very important step is still missing.

The most critical operation in the DD framework is the so-called conversion algorithm. This comes into play
whenever one of the two possible representations is needed, but only the other one is available. Such a change
of representation is typically needed as a pre-processing step in most of the discussed operations on both closed
and NNC polyhedra, to ensure that the most appropriate representation is available for each of the arguments
of the operation. Thus, a direct implementation of the DD method for the domain of NNC polyhedra requires
the generalization of this conversion algorithm. Even though this would be a really interesting line of research,
the few existing software libraries (based on the DD method) providing support for the domain of NNC poly-
hedra all adopt an alternative, indirect approach that, to the best of our knowledge, was originally proposed
in [HPR94] and also described in [HPR97].5 In this section we present a generalization and formal justification
of this approach, which has the very important advantage of allowing an implementation of NNC polyhedra
to reuse almost all the code written, debugged and optimized for the support of closed polyhedra. We will also
show the exact correspondence between this “low-level implementation” and the “high-level interface” proposed
in the previous section.

The basic idea is to encode each NNC polyhedron of Pn into a closed polyhedron of CPn+1. In the following,
we denote by ε the variable corresponding to the (n + 1)-st Cartesian axis of R

n+1. The interpretation function
[[·]] : CPn+1 → Pn maps any closed polyhedron in CPn+1 to an NNC polyhedron in Pn; in particular, points in the
closed polyhedron with a positive ε coordinate correspond to points in the NNC polyhedron.

4 A face of a polyhedron is the intersection of the polyhedron with one of its bounding hyperplanes.
5 According to [HPR97], the idea has to be credited to P. Raymond.
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Fig. 2. Only R2, R3 and R4 are ε-polyhedra

Definition 5.1 (Represented NNC polyhedron). A polyhedron R ∈ CPn+1 is said to represent the NNC polyhedron
P ∈ Pn if and only if

P � [[R]] def�
{

v ∈ R
n

∣
∣
∣ ∃e ∈ R .

(
e > 0 ∧ (vT, e)T ∈ R) }

. (1)

Note that any closed polyhedron that is included in the half-space defined by the constraint ε � 0 actually
represents the empty NNC polyhedron.

Not all the polyhedra in CPn+1 are good candidates for representing an NNC polyhedron in Pn. The ratio-
nale driving the choice of an appropriate subclass of CPn+1 is that most of the operators defined on the domain
of closed polyhedra could be used, with no more than minor modifications, to implement the corresponding
operators on the represented domain Pn of NNC polyhedra. For instance, one would like to implement the inter-
section and the poly-hull of two NNC polyhedra by computing the intersection and the poly-hull of their closed
representations, respectively. Under such a requirement, we will define two alternative representations for NNC
polyhedra. The two classes of closed polyhedra used for these representations are instances of a more general
class of closed polyhedra.

Definition 5.2 (ε-polyhedron). A closed polyhedron R ∈ CPn+1 is said to be an ε-polyhedron if and only if

∃δ ∈ R .
(
δ > 0 ∧ R ⊆ con

({ε � δ})
)

; (2)

∀v ∈ R
n, e ∈ R : (vT, e)T ∈ R �⇒ (vT, 0)T ∈ R. (3)

The polyhedron R is said to be an ε-polyhedron for P ∈ Pn, denoted R �ε P , if R is an ε-polyhedron and
P � [[R]].

Condition (3) that every point in the ε-polyhedron R has a projection on the hyperplane defined by the
constraint (ε � 0) corresponds to the following dual property concerning the constraints for R.

Proposition 5.3 Let R ∈ CPn+1 be such that R ⊆ con
({ε � δ}), where δ > 0. Then R is an ε-polyhedron if and

only if

R ⊆ con
({〈a, x〉 + s · ε � b

})
�⇒ R ⊆ con

({〈a, x〉 + 0 · ε � b
})

. (4)

An intuitive reading for the dual conditions (3) and (4) will be provided at the end of this section, after showing
the correspondence between ε-polyhedra and the high-level representation of NNC polyhedra as presented in
Sect. 4.

In Fig. 2 we show several examples of polyhedra in CP2 (representing NNC polyhedra in P1), some of which
happen to be ε-polyhedra. In particular, the semi-column polyhedron R1, which according to Definition 5.1
represents the closed interval P1 � con

({1 � x � 3}), is not an ε-polyhedron, because it is not provided
with a finite upper-bound on the ε coordinate, therefore violating condition (2) of Definition 5.2. The triangle
R2 is an ε-polyhedron for the open segment P2 � con

({4 < x < 8}). Polyhedron R3 is an ε-polyhedron for
the segment P3 � con

({10 < x � 12}), which is neither closed nor open. Similarly, R4 is an ε-polyhedron
for the closed segment P4 � con

({14 � x � 16}). Finally, polyhedron R5 represents the NNC polyhedron
P5 � con

({18 � x � 20}), but it is not an ε-polyhedron because it violates condition (3) of Definition 5.2. For
instance, even though P ∈ R5, we have P′ /∈ R5.
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Fig. 3. R1� R2 (resp., R4�R5) does not represent the NNC polyhedron P1�P2 (respectively, P4�P5)

Figure 3, which shows the poly-hulls of some of the polyhedra in Fig. 2, provides a graphical and informal
justification for the two conditions stated in Definition 5.2. Let us suppose we do not enforce condition (2)
of Definition 5.2, thus admitting polyhedra such as R1, and consider the convex polyhedral hull P1�P2 �
con

({1 � x < 8}). The poly-hull R1� R2 of the two encodings for P1 and P2 represents a wrong result, since
[[R1� R2]] � con

({1 � x � 8}). Suppose now we do not enforce condition (3) of Definition 5.2, thus allow-
ing for polyhedra such as R5, and consider the poly-hull P4�P5 � con

({14 � x � 20}). Again, the com-
putation of this poly-hull using the closed encodings of its arguments provides a wrong result, since we have
[[R4�R5]] � con

({12 < x � 20}).
If we are to provide an implementation-independent interface for the user, we need to be able to extract from

the constraint and generator systems describing an ε-polyhedron, the corresponding mixed constraint system
and extended generator system describing the NNC polyhedron it represents. Reasoning at the intuitive level,
consider an arbitrary ε-polyhedron, such as R3 in Fig. 2. Then, it is worth noting that any facet6 that is parallel
to the ε axis, such as the segment [I, J], corresponding to an inequality constraint having a zero coefficient for the
ε variable, will encode a non-strict inequality constraint of the represented NNC polyhedron P3 (in this case, the
constraint x � 12). On the other hand, any facet such as the segment [J, F], corresponding to an inequality con-
straint having a negative coefficient for the ε variable, will encode a strict inequality constraint of the represented
NNC polyhedron P3 (in this case, the constraint x > 10). Equivalently, we could have noted that in polyhedron
R3 the points having a strictly positive ε coordinate can be chosen arbitrarily close to vertex F � (10, 0)T, but all
the points having value 10 for their x coordinate happen to have a non-positive ε coordinate. Thus, the vector
F′ � (10) ∈ R

1 represented by F is not a point of the NNC polyhedron P3, but it is one of its closure points. All
of the above observations can be formalized as follows.

Definition 5.4 (Encoded descriptions). Let (C, G) ≡ R ∈ CPn+1 be a DD pair for a closed polyhedron. Then, if
[[R]] �� ∅, the mixed constraint system encoded by C is defined as con enc(C) � Cs ∪ Cns, where

Cs
def�

{
〈a, x〉 > b

∣
∣
∣
(〈a, x〉 + s · ε � b

) ∈ C, a �� 0, s < 0
}

,

Cns
def�

{
〈a, x〉 � b

∣
∣
∣
(〈a, x〉 + 0 · ε � b

) ∈ C,
(〈a, x〉 > b

)
/∈ Cs

}
.

If [[R]] � ∅, then we define con enc(C) def� {x1 > 0, −x1 > 0}. Also, the extended generator system encoded by
G � (R, P ) is defined as gen enc(G) � (R′, P ′, C ′), where

R′ def� {
r

∣
∣ (rT, 0)T ∈ R

}
,

P ′ def� {
p

∣
∣ (pT, e)T ∈ P, e > 0

}
,

C ′ def� {
c

∣
∣ (cT, 0)T ∈ P, c /∈ P ′ }.

The following proposition states the correctness of the two mappings introduced above.

6 A face is proper if it is non-empty and different from the polyhedron itself. A facet is a face which is different from the polyhedron and not
contained in other proper faces.
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Proposition 5.5 Let (C, G) ≡ R ∈ CPn+1 be an ε-polyhedron. Then

[[R]] � con
(
con enc(C)

) � gen
(
gen enc(G)

)
. (5)

Hence, Definition 5.4 provides a high-level, more user-friendly, interpretation of the constraint and generator
systems describing an ε-polyhedron. Thus the condition (3) of Definition 5.2, can be interpreted as saying “every
point is also a closure point.” Similarly, condition (4) stated in Proposition 5.3 may be interpreted as “every valid
strict inequality is also a valid non-strict inequality.” Even though these two assertions are trivially true in the
encoded domain Pn, the corresponding conditions on the encoding domain CPn+1 are essential if we are to avoid
the problems such as those illustrated in Fig. 3 by the computation of the poly-hull R4�R5.

5.1. Constraint- and generator-biased representations

We now consider two special subclasses of the class of ε-polyhedra. The first of these requires the value zero to
be a lower bound for the ε dimension.

Definition 5.6 (C-ε-polyhedron). An ε-polyhedron R ∈ CPn+1 is said to be constraint-biased and called a C-ε-
polyhedron if and only if R ⊆ con

({ε � 0}). We write R �C P if R is a C-ε-polyhedron and R �ε P .

The set of constraint-biased ε-polyhedra corresponds, essentially, to the class of polyhedra originally proposed
in [HPR94, HPR97]. (This is also the same class that was considered in [BRZH02a], where these polyhedra were
called ε-representations.)

A C-ε-polyhedron for an NNC polyhedron P can be easily constructed starting from either a mixed constraint
system or an extended generator system for P .

Definition 5.7 (‘con reprC and ‘gen reprC ’). Let P ∈ Pn be an NNC polyhedron such that (C, G) ≡ P . The
constraint-biased representation of C is the constraint system con reprC(C) on the vector space R

n+1 where

con reprC(C) def� {
0 � ε � 1

}

∪
{

〈a, x〉 − 1 · ε � b

∣
∣
∣
(〈a, x〉 > b

) ∈ C
}

∪
{

〈a, x〉 + 0 · ε � b

∣
∣
∣
(〈a, x〉 � b

) ∈ C
}

.

The constraint-biased representation of G � (R, P, C) is the generator system gen reprC(G) � (R′, P ′) on the
vector space R

n+1 where

R′ def� {
(rT, 0)T

∣
∣ r ∈ R

}
,

P ′ def� {
(pT, 1)T

∣
∣ p ∈ P

} ∪ {
(qT, 0)T

∣
∣ q ∈ P ∪ C

}
.

Observe that, in the mapping defined by the representation function ‘gen reprC ’ and using the notation in
Definition 5.7, each point in P corresponds to two distinct points in P ′, having a positive and a zero ε coordinate,
respectively. This ensures that condition (3) of Definition 5.2 is met. In general, the above encodings require a
constant number of additional constraints versus a linear number of additional generators: this is the reason why
ε-polyhedra in this subclass are called “constraint-biased.”

The following proposition states the correctness of the mappings introduced in Definition 5.7.

Proposition 5.8 Let (C, G) ≡ P ∈ Pn. Then con
(
con reprC(C)

)
�C P and gen

(
gen reprC(G)

)
�C P .

The second special subclass of ε-polyhedra requires that −eε
def� (0T, −1)T is a ray of all the non-empty

ε-polyhedra, so that there is no lower bound for the ε dimension.

Definition 5.9 (G-ε-polyhedron). An ε-polyhedron R ∈ CPn+1 is said to be generator-biased and called a G-ε-
polyhedron if and only if R � ∅ or −eε ∈ rays(R). We write R �G P if R is a G-ε-polyhedron and R �ε P .

As for the constraint-biased case, generator-biased ε-polyhedra can also be used for representing any NNC
polyhedron. In particular, a G-ε-polyhedron for an NNC polyhedron P may be constructed directly from any
mixed constraint system or extended generator system describing P .
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Definition 5.10 (‘con reprG’ and ‘gen reprG’). Let P ∈ Pn be an NNC polyhedron such that (C, G) ≡ P . The
generator-biased representation of C is the constraint system con reprG(C) on the vector space R

n+1 where

con reprG(C) def� {
ε � 1

}

∪
{

〈a, x〉 − 1 · ε � b

∣
∣
∣
(〈a, x〉 > b

) ∈ C
}

∪
{

〈a, x〉 + 0 · ε � b

∣
∣
∣
(〈a, x〉 > b

) ∈ C
}

∪
{

〈a, x〉 + 0 · ε � b

∣
∣
∣
(〈a, x〉 � b

) ∈ C
}

.

The generator-biased representation of G � (R, P, C) is the generator system gen reprG(G) � (R′, P ′) on the
vector space R

n+1 where

R′ def� {−eε

} ∪ {
(rT, 0)T

∣
∣ r ∈ R

}
,

P ′ def� {
(pT, 1)T

∣
∣ p ∈ P

} ∪ {
(qT, 0)T

∣
∣ q ∈ C

}
.

It can be seen that, for each strict inequality contained in C, the representation function ‘con reprG’ adds both
the strict and the non-strict inequality encodings. This is similar to what is done for points in Definition 5.7 and,
by virtue of Proposition 5.3, ensures that condition (3) of Definition 5.2 is met. In contrast, for each point in the
generator system, the function ‘gen reprG’ does not add the corresponding closure point. In fact, these closure
points are not needed, because they can be generated by combining the corresponding point with the ray −eε ,
which is always added. Since the encodings for ε-polyhedra in this subclass require a linear number of additional
constraints versus a constant number of additional generators, they are called “generator-biased.”

The following proposition states the correctness of the mappings introduced in Definition 5.10.

Proposition 5.11 Let (C, G) ≡ P ∈ Pn. Then con
(
con reprG(C)

)
�G P and gen

(
gen reprG(G)

)
�G P .

For both the constraint-biased and generator-biased representations, it should be noted that the choice of the
value −1 for the ε coefficients in the constraints representing strict inequalities is arbitrary: any other negative
value will do. Also, the side constraint ε � 1 could be replaced, as stated in condition (2) of Definition 5.2, by
any other constraint ε � δ such that δ > 0. Dually, the choice of the value 1 for the ε coordinate of the points of
P ′ encoding the points of P could be replaced by any other positive value.

Returning to Fig. 2, it can be observed that R2 is a constraint-biased ε-polyhedron, R4 is a generator-biased
ε-polyhedron, whereas the ε-polyhedron R3 is neither constraint-biased nor generator-biased. By comparing R3
with R2 and R4 it can be seen that those ε-polyhedra that are not members of one of the two subclasses can
require both a linear number of additional constraints and a linear number of additional generators (with respect
to the original NNC descriptions), resulting in a significant waste of both memory space and computation time.

By suitably combining the previous definitions and formal results, we are now able to systematically convert
a mixed constraint system C for the NNC polyhedron P � con(C) ∈ Pn into a corresponding extended generator
system G such that gen(G) � P ; or, vice versa, we can start from any extended generator system for P to obtain
a corresponding mixed constraint system.

The first of these conversions is obtained as follows, where we assume that the constraint-biased representa-
tion is adopted. We first apply Definition 5.7 to obtain the constraint system representation of a C-ε-polyhedron
for P , i.e., we compute C ′ � con reprC(C); then, by letting R � con(C ′) ∈ CPn+1, we apply to C ′ the usual
conversion algorithm for closed polyhedra to obtain a (standard) generator system G ′ such that gen(G ′) � R;
finally, we apply Definition 5.4 to extract from G ′ the extended generator system G � gen enc(G ′). By virtue of
Propositions 5.5 and 5.8, we obtain gen(G) � P . The dual conversion can be obtained similarly. By combining the
above conversion procedure with the specifications provided in Sect. 4.2, we obtain a complete implementation
of all the operations defined on the domain of NNC polyhedra.

5.2. Operations on ε-polyhedra

It should be noted that the encoding of operations’ arguments from Pn into corresponding arguments of CPn+1
and the decoding of the corresponding results are only needed when performing input-output operations, to
provide the end-user with the high-level view presented in Sect. 4. In all the other cases (and, in particular,
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for all the intermediate results obtained during the computation of a sequence of operations) these translations
can be easily and efficiently filtered away. Namely, the next proposition shows that most of the operators defined
on the domain of NNC polyhedra Pn can be easily mapped into the corresponding operators on the class of
ε-polyhedra defined on CPn+1.

Proposition 5.12 Letting �Y ∈ {�ε, �C, �G}, suppose that R �Y P , R1 �Y P1 and R2 �Y P2. Then

1. R1 ∩ R2 �Y P1 ∩ P2;
2. (P1 �� ∅ ∧ P2 �� ∅) �⇒ (R1� R2 �Y P1�P2);

3. Let f
def� λx ∈ R

n.Ax + b be any affine transformation defined on Pn; then g(R) �Y f (P), where

g
def� λ

(
x
ε

)

∈ R
n+1.

(
A 0
0T 1

) (
x
ε

)

+
(

b
0

)

is the corresponding affine transformation on CPn+1.

Hence, operations such as the intersection of NNC polyhedra and the application of affine transformations
can be safely performed on any ε-polyhedra for the arguments; the same is true for the poly-hull operation, pro-
vided neither of the arguments is empty. Moreover, both the constraint-biased and the generator-biased subclasses
are closed under the application of these operators.

6. The issue of minimization

With the ε dimension approach proposed in [HPR94], no matter if constraint- or generator-biased, each NNC
polyhedron P ∈ Pn may be represented by different (actually, an infinite number of) closed polyhedra in CPn+1.
In the previous section we have shown that all of these possible representations are equally good for computing
many operations required by applications such as static analysis. However, the choice of a particular ε-polyhe-
dron R ∈ CPn+1 for representing an NNC polyhedron P ∈ Pn affects the encoded high-level description for P . In
particular, the computation of a minimal form for R is not enough to ensure that the encoded NNC description
for P is in minimal form too. Namely, letting (C, G) ≡ R, even though the DD pair (C, G) is in minimal form, it
may well happen that con enc(C) or gen enc(G) are a mixed constraint system and an extended generator system
containing redundant constraints and generators, respectively. The following example illustrates this point.

Consider the two NNC polyhedra P1 � con(C1) and P2 � con(C2) of P1, where

C1 � {0 < x < 2}, C2 � {2 < x < 3}.
These polyhedra can be represented by the C-ε-polyhedra R1, R2 ∈ CP2 such that

R1 � con
(
con reprC(C1)

) �




(x, ε)T ∈ R

2

∣
∣
∣
∣
∣
∣

0 � ε � 1
x − ε � 0

−x − ε � −2





,

R2 � con
(
con reprC(C2)

) �




(x, ε)T ∈ R

2

∣
∣
∣
∣
∣
∣

0 � ε � 1
x − ε � 2

−x − ε � −3





.

In Fig. 4, these two polyhedra correspond to the triangles having vertices O, A, B and A, C, D, respectively. Note
that, in both cases, the ε upper bound constraint ε � 1 happens to be redundant.

Suppose now that the user wants to compute the poly-hull of the two original NNC polyhedra, therefore
obtaining the NNC polyhedron

P3 � P1�P2 � con
({0 < x < 3}).

At the representation level, as shown in Fig. 4, P3 will be described by the ε-polyhedron R3 generated by the
four vertices O, C, D, and B, whereas point A is identified as redundant. Formally,

R3 � R1� R2 �





(x, ε)T ∈ R

2

∣
∣
∣
∣
∣
∣
∣

ε � 0
x − ε � 0
x + ε � 3

x + 3ε � 4





.
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Fig. 4. The ε-representations of P1 and P2 and of their poly-hull

Note that the chosen constraint system

C3 � {ε � 0, x − ε � 0, x + ε � 3, x + 3ε � 4}
describing polyhedron R3 is in minimal form; in particular, the last non-strict inequality constraint x + 3ε � 4,
which corresponds to the segment [B, D] in Fig. 4, is not redundant as far as the ε-polyhedron R3 is concerned.
However, this non-strict inequality is actually encoding the strict inequality constraint x < 4, which is clearly
redundant for the encoded polyhedron P3 � [[R3]]. Formally, the mixed constraint system encoded by C3 is

C ′
3 � con enc(C3) � {0 < x < 3, x < 4},

which, according to Definition 3.3, is not in minimal form. In this case, we say that x + 3ε � 4 is an ε-redundant
constraint in C3.

The same problem as above can be observed for a generator system for the ε-polyhedron R3. Namely, we
have R3 � gen(G3), where G3 � (∅, P3) and

P3 � {
(0, 0)T, (3, 0)T, (2.5, 0.5)T, (1, 1)T

}
.

Even though G3 is a generator system in minimal form, by Definition 5.4 we obtain

G ′
3 � gen enc(G3) � (∅, P ′

3, C
′
3),

where P ′
3 � {1, 2.5} and C ′

3 � {0, 3}. Since the point 1 ∈ P ′
3 (respectively, 2.5 ∈ P ′

3) is redundant in G ′
3, the encoded

generator system is not in minimal form. In this case, we say that (2.5, 0.5)T ∈ P3 (respectively, (1, 1)T ∈ P3) is an
ε-redundant generator in G3.

The problem outlined above is even more critical for higher dimension vector spaces: it is straightforward to
devise examples where more than half of the constraints or generators in any minimized description for an ε-
polyhedron happen to be ε-redundant. Even when disregarding these pathological cases, this form of redundancy
can have a serious negative impact on the efficiency of most of the operations computed on the ε-polyhedron; in
particular, this is true when converting between constraint and generator systems. Moreover, it must be stressed
that efficiency degradation is not the only issue. It turns out that the unnoticed presence of ε-redundant con-
straints may also cause headaches to the users of a software library computing on the domain of NNC polyhedra
(and adopting the ε dimension approach). As an example, suppose one wants to know if a given NNC polyhe-
dron is not topologically closed. Ordinary users of the software library (i.e., all the users but the experts) may
be tempted to implement such a test by checking whether the constraint system in minimal form contains any
strict inequality constraint. If the considered software library merely computes a minimal description for the
ε-polyhedron representing the NNC polyhedron, then such an approach would be unsound, as illustrated by the
scenario proposed in Fig. 5.

Here, the NNC polyhedron P1 defined previously is intersected with the NNC polyhedron

P4 � con
({5 � 4x � 7}) ∈ P1,

whose representation R4 � con
(
con reprC(P4)

) ∈ CP2 is the rectangle having vertices E, F , G and H . The
resulting trapezium (having vertices E, F , I and J ) is another ε-representation for the NNC polyhedron P4,
which is clearly topologically closed. However, any constraint system describing the trapezium will also encode
the (redundant) strict inequality constraint x < 2, corresponding to the closed segment [I, J ].

It is therefore meaningful to address the problem of providing a minimization operator that, starting from
an arbitrary description of an ε-polyhedron R �ε P , is able to compute a description of a (possibly different)
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Fig. 5. The “minimized” trapezium EFIJ , obtained by intersecting R1 and R4 and still representing the topologically closed NNC polyhedron
P4, also encodes the strict inequality x > 0

ε-polyhedron R′ �ε P that encodes a non-redundant high-level description for the NNC polyhedron P . The
result of this computation is said to be a description in ε-minimal form.

Definition 6.1 (ε-minimal forms). Let R ∈ CPn+1 and P ∈ Pn be such that R �ε P and let (C, G) ≡ R be a DD
pair for R. Then

• C is in ε-minimal form if and only if con enc(C) is in minimal form;
• G is in ε-minimal form if and only if gen enc(G) is in minimal form.

The computation of ε-minimal forms will be based on the identification of all the ε-redundant constraints and
generators. These will be either removed or replaced by other constraints and generators that are not ε-redundant
in the resulting description.

While still reasoning at the informal level, it is worth stressing that this notion of redundancy has a double
nature. In the examples just presented, ε-redundancy shows its semantic nature, meaning that the redundant
information is encoded in the ε-polyhedron itself, rather than in one of its constraint or generator descriptions.
Namely, all constraint systems and generator systems describing R3 necessarily contain the ε-redundant con-
straint and generators identified above. As a consequence, this kind of redundancy can only be eliminated by
choosing a different ε-polyhedron R′

3 representing the same NNC polyhedron P3.
There are also examples where ε-redundancy only has a syntactic nature, meaning that the redundancy can be

eliminated by choosing a particular constraint or generator description for the same ε-polyhedron. Clearly, this
happens when a description contains some constraints or generators that are redundant (in the classical sense)
for the ε-polyhedron itself. However, this may also happen when a description is already in minimal form. For
instance, let R � con(C) ∈ CP2 be the ε-polyhedron defined by the constraint system

C � {0 � x � 0, ε � 0, x + ε � 1}.
Even though C is in minimal form, it is not in ε-minimal form, because the mixed constraint system con enc(C) �
{0 � x � 0, x < 1} contains the redundant strict inequality constraint x < 1. However, the ε-polyhedron R can
also be described by the constraint system

C ′ � {0 � x � 0, 0 � ε � 1},
where the ε-redundant constraint x + ε � 1 has been replaced by the ε upper bound constraint ε � 1, obtain-
ing a description in ε-minimal form for the same ε-polyhedron R. It will be shown that this syntactic kind of
ε-redundancy cannot occur if we consider minimal descriptions in orthogonal form. As a matter of fact, for the
particular example considered above, the constraint system C ′ is in orthogonal form, whereas this property does
not hold for C.

6.1. The computation of ε-minimal forms

The practicality of available conversion procedures for topologically closed polyhedra, such as the extension
by Le Verge [Le 92] of Chernikova’s algorithms [Che64, Che65, Che68], is mainly obtained thanks to the effi-
cient detection (and removal) of redundancies in the computed representations. Redundant elements are usually
identified by checking suitable saturation conditions.
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We say that a point p (resp., a ray r) saturates a constraint β � (〈a, x〉 � b
)

if and only if 〈a, p〉 � b (resp.,
〈a, r〉 � 0). For any point p and constraint system C, we define

sat con(p, C) def� { β ∈ C | p saturates β };
and, for any constraint β and generator system G � (R, P ), we define

sat gen(β, G) def� ({ r ∈ R | r saturates β }, { p ∈ P | p saturates β }).
Intuitively, if (C, G) is a DD pair for a closed polyhedron and {β, β ′} ⊆ C, where β �� β ′, then the saturation
condition sat gen(β, G) � sat gen(β ′, G) implies that the constraint β ′ can be used in place of β without affecting
the represented polyhedron: in other words, β is redundant in C. By duality, other saturation conditions allow
for the identification of redundant generators in G.

In the case of an ε-polyhedron encoding an NNC polyhedron, the efficient detection of ε-redundant con-
straints and generators can be based on the checking of similar saturation conditions. The following notation is
needed for their formal definition.

Let (C, G) ≡ R ∈ CPn+1 be a DD pair for an ε-polyhedron. The set of strict and non-strict inequality encodings
C> and C� of the constraint system C are defined as

C>
def�

{(〈a, x〉 + s · ε � b
) ∈ C

∣
∣
∣ a �� 0, s < 0

}
;

C�
def�

{(〈a, x〉 + s · ε � b
) ∈ C

∣
∣
∣ a �� 0, s � 0

}
.

The sets of ray encodings GR ⊆ R, point encodings GP ⊆ P and closure point encodings GC ⊆ P of the generator
system G � (R, P ) are defined as

GR
def� {

(vT, e)T ∈ R
∣
∣ e � 0

}
;

GP
def� {

(vT, e)T ∈ P
∣
∣ e > 0

}
;

GC
def� {

(vT, e)T ∈ P
∣
∣ e � 0

}
.

We are now ready to provide the formal definition of strong ε-redundancy. As the name suggests, this notion
gives sufficient conditions for the identification of an ε-redundant constraint or generator in a description of an
ε-polyhedron.

Definition 6.2 (Strong ε-redundancy). Let (C, G) ≡ R ∈ CPn+1. A constraint β is strongly ε-redundant in C if
β ∈ C> and at least one of the following conditions holds:

sat gen
(
β, (GR, GC)

) � (GR, ∅);

∃β ′ ∈ C> \ {β} . sat gen
(
β, (GR, GC)

) � sat gen(β ′, G).

A generator p is strongly ε-redundant in G if p ∈ GP and

∃p′ ∈ GP \ {p} . sat con(p, C�) ⊆ sat con(p′, C).

An intuitive reading of the above conditions can be obtained by viewing them under the perspective of the
encoded NNC polyhedron: namely, we disregard the modulus of the slack variable ε and use just its sign in order
to distinguish (non-) strict constraints and (closure) points. Therefore, consider a constraint β encoding a valid
strict inequality constraint γ for the NNC polyhedron P . First note that, since the points of P can not saturate
a strict constraint such as γ , only the rays and closure points need be considered. Thus, if γ is saturated by none
of the closure points of P then it is completely useless in the representation of P ; otherwise, if the constraint
representation contains another strict inequality (γ ′ encoded by β ′) that is saturated by all the rays and closure
points saturating γ , then the constraint γ is again useless, because its role can be played by the other constraint
without affecting the represented polyhedron. Hence, in both cases, the encoding β is ε-redundant in the con-
straint system representation. Similarly, let p encode the generating point v for the NNC polyhedron P . For the
same reason as in the previous case, we can disregard (the encodings of) the strict inequality constraints. Hence,
if the generator representation contains another point of P (v′ encoded by p′) that saturates all the non-strict
inequalities saturated by v, it means that v is useless for representing P , so that p is ε-redundant in the generator
system representation.
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The next proposition formalizes the above reasoning by showing that strongly ε-redundant constraints and
generators can be safely removed from (or replaced in) the descriptions of an ε-polyhedron without affecting the
represented NNC polyhedron. If the ε-polyhedron was constraint- or generator-biased, it remains constraint- or
generator-biased, respectively.

Proposition 6.3 Let �Y ∈ {�ε, �C, �G}. Assume (C, G) ≡ R ∈ CPn+1 and P ∈ Pn are such that R �Y P �� ∅.
Suppose that β is a strongly ε-redundant constraint in C and p is a strongly ε-redundant generator in G � (R, P ).
Then the following hold:

con
((C \ {β}) ∪ {ε � 1}

)
�Y P ; (6)

gen
((

R, P \ {p})
)

�Y P. (7)

According to Definition 6.2, only the strict inequality encodings and the point encodings of an ε-polyhedron
can be identified as strongly ε-redundant constraints and generators, respectively. The following result shows that
such a restriction is inconsequential; intuitively, all the non-strict inequality encodings, the ray encodings and the
closure point encodings can only give rise to the syntactic kind of ε-redundancy.

Proposition 6.4 Let R, R′ ∈ CPn+1 and P ∈ Pn be such that R �ε P �� ∅ and R′ �ε P ; let also (C, G) ≡ R.
Then

∀β ∈ C� : R′ ⊆ con
({β}); (8)

∀r ∈ GR : r ∈ rays(R′); (9)
∀p ∈ GC : p ∈ R′. (10)

When all the strongly ε-redundant constraints or generators have been filtered away, the descriptions of an ε-
polyhedron no longer contain ε-redundancies of the semantic kind. Thus descriptions in ε-minimal form can be
obtained by the computation of minimal orthogonal forms.

Proposition 6.5 Let R ∈ CPn+1 and P ∈ Pn be such that R �ε P �� ∅ and let (C, G) ≡ R be a DD pair in
minimal orthogonal form. Then the following hold:

1. If C contains no strongly ε-redundant constraint, then it is in ε-minimal form;
2. If G contains no strongly ε-redundant generator, then it is in ε-minimal form.

Note that, in general, removing the strongly ε-redundant elements from a constraint (respectively, generator)
system describing an ε-polyhedron does not guarantee that the dual generator (respectively, constraint) system
is also in ε-minimal form. Nonetheless, the computation of the ε-minimal form for one of the two descriptions
is going to automatically remove most of the ε-redundancies in the dual description, so that even though one
element of the DD pair may not be in ε-minimal form, the effect of any residual redundancy on the efficiency of
the computations is likely to be small. Regarding the correctness of the computation, it should be stressed that a
DD pair having both descriptions in ε-minimal form is rarely needed, if ever. In fact, for those NNC polyhedral
operations that do use both descriptions, usually only one is actually required to be in ε-minimal form so that
being able to ε-minimize the description of interest is enough; for instance, this is the case in the computation
of the standard widening operator [CH78] (for closed polyhedra) adapted for NNC polyhedra. In the rare cases
when minimality is required for both descriptions, (for instance, when adapting the widening operator defined
in [BHRZ03, BHRZ05] to the domain of NNC polyhedra), it turns out that the descriptions do not need to be
dual at the implementation level: it is enough that they are dual with respect to the encoded NNC polyhedron.
Thus, one can find, independently, ε-minimal forms for the constraint and generator descriptions and still obtain
correct results. To summarize, having DD pairs in ε-minimal form is not essential for correctness and not a major
issue with respect to efficiency; on the other hand, it would be really interesting to find a procedure computing
the ε-minimal form of both descriptions at the same time.

As an example, we now compute the ε-minimal forms for the polyhedron R3 represented in Fig. 4. Let us
first consider the constraint system. The two strict inequality encodings x − ε � 0 and −x − ε � −3, which
correspond to segments [O, B] and [C, D], are not strongly ε-redundant, because they are saturated by the closure
point encodings O and C, respectively. In contrast, the constraint x − 3ε � 4, corresponding to segment [B, D],
is identified as strongly ε-redundant (no closure point encoding saturates it) and can be replaced by the ε upper
bound constraint ε � 1. The resulting constraint system, which is in ε-minimal form, defines the trapezium
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Fig. 6. The trapezium OCKB is an ε-representations for P3, obtained by applying the ε-minimization process to the constraint system
describing R3

Fig. 7. The triangles OCB and OCD are other two different ε-representations for P3, which can be obtained by applying the ε-minimization
process to the generator system describing R3

of vertices O, C, K, and B represented in Fig. 6. Note that the generator system for this trapezium is not in
ε-minimal form. It is worth noting that, after removing an ε-redundant constraint, the addition of the ε upper
bound constraint ε � 1 is in general required to obtain another ε-representation. For instance, this happens when
computing the ε-minimal form of the constraint system describing the trapezium EFIJ of Fig. 5: the removal
of the constraint corresponding to segment [I, J ] would yield a strip which is unbounded from above, so that
it would not satisfy condition 2 of Definition 5.2; the addition of the ε upper bound constraint results in the
rectangle EFGH (i.e., the ε-representation R4 of P4).

Starting again from polyhedron R3, let us now apply the ε-minimization process to its generator system, which
is made up of the four points O, C, D, and B. It is easy to observe that each one of the two point encodings is
made strongly ε-redundant by the other one (they both saturate the empty set of non-strict inequality encodings);
as a consequence, one of them can be removed, obtaining either one of the triangles OCB and OCD represented
in Fig. 7, whose corresponding generator systems are both in ε-minimal form. In this particular case, the dual
description corresponding to any of the two generator systems happens to be in ε-minimal form; however, as
already observed, in general such a property does not hold.

7. Implementation and evaluation

All the ideas presented in this paper have been implemented and incorporated into the Parma Polyhedra Library
(PPL, http://www.cs.unipr.it/ppl/). The PPL is a collaborative project started in January 2001 at the Department
of Mathematics of the University of Parma and it aims at becoming a truly professional library for the handling
of numeric approximations targeted at abstract interpretation and computer-aided verification. In particular, the
library implements both the abstract domain of topologically closed convex polyhedra and the abstract domain of
not necessarily closed convex polyhedra. In both cases, the coefficients of constraints and generators are expressed
by using unbounded precision rational numbers.7 A comparison of the PPL with other freely available polyhedra
libraries shows that the core implementation for closed polyhedra is very efficient and compares favorably with
these other libraries.8

7 The correctness requirements of the static analysis research field prevent the adoption of floating-point coefficients, since any rounding
error on the wrong side can invalidate the overall computation. For domains as complicated as that of polyhedra, the correct, precise and
reasonably efficient handling of floating-point rounding errors is an open issue.
8 See http://www.cs.unipr.it/ppl/performance for the libraries compared, the benchmarks, software and hardware used for the tests as well as
the detailed results.
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Apart from the PPL, the only two polyhedra libraries – among those based on the DD method that pro-
vide the services required by applications in static analysis and computer-aided verification – that support NNC
polyhedra are “Polka” [HKP95], by N. Halbwachs, A. Kerbrat, and Y.-E. Proy, and “New Polka” [Jea02], by
B. Jeannet. While the “Polka” polyhedra library is not available in source format and binaries are distributed
under rather restrictive conditions (until about the year 1996 they could be freely downloaded), “New Polka”
is free software. Both libraries can be compiled so as to work with strict inequalities although the support for
these is incomplete, incurring avoidable inefficiencies and leaving the client application with the non-trivial task
of a correct interpretation of the obtained results. As this paper concerns NNC polyhedra, their interface and
implementation, we only compare the PPL support for NNC polyhedra with that for “Polka” and “New Polka”.

First of all, the PPL allows us to demonstrate the real benefits of having an implementation-independent
interface based on mixed constraint systems and extended generator systems. In particular, even though an NNC
polyhedron can be easily described by using constraint systems containing strict inequalities, the “Polka” and
“New Polka” libraries lack the corresponding extension for generator systems (i.e., the introduction of closure
points), resulting in an asymmetric user interface. For instance, the following sentence comes from the documen-
tation of “New Polka” [Jea02, Sect. 1.1.4, p. 10] (where s denotes the ε coefficient):
Don’t ask me the intuitive meaning of s �� 0 in rays and vertices !

The problem is also present in “Polka” and discussed in more detail in [HKP95, Sect. 4.5, pp. 10–11]:
While strict inequations handling is transparent for constraints (being displayed accurately), the extra dimension added to the variables space
is apparent when it comes to generators : one extra coefficient, resp. extra vertices (as epsilon is bounded), materialize this dimension in
every generator, resp. generators system.

This makes more difficult to define polyhedra with the only help of generators : one should carefully study the extra vertices with non
null epsilon coefficients added to constraints defined polyhedra, in the case of large inequations, and the case of strict inequations.

This kind of approach, which requires the user to be aware of so many implementation details, is far from being
satisfactory. Finally, neither “Polka” nor “New Polka” provide support for the minimization of the descriptions
of an NNC polyhedron, therefore suffering from the issues exposed in Sect. 6.

In order to asses the practical relevance of the minimization procedures proposed in this paper, we have con-
ducted a preliminary experimental evaluation. Table 2 summarizes the results for four simple experiments, where
a pair of rows corresponds to a single experiment. Each of the four experiments takes four NNC polyhedra P1,
P2, P3, P4, defined by extended generator systems G ′

1, G ′
2, G ′

3, G ′
4, respectively, and aims to compute a constraint

description for the NNC polyhedron P � (P1 ∩P2)�(P3 ∩P4). The four input polyhedra all have the same shape
(they are equivalent up to translation and scaling transformations); in particular, if G ′

i � (∅, P ′
i , C

′
i), then the

cardinalities # P ′
i and # C ′

i are invariant for i � 1, . . . , 4 (# P ′
i and # C ′

i are given in the first column of the table).
Each row of a pair of rows corresponds to one of two alternative evaluation strategies:

• The first row reports the measurements obtained using the standard evaluation strategy which does not
compute the ε-minimal forms;

• The second row reports the measurements obtained using the enhanced evaluation strategy which computes
the ε-minimal forms of the polyhedra descriptions just before the application of each operator (i.e., before
computing the two intersections and before computing the poly-hull), as well as at the end of the overall
computation.

All experiments start by computing the constraint-biased representation Gi of G ′
i , as given in Definition 5.7,

which define the C-ε-polyhedra Ri � gen(Gi) �C Pi ; they then compute a constraint system C for the C-ε-poly-
hedron R � (R1 ∩ R2)�(R3 ∩ R4). To compute the two intersections R12 � R1 ∩ R2 and R34 � R3 ∩ R4, the
conversion algorithm is applied to obtain the constraint systems Ci such that Ri � con(Ci). In the second and
third columns we give the cardinalities of Gi and Ci , respectively. Note that, in the case of the enhanced evaluation
strategy, these constraint systems are in ε-minimal form, so that # Ci for the enhanced evaluation strategy is less
than that for the standard evaluation strategy. The constraint systems for R12 and R34 are then computed and
the conversion algorithm applied so as to obtain the generator systems G12 and G34 such that R12 � gen(G12)
and R34 � gen(G34); the corresponding cardinalities are shown in the fourth and fifth columns where again, in
the case of the enhanced evaluation strategy, the generator systems G12 and G34 are in ε-minimal form. Then,
the poly-hull R � R12�R34 is computed and the conversion algorithm is again applied to obtain a constraint
description C of R; the cardinality of C is reported in the sixth column. Even though not necessary for the cor-
rectness of the computation, in the case of the enhanced evaluation strategy C is put into ε-minimal form. Note
that, by Definitions 5.4 and 6.1, the cardinality of a minimal constraint system for P is just one or two less than
the value of # C reported for the enhanced evaluation strategy. The seventh column reports the speed-up ratio
obtained for the considered experiment using the enhanced evaluation strategy (i.e., the ratio standard evaluation
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Table 2. Exploiting ε-minimal forms to improve efficiency

4 × (# P ′
i + # C′

i ) 4 × # Gi 4 × # Ci # G12 # G34 # C Speed-up ε-mf time

4 × (4 + 8) 4 × 16 4 × 37 130 76 332
4 × 16 4 × 22 39 16 33 18 0.0%

4 × (8 + 8) 4 × 24 4 × 55 208 124 520
4 × 24 4 × 30 49 20 43 15 0.0%

4 × (8 + 10) 4 × 26 4 × 109 413 304 2,693
4 × 26 4 × 46 57 24 127 110 2.1%

4 × (16 + 10) 4 × 42 4 × 163 696 656 4,994
4 × 42 4 × 66 77 28 152 231 2.3%

time/enhanced evaluation time). The last column reports the percentage of time spent for the computation of the
ε-minimal form for the constraint system for R.

Note that the results are explained in terms of the low-level implementation details of the two evaluation
strategies; these inner steps are in fact transparent to an end-user of the library. Also, we adopted the constraint-
biased implementation supported by the Parma Polyhedra Library [BHZ04, BRZH02a], but similar results have
been obtained with the generator-biased implementation.

Even though the considered examples are not meant to provide a faithful representation of typical computa-
tion patterns, we can make a couple of observations based on these experiments. The application of even a few
operators on the closed representations of NNC polyhedra may produce a huge number of constraints and/or
generators that are strongly ε-redundant; these can slow-down subsequent computations considerably and are
likely to confuse anyone who looks at the final output. Moreover, the computation of ε-minimal forms seems
to have a negligible cost (see the last column in Table 2), so the adoption of the enhanced evaluation strategy is
likely to result in significant efficiency gains even with more general computation patterns. On the other hand, the
enhanced evaluation strategy does not come with an improved efficiency guarantee, because there can be cases
where the representations in ε-minimal form, even though having fewer constraints or generators, happen to be
more expensive. The conjecture, which is supported by all the experiments conducted so far, is that any efficiency
losses will be both less frequent and less significant than efficiency gains.

As a final remark, it must be observed that the enhanced computation strategy can be made smarter than in
the above example. It can be observed that the standard evaluation strategy allows for the application of the incre-
mental version of the conversion algorithm: for instance, we start from the DD pair (C1, G1) for the ε-polyhedron
R1 and incrementally add the constraints C2 describing the ε-polyhedron R2, keeping the generator system of the
result up-to-date so that, at the end of the computation of the intersection R1 ∩ R2, we still have a DD pair (i.e.,
the generator system G12 will already be up-to-date). In contrast, the enhanced evaluation strategy does not fit
very well with this incremental approach, because after computing the ε-minimal form for C1, we no longer have a
DD pair; thus, the generator representation for the intersection R1 ∩R2 has to be recomputed from scratch. The
same happens when computing the other intersection and the poly-hull operation. Since the number of strongly
ε-redundant elements contained in a description can be efficiently computed, an improved evaluation strategy
may heuristically predict and compare the gains coming from the computation of ε-minimal forms with respect
to the losses coming from the lack of incrementality, therefore choosing the evaluation strategy that seems to be
more appropriate for the considered context.

8. Conclusion

Convex polyhedra provide the basis for several abstractions used in static analysis and computer-aided verifica-
tion of complex system. Some of these applications require the manipulation of convex polyhedra that are not
necessarily closed. In this work we have proposed an elegant way of decoupling the essential geometric features
of NNC polyhedra from their traditional implementation. This separation, besides providing a natural and easy
to use interface, enables the search for new implementation techniques and makes their eventual integration into
existing software libraries seamless (i.e., transparent to the client application). In fact, we have shown that the
standard implementation of NNC polyhedra, which happens to be biased for constraint-intensive computations,
has a dual that is biased for generator-intensive computations. For both kinds of implementations, we have pro-
vided new minimization procedures that allow to extract a non-redundant constraint or generator description of
an NNC polyhedron from its low level encodings.
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We have implemented all these ideas in the Parma Polyhedra Library, a modern C++ library for the manipu-
lation of convex polyhedra. Since it is based on the high level interface for the specification of NNC polyhedra
and it implements the new minimization procedures introduced in this work, the Parma Polyhedra Library can be
regarded as the first software library (based on the DD method) providing full support for the domain of NNC
polyhedra. Some very preliminary experiments on purely synthetic benchmarks have shown that a careful use of
the new minimization procedures for NNC polyhedra can have a dramatic effect on the size of the representations
and, thus, on the efficiency of the algorithms operating upon them.

The Parma Polyhedra Library has also been extended to experiment with the two alternative implementations
of NNC polyhedra. In this respect, it seems likely that the performance of one encoding with respect to the other
will depend on the particular application and, more specifically, on the kind of polyhedra and operations that
are more common in that application. For future work, given the dual characteristics of the two representations,
it would be interesting to investigate whether efficient techniques can be devised so as to use both constraint- and
generator-biased encodings, switching dynamically from one to the other in an attempt to maximize performance.
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A. Proofs

As already observed, Theorem 3.2 is a simple consequence of well known theorems by Minkowski (stating the
‘only if ’ part) and Weyl (stating the ‘if ’ part). We provide here proofs of the other formal results stated in the
main part of the paper.

A.1. Proofs of the results stated in Section 4

In order to simplify the proof of Proposition 4.3, we introduce the following lemma.

Lemma A.1 Let P � con(C) ∈ Pn and v ∈ C(P). Let also
(〈a, x〉 �� b

) ∈ C, where �� ∈ {�, >}. Then 〈a, v〉 � b.

Proof. Let H be the set of affine half-spaces corresponding to the set of constraints C. Since C(·) is an upper
closure operator,

C(P) � C

(⋂ H) ⊆ C

(⋂{
C(H )

∣
∣ H ∈ H })

� ⋂{
C(H )

∣
∣ H ∈ H }

.

As v ∈ C(P), we have v ∈ C(H ), for all H ∈ H. Let Hβ ∈ H denote the affine half-space corresponding to
β � (〈a, x〉 �� b

)
. Hence v ∈ C(Hβ). If �� ∈ {�}, then C(Hβ) � con

({β}). On the other hand, if �� ∈ {>}, then
C(Hβ) � con

({β ′}), where β ′ � (〈a, x〉 � b
)
. Thus, as v ∈ C(Hβ), we obtain the thesis 〈a, v〉 � b. �

Proof of Proposition 4.3. Let P � con(C) ∈ Pn be an NNC polyhedron defined by the mixed constraint system
C � {β1, . . . , βm}.

To prove the ‘only if ’ branch, suppose that c is a closure point of P , so that c ∈ C(P). Then P �� ∅, because
the topological closure of the empty set is still empty. Considering an arbitrary point p ∈ P and a scalar σ such
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that 0 < σ < 1, we have to prove that vector v � σp + (1 − σ )c is such that v ∈ P . To this end, we show that
v satisfies all constraints βi � (〈ai , x〉 ��i bi

) ∈ C. Since p ∈ P , it holds 〈ai , p〉 ��i bi ; moreover, by applying
Lemma A.1, we also have 〈ai , c〉 � bi . Therefore, we obtain

〈ai , v〉 � 〈
ai , σp + (1 − σ )c

〉 � σ 〈ai , p〉 + (1 − σ )〈ai , c〉 ��i σbi + (1 − σ )〈ai , c〉 � σbi + (1 − σ )bi � bi.

It follows that if ��i ∈ {�}, then 〈ai , v〉 � bi and, if �� ∈ {>}, 〈ai , v〉 > bi . Therefore, in both cases we obtain
〈ai , v〉 ��i bi

To prove the ‘if ’ branch, suppose now that P �� ∅ and σp + (1 − σ )c ∈ P , for all p ∈ P and 0 < σ < 1. We
have to show that c ∈ C(P). To this end, for each i ∈ N, let σi � 1

i
, Bi be the open ball centered in c with radius

σi , and vi � σi+1p + (1 − σi+1)c; then, as 0 < σi+1 < σi < 1, we have vi ∈ P ∩ Bi . As this holds for any i ∈ N,
c ∈ C(P). �

A direct proof of Theorem 4.4 would require a generalization of Minkowski’s and Weyl’s theorems. In contrast,
we will provide an indirect proof: this will be based on the standard (i.e., non-generalized) version of Minkowski’s
and Weyl’s theorems, stated as Theorem 3.2, as well as on Propositions 5.5, 5.8. and 5.11. Thus, the proof of
Theorem 4.4 will appear at the end of the next section.

A.2. Proofs of the Results Stated in Section 5

Proof of Proposition 5.3. Let R � con(C). We first assume that (4) holds for any constraint β ∈ C and show that
R is an ε-polyhedron. Condition (2) of Definition 5.2 holds by hypothesis. We prove condition (3) holds. Let

β � (〈a, x〉 + s · ε � b
)
. Then, by (4), R ⊆ con

({〈a, x〉 + 0 · ε � b
})

. Thus, for any point (vT, e)T ∈ R we have

〈a, v〉 + 0 · e � b, so that also 〈a, v〉 + s · 0 � b and hence (vT, 0)T satisfies β. As β was an arbitrary constraint in
C, (vT, 0)T ∈ R and condition (3) holds.

Second we assume that R is an ε-polyhedron and prove that (4) holds. Suppose β � (〈a, x〉 + s · ε � b
)

and
that R ⊆ con

({β}). Then, any point (vT, e)T ∈ R satisfies β. By condition (3) of Definition 5.2, (vT, 0)T ∈ R and
therefore satisfies β. Thus we have 〈a, v〉 � b. Hence, if β0 � (〈a, x〉 + 0 · ε � b

)
, (vT, e)T satisfies β0. As (vT, e)T

was an arbitrary point in R, R ⊆ con
({β0}

)
. �

To prove Proposition 5.5, we need a few additional lemmas.

Lemma A.2 Let R ∈ CPn+1 be an ε-polyhedron. If (rT, e)T ∈ rays(R) and r �� 0, then (rT, 0)T ∈ rays(R).

Proof. Since R has a ray, it is not empty. Thus, let (vT, e′)T ∈ R. By condition (3) of Definition 5.2, we have
(vT, 0)T ∈ R. Since (rT, e)T is a ray of R, we have (vT, 0)T + ρ(rT, e)T � (

(v + ρr)T, ρe
)T ∈ R for all ρ ∈ R+. From

this, again by condition (3) of Definition 5.2, we obtain
(
(v + ρr)T, 0

)T � (vT, 0)T + ρ(rT, 0)T ∈ R, proving that
also (rT, 0)T is a ray ofR. �

Lemma A.3 Let R ∈ CPn+1 be an ε-polyhedron. If (rT, e)T ∈ rays(R), then e � 0. Moreover, if R is a C-ε-poly-
hedron, then e � 0.

Proof. Since R is an ε-polyhedron, condition (2) of Definition 5.2 holds so that, for some δ > 0 every point in
R satisfies the constraint ε � δ. Since R has a ray, it is non-empty, so that there exists a point (vT, e0)T ∈ R
such that e0 � δ. Thus, for all ρ ∈ R+, (vT

ρ, eρ)T � (vT, e0)T + ρ(rT, e)T ∈ R. By condition (2) of Definition 5.2,
eρ � e0 + ρe � δ. Therefore, as this holds for all ρ ∈ R+, we have e � 0.

By Definition 5.6, if R is a C-ε-polyhedron then it also satisfies the constraint ε � 0. By repeating the above
argument, we obtain eρ � e0+ρe � 0. As this holds for all ρ ∈ R+, we also have e � 0, i.e., e � 0. �

In the following lemmas, for any (C, G) ≡ R ∈ CPn+1 such that R �ε P �� ∅, we assume the notations C>,
C�, GR, GP , and GC introduced in Sect. 6.1. Moreover, we will denote the set of ε upper bounds of the constraint
system C as

Cε
def�

{(〈a, x〉 + s · ε � b
) ∈ C

∣
∣
∣ a � 0, s < 0

}
.

A constraint β ∈ Cε will be usually denoted as ε � δ. Since P �� ∅, we have δ > 0.



Not necessarily closed convex polyhedra and the double description method 245

Lemma A.4 Let R � gen(G) ∈ CPn+1 be an ε-polyhedron, where G � (R, P ). Let also (vT, e′)T ∈ R for some e′ ∈
R and take emax ∈ R to be the maximal ε coordinate such that (vT, emax)T ∈ R. Then (vT, emax)T ∈ gen

(
(GR, GP ∪

C ′)
)
, where C ′ � {

(cT, 0)T ∈ GC

∣
∣ ∀e′ ∈ R : (cT, e′)T /∈ GP

}
.

Proof. By hypothesis, (vT, emax)T ∈ gen
(
(R, P )

)
so that

(vT, emax)T � (
ρ1r1 + · · · + ρrrr

)
+

(
π1p1 + · · · + πppp

)
, (11)

where r � 0, {r1, . . . , rr} ⊆ R, ρ1, . . . , ρr > 0 and p > 0, {p1, . . . , pp} ⊆ P , π1, . . . , πp > 0 and
∑p

i�1 πi � 1.
For all 1 � i � r, let ri � (vT

i , ei)T. Suppose that, for some 1 � j � r, we have ej �� 0. Then, as R is an
ε-polyhedron, by Lemma A.3, ej < 0. If vj � 0 then, by removing the ray rj in (11), we would obtain

(vT, emax)T − ρjrj � (vT, emax − ρjej )T ∈ R.

On the other hand, if vj �� 0, then, by Lemma A.2, r0 � (vT
j , 0)T ∈ rays(R). Thus, in this case, by replacing the

ray rj by r0 in (11), we again obtain

(vT, emax)T − ρjrj + ρjr0 � (vT, emax − ρjej )T ∈ R.

In both cases, as ρj > 0 and ej < 0, emax − ρjej > emax, contradicting the maximality of emax. Thus we must
have ej � 0 so that rj ∈ GR. As the choice of 1 � j � r was arbitrary, {r1, . . . , rr} ⊆ GR.

For all 1 � i � p, let pi � (vT
i , ei)T. Suppose that, for some 1 � j � p, we have ej < 0. Then, as R is an

ε-polyhedron, by condition (3) of Definition 5.2, p0 � (vT
j , 0)T ∈ R. Replacing the point pj by p0 in (11), we

would obtain

(vT, emax)T − πjpj + πjp0 � (vT, emax − πjej )T ∈ R,

where, since πj > 0, emax − πjej > emax, contradicting the maximality of emax. Hence, for all 1 � i � p,
we have ei � 0. Now suppose that, for some 1 � j � p, we have ej � 0 and there exists e+

j > 0 such that
p+

j � (vT
j , e

+
j )T ∈ R. Replacing the point pj by p+

j in (11), we would obtain

(vT, emax)T − πjpj + πjp
+
j � (vT, emax + πje

+
j )T ∈ R,

where since πj > 0, emax +πje
+
j > emax, again contradicting the maximality of emax. It follows that, for all 1 � i �

p, the pointpi ∈ GP , if ei > 0, andpi ∈ C ′, otherwise. Thus, (vT, emax)T ∈ gen
(
(GR, GP ∪C ′)

)
. �

Proof of Proposition 5.5. Let G � (R, P ) and gen enc(G) � (R1, P1, C1) be the corresponding extended generator
system, where R1 � {r1, . . . , rr}, P1 � {p1, . . . , pp}, and C1 � {c1, . . . , cc}.

Suppose first that [[R]] � ∅. Then, by Definition 5.4, con
(
con enc(C)

) � ∅. Also, by Definition 5.1, R ⊆
con

({ε � 0}) so that, by Definition 5.4, P1 � ∅ and gen((R1, P1, C1)
) � ∅. Thus (5) holds.

Suppose now that [[R]] �� ∅. We will first prove that con
(
con enc(C)

) ⊆ [[R]] and gen
(
gen enc(G)

) ⊆ [[R]]. To
this end, we assume that one of the following holds:

v ∈ con
(
con enc(C)

)
, (12)

v ∈ gen
(
gen enc(G)

)
, (13)

and, in each case, we show that there exists ev > 0 such that (vT, ev)T ∈ R so that, by Definition 5.1, we obtain
v ∈ [[R]].

Suppose that (12) holds. By Definition 5.2, the set C> ∪Cε is non-empty so that, as the value of the ε coefficient
in each constraint in the set is non-zero, the set

{
e ∈ R

∣
∣
∣ e � −s−1(〈a, v〉 − b

)
,
(〈a, x〉 + s · ε � b

) ∈ C> ∪ Cε

}

is also non-empty. Let ev be the least element of this set. Suppose β � (〈a, x〉 + s · ε � b
) ∈ C> ∪ Cε . By

Definition 5.4, if β ∈ C>, then
(〈a, x〉 > b

) ∈ con enc(C) so that, as (12) holds, 〈a, v〉 > b. On the other hand,
if β ∈ Cε then a � 0 and, as [[R]] is non-empty, by Definition 5.2, b < 0. Thus, in both cases 〈a, v〉 − b > 0
so that, as s < 0, −s−1

(〈a, v〉 − b
)

> 0. It follows that ev > 0. For each
(〈a, x〉 + 0 · ε � b

) ∈ C�, for some
�� ∈ {�, >}, the constraint

(〈a, x〉 �� b
) ∈ con enc(C) so that, by (12), 〈a, v〉 � b holds. Hence (vT, ev)T satisfies

all the constraints in C�. It follows that (vT, ev)T satisfies every constraint in C> ∪ C� ∪ Cε . Reasoning toward a
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contradiction, suppose that (vT, ev)T /∈ R. As [[R]] �� ∅, by Definition 5.1, there exists (wT, ew)T ∈ R such that
ew > 0; in particular, (wT, ew)T satisfies all constraints in C. Thus there exists a point (wT

0, e0)T ∈ R which lies on
the line segment joining (wT, ew)T and (vT, ev)T and saturates a constraint

β ′ � (〈a′, x〉 + s ′ · ε � b′) ∈ C \ (C> ∪ C� ∪ Cε).

Thus 〈a′, w0〉 + s ′ · e0 � b′. However, since s ′ > 0 and e0 > 0, 〈a′, w0〉 < b′ so that (wT
0, 0)T /∈ R, contradicting

condition (3) of Definition 5.2. Thus (vT, ev)T ∈ R.
Suppose next that (13) holds. By definition of function ‘gen’ in Theorem 4.4,

v �
r∑

i�1

ρiri +
p∑

i�1

πipi +
c∑

i�1

γici

where p > 0, {r1, . . . , rr} ⊆ R1, {p1, . . . , pp} ⊆ P1, {c1, . . . , cc} ⊆ C1, ρ ∈ R
r
+, π ∈ R

p
+ \ {0}, γ ∈ R

c
+ and∑p

i�1 πi +
∑c

i�1 γi � 1. By Definition 5.4, for some e1, . . . , ep > 0,
{

(rT
1 , 0)T, . . . , (rT

r , 0)T
} ⊆ R,

{
(pT

1, e1)T, . . . , (pT
p, ep)T

} ∪ {
(cT

1, 0)T, . . . , (cT
c, 0)T

} ⊆ P.

Thus, letting

(vT, ev)T �
r∑

i�1

ρi(rT
i , 0)T +

p∑

i�1

πi(pT
i , ei)T +

c∑

i�1

γi(cT
i , 0)T

we obtain (vT, ev)T ∈ gen(G) � R. Since p > 0 and π �� 0, we also obtain ev > 0.
We now prove that [[R]] ⊆ con

(
con enc(C)

)
and [[R]] ⊆ gen

(
gen enc(G)

)
. To this end, let (vT, e)T ∈ R, where

e > 0; since R is an ε-polyhedron, by condition (2) of Definition 5.2, the ε dimension is bounded from above
and thus there exists a value emax > 0 such that (vT, emax)T ∈ R and, for all e′ > emax, (vT, e′)T /∈ R. We show that
both (12) and (13) hold.

Suppose that β ′ � (〈a, x〉 �� b
) ∈ con enc(C), where �� ∈ {�, >}. Then, by Definition 5.4, there exists s � 0

such that β � (〈a, x〉 + s · ε � b
) ∈ C. Since (vT, emax)T ∈ R, then 〈a, v〉 + s · emax � b so that, as emax > 0 holds,

we obtain 〈a, v〉 � b. Moreover, if �� ∈ {>}, then s < 0 and we obtain 〈a, v〉 > b. Thus, for any �� ∈ {�, >}, v
satisfies β ′. As β ′ ∈ con enc(C) was chosen arbitrarily, (12) holds.

We next prove (13). Since emax was chosen to be maximal for v, we can apply Lemma A.4, so that (vT, emax)T ∈
gen

(
(GR, GP ∪ C ′)

)
, where

C ′ � {
(cT, 0)T ∈ GC

∣
∣ ∀e′ ∈ R : (cT, e′)T /∈ GP

}
.

By definition of ‘gen’, we obtain

(vT, emax)T �
r∑

i�1

ρi(rT
i , 0)T +

p∑

i�1

πi(pT
i , ei)T +

c∑

i�1

γi(cT
i , 0)T;

where
{

(rT
1 , 0)T, . . . , (rT

r , 0)T
} ⊆ GR,

{
(pT

1, e1)T, . . . , (pT
p, ep)T

} ⊆ GP ,
{

(cT
1, 0)T, . . . , (cT

c, 0)T
} ⊆ C ′,

ρ ∈ R
r
+, π ∈ R

p
+ , γ ∈ R

c
+ and

∑p

i�1 πi +
∑c

i�1 γi � 1. As emax > 0, we obtain p > 0 and π �� 0. By Definition 5.4,
{r1, . . . , rr} ⊆ R1, {p1, . . . , pp} ⊆ P1 and {c1, . . . , cc} ⊆ C1 so that

v �
r∑

i�1

ρiri +
p∑

i�1

πipi +
c∑

i�1

γici

and hencev ∈ gen
(
(R1, P1, C1)

)
. Thus (13) holds. �

A.3. Proofs of the results stated in Section 5.1

Propositions 5.8 and 5.11 are corollaries of the following two lemmas which, for technical reasons, recombine
the four relations to be proved.
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Lemma A.5 Let (C, G) ≡ P ∈ Pn. Then con
(
con reprC(C)

)
�C P and con

(
con reprG(C)

)
�G P .

Proof. We first show that, for any Y ∈ {C, G},
con(C) � con

(
con enc

(
con reprY (C)

))
. (14)

Let C1 � con reprY (C) and C2 � con enc(C1). Let β � (〈a, x〉 �� b
) ∈ C, for some �� ∈ {�, >}. If �� ∈ {>},

then, by Definitions 5.7 and 5.10,
(〈a, x〉 − 1 · ε � b

) ∈ C1 and hence, by Definition 5.4,
(〈a, x〉 > b

) ∈ C2. If
otherwise �� ∈ {�}, then, by Definitions 5.7 and 5.10,

(〈a, x〉+ 0 · ε � b
) ∈ C1 and hence, by Definition 5.4, either(〈a, x〉 � b

) ∈ C2 or
(〈a, x〉 > b

) ∈ C2. Thus β is satisfied by all the points in con(C2). As β was an arbitrary
constraint in C, we obtain con(C2) ⊆ con(C).

Now let β � (〈a, x〉 �� b
) ∈ C2, for some �� ∈ {�, >}. If �� ∈ {>}, then

(〈a, x〉 + s · ε � b
) ∈ C1, where s < 0.

By Definitions 5.7 and 5.10,
(〈a, x〉 > b

) ∈ C. If �� ∈ {�}, then, by Definition 5.4,
(〈a, x〉 + 0 · ε � b

) ∈ C1. Thus,
by Definitions 5.7 and 5.10, either

(〈a, x〉 � b
) ∈ C or

(〈a, x〉 > b
) ∈ C. Thus β is satisfied by all the points in

con(C). As β was an arbitrary constraint in C2, we obtain the other inclusion con(C) ⊆ con(C2). Thus (14) holds.
As a consequence, by Proposition 5.5, we have con(C1) �ε con(C).

Suppose now that Y � C. Then, by Definition 5.7, con(C1) ⊆ con
({ε � 0}) so that, by Definition 5.6, con(C1)

is a C-ε-polyhedron. Otherwise, suppose that Y � G. If con(C1) � ∅ then, by Definition 5.9, it is a G-ε-polyhe-
dron. Otherwise, let (vT, e)T ∈ con(C1) and consider β ′ ∈ C1. By Definition 5.10, either β ′ � (ε � 1) or, for some
a ∈ R

n \ {0}, b ∈ R and s ∈ {0, −1}, β ′ � (〈a, x〉 + s · ε � b
)
. Thus, for all ρ ∈ R+, (vT, e′)T � (vT, e)T + ρ(−eε)

satisfies β ′, so that −eε is a ray in con
({β ′}). As the choice of β ′ was arbitrary, −eε ∈ rays

(
con(C1)

)
so that, by

Definition 5.9, con(C1) is a G-ε-polyhedron. �
Lemma A.6 Let (C, G) ≡ P ∈ Pn. Then gen

(
gen reprC(G)

)
�C P and gen

(
gen reprG(G)

)
�G P .

Proof. We first show that for any Y ∈ {C, G},
gen(G) � gen

(
gen enc

(
gen reprY (G)

))
. (15)

Let G � (R, P, C), G1 � gen reprY (G) � (R1, P1) and G2 � gen enc(G1) � (R2, P2, C2). Suppose first that
v ∈ R ∪ P ∪ C. If v ∈ R, then, by Definitions 5.7 and 5.10, (vT, 0)T ∈ R1 and hence, by Definition 5.4, v ∈ R2.
If v ∈ P , then, by Definitions 5.7 and 5.10, (vT, 1)T ∈ P1 and hence, by Definition 5.4, v ∈ P2. If v ∈ C, then,
by Definitions 5.7 and 5.10, (vT, 0)T ∈ P1 and hence, by Definition 5.4, v ∈ P2 ∪ C2. Therefore, by definition of
‘gen’, we obtain gen(G) ⊆ gen(G2).

Now suppose v ∈ R2 ∪ P2 ∪ C2. If v ∈ R2, then, by Definition 5.4, (vT, 0)T ∈ R1. By Definitions 5.7 and 5.10,
v ∈ R. If v ∈ P2, then, by Definition 5.4, (vT, e)T ∈ P1, for some e > 0. Thus, by Definitions 5.7 and 5.10, v ∈ P .
If v ∈ C2, then, by Definition 5.4, (vT, e)T ∈ P1, for some e � 0. Thus, by Definitions 5.7 and 5.10, v ∈ P ∪ C.
Thus, by definition of ‘gen’, we obtain the other inclusion gen(G2) ⊆ gen(G) and (15) holds. As a consequence,
by Proposition 5.5, we have gen(G1) �ε gen(G).

Suppose now that Y � G. Then, by Definition 5.10, −eε ∈ R1 so that, by Definition 5.9, gen(G1) is a G-
ε-polyhedron. Otherwise, suppose that Y � C. By Definition 5.7, for each vector (vT

1, e1)T ∈ R1 ∪ P1, we have
e1 � 0; this implies that, for any point (vT, e)T ∈ gen(G1), we still have e � 0. Thus gen(G1) ⊆ con

({ε � 0}) so
that, by Definition 5.6, gen(G1) is a C-ε-polyhedron. �
Proof of Proposition 5.8. The relation con

(
con reprC(C)

)
�C P holds by Lemma A.5 whereas the relation

gen
(
gen reprC(G)

)
�C P holds by Lemma A.6. �

Proof of Proposition 5.11. The relation con
(
con reprG(C)

)
�G P holds by Lemma A.5 whereas the relation

gen
(
gen reprG(G)

)
�G P . holds by Lemma A.6. �

We are now ready to provide the formal proof of the generalization of Minkowski and Weyl’s theorems for
the domain of NNC polyhedra.

Proof of Theorem 4.4. To prove the ‘only if ’ branch, letting P ∈ Pn we will prove that there exists an extended
generator system G � (R, P, C) such that P � gen(G). If P � ∅, then we simply take G � (∅, ∅, ∅). Otherwise,
let P �� ∅. By definition of NNC polyhedron, there exists a mixed constraint system C such that P � con(C).
Let R ∈ CPn+1 be such that R �ε P . Note that we can always find such an ε-polyhedron for P ; e.g., by Prop-
osition 5.8, we can consider con

(
con reprC(C)

)
or, by Proposition 5.11, we can consider con

(
con reprG(C)

)
.
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By Theorem 3.2, there exists a (standard) generator system G ′ � (R′, P ′) such that R � gen(G ′). By defining
G � gen enc(G ′), the thesis P � [[R]] � gen(G) follows from Proposition 5.5.

To prove the ‘if ’ branch, letting G � (R, P, C) be an extended generator system, we will show that P � gen(G)
is an NNC polyhedron. If P � ∅, then we obtain P � ∅ and the empty set is an NNC polyhedron. Otherwise,
let P �� ∅, so that P �� ∅. Let R ∈ CPn+1 be such that R �ε P . As said above, we can always find such an
ε-polyhedron for P ; e.g., by Proposition 5.8, we can consider gen

(
gen reprC(G)

)
or, by Proposition 5.11, we can

consider gen
(
gen reprG(G)

)
. By Theorem 3.2, there exists a constraint system C ′, containing non-strict linear

inequalities only, such that R � con(C ′). By defining C � con enc(C ′), the thesis P � [[R]] � con(C) follows from
Proposition 5.5. �

A.4. Proofs of the results stated in Section 5.2

The proof of Proposition 5.12 requires a number of additional preliminary results.
For any ε-polyhedron, closure points in the NNC polyhedron are represented by points lying on the hyperplane

defined by ε � 0.

Lemma A.7 Let R ∈ CPn+1 be such that R �ε P �� ∅. Then C(P) � {
v ∈ R

n
∣
∣ (vT, 0)T ∈ R}

.

Proof. Letting P ′ � {
v ∈ R

n
∣
∣ (vT, 0)T ∈ R}

, we will prove P ′ � C(P).
First, we show that P ′ ⊆ C(P). Let v ∈ P ′, so that (vT, 0)T ∈ R, and consider any point p ∈ P (note that

such a point exists by hypothesis). Then, since R �ε P , there exists e > 0 such that (pT, e)T ∈ R. Since R is a
convex set, for all σ ∈ R such that 0 < σ < 1 we have

σ (pT, e)T + (1 − σ )(vT, 0)T � (
σpT + (1 − σ )vT, σe

)T ∈ R.

Since σe > 0, by Definition 5.1, we obtain σp + (1−σ )v ∈ P . As the choices of p ∈ P and σ were both arbitrary,
we can apply Proposition 4.3 and conclude v ∈ C(P).

Now we show that C(P) ⊆ P ′. Let v ∈ C(P) and, for all i ∈ N such that i > 1, define σi � 1
i
, so that

0 < σi < 1. Then, by Proposition 4.3, for all p ∈ P we have vi � σip + (1−σi)v ∈ P. Since R �ε P , by applying
the fact that P � [[R]] and then property (3) of Definition 5.2, we obtain (vT

i , 0)T ∈ R. If p � v, then vi � v, so
that the thesis holds. Otherwise, let p �� v. For any open ball of R

n+1 centered in (vT, 0)T and having radius δ > 0,
there exists j ∈ N such that σj < δ; thus, (vT

j , 0)T ∈ R belongs to the ball and, as the choice of δ is arbitrary,
(vT, 0)T ∈ C(R). However, R ∈ CPn+1 is a topologically closed set, so that R � C(R) and (vT, 0)T ∈ R. Hence,
v ∈ P ′, completing the proof. �
Lemma A.8 Let R ∈ CPn+1 be such that R �ε P �� ∅. Then r ∈ rays(P) if and only if (rT, 0)T ∈ rays(R).

Proof. Assuming that r ∈ rays(P), let v ∈ P and ρ ∈ R+. Then v +ρr ∈ P . By Definition 5.1, for some e1, e2 > 0,
we have (vT, e1)T ∈ R and

(
(v + ρr)T, e2

)T ∈ R and hence, by condition (3) of Definition 5.2, (vT, 0)T ∈ R and
(
(v + ρr)T, 0

)T ∈ R. Thus (vT, 0)T + ρ(rT, 0)T ∈ R. As this holds for all ρ ∈ R+, (rT, 0)T is a ray of R.
To prove the other direction, assume that (rT, 0)T is a ray of R. Let v ∈ P and ρ ∈ R+. By Definition 5.1, for

some e > 0, we have (vT, e)T ∈ R; by assumption, (vT, e)T +ρ(rT, 0)T ∈ R and hence, by Definition 5.1, v+ρr ∈ P ,
proving that r ∈ rays(P). �
Lemma A.9 Let R � gen

(
(R, P )

) ∈ CPn+1 be such that R �ε P �� ∅. Let also

R′ � {
(rT, 0)T

∣
∣ (rT, e)T ∈ R, r �� 0

} ∪ { −eε

∣
∣ (rT, e)T ∈ R, e < 0

}

and R′ � gen
(
(R′, P )

)
. Then R′ �ε P .

Proof. Suppose that for all (rT, e)T ∈ R we have e � 0. Then, the result holds by observing that, in such a case,
we obtain R′ � R and thus R′ � R. Otherwise, suppose that there exists (rT, e)T ∈ R such that e �� 0. By
Lemma A.3, it holds e < 0. It follows from the hypothesis that (−eε) ∈ R′.

We first show that [[R′]] � P by proving the two inclusions separately.
Consider a ray (rT, e)T ∈ R. If e � 0, then r �� 0 so that, by hypothesis, (rT, e)T ∈ R′. If e < 0 and r � 0, then

we can write (rT, e)T � −e(−eε), where (−eε) ∈ R′ and −e > 0 is a positive factor. Otherwise, if e < 0 and r �� 0,
then, by the hypothesis,

{
(rT, 0)T, −eε

} ⊆ R′ and we can write (rT, e)T � (rT, 0)T − e(−eε). Thus, each element
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of R can be obtained as a non-negative combination of elements of R′, therefore proving that R ⊆ R′ and, by
monotonicity, P ⊆ [[R′]].

To prove the other inclusion, let R′′ � R′ \ {−eε} and R′′ � gen
(
(R′′, P )

)
. For each ray (rT, 0)T ∈ R′′, by

hypothesis, we have (rT, e)T ∈ R so that, by Lemma A.2, (rT, 0)T is also a ray of R. Hence, R′′ ⊆ R. By the above
observations, we obtain

∀(pT, e)T ∈ R′ : ∃(pT, e0)T ∈ R, ρ ∈ R+ . (pT, e)T � (pT, e0)T + ρ(−eε). (16)

Let now p ∈ [[R′]], so that there exists (pT, e)T ∈ R′ such that e > 0. By applying (16), we obtain that (pT, e0)T ∈ R,
where e0 � e + ρ > 0, proving that p ∈ [[R]] � P . As the choice of p was arbitrary, [[R′]] ⊆ P .

To complete the proof, we have to show that R′ is an ε-polyhedron. Condition (2) of Definition 5.2 easily
follows from (16), because R is an ε-polyhedron: namely, we can consider the same ε upper bound constraint
ε � δ used for R. To prove condition (3) of Definition 5.2, let (pT, e)T ∈ R′. By (16), there exist (pT, e0)T ∈ R
and ρ ∈ R+ such that (pT, e)T � (pT, e0)T + ρ(−eε). As R is an ε-polyhedron, we also have (pT, 0)T ∈ R. Since we
already observed that R ⊆ R′, this completes the proof. �
Lemma A.10 Let �Y ∈ {�ε, �C, �G}, R1 �Y P1 and R2 �Y P2. Then R1 ∩ R2 �Y P1 ∩ P2.

Proof. We first prove condition (2) of Definition 5.2. Since both R1 and R2 are ε-polyhedra there exist δ1 > 0
and δ2 > 0 such that R1 ⊆ con

({ε � δ1}
)

and R2 ⊆ con
({ε � δ2}

)
. Letting δ � min{δ1, δ2}, we have R1 ∩ R2 ⊆

con
({ε � δ}).
To prove condition (3) of Definition 5.2, let (vT, e)T ∈ R1 ∩ R2. Then, as R1 and R2 are ε-polyhedra,

(vT, 0)T ∈ R1 and (vT, 0)T ∈ R2. Hence (vT, 0)T ∈ R1 ∩ R2.
Having shown that R1 ∩ R2 is an ε-polyhedron, we next show that [[R1 ∩ R2]] � P1 ∩ P2. By hypothesis,

R1 �ε P1 and R2 �ε P2, so that, by Definition 5.2, P1 � [[R1]] and P2 � [[R2]]. By Definition 5.1, we have
to show that v ∈ P1 ∩ P2 if and only if there exists e > 0 such that (vT, e)T ∈ R1 ∩ R2. First, let v ∈ P1 ∩ P2.
Hence, by Definition 5.1, there exist e1, e2 > 0 such that (vT, e1)T ∈ R1 and (vT, e2)T ∈ R2. Suppose, without
loss of generality, that e1 � e2. By condition (3) of Definition 5.2, (vT, 0)T ∈ R2. Thus, since R2 is a convex set,
(vT, e1)T ∈ R2. Hence (vT, e1)T ∈ R1 ∩ R2. Secondly, suppose that there exists e > 0 such that (vT, e)T ∈ R1 ∩ R2.
Then (vT, e)T ∈ R1 and (vT, e)T ∈ R2. By Definition 5.1, v ∈ P1 and v ∈ P2, so that v ∈ P1 ∩ P2. It follows that
[[R1 ∩ R2]] � P1 ∩ P2. By Definition 5.2, R1 ∩ R2 �ε P1 ∩ P2.

We now prove that R1 ∩ R2 is a C-ε-polyhedron when R1 and R2 are C-ε-polyhedra. By Definition 5.6, for
j ∈ {1, 2} we have Rj ⊆ con

({ε � 0}). Thus R1 ∩ R2 ⊆ con
({ε � 0}) so that, by Definition 5.6, R1 ∩ R2 is a

C-ε-polyhedron.
To prove that R1 ∩ R2 is a G-ε-polyhedron when R1 and R2 are G-ε-polyhedra, we consider two subcases.

If R1 ∩ R2 � ∅, then there is nothing to prove. Suppose instead that R1 ∩ R2 �� ∅. Then, by Definition 5.9,
−eε ∈ rays(R1) and −eε ∈ rays(R2). Let v′ ∈ R1 ∩R2 and consider, for any ρ ∈ R+, v′

ρ � v′ +ρ(−eε). As v′ ∈ R1,
v′

ρ ∈ R1 and, as v′ ∈ R2, v′
ρ ∈ R2; hence v′

ρ ∈ R1 ∩R2. As this holds for any ρ ∈ R+, −eε ∈ rays(R1 ∩R2). Thus,
by Definition 5.9, R1 ∩ R2 is a G-ε-polyhedra. �
Lemma A.11 For j ∈ {1, 2}, let Pj � gen

(
(Rj , Pj , Cj )

)
be a non-empty NNC polyhedron. Then x ∈ P1� P2 if

and only if there exist r1 ∈ {0} ∪ rays(P1), r2 ∈ {0} ∪ rays(P2), x1 ∈ C(P1), x2 ∈ C(P2), and 0 � σ � 1 such that
x � r1 + r2 + σx1 + (1 − σ )x2, where (x1 ∈ P1 ∧ σ > 0) ∨ (x2 ∈ P2 ∧ σ < 1).

Proof. For j ∈ {1, 2}, let rj , pj and cj be the cardinalities of Rj , Pj and Cj , respectively. By definition of the
poly-hull operation, P1� P2 � gen

(
(R, P, C)

)
, where R � R1 ∪ R2, P � P1 ∪ P2 and C � C1 ∪ C2, having

cardinalities r, p and c, respectively. (In general, we have r � r1 + r2, p � p1 + p2 and c � c1 + c2, since there
may be generators that occur in both generator systems.)

Suppose first that x ∈ P1� P2. Then, by the definition of function ‘gen’,

x � Rρ + Pπ + Cγ,

where ρ ∈ R
r
+, π ∈ R

p
+ , γ ∈ R

c
+,

∑
π +

∑
γ � 1 and π �� 0. Therefore, we can also rewrite it as

x � R1ρ1 + R2ρ2 + P1π1 + P2π2 + C1γ1 + C2γ2

� R1ρ1 + R2ρ2 + (P1π1 + C1γ1) + (P2π2 + C2γ2),

where ρj ∈ R
rj

+ , πj ∈ R
pj

+ and γj ∈ R
cj

+ , for j ∈ {1, 2}, ∑
π1 +

∑
π2 +

∑
γ1 +

∑
γ2 � 1 and

∑
π1 +

∑
π2 > 0. It

follows that either π1 �� 0 or π2 �� 0.
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For each j ∈ {1, 2}, let rj � Rjρj , so that rj is a non-negative combination of the rays of Pj . Note that
either rj � 0 (e.g., if ρj � 0) or rj ∈ rays(Pj ). If

∑
π1 +

∑
γ1 � 1 (so that π2 � γ2 � 0 and π1 �� 0), then,

by the definition of function ‘gen’, we obtain x1 � P1π1 + C1γ1 ∈ P1. Taking σ � 1, we have 1 − σ � 0, so
that we can take an arbitrary x2 ∈ C(P2) (there must exist one, since P2 �� ∅). Similarly, if

∑
π2 +

∑
γ2 � 1 (so

that π1 � γ1 � 0 and π2 �� 0), we obtain x2 � P2π2 + C2γ2 ∈ P2, so that we can take σ � 0 and an arbitrary
x1 ∈ C(P1). Otherwise, let both

∑
π1 +

∑
γ1 �� 0 and

∑
π2 +

∑
γ2 �� 0. Then, by taking σ � ∑

π1 +
∑

γ1 we have
σ > 0 and 1 − σ � ∑

π2 +
∑

γ2 > 0. Therefore we can define x1 � 1
σ

(P1π1 + C1γ1) and x2 � 1
1−σ

(P2π2 + C2γ2).
Thus x1 ∈ C(P1) and x2 ∈ C(P2). Moreover, by the definition of function ‘gen’, as π1 �� 0 or π2 �� 0, either
x1 ∈ P1 or x2 ∈ P2. Thus, in all cases we obtain

x � r1 + r2 + σx1 + (1 − σ )x2,

with rj ∈ {0} ∪ rays(Pj ) and xj ∈ C(Pj ) for j � {1, 2}, where either x1 ∈ P1 and σ > 0 or x2 ∈ P2 and σ < 1, as
required.

To prove the other direction, suppose that rj ∈ {0} ∪ rays(Pj ) and xj ∈ C(Pj ), for j ∈ {1, 2}, and there exists
0 � σ � 1 such that

x � r1 + r2 + σx1 + (1 − σ )x2,

where either x1 ∈ P1 and σ > 0 or x2 ∈ P2 and σ < 1.
For j ∈ {1, 2}, there exists 	j ∈ R

rj

+ such that rj � Rj	j ; moreover, since xj ∈ C(Pj ), there exist ρj ∈ R
rj

+ ,
πj ∈ R

pj

+ and γj ∈ R
cj

+ such that xj � Rjρj + Pjπj + Cjγj , where
∑

πj +
∑

γj � 1. Thus,

x � R1	1 + R2	2 + σ (R1ρ1 + P1π1 + C1γ1) + (1 − σ )(R2ρ2 + P2π2 + C2γ2)
� R1(	1 + σρ1) + R2

(
	2 + (1 − σ )ρ2

)
+ P1σπ1 + P2(1 − σ )π2 + C1σγ1 + C2(1 − σ )γ2.

Note that 	1 + σρ1 ∈ R
r1
+ , 	2 + (1 −σ )ρ2 ∈ R

r2
+ , and σ

∑
π1 + (1 −σ )

∑
π2 + σ

∑
γ1 + (1 −σ )

∑
γ2 � 1. Moreover,

as either x1 ∈ P1 and σ > 0 or x2 ∈ P2 and σ < 1, we obtain σπ1 �� 0 or (1 − σ )π2 �� 0. Thus, there exist ρ ∈ R
r
+,

π ∈ R
p
+ and γ ∈ R

c
+ such that

∑
π +

∑
γ � 1, π �� 0, and x � Rρ + Pπ + Cγ. Then, by the definition of function

‘gen’, x ∈ P1� P2, completing the proof. �
Lemma A.12 Letting �Y ∈ {�ε, �C, �G}, suppose that R1 �Y P1 �� ∅ and R2 �Y P2 �� ∅. Then R1� R2 �Y

P1� P2.

Proof. For j ∈ {1, 2}, let Pj � gen
(
(Rj , Pj , Cj )

)
, where the three components of the extended generator system

have cardinalities rj , pj and cj , respectively; similarly, let Rj � gen
(
(R′

j , P
′
j )

)
, with cardinalities r ′

j and p′
j , respec-

tively. Note that each Rj ∈ CPn+1 is also an NNC polyhedron in Pn+1. Thus, we can write Rj � gen
(
(R′

j , P
′
j , ∅)

)

and observe that Rj � C(Rj ). By applying Lemma A.11, if (vT, e)T ∈ R1� R2, then for some r ′
1 � (rT

1 , e′
1)T ∈

{0}∪rays(R1), r ′
2 � (rT

2 , e′
2)T ∈ {0}∪rays(R2), v′

1 � (v�
T, e1)T ∈ R1, v′

2 � (v�
T, e2)T ∈ R2, and 0 � σ � 1, we have

(
v
e

)

� r ′
1 + r ′

2 + σv′
1 + (1 − σ )v′

2 �
(

r1
e′

1

)

+
(

r2
e′

2

)

+
(

σv1 + (1 − σ )v2
σe1 + (1 − σ )e2

)

. (17)

For each j ∈ {1, 2}, since r ′
j ∈ {0} ∪ rays(Rj ), by Lemma A.3 we obtain e′

j � 0.
We first show that R1� R2 is an ε-polyhedron. As R1, R2 are ε-polyhedra, by condition (2) of Definition 5.2

there exist δ1, δ2 > 0 such that R1 ⊆ con
({ε � δ1}

)
and R2 ⊆ con

({ε � δ2}
)
. Suppose that (vT, e)T ∈ R1� R2

and rewrite it according to (17). By letting δ � max{δ1, δ2}, we obtain e1 � δ and e2 � δ. Since e′
1 � 0 and e′

2 � 0,
we obtain e � σe1 + (1 − σ )e2 + e′

1 + e′
2 � δ, so that R1� R2 satisfies condition (2) of Definition 5.2.

To prove condition (3) of Definition 5.2, suppose that (vT, e)T ∈ R1� R2, so that we can rewrite it accord-
ing to (17). For each j ∈ {1, 2}, as Rj is an ε-polyhedron, by Lemma A.2, (rT

j , 0)T ∈ {0} ∪ rays(Rj ); also, by
condition (3) of Definition 5.2, (vT

j , 0)T ∈ Rj . Thus, by applying again Lemma A.11, we obtain
(

v
0

)

�
(

r1
0

)

+
(

r2
0

)

+ σ

(
v1
0

)

+ (1 − σ )
(

v2
0

)

∈ R1� R2.

Having shown that R1� R2 is an ε-polyhedron, we next show that it represents P1� P2. By hypothesis,
R1 �ε P1 and R2 �ε P2, so that, by Definition 5.2, P1 � [[R1]] and P2 � [[R2]]. By Definition 5.1, we have to
prove that v ∈ P1� P2 if and only if there exists e > 0 such that (vT, e)T ∈ R1� R2. First suppose that v ∈ P1� P2.
Then, by Lemma A.11, there exist rj ∈ {0} ∪ rays(Pj ) and vj ∈ C(Pj ), for each j ∈ {1, 2}, and 0 � σ � 1 such
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that v � r1 + r2 + σv1 + (1 − σ )v2, where v1 ∈ P1 and σ > 0 or v2 ∈ P2 and σ < 1. Suppose, without loss of
generality, that v1 ∈ P1 and σ > 0. By Definition 5.1, there exists e1 > 0 such that (vT

1, e1)T ∈ R1. As R2 �ε P2
and v2 ∈ C(P2), by Lemma A.7, we obtain (vT

2, 0)T ∈ R2. Moreover, by Lemma A.8, for j ∈ {1, 2} we have
(rT

j , 0)T ∈ {0} ∪ rays(Rj ). Therefore, by letting
(

v
e1

)

�
(

r1
0

)

+
(

r2
0

)

+ σ

(
v1
e1

)

+ (1 − σ )
(

v2
0

)

,

we obtain, again by Lemma A.11, (vT, e1)T ∈ R1� R2, where e1 > 0 as required. Secondly, suppose that there
exists e > 0 such that (vT, e)T ∈ R1� R2, so that we can rewrite it according to (17). As e > 0 and σ � 0,
either e1 > 0 and σ > 0 or e2 > 0 and σ < 1. Without loss of generality, we assume that e1 > 0 and σ > 0.
By Definition 5.1, we have v1 ∈ P1. By hypothesis, R2 �ε P2. Thus, as (vT

2, e2)T ∈ R2 for some e2 ∈ R, by
condition (3) of Definition 5.2, (vT

2, 0)T ∈ R2. Therefore, by Lemma A.7, v2 ∈ C(P2). Thus, by Lemma A.11,
v � σv1 + (1 − σ )v2 + r1 + r2 ∈ P1� P2. Therefore R1� R2 �ε P1� P2.

To prove that R1� R2 is a C-ε-polyhedron when R1 and R2 are C-ε-polyhedra, we have to show that
R1� R2 ⊆ con

({ε � 0}). Let (vT, e)T ∈ R1� R2, so that we can rewrite it according to (17). As R1 and R2
are both C-ε-representations, we obtain e1 � 0 and e2 � 0; moreover, by Lemma A.3 we have e′

1 � 0 and e′
2 � 0.

Thus e � σe1 + (1 − σ )e2 + e′
1 + e′

2 satisfies e � 0.
To prove that R1� R2 is a G-ε-polyhedron when R1 and R2 are G-ε-polyhedra, since R1� R2 �� ∅, we have

to show that −eε is a ray in R1� R2. To this end, it is sufficient to observe that all the rays of R1 are also rays of
R1� R2 and −eε is a ray of R1, because R1 is a non-empty G-ε-polyhedron. �

Lemma A.13 Let �Y ∈ {�ε, �C, �G} and suppose that R �Y P . Let also f
def� λx ∈ R

n.Ax + b be any affine
transformation defined on Pn and define

g
def� λ

(
x
ε

)

∈ R
n+1.

(
A 0
0T 1

) (
x
ε

)

+
(

b
0

)

to be the corresponding affine transformation on CPn+1. Then g(R) �Y f (P).

Proof. Observe that, by definition of g, for any (vT, e)T ∈ R we have g
(
(vT, e)T

) � (
f (v)T, e

)T
. Thus the coefficient

of the ε coordinate is not affected at all by the affine transformation, so that conditions (2) and (3) of Definition 5.2
and f (P) � [[g(R)]] follow trivially from the hypothesis. Thus, g(R) �ε f (P).

To complete the proof, we have to consider the cases when �Y ∈ {�C, �G}. First note that, if R � ∅, then
also g(R) � ∅ and there is nothing to prove. Now assume R �� ∅. If R is a C-ε-polyhedron, then all the points
in R satisfy the constraint ε � 0. Since the ε coordinates are unaffected by the affine transformation, all the
points in g(R) satisfy the constraint ε � 0, so that g(R) is a C-ε-polyhedron too. Otherwise, R is a non-empty
G-ε-polyhedron, so that −eε ∈ rays(R). We have g(R) �� ∅ and the ray is unaffected by the affine transformation,
so that −eε ∈ rays

(
g(R)

)
. �

Proof of Proposition 5.12. Items (1), (2) and (3) follow from Lemmas A.10, A.12 and A.13, respectively. �

A.5. Proofs of the results stated in Section 6

The proof of Proposition 6.3 requires a few preliminary lemmas.

Lemma A.14 Let R � con(C) ∈ CPn+1 be a non-empty ε-polyhedron. Then −eε ∈ rays(R) if and only if
C � C> ∪ C� ∪ Cε .

Proof. Suppose that −eε ∈ rays(R). Let (vT, e)T ∈ R. Then, for all ρ ∈ R+, (vT, e)T + ρ(−eε) ∈ R. If β �(〈a, x〉 + s · ε � b
) ∈ C, we have 〈a, v〉 + s · (e − ρ) � b for all ρ ∈ R+. Thus s � 0. Since our choice of β ∈ C was

arbitrary, we obtain C � C> ∪ C� ∪ Cε .
Now suppose C � C>∪C�∪Cε . This means that, if β � (〈a, x〉+s ·ε � b

) ∈ C, then s � 0. As R is non-empty,
there exists a point p � (vT, e)T ∈ R. Also, since s � 0, for all ρ ∈ R+ we have 〈a, v〉 + s · (e − ρ) � b. As our
choice of β ∈ C is arbitrary, p +ρ(−eε) satisfies all the constraints in C and is therefore in R. Thus −eε ∈ rays(R),
because also the choice of p ∈ R was arbitrary. �
Lemma A.15 Let R � con(C) ∈ CPn+1 be such that R �ε P �� ∅. Let also C ′ � C> ∪ C� ∪ Cε ∪ {ε � 0} and
C ′′ � C ∪ {ε � 0}. Then con(C ′) �ε P and con(C ′) � con(C ′′).



252 R. Bagnara et al.

Proof. Let R′ � con(C ′), R′′ � con(C ′′), and C∗ � C \ (C> ∪ C� ∪ Cε). Note that, by Definition 5.1 we have
P � [[R]] � [[R′′]]. Moreover, by Proposition 5.3, since R is an ε-polyhedron, R′′ is also an ε-polyhedron. It
remains for us to prove that R′ � R′′. Observe that, since C ′ ⊆ C ′′, R′′ ⊆ R′.

We now show that R′ ⊆ R′′. Let p � (vT, e)T ∈ R′ so that e � 0. By hypothesis, P �� ∅ so that, as P � [[R′′]],
by Definition 5.1, there exists a point q � (wT, ew)T ∈ R′′ such that ew > 0. By hypothesis, both p and q must
satisfy every constraint in C ′ � C>∪C�∪Cε ∪{ε � 0}. We show that p also satisfies all the constraints in C∗, so that
p ∈ R′′. Suppose, by contraposition, that p does not satisfy a constraint in C∗. Let

{
σp + (1 −σ )q

∣
∣ 0 � σ � 1

}

be the set of points lying on the segment between p and q. As p /∈ R′′ and q ∈ R′′, there must exists a min-
imum value 0 � τ < 1 such that p′ � (vτ , eτ ) � τp + (1 − τ )q ∈ R′′, so that p′ saturates some constraint
β∗ � (〈a, x〉 + s · ε � b

) ∈ C∗. Note that, as e � 0, ew > 0 and τ < 1, we have eτ > 0. Also, by definition of
C∗, we have s > 0. As a consequence, (vT

τ , 0)T does not satisfy β∗, which implies (vT
τ , 0)T /∈ R′′. However, since R′′

is an ε-polyhedron, this contradicts condition (3) of Definition 5.2. Thus p ∈ R′′. As the choice of p ∈ R′ was
arbitrary, R′ ⊆ R′′. �

Lemma A.16 Let R � con(C) ∈ CPn+1 be an ε-polyhedron. Let p ∈ R be such that p � (vT, e)T, where e > 0,
and consider p0 � (vT, 0)T. Then sat con(p0, C�) � sat con(p, C�) and sat con(p0, C> ∪ Cε) � ∅.

Proof. Let β ∈ C�, so that β � (〈a, x〉 + 0 · ε � b
)
; then β ∈ sat con(p, C�) if and only if β ∈ sat con(p0, C�),

so that sat con(p0, C�) � sat con(p, C�). Consider now β ∈ C>, so that β � (〈a, x〉 + s · ε � b
)

where s < 0;
since e > 0, we obtain 〈a, v〉 > b, so that p0 satisfies but does not saturate β; thus sat con(p0, C>) � ∅. Consider
now β ∈ Cε , so that β � (ε � δ) for some δ > 0; then it follows that sat con(p0, Cε) � ∅. �

Lemma A.17 Let (C, G) ≡ R ∈ CPn+1 be an ε-polyhedron. Let β ∈ C> be such that β � (〈a, x〉 + s · ε � b
)

and
consider β0 � (〈a, x〉 + 0 · ε � b

)
. Then sat gen

(
β0, (GR, GC)

) � sat gen
(
β, (GR, GC)

)
.

Proof. If p � (vT, e)T ∈ GR ∪ GC , then e � 0. Thus 〈a, v〉 + s · e � 0 if and only if 〈a, v〉 + 0 · e � 0. Similarly,
〈a, v〉 + s · e � b if and only if 〈a, v〉 + 0 · e � b. Thus, if p is a ray encoding or p is a closure point encoding, p
saturates β if and only if it saturates β0. As p is an arbitrary ray or closure point encoding in GR ∪ GC , we have
the required result. �

Lemma A.18 Let (C, G) ≡ R ∈ CPn+1 be an ε-polyhedron. Let also β ∈ C> be saturated by the point (vT, 0)T ∈ R.
Then (vT, 0)T ∈ gen

(
(GR, GC)

)
.

Proof. Let G � (R, P ) and β � (〈a, x〉 + s · ε � b
)
. Then, as β ∈ C>, s < 0. Since (vT, 0)T ∈ R saturates β, it

holds 〈a, v〉 � b, so that for all e > 0 we have (vT, e)T /∈ R. Therefore we can apply Lemma A.4, taking emax � 0,
so that we obtain (vT, 0)T ∈ gen

(
(GR, GP ∪ GC)

)
. By definition of ‘gen’, we conclude (vT, 0)T ∈ gen

(
(GR, GC)

)
. �

Lemma A.19 Let �Y ∈ {�ε, �C, �G}. Let (C, G) ≡ R ∈ CPn+1 and P ∈ Pn be such that R �Y P �� ∅. If β is a
strongly ε-redundant constraint in C, then con(C ′) �Y P , where C ′ � (C \ {β}) ∪ {ε � 1}.
Proof. Suppose that β � (〈a, x〉 + s · ε � b

)
is strongly ε-redundant in C so that, by Definition 6.2, we have

β ∈ C>, a �� 0 and s < 0. Let R′ � con(C ′). As P �� ∅, by Definition 5.1, there exists (wT, e′
w)T ∈ R for some

e′
w > 0. As R is an ε-polyhedron, by condition (3) of Definition 5.2, (wT, 0)T ∈ R. Thus, as R is a convex set, for

some 0 < ew � 1, (wT, ew)T ∈ R. Since ew � 1, we also have (wT, ew)T ∈ R′. We show that, for all (vT, e)T ∈ R′ \R,

e � 0, (18)
(vT, 0)T ∈ R, (19)
(vT, 0)T does not saturate β. (20)

We first prove (18). To do this we assume that e < 0 and derive a contradiction. Consider the line segment
between (vT, e)T ∈ R′ \ R and (wT, 0)T ∈ R′ ∩ R. Then there must be a point (vT

1, e1)T ∈ R on this segment
that saturates β. As (wT, ew)T satisfies β, ew > 0 and s < 0, (wT, 0)T does not saturate β so that v1 �� w and
e1 < 0. Thus (vT

1, 0)T does not satisfy β and hence (vT
1, 0)T /∈ R; contradicting condition (3) of Definition 5.2.

Therefore (18) holds.
We next show that (19) and (20) hold. Consider the closed segment between (vT, e)T ∈ R′ \ R and (wT, ew)T ∈

R′ ∩ R. As R′ is a convex set, for each 0 � σ � 1, we have (vT
σ , eσ )T ∈ R′, where

(vT
σ , eσ )T � σ (vT, e)T + (1 − σ )(wT, ew)T. (21)
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Let τ be the maximum value between 0 and 1 such that (vT
τ , 0)T ∈ R. We now show that eτ > 0. Since ew > 0

and, by (18), e � 0, we obtain eτ � 0. Moreover, it cannot be eτ � 0, since otherwise we would have e � 0 and
τ � 1, contradicting the assumption that (vT, e)T /∈ R. It follows that eτ > 0. Suppose that (vT

τ , 0)T saturates β.
Then, by Lemma A.18, (vT

τ , 0)T ∈ gen
(
(GR, GC)

)
so that sat gen

(
β, (GR, GC)

) �� (GR, ∅). As a consequence, since
by hypothesis β is strongly ε-redundant in C, by Definition 6.2 there exists β ′ � (〈a′, x〉 + s ′ · ε � b′) ∈ C ′

> such
that

sat gen
(
β, (GR, GC)

) � sat gen(β ′, G).

Thus the point (vT
τ , 0)T also saturates β ′. Since (vT, e)T and (wT, ew)T both satisfy β ′, we can see that, using (21),

(vT
τ , eτ )T, also satisfies β ′ so that, as s ′ < 0 and 〈a′, vτ 〉 � 0, we have eτ � 0 which is a contradiction. Thus

(vT
τ , 0)T does not saturate β. For all τ < σ � 1, (vT

σ , 0)T /∈ R so that, as R is an ε-polyhedron, by condition (3)
of Definition 5.2, (vT

σ , eσ )T /∈ R. Thus, as (vT
τ , 0)T ∈ R does not saturate β, we must have τ � 1. Hence, by (21),

(vT, 0)T � (vT
τ , 0)T and therefore (19) and (20) hold.

To prove R′ �ε P , we show that R′ is an ε-polyhedron and [[R]] � [[R′]].
By taking δ � 1, the inclusion R′ ⊆ con

({ε � δ}) holds trivially, because the constraint ε � 1 has been
explicitly added in C ′. Thus condition (2) of Definition 5.2 holds. By (19), if (vT, e)T is an arbitrary point in R′, we
have (vT, 0)T ∈ R. Since (vT, 0)T obviously satisfies the constraint ε � 1, we have (vT, 0)T ∈ R′, so that condition (3)
of Definition 5.2 also holds and R′ is an ε-polyhedron.

To prove the inclusion [[R]] ⊆ [[R′]], let v ∈ [[R]]. Thus, there exists e > 0 such that (vT, e)T ∈ R. By condi-
tion (3) of Definition 5.2, we also have (vT, 0)T ∈ R so that, as R is a convex set, there exists 0 < e′ � 1 such
that (vT, e′)T ∈ R. Note that (vT, e′)T satisfies all the constraints in C and it also satisfies the constraint ε � 1; as
a consequence, (vT, e′)T ∈ R′ and v ∈ [[R′]], as required.

To show the other inclusion [[R′]] ⊆ [[R]], let v ∈ [[R′]]. Thus, there exists e > 0 such that (vT, e)T ∈ R′. By (19)

and (20), we know that 〈a, v〉 > b. Thus, by letting e′ � min
({

e, b−〈a,v〉
s

})
, we obtain e′ > 0 and (vT, e′)T ∈ R.

Thus v ∈ [[R]].
Suppose next that R �C P . Thus R ⊆ con

({ε � 0}). By the first part of the proof, R′ �ε P so that it remains
to show that R′ ⊆ con

({ε � 0}). Suppose (uT, eu)T ∈ R′. If (uT, eu)T ∈ R, then, as R is a C-ε-polyhedron, eu � 0.
On the other hand, if (uT, eu)T ∈ R′ \ R, then, by (18), we again have eu � 0. Thus con(C ′) ⊆ con

({ε � 0}) and
R′ �C P .

Finally, suppose that R �G P . By the first part of the proof R′ �ε P . Note that, since P �� ∅, we also have
R �� ∅ and R′ �� ∅. Thus, by Definition 5.9, −eε ∈ rays(R) and, to complete the proof, we need to show that
−eε ∈ rays(R′). By Lemma A.14, C � C> ∪ C� ∪ Cε . Since (ε � 1) ∈ C ′

ε , we also have C ′ � C ′
> ∪ C ′

� ∪ C ′
ε so that,

again by Lemma A.14, −eε ∈ rays(R′). Thus, R′ �G P . �
Lemma A.20 Let (C, G) ≡ R ∈ CPn+1 and P ∈ Pn be such that R �ε P �� ∅ and {p, p′} ⊆ GP , where p �� p′
and sat con(p, C�) ⊆ sat con(p′, C�). Let also G � (R, P ), G ′ � (

R, P \ {p}) and R′ � gen(G ′). Then

R ∩ con
({ε � 0}) � R′ ∩ con

({ε � 0}).
Proof. Since G ′ � G, we have R′ ⊆ R, which implies R ∩ con

({ε � 0}) ⊇ R′ ∩ con
({ε � 0}). To prove the other

inclusion R∩ con
({ε � 0}) ⊆ R′ ∩ con

({ε � 0}), we assume that q � (wT, 0)T ∈ R and show that q is also in R′.
Let p � (vT, ev)T and p′ � (yT, ey)T so that, since they are both in GP , we obtain ev > 0 and ey > 0.

Consider p0 � (vT, 0)T and p′
0 � (yT, 0)T. As R is an ε-polyhedron, by condition (3) of Definition 5.2, we have

{p0, p
′
0} ⊆ R. By Theorem 3.2, p0 ∈ R can be obtained by suitably combining the generators in G; in particular,

p0 can be rewritten as p0 � σp + (1 − σ )p−, where 0 � σ � 1 and the point p− � (vT, e−)T is such that
p− ∈ gen(G ′) � R′. Since ev > 0, we obtain e− � 0. Since p′ ∈ R′, which is a convex set, then R′ contains
the whole segment [p−, p′] and, in particular, by taking q1 � (wT

1, 0)T to be the point on this segment having a
zero ε coordinate, we obtain q1 ∈ R′ (note that there exists exactly one such a q1, because ey > 0). By applying
Lemma A.16 to p and p′ we obtain sat con(p0, C�) � sat con(p, C�) and sat con(p′

0, C�) � sat con(p′, C�)
so that, by hypothesis, sat con(p0, C�) ⊆ sat con(p′

0, C�). Thus, as q1 lies on the segment [p0, p
′
0], we obtain

sat con(p0, C�) ⊆ sat con(q1, C�) and hence,

sat con(p, C�) ⊆ sat con(q1, C�). (22)

Let r � q − q1. If r � 0, then q � q1 ∈ R′. Otherwise, let r �� 0. By hypothesis, rays(R) � rays(R′). Thus, if
r ∈ rays(R), we also have r ∈ rays(R′) so that q � q1 + r ∈ R′.
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Suppose now that r �� 0 and that r /∈ rays(R). Then there must exist a maximum value ρ2 � 0 such that
q1 + ρ2r ∈ R. Note that, since q � q1 + r ∈ R, it must be ρ2 � 1. Thus let q2 � q1 + ρ2r � (wT

2, 0)T ∈ R.
Note that, as ρ2 � 1, q2 �� q1. Thus, by choice of ρ2, there must exist a constraint β ∈ C that saturates q2
but not q1. Since no constraint in Cε can be saturated by q2, we have β /∈ Cε . Suppose that β ∈ C>. Then, by
Lemma A.18, q2 ∈ gen

(
(GR, GC)

)
; since (GR, GC) � G ′, we obtain q2 ∈ R′. Suppose now that β ∈ C�; then, as

β /∈ sat con(q1, C�), by (22), we obtain β /∈ sat con(p, C�). Similarly, supposing now β ∈ C \ (C> ∪ C� ∪ Cε),
then s > 0 so that, as p0 ∈ R, β /∈ sat con(p, C). In both cases, as β ∈ sat con(q2, C), q2 is generated by
sat gen

(
β, (GR, GC)

)
, so that q2 ∈ gen(G ′) � R′. Thus in all cases q2 ∈ R′. As q lies on the segment [q1, q2] and

R′ is a convex set, we have q ∈ R′ as required. �
Lemma A.21 Let �Y ∈ {�ε, �C, �G}. Let (C, G) ≡ R ∈ CPn+1 and P ∈ Pn be such that R �Y P �� ∅. If p is
a strongly ε-redundant generator in G � (R, P ), then gen(G ′) �Y P , where G ′ � (

R, P \ {p}).

Proof. Let R′ � gen(G ′) and P ′ � P \ {p}, so that G ′ � (R, P ′). Note that G ′ � G and hence, as the function
‘gen’ is monotonic, R′ ⊆ R.

Suppose that p � (vT, e)T is strongly ε-redundant in G so that, by Definition 6.2, p ∈ P , e > 0 and there
exists a point p′ � (yT, e′)T such that p′ ∈ P ′, e′ > 0 and

sat con(p, C�) ⊆ sat con(p′, C). (23)

Note that p′ ∈ R′. Letting p0 � (vT, 0)T and p′
0 � (yT, 0)T, by condition (3) of Definition 5.2, we have {p0, p

′
0} ⊆

R. By applying Lemma A.16 twice and using (23), we have

sat con
(
p0, C> ∪ C� ∪ Cε

) � sat con(p, C�) ⊆ sat con(p′, C�) � sat con(p′
0, C> ∪ C� ∪ Cε)

⊆ sat con(p′
0, C). (24)

Also, by applying Lemma A.20 and using (23) we obtain that, for all w ∈ R
n,

(wT, 0)T ∈ R ⇐⇒ (wT, 0)T ∈ R′. (25)

In order to show that R′ �ε P , we first prove that R′ is an ε-polyhedron. Consider condition (2) of Defini-
tion 5.2. As R′ ⊆ R, R′ satisfies condition (2) by taking the same value δ used for R. Consider now condition (3) of
Definition 5.2. Let (wT, ew)T ∈ R′. Since R′ ⊆ R, we have (wT, ew)T ∈ R; since R is an ε-polyhedron, (wT, 0)T ∈ R.
Then, by (25), we obtain (wT, 0)T ∈ R′. Thus R′ is an ε-polyhedron.

To show that R′ is an ε-polyhedron for P , it remains to prove that [[R]] � [[R′]]. Since R′ ⊆ R, the inclu-
sion [[R′]] ⊆ [[R]] holds by monotonicity of function [[·]]. We now prove that [[R]] ⊆ [[R′]]. By Proposition 5.5,
[[R]] � gen

(
gen enc(G)

)
and [[R′]] � gen

(
gen enc(G ′)

)
. Thus, to show that [[R]] ⊆ [[R′]], we just have to show that

v ∈ [[R′]]. Now let β � (〈a, x〉 + s · ε � b
) ∈ (C> ∪ C� ∪ Cε) \ sat con

(
p0, C

)
. Then, as p satisfies β, e > 0 and

s � 0, we have 〈a, v〉 � b. However, if s � 0, then, as β /∈ sat con(p0, C), we have 〈a, v〉 �� b and, if s < 0 then
〈a, v〉 > b. Thus, in both cases, we have 〈a, v〉 > b. Consider the set

{ 〈a, y〉 − 〈a, v〉
〈a, v〉 − b

∈ R+

∣
∣
∣
∣
β ∈ (C> ∪ C� ∪ Cε) \ sat con

(
p0, C

)
,

β � (〈a, x〉 + s · ε � b
)
, 〈a, y〉 > 〈a, v〉

}

.

If this set is non-empty, let ρ be the minimum of this set; otherwise, let ρ � 1. Then ρ > 0. Consider the affine
combination

qρ � (1 + ρ)p0 − ρp′
0.

By construction, qρ � (wT
ρ, 0)T satisfies all the constraints in (C> ∪ C� ∪ Cε) \ sat con(p0, C). Since ρ > 0, p0

lies on the segment [qρ, p
′
0] so that, by (24), qρ saturates every constraint in sat con(p0, C). By Lemma A.15, qρ

also satisfies every constraint in C \ (C> ∪ C� ∪ Cε). Therefore qρ satisfies every constraint in C so that qρ ∈ R and
hence, by (25), qρ ∈ R′. Letting σ � 1

1+ρ
we obtain 0 < σ < 1 and v � σwρ + (1 − σ )y. Thus

(
vT, (1 − σ )e′)T �

σqρ + (1 − σ )p′ ∈ R′. As e′ > 0 and σ < 1, we have (1 − σ )e′ > 0 and hence, by Definition 5.1, v ∈ [[R′]] as
required.

Suppose next that R �C P . By the first part of the proof R′ �ε P . By Definition 5.6, R ⊆ con
({ε � 0}).

Since R′ ⊆ R, we also obtain R′ ⊆ con
({ε � 0}), so that, by Definition 5.6, R′ �C P .

Finally, suppose that R �G P . By the first part of the proof, R′ �ε P . By hypothesis, G ′ � (R, P \ {p}) so
that rays(R) � rays(R′). Since R �� ∅, by Definition 5.9, we have that −eε ∈ rays(R). Thus −eε ∈ rays(R′) and
R′ �G P , as required. �
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Proof of Proposition 6.3. Properties (6) and (7) follow from Lemmas A.19 and A.21, respectively. �
The proof of Proposition 6.4 requires the following lemma.

Lemma A.22 Let P ∈ CPn and r ∈ R
n, where r �� 0. Suppose that there exists p ∈ P such that, for all ρ ∈ R+,

p + ρr ∈ P . Then r ∈ rays(P).

Proof. Let q ∈ P and let β � (〈a, x〉 � b
) ∈ C. Then 〈a, q〉 � b. By hypothesis, for all ρ ∈ R+, p + ρr ∈ P so

that

〈a, p〉 + ρ · 〈a, r〉 � b.

Thus 〈a, r〉 � 0 and hence

〈a, q〉 + ρ · 〈a, r〉 � b.

As this holds for all constraints in C and all points in P , r ∈ rays(P). �
Proof of Proposition 6.4. Since, by hypothesis P �� ∅, we can apply Lemma A.7 twice to obtain

(vT, 0)T ∈ R ⇐⇒ v ∈ C(P) ⇐⇒ (vT, 0)T ∈ R′. (26)

To prove property (8), let β � (〈a, x〉 + 0 · ε � b
)

be a non-strict inequality encoding in C and q � (vT, e)T

be any point of R′. By condition (3) of Definition 5.2, q0 � (vT, 0)T ∈ R′ so that, by (26), we have q0 ∈ R. In
particular, q0 satisfies β and, since the coefficient of ε in β is 0, q also satisfies β. As the choice of q ∈ R′ is
arbitrary, R′ ⊆ con

({β}).
To prove property (9), let r � (sT, 0)T ∈ GR. By hypothesis, R is not empty; thus, considering any q � (vT, e)T ∈

R, by condition (3) of Definition 5.2, we obtain q0 � (vT, 0)T ∈ R. Since r ∈ rays(R), for all ρ ∈ R+ we also have

qρ � q0 + ρr � (
(v + ρs)T, 0)T ∈ R.

By (26), we have q0 ∈ R′ and qρ ∈ R′, for all ρ ∈ R+. Thus, by Lemma A.22, r ∈ rays(R′).
To prove property (10), let p ∈ GC , so that p � (vT, 0)T ∈ R. Then, by (26), p ∈ R′ as required. �
The proof of Proposition 6.5 is based on some preliminary lemmas. In the following proofs, .for each (strict

or non-strict) linear constraint β � (〈a, x〉 �� b
)
, where a ∈ R

n \ {0} and �� ∈ {�, >}, the corresponding

non-strict constraint is denoted by geq(β) def� (〈a, x〉 � b
)
. Similarly, for each constraint system C, we define

geq(C) def� {
geq(β)

∣
∣ β ∈ C }

.

Lemma A.23 Let con(C) � R ∈ CPn+1 and P ∈ Pn be such that R �ε P �� ∅. Then the constraint
(〈a, x〉+s ·ε �

b
) ∈ C is singular for R if and only if s � 0 and

(〈a, x〉 � b
) ∈ con enc(C) is singular for P .

Proof. Suppose that β � (〈a, x〉 + s · ε � b
) ∈ C is singular for R. Then every point in R must saturate β.

As P �� ∅, by Definition 5.1, there exists a point (wT, e)T ∈ R with e �� 0; by condition (3) of Definition 5.2,
we also have (wT, 0)T ∈ R; since both these points saturate β, it must be s � 0. By Definition 5.4, we have
β1 � (〈a, x〉 � b

) ∈ con enc(C). Let v ∈ P so that, by Definition 5.1 and 5.2, (vT, 0)T ∈ R; as β is singular,
(vT, 0)T saturates β so that v saturates β1. As v ∈ P was arbitrary, every point in P saturates β1; and hence β1 is
singular for P .

Conversely, suppose there is a constraint β1 ∈ con enc(C) that is singular for P �� ∅; thus, β1 must be non-
strict so that, for some a ∈ R

n and b ∈ R, β1 � (〈a, x〉 � b
)
. By Definition 5.4, β � (〈a, x〉 + 0 · ε � b

) ∈ C. As
β1 is singular for P , every point v ∈ C(P) saturates β1; thus every point (vT, 0)T ∈ R saturates β. By condition (3)
of Definition 5.2, (vT, e)T ∈ R only if (vT, 0)T ∈ R; thus every point in R saturates β; and hence β is singular
for R. �
Lemma A.24 Let R � con(C) ∈ CPn+1 and P ∈ Pn be such that R �ε P �� ∅ and suppose that C is in minimal
and orthogonal form, but not in ε-minimal form. Then C contains a strongly ε-redundant constraint.

Proof. Suppose R � gen(G), where G � (R, P ). Let C1 � con enc(C) and G1 � (R1, P1, C1) � gen enc(G). It
follows from Proposition 5.5 that P � con(C1) � gen(G1); also, C(P) � con

(
geq(C1)

) � gen
(
(R1, P1 ∪ C1)

)
.

Let eq(C) � eq(R) ∩ C and eq(C1) � eq(P) ∩ C1 so that, by Lemma A.23, eq(C1) � con enc
(
eq(C)

)
. Let also

ineq(C) � C \ eq(C) and ineq(C1) � C1 \ eq(C1). As P �� ∅, eq(C1) contains no strict constraints so that, by Defi-
nition 5.4, we also have ineq(C1) � con enc

(
ineq(C)

)
. Since C is in orthogonal form, for all β � (〈a, x〉 + s · ε �
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b
) ∈ eq(C) and β ′ � (〈a′, x〉 + s ′ · ε � b′) ∈ ineq(C) we have

〈
slope(β), slope(β ′)

〉 � 0; by Lemma A.23, s � 0
and hence 〈a, a′〉 � 0, so that C1 is in orthogonal form too.

As C is not in ε-minimal form, by Definition 6.1, C1 is not in minimal form. Thus there exists a constraint
η � (〈a, x〉 �� b

) ∈ C1, where �� ∈ {�, >}, which is redundant for C1. By Definition 5.4, there exists s � 0 such
that β � (〈a, x〉 + s · ε � b

) ∈ C. We distinguish two main cases:

Case 1. geq(η) is saturated by none of the closure points of P ;
Case 2. geq(η) is saturated by at least one closure point of P .

Consider first Case 1. By the assumption for this case, we obtain sat gen
(
geq(η), (R1, P1 ∪ C1)

) � (R1, ∅).
It is easy to observe that η is non-singular for P , because any singular constraint has to be saturated by all the
points of C(P) �� ∅, including those in P1 ∪C1. We now show that η is a strict constraint. To do this we assume by
contraposition η is non-strict. Thus η � geq(η) and, by Definition 5.4, s � 0. Since no point in P1 ∪ C1 saturates
η, then no point in P saturates β. Thus β is redundant in C, contradicting the hypothesis that C is in minimal
form. Therefore, η is a strict constraint, so that, by Definition 5.4, s < 0 and β ∈ C>. The above saturation
assumption implies sat gen

(
β, (GR, GC)

) � (GR, ∅) and hence, by Definition 6.2, β is strongly ε-redundant in C.
Consider now Case 2. As η is redundant in C1 and geq(η) is saturated by at least one closure point of

P , there exists k > 0 such that a � ∑k
i�1 ρiai and b � ∑k

i�1 ρibi where, for 1 � i � k, we have ρi > 0,
ηi � (〈ai , x〉 ��i bi

) ∈ C1 \ {η} and ��i ∈ {�, >}. Therefore, for 1 � i � k, we have

sat gen
(
geq(η), (R1, P1 ∪ C1)

) � sat gen
(
geq(ηi), (R1, P1 ∪ C1)

)
. (27)

By Definition 5.4, for 1 � i � k, there exists si � 0 such that βi � (〈ai , x〉 + si · ε � bi

) ∈ C \ {β}.
Suppose first that {η1, . . . , ηk} ⊆ eq(C1) so that η ∈ eq(C1). By Lemma A.23, β ∈ eq(C), s � 0 and, for each

1 � i � k, βi ∈ eq(C) \ {β} and si � 0. As a consequence, slope(β) � ∑k
i�1

(
ρi slope(βi)

)
so that β is redundant

in eq(C); contradicting the hypothesis that C is in minimal form. Thus {η1, . . . , ηk} \ eq(C1) �� ∅.
It follows that {η1, . . . , ηk} ∩ ineq(C1) �� ∅, so that η ∈ ineq(C1) and hence, by Lemma A.23, β ∈ ineq(C).

Since, by the hypothesis for this case, geq(η) is saturated by at least one closure point of P , if η is a strict con-
straint, then at least one constraint in {η1, . . . , ηk} ∩ ineq(C1) must be strict. Thus we will assume, without losing
generality, that ηk ∈ ineq(C1) and ηk is strict if η is strict. By Lemma A.23, we have βk ∈ ineq(C) \ {β}.

We show that η is a strict constraint. To do this we assume by contraposition η is non-strict. Thus η � geq(η)
and, by Definition 5.4, s � 0. Let β ′

k � (〈ak, x〉 + 0 · ε � bk

)
; by Proposition 5.3, R ⊆ con

({β ′
k}

)
, so that β ′

k is
a valid constraint for R. Consider the generator systems H � (Rβ, Pβ) � sat gen(β, G) and H′

k � (R′
k, P

′
k) �

sat gen(β ′
k, G) defined by the saturators of β and β ′

k; we now prove that H � H′
k. Let r � (vT, ev)T ∈ Rβ . As s � 0,

v saturates η. If v � 0, then we trivially obtain r ∈ R′
k. Suppose now that v �� 0; thus, by Lemma A.2, we have

(vT, 0)T ∈ rays(R) and, by Lemma A.8, v ∈ rays(P), which also implies v ∈ rays
(
C(P)

)
. Since v saturates η, it can

also be obtained as a non-negative combination of the rays in R1 that saturate η so that, by (27), v also saturates
geq(ηk). As a consequence, r saturates β ′

k and hence r ∈ R′
k. Now let p � (vT, ev)T ∈ Pβ . By Definition 5.2,

p0 � (vT, 0)T ∈ R so that, by Lemma A.7, v ∈ C(P). As s � 0, v saturates η. Thus, by (27), v also saturates
geq(ηk), so that p saturates β ′

k and p ∈ P ′
k. Hence H � H′

k. Note that, as β ′
k is non-singular, C is in minimal form

and β ∈ C, we cannot have H � H′
k, so that H � H′

k. Since C is also in orthogonal form, β � β ′
k. Therefore, by

Definition 5.4, as {η, ηk} ⊆ C1 � con enc(C), η � ηk; a contradiction. It follows that η must be a strict constraint.
By construction, since η is strict, ηk is also strict so that, by Definition 5.4, we have s < 0 and sk < 0; hence

{β, βk} ⊆ C>. Suppose that the constraint β is saturated by a ray encoding r � (vT, 0)T ∈ GR. Then, v ∈ R1
saturates geq(η); by (27), v also saturates geq(ηk) and hence, r saturates βk. Similarly, suppose that β is saturated
by a closure point encoding p0 � (vT, 0)T ∈ GC . By Definition 5.4, either v ∈ C1 or v ∈ P1; in both cases, v
saturates geq(η) and, by (27), v also saturates geq(ηk); hence, the closure point encoding p0 saturates βk. Thus
we obtain sat gen

(
β, (GR, GC)

) � sat gen(βk, G) so that, by Definition 6.2, β is strongly ε-redundant in C. �
Lemma A.25 Let R � gen(G) ∈ CPn+1 and P ∈ Pn be such that R �ε P �� ∅ and suppose that G is in minimal
and orthogonal form, but not in ε-minimal form. Then G contains a strongly ε-redundant generator.

Proof. Let C1 � con enc(C). Observe that, by Definition 5.4, for each constraint
(〈a, x〉 + s · ε � b

) ∈ C where
a �� 0 ∈ R

n and s, b ∈ R, we have
(〈a, x〉 � b

) ∈ geq(C1). Let G � (R, P ) and suppose that G1 � (R1, P1, C1) �
gen enc(G). It follows from Proposition 5.5 that P � con(C1) � gen(G1); moreover, C(P) � con

(
geq(C1)

) �
gen

(
(R1, P1 ∪ C1)

)
. By hypothesis, P �� ∅ so that, by Definition 5.1, there exists a point in R having an ε coor-

dinate strictly greater than 0. Since G is not in ε-minimal form, by Definition 6.1, the generator system G1 is not
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in minimal form. Thus there exists a redundant generator v in G1. To prove the thesis, we will show that v ∈ P1
and, for some ev > 0, (vT, ev)T ∈ GP is strong ε-redundant in G.

We first show that v /∈ R1. To do this we assume by contraposition v ∈ R1. Since it is redundant in G1, then v
is a non-negative combination of the rays in R1 \ {v}. By Definition 5.4, for each w ∈ R1 there exists (wT, 0)T ∈ R.
As a consequence (vT, 0)T ∈ R is a non-negative combination of the rays in R \ {

(vT, 0)T
}

, so that (vT, 0)T ∈ R is
redundant in G; contradicting the hypothesis that G is in minimal form.

It follows that v ∈ P1 ∪ C1. By Definition 5.4, P1 ∩ C1 � ∅. Thus, since v is redundant in G1, there must exist
another vector w ∈ (P1 ∪ C1) \ {v} such that

sat con
(
v, geq(C1)

) ⊆ sat con
(
w, geq(C1)

)
. (28)

By Definition 5.4, there exist ev, ew ∈ R+ such that p � (vT, ev)T, q � (wT, ew)T and {p, q} ⊆ P .
We next show that v /∈ C1. To do this we assume by contraposition v ∈ C1 so that, by Definition 5.4, ev � 0.

Let q0 � (wT, 0)T so that, by condition (3) of Definition 5.2, q0 ∈ R. Consider � ∈ lines(R). Since G is in orthog-
onal form and q ∈ P , we have 〈q, �〉 � 0. Since {�, −�} ⊆ rays(R), by applying Lemma A.3 twice we obtain
� � (�T

1, 0)T. Thus 〈w, �1〉 � 0, so that 〈q0, �〉 � 〈w, �1〉 + 0 · 0 � 0. As this holds for all vectors in lines(R), we
obtain q0 ∈ lines(R)⊥. Consider now β � (〈a, x〉 + s · ε � b

) ∈ sat con(p, C). Suppose first that a �� 0. Then,
by Definition 5.4, there exists η ∈ C1 such that geq(η) � (〈a, x〉 � b

) ∈ geq(C1). Since p saturates β and ev � 0,
then v saturates geq(η). Thus, by (28), w saturates geq(η). Then β ∈ sat con(q0, C). On the other hand, if a � 0,
since p saturates β and ev � 0, we obtain 〈0, v〉 + s · 0 � b. Thus b � 0 and again β ∈ sat con(q0, C). Therefore
we obtain sat con(p, C) ⊆ sat con(q0, C). From this property, since q0 ∈ lines(R)⊥ and G is a generator system
in minimal form, we obtain p � q0 and hence v � w, which is a contradiction.

It follows that v ∈ P1 so that, by Definition 5.4, ev > 0 and p ∈ GP . Consider the constraint system

C ′
1 � con enc

(
sat con(p, C�)

) �
{

〈a, x〉 � b

∣
∣
∣
(〈a, x〉 + 0 · ε � b

) ∈ sat con(p, C�)
}

.

Then v saturates all the constraints in C ′
1. As p ∈ R and ev > 0, for all

(〈a, x〉+0 ·ε � b
) ∈ sat con(p, C�) and all

s < 0, we have
(〈a, x〉 + s · ε � b

)
/∈ C. Thus, by Definition 5.4, C ′

1 ⊆ C1 and hence P ⊆ con(C ′
1). Let G ′ � (

R, P \
{p}) and G ′

1 � gen enc(G ′) � (
R1, P1 \ {v}, C1

)
. As v ∈ P is redundant in G1, we have gen(G1) � gen(G ′

1) and, in
particular, v ∈ gen(G ′

1). Thus v � σy + (1 − σ )z where 0 < σ < 1, y ∈ P1 \ {v} and z ∈ C(P). This implies that
sat con

(
v, C1

) ⊆ sat con
(
y, C1

)
; in particular, since C ′

1 ⊆ C1, we obtain sat con(v, C ′
1) ⊆ sat con(y, C ′

1). By Defi-
nition 5.4, p′ � (yT, ey)T ∈ P \ {p}, where ey > 0, so that p′ ∈ G ′

P . Observe that, as y saturates every constraint in
C ′

1, p′ saturates every constraint in sat con(p, C�). It follows that sat con(p, C�) ⊆ sat con(p′, C�) and, by Defini-
tion 6.2,p is strongly ε-redundant inG. �

Proof of Proposition 6.5. Items (1) and (2) follow from Lemmas A.24 and A.25, respectively. �

Received Febraury 2004
Revised August 2004 and January 2005
Accepted March 2005 by M. Leuschel and D. J. Cooke
Published online 20 June 2005


